JP2003260474A - Water treatment system using fluorescence analyzer - Google Patents

Water treatment system using fluorescence analyzer

Info

Publication number
JP2003260474A
JP2003260474A JP2002066918A JP2002066918A JP2003260474A JP 2003260474 A JP2003260474 A JP 2003260474A JP 2002066918 A JP2002066918 A JP 2002066918A JP 2002066918 A JP2002066918 A JP 2002066918A JP 2003260474 A JP2003260474 A JP 2003260474A
Authority
JP
Japan
Prior art keywords
water
water treatment
fluorescence analyzer
treatment system
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002066918A
Other languages
Japanese (ja)
Other versions
JP3889294B2 (en
Inventor
Seiichi Murayama
山 清 一 村
Kyotaro Iyasu
安 巨太郎 居
Masao Kaneko
子 政 雄 金
Norimitsu Abe
部 法 光 阿
Setsuo Suzuki
木 節 雄 鈴
Kenji Taguchi
口 健 二 田
Takumi Hayashi
巧 林
Hiroshi Kikuchi
池 宏 菊
Jiyusetsu Kudo
藤 寿 雪 工
Akira Hiramoto
本 昭 平
Nobuyoshi Umiga
賀 信 好 海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP2002066918A priority Critical patent/JP3889294B2/en
Publication of JP2003260474A publication Critical patent/JP2003260474A/en
Application granted granted Critical
Publication of JP3889294B2 publication Critical patent/JP3889294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment system using a fluorescence analyzer capable of accurately performing the water treatment by suppressing the effect of a fluorescent brightener even if a fluorescent brightener is contained in water to be treated. <P>SOLUTION: The water treatment system is equipped with an ozone reaction tank 2, a fluorescence analyzer pretreatment part 5 to which water to be treated in the ozone reaction tank 2 is guided from a water sampling port 4 and the fluorescence analyzer 6. An oxidizing agent is injected in the water to be treated in the ozone reaction tank 2 in the fluorescence analyzer pretreatment part 5 and the fluorescence intensity in the water to be treated is calculated by the fluorescence analyzer 6. The effect of the fluorescent brightener is suppressed from the water to be treated by injecting the oxidizing agent in the water to be treated and ozone treatment can be accurately performed on the basis of the fluorescence intensity calculated by the fluorescence analyzer 6. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、浄水処理、下水処
理、産業排水処理、食品排水処理等の水処理設備に用い
られ、蛍光分析計により測定した蛍光強度を指標に水処
理を実施する蛍光分析計を用いた水処理システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in water treatment facilities such as water purification treatment, sewage treatment, industrial wastewater treatment, food wastewater treatment, etc., and carries out water treatment using fluorescence intensity measured by a fluorescence analyzer as an index. The present invention relates to a water treatment system using an analyzer.

【0002】[0002]

【従来の技術】例えば浄水場等の水処理設備では、地下
水や表流水を原水とし着水井に導入し、凝集剤を添加し
てフロックを形成し沈殿処理を実施する。その後、上澄
み液を砂ろ過に通し懸濁物を除去し、最後に消毒用の最
終塩素処理を施し需要家に供給している。消毒用塩素処
理の効果をより確実にするため、凝集剤注入点以前に塩
素を注入する前塩素処理、沈殿水に塩素を注入する中間
塩素処理が行われている。
2. Description of the Related Art In a water treatment facility such as a water purification plant, groundwater or surface water is used as raw water and introduced into a landing well, a flocculant is added to form flocs, and precipitation treatment is performed. After that, the supernatant liquid is filtered through sand to remove suspended matter, and finally subjected to final chlorine treatment for disinfection and supplied to customers. In order to further ensure the effect of disinfecting chlorine treatment, pre-chlorination before injecting chlorine and intermediate chlorine treatment by injecting chlorine into precipitation water are performed before the coagulant injection point.

【0003】前塩素処理は、原水中のアンモニア性窒素
や微生物の除去、鉄、マンガンの酸化除去のために有効
である。しかし、トリハロメタン生成能が多い原水に対
しては、前塩素注入によりトリハロメタン生成量が多く
なってしまう。従って、トリハロメタン低減のため中間
塩素処理を採用している浄水場もある。
Pre-chlorination is effective for removing ammoniacal nitrogen and microorganisms in raw water and for oxidizing and removing iron and manganese. However, for raw water with a large trihalomethane production ability, the amount of trihalomethane produced will increase due to pre-chlorine injection. Therefore, some water treatment plants have adopted intermediate chlorination to reduce trihalomethanes.

【0004】前塩素から中間塩素処理に切替えた場合
や、原水の水質が悪化し通常処理で処理しきれない時
は、原水に粉末活性炭を投入し溶解性物質を吸着除去す
る。現在、活性炭の投入量は自動制御ではなく、原水の
水質に関する手分析値に基づいてオペレータが投入量を
決定している。
When the pre-chlorine is switched to the intermediate chlorine treatment or when the quality of the raw water is deteriorated and the normal treatment cannot be completed, powdered activated carbon is added to the raw water to adsorb and remove soluble substances. Currently, the input amount of activated carbon is not automatically controlled, but the operator determines the input amount based on a manual analysis value regarding the water quality of raw water.

【0005】また、高度浄水処理であるオゾン処理を実
施する浄水場では、オゾン注入率を一定とする注入率一
定制御、あるいは溶存オゾン濃度を一定とする溶存オゾ
ン濃度一定制御を実施している。これらは、処理水の水
質を確認しながらのフィードバック制御ではなく、処理
効果のあるオゾン注入率、あるいは溶存オゾン濃度を予
め把握しておき、その情報を元にオゾン注入を実施する
方法である。従って、オゾンを少し過剰に注入するよう
にしている。
Further, in a water purification plant for performing ozone treatment, which is an advanced water purification treatment, constant injection rate control for constant ozone injection rate or constant dissolved ozone concentration control for constant dissolved ozone concentration is performed. These are not a method of feedback control while checking the quality of treated water, but a method of grasping an ozone injection rate or a dissolved ozone concentration having a treatment effect in advance and performing ozone injection based on the information. Therefore, ozone is injected a little excessively.

【0006】ところで、トリハロメタンは発ガン性物質
であるため、水処理工程においてトリハロメタンの生成
を抑制する必要がある。ところが、トリハロメタン及び
トリハロメタン生成能の測定には時間と費用を要するた
め、オンラインでモニタリングしながら水質制御するこ
とは不可能である。
By the way, since trihalomethane is a carcinogen, it is necessary to suppress the production of trihalomethane in the water treatment process. However, it takes time and cost to measure trihalomethane and the ability to generate trihalomethane, so it is impossible to control water quality while monitoring online.

【0007】そこで、水質を連続でモニタリングしなが
らオゾン、活性炭、あるいはその他薬品の注入制御を実
施し、必要最小限の量を過不足なく注入制御する方法と
して溶存性の有機物濃度と相関のある蛍光強度を指標と
した水質制御方法が提案されている(特開平10−04
3776「オゾン注入装置の制御システム」)。この水
質制御方法によれば励起光として波長345nm付近の光
を用い、トリハロメタン前駆物質の代表物質であるフル
ボ酸と相関が高い波長425nm付近の蛍光強度を求め、
トリハロメタン生成能低減を目的とした水質制御を行っ
ている。
Therefore, as a method for controlling the injection of ozone, activated carbon, or other chemicals while continuously monitoring the water quality, and controlling the injection of the minimum necessary amount without excess or deficiency, fluorescence that correlates with the concentration of the dissolved organic matter. A water quality control method using strength as an index has been proposed (JP-A-10-04).
3776 "Control system for ozone injectors"). According to this water quality control method, light having a wavelength of about 345 nm is used as excitation light, and the fluorescence intensity at a wavelength of about 425 nm, which has a high correlation with fulvic acid that is a representative substance of trihalomethane precursors, is obtained.
Water quality is controlled to reduce trihalomethane production.

【0008】[0008]

【発明が解決しようとする課題】一方、自然水中に存在
している他の蛍光発現物質として洗濯用洗剤中に含まれ
る蛍光増白剤がある。例えば、家庭排水に含まれる蛍光
増白剤が下水処理場へ流入すると、下水処理場における
被処理水中の蛍光増白剤の割合が高くなる。このように
蛍光増白剤を含んだ水を処理する場合、蛍光分析計によ
り測定される蛍光強度には、測定したいフルボ酸濃度に
加えて蛍光増白剤による蛍光強度分が加算されるため、
蛍光強度そのものを水質制御の指標にすることが困難と
なる場合がある。
On the other hand, another fluorescent substance existing in natural water is a fluorescent whitening agent contained in a laundry detergent. For example, when the fluorescent whitening agent contained in domestic wastewater flows into the sewage treatment plant, the ratio of the fluorescent whitening agent in the treated water in the sewage treatment plant increases. When treating water containing an optical brightener in this way, the fluorescence intensity measured by the fluorescence analyzer is added to the fulvic acid concentration to be measured in addition to the fluorescence intensity component of the optical brightener,
It may be difficult to use the fluorescence intensity itself as an index for water quality control.

【0009】本発明は、このような点を考慮してなされ
たものであり、被処理水中に蛍光増白剤が含まれている
場合、蛍光増白剤による蛍光発現性の影響を排除するこ
とを可能とした蛍光分析計を用いた水処理システムを提
供することを目的とする。
The present invention has been made in consideration of the above points, and when the water to be treated contains a fluorescent whitening agent, it is possible to eliminate the influence of the fluorescent whitening agent on the fluorescence developing property. An object of the present invention is to provide a water treatment system using a fluorescence analyzer that enables the above.

【0010】[0010]

【課題を解決するための手段】本発明は、蛍光分析計を
用いた水処理システムにおいて、蛍光増白剤を含む被処
理水を採水する採水部と、採水部に接続され、被処理水
の蛍光強度を検出する蛍光分析計と、蛍光分析計からの
信号に基づいて、被処理水に対して水処理を行う水処理
機構とを備え、蛍光分析計より上流側に、被処理水中に
酸化剤を添加する酸化剤添加装置または被処理水中に光
を照射する光照射装置を設置して、被処理水中の蛍光増
白剤による蛍光発現性を抑えることを特徴とする蛍光分
析計を用いた水処理システムである。
The present invention relates to a water treatment system using a fluorescence analyzer, in which a water collecting portion for collecting water to be treated containing a fluorescent whitening agent and a water collecting portion connected to the water collecting portion are provided. A fluorescence analyzer that detects the fluorescence intensity of the treated water and a water treatment mechanism that performs water treatment on the water to be treated based on the signal from the fluorescence analyzer are provided. A fluorescence analyzer characterized by installing an oxidizer addition device for adding an oxidizer into water or a light irradiation device for irradiating light into the water to be treated to suppress the fluorescence expression due to the fluorescent whitening agent in the water to be treated. Is a water treatment system using.

【0011】本発明は、蛍光分析計は、励起光波長が4
00〜450nmのとき、蛍光波長が400〜450nmの
間に存在するある特定の波長の蛍光強度を検出すること
を特徴とする蛍光分析計を用いた水処理システムであ
る。
In the present invention, the fluorescence analyzer has an excitation light wavelength of 4
It is a water treatment system using a fluorescence analyzer characterized by detecting the fluorescence intensity of a specific wavelength existing between 400 and 450 nm when the fluorescence wavelength is 00 to 450 nm.

【0012】本発明は、蛍光分析計は、励起光側と検出
側の波長の幅を20nm以下とすることを特徴とする蛍光
分析計を用いた水処理システムである。
The present invention is a water treatment system using a fluorescence analyzer characterized in that the wavelength width between the excitation light side and the detection side is 20 nm or less.

【0013】本発明は、酸化剤添加装置によって酸化剤
が添加された被処理水が蛍光分析計に達するまでの接触
時間は、10秒〜10分の間であることを特徴とする蛍
光分析計を用いた水処理システムである。
According to the present invention, the contact time for the water to be treated to which the oxidant has been added by the oxidant addition device to reach the fluorescence analyzer is between 10 seconds and 10 minutes. Is a water treatment system using.

【0014】本発明は、光照射装置は、10秒〜10分
の光照射時間だけ被処理水中へ紫外線を照射することを
特徴とする蛍光分析計を用いた水処理システムである。
The present invention is a water treatment system using a fluorescence analyzer, wherein the light irradiation device irradiates the water to be treated with ultraviolet rays for a light irradiation time of 10 seconds to 10 minutes.

【0015】本発明は、酸化剤添加装置は、酸化剤とし
て塩素剤を使用することを特徴とする蛍光分析計を用い
た水処理システムである。
The present invention is a water treatment system using a fluorescence analyzer, wherein the oxidizing agent adding device uses a chlorine agent as an oxidizing agent.

【0016】本発明は、酸化剤添加装置は、酸化剤とし
てオゾンガスを使用することを特徴とする蛍光分析計を
用いた水処理システムである。
The present invention is a water treatment system using a fluorescence analyzer, wherein the oxidizing agent adding device uses ozone gas as an oxidizing agent.

【0017】本発明は、酸化剤添加装置は、酸化剤の残
留濃度が検出されない添加量だけ酸化剤を添加すること
を特徴とする蛍光分析計を用いた水処理システムであ
る。
The present invention is a water treatment system using a fluorescence analyzer, characterized in that the oxidant addition device adds the oxidant in an amount such that the residual concentration of the oxidant is not detected.

【0018】本発明は、酸化剤添加装置は酸化剤の添加
率を水量[L]に対する酸化剤添加量[mg]の割合[mg
/L]として表すとき、0.1〜10mg/Lの添加率で
酸化剤を添加することを特徴とする蛍光分析計を用いた
水処理システムである。
According to the present invention, the oxidizer addition device uses an oxidizer addition ratio of the oxidizer addition amount [mg] to the water amount [L] [mg].
/ L], a water treatment system using a fluorescence analyzer characterized by adding an oxidizing agent at an addition rate of 0.1 to 10 mg / L.

【0019】本発明は、水処理機構は、オゾン注入装置
であることを特徴とする蛍光分析計を用いた水処理シス
テムである。
The present invention is a water treatment system using a fluorescence analyzer, wherein the water treatment mechanism is an ozone injection device.

【0020】本発明は、水処理機構は、粉末活性炭注入
装置であることを特徴とする蛍光分析計を用いた水処理
システムである。
The present invention is a water treatment system using a fluorescence analyzer, wherein the water treatment mechanism is a powder activated carbon injection device.

【0021】本発明は、水処理機構は、凝集剤注入装置
であることを特徴とする蛍光分析計を用いた水処理シス
テムである。
The present invention is a water treatment system using a fluorescence spectrometer, wherein the water treatment mechanism is a coagulant injection device.

【0022】本発明は、水処理機構は、塩素剤注入装置
であることを特徴とする蛍光分析計を用いた水処理シス
テムである。
The present invention is a water treatment system using a fluorescence analyzer, wherein the water treatment mechanism is a chlorine agent injection device.

【0023】本発明は、水処理機構は、膜ろ過装置であ
ることを特徴とする蛍光分析計を用いた水処理システム
である。
The present invention is a water treatment system using a fluorescence analyzer, wherein the water treatment mechanism is a membrane filtration device.

【0024】[0024]

【発明の実施の形態】第1の発明の実施の形態 以下、図面を参照して本発明の第1の実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION First Embodiment Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

【0025】本発明による蛍光分析計を用いた水処理シ
ステムの一例として、オゾン注入設備を有する高度浄水
処理設備について説明する。この高度浄水処理設備は、
蛍光強度を指標として、トリハロメタン生成能低減、あ
るいは溶解性有機物低減に必要な、最小限のオゾン注入
量を制御するシステムを有し、蛍光増白剤による蛍光発
現の影響を排除し、オゾン注入制御の制御性の向上を実
現するものである。
As an example of a water treatment system using the fluorescence analyzer according to the present invention, an advanced water purification treatment equipment having ozone injection equipment will be described. This advanced water treatment facility
It has a system that controls the minimum ozone injection amount required for reducing trihalomethane production capacity or reducing soluble organic substances using fluorescence intensity as an index, eliminating the influence of fluorescence expression by the fluorescent whitening agent and controlling ozone injection. The controllability of is improved.

【0026】オゾン処理は、被処理水に対する脱臭、脱
色、消毒、鉄・マンガンイオンの酸化、有機物分解、ト
リハロメタン生成能の低減に効果があり、高度浄水処理
の代表的な処理方法の一つである。
Ozone treatment is effective in deodorizing, decolorizing, disinfecting water to be treated, oxidizing iron and manganese ions, decomposing organic substances, and reducing trihalomethane production ability, and is one of the typical treatment methods of advanced water purification treatment. is there.

【0027】一方、被処理水中には、蛍光増白剤が含ま
れている。このような蛍光増白剤は染料の一種であり、
紫外線(波長380nm付近)を吸収し、可視光線(波長
440nm付近)を蛍光として放出する。綿のようにもと
もと黄色味を帯びたものに対して添加されると、布本来
の反射光に蛍光が加わり、輝くように白く見える。市販
の白物衣料の多くのものには、製造段階で蛍光増白剤が
使用されているが、綿、麻、レーヨンなどに使用されて
いる蛍光増白剤は、洗濯の時に脱落するので、これを補
うために、多くの洗剤には蛍光増白剤が配合されてい
る。このため、生活排水が流入する可能性のある水源を
使用している浄水場では、多くの場合、原水中に蛍光増
白剤が含まれている。
On the other hand, the water to be treated contains a fluorescent whitening agent. Such optical brightener is a kind of dye,
It absorbs ultraviolet rays (wavelength near 380 nm) and emits visible light (wavelength near 440 nm) as fluorescence. When added to something originally yellowish like cotton, it adds a fluorescence to the original reflected light of the cloth, and looks shiny and white. Optical whitening agents are used in many commercial white clothing items at the manufacturing stage, but the optical whitening agents used in cotton, hemp, rayon, etc. fall off during washing, so To compensate for this, many detergents contain an optical brightener. For this reason, in a water treatment plant that uses a water source to which domestic wastewater may flow, raw water often contains an optical brightener.

【0028】図2は蛍光増白剤の分子式の一例を示す図
である。また、図3は河川水の蛍光強度の蛍光増白剤に
よる影響を示す図である。図2および図3に示すように
1mg/L程度の微量な蛍光増白剤が混入している場合で
も、蛍光増白剤による蛍光強度の増加分は大きい。
FIG. 2 is a diagram showing an example of the molecular formula of the fluorescent whitening agent. Further, FIG. 3 is a diagram showing the influence of the fluorescent whitening agent on the fluorescent intensity of river water. As shown in FIGS. 2 and 3, even when a trace amount of the optical brightening agent of about 1 mg / L is mixed, the increase amount of the fluorescent intensity by the fluorescent whitening agent is large.

【0029】次に図1により、本発明による蛍光分析計
を用いた水処理システムについて説明する。
Next, referring to FIG. 1, a water treatment system using the fluorescence analyzer according to the present invention will be described.

【0030】図1に示すように、水処理システムは被処
理水に対して凝集沈殿を実施する凝集沈殿槽1と、凝集
沈殿槽1に接続されたオゾン反応槽2と、オゾン反応槽
2内の被処理水を採水する採水口(採水部)4と、採水
口4に接続され被処理水に対して酸化剤を添加する蛍光
分析計前処理部(酸化剤添加装置)5と、蛍光分析計前
処理部5に接続され被処理水の蛍光強度を検出する蛍光
分析計6とを備えている。
As shown in FIG. 1, the water treatment system comprises a coagulating sedimentation tank 1 for coagulating sedimentation of water to be treated, an ozone reaction tank 2 connected to the coagulation sedimentation tank 1, and an ozone reaction tank 2. A water sampling port (water sampling part) 4 for sampling the untreated water, and a fluorescence analyzer pretreatment part (oxidizing agent adding device) 5 connected to the water sampling port 4 for adding an oxidant to the untreated water, And a fluorescence analyzer 6 connected to the fluorescence analyzer pretreatment unit 5 for detecting the fluorescence intensity of the water to be treated.

【0031】またオゾン反応槽2内には散気管9が設置
され、この散気管9にオゾン発生器7からオゾン化空気
8が供給されるようになっている。さらにオゾン発生器
7は、蛍光分析計6からの信号に基づいて目標オゾン注
入率11を求めるオゾン注入率演算装置10により制御
されるようになっている。
An air diffuser 9 is installed in the ozone reaction tank 2, and the ozone generator 8 supplies the ozonized air 8 to the air diffuser 9. Further, the ozone generator 7 is controlled by an ozone injection rate calculation device 10 which obtains a target ozone injection rate 11 based on a signal from the fluorescence analyzer 6.

【0032】上記構成要素のうち、オゾン反応槽2、散
気管9、オゾン発生器7およびオゾン注入率演算装置1
0により、被処理水に対してオゾン注入を施す水処理機
構が構成される。
Of the above components, the ozone reaction tank 2, the air diffuser 9, the ozone generator 7, and the ozone injection rate calculation device 1
0 constitutes a water treatment mechanism for injecting ozone into the water to be treated.

【0033】次にこのような構成からなる本実施の形態
の作用について説明する。
Next, the operation of this embodiment having such a configuration will be described.

【0034】まず、凝集沈殿槽1内で凝集処理された被
処理水が、オゾン反応槽2内に流入し、このオゾン反応
槽2内において散気管9から供給されるオゾンによりオ
ゾン処理される。オゾン反応槽2内でオゾン処理された
被処理水は、オゾン反応槽2から排水されて次工程へ送
られる。
First, the water to be treated which has been subjected to the coagulation treatment in the coagulation sedimentation tank 1 flows into the ozone reaction tank 2 and is ozone-treated in the ozone reaction tank 2 by the ozone supplied from the diffuser pipe 9. The water to be treated that has been subjected to ozone treatment in the ozone reaction tank 2 is drained from the ozone reaction tank 2 and sent to the next step.

【0035】なお、オゾン反応槽2内に流入する被処理
水に対しては、未だ塩素注入は行われていない。
It should be noted that chlorine has not yet been injected into the water to be treated flowing into the ozone reaction tank 2.

【0036】この間、このオゾン反応槽2内の被処理水
の一部が採水口4を介して、蛍光分析計前処理部5へ導
かれる。蛍光分析計前処理部5では、蛍光増泊剤の蛍光
発現性を排除するため、被処理水中へ酸化剤として次亜
塩素酸ナトリウムを添加率0.1〜10mg/L、好まし
くは1.0mg/Lで注入している。ここで添加率mg/L
とは水量Lに対する酸化剤添加量mgの割合をいう。
During this time, a part of the water to be treated in the ozone reaction tank 2 is guided to the fluorescence analyzer pretreatment section 5 via the water sampling port 4. In the fluorescence analyzer pretreatment unit 5, in order to eliminate the fluorescence developability of the fluorescent night stimulant, the addition rate of sodium hypochlorite as an oxidant into the water to be treated is 0.1 to 10 mg / L, preferably 1.0 mg. / L is injected. Addition rate here mg / L
Means the ratio of the added amount of the oxidizing agent to mg of the water amount L.

【0037】図4は蛍光増白剤の蛍光強度と次亜塩素酸
ナトリウム添加率の関係の一例を示す図である。図4に
示すように、次亜塩素酸ナトリウムの添加率が1.0mg
/Lのとき、蛍光増白剤の蛍光強度は99%以上減少し
ている。
FIG. 4 is a graph showing an example of the relationship between the fluorescence intensity of the fluorescent whitening agent and the sodium hypochlorite addition rate. As shown in FIG. 4, the addition rate of sodium hypochlorite is 1.0 mg.
/ L, the fluorescence intensity of the optical brightener is decreased by 99% or more.

【0038】蛍光分析計前処理部5において酸化剤が添
加された被処理水は、接触時間10秒〜10分後、好ま
しくは1分後に蛍光分析計6に達し、この蛍光分析計6
において被処理水の蛍光強度が連続的に測定される。
The water to be treated to which the oxidizing agent is added in the pretreatment section 5 of the fluorescence analyzer reaches the fluorescence analyzer 6 after a contact time of 10 seconds to 10 minutes, preferably 1 minute.
In, the fluorescence intensity of the water to be treated is continuously measured.

【0039】上述のように、オゾン発生器7で生成した
オゾンは、オゾン化空気8として散気管9を経てオゾン
反応槽2へ供給される。オゾン発生器7では、オゾン注
入率演算装置10にて演算された目標オゾン注入率11
となるような発生オゾン量だけオゾンを生成する。。
As described above, the ozone generated by the ozone generator 7 is supplied to the ozone reaction tank 2 as the ozonized air 8 through the air diffuser 9. In the ozone generator 7, the target ozone injection rate 11 calculated by the ozone injection rate calculation device 10 is calculated.
Ozone is generated by the amount of generated ozone such that .

【0040】本実施の形態における蛍光分析計6では、
励起波長が、400〜450nmとした場合に、蛍光波長
400〜450nmの間の特定波長の蛍光強度を求める。
好ましくは蛍光波長425nmの蛍光強度を求める。蛍光
分析計6で得られた蛍光強度は、蛍光分析計前処理部5
での処理により、蛍光増白剤の蛍光発現性を排除できる
ため、トリハロメタン生成能との相関が強くなってい
る。図5は蛍光分析計前処理部5において実施された前
処理工程後の蛍光強度と、トリハロメタン生成能の関係
の一例を示す図である。
In the fluorescence analyzer 6 of this embodiment,
When the excitation wavelength is 400 to 450 nm, the fluorescence intensity of a specific wavelength between the fluorescence wavelengths of 400 to 450 nm is calculated.
Preferably, the fluorescence intensity at a fluorescence wavelength of 425 nm is calculated. The fluorescence intensity obtained by the fluorescence analyzer 6 is measured by the fluorescence analyzer pretreatment unit 5
By the treatment with 1, it is possible to eliminate the fluorescence expressing property of the optical brightener, so that the correlation with the trihalomethane-forming ability is strengthened. FIG. 5 is a diagram showing an example of the relationship between the fluorescence intensity after the pretreatment process performed in the fluorescence analyzer pretreatment unit 5 and the trihalomethane production ability.

【0041】オゾン注入率演算装置10において、図5
に示す関係を用い、目標とするトリハロメタン生成能に
対応した蛍光強度を目標蛍光強度とする。オゾン注入率
演算装置10では次に、連続測定されたオゾン処理水3
の蛍光強度を目標蛍光強度へ近づけるようフィードバッ
ク(FB)演算を行い、目標オゾン注入率11をオゾン
発生器7へ出力する。オゾン発生器7では目標オゾン注
入率11に従ってオゾン化空気8が生成され、生成され
たオゾン化空気8はオゾン反応槽2へ注入される。
In the ozone injection rate calculation device 10, FIG.
Using the relationship shown in, the fluorescence intensity corresponding to the target trihalomethane-forming ability is set as the target fluorescence intensity. Next, in the ozone injection rate calculation device 10, continuously measured ozone treated water 3
A feedback (FB) calculation is performed so that the fluorescence intensity of ∘ becomes closer to the target fluorescence intensity, and the target ozone injection rate 11 is output to the ozone generator 7. The ozone generator 7 generates ozonized air 8 according to the target ozone injection rate 11, and the generated ozonized air 8 is injected into the ozone reaction tank 2.

【0042】以上のように本実施の形態によれば、被処
理水に対し蛍光分析計前処理部5において酸化剤を添加
し、蛍光増白剤の蛍光発現性を排除した後に、蛍光分析
計6により測定した蛍光強度に基づいてオゾン注入率演
算装置10により目標オゾン注入率11を算出してオゾ
ン注入量をFB制御する。このためトリハロメタン生成
能の低減および溶解性有機物の低減を精度よく実現する
ことができ、かつオゾン処理の運転効率を上げることが
できる。
As described above, according to the present embodiment, the oxidant is added to the water to be treated in the fluorescence analyzer pretreatment section 5 to eliminate the fluorescence expression of the fluorescent whitening agent, and then the fluorescence analyzer is removed. The target ozone injection rate 11 is calculated by the ozone injection rate calculation device 10 on the basis of the fluorescence intensity measured by 6, and the ozone injection amount is FB controlled. For this reason, reduction of trihalomethane production ability and reduction of soluble organic substances can be accurately realized, and the operation efficiency of ozone treatment can be improved.

【0043】第2の実施の形態 次に図6により本発明の第2の実施の形態について説明
する。本発明による水処理システムの一例として、オゾ
ン注入設備とオゾン処理前に前塩素処理設備を有する高
度浄水処理設備について説明する。この高度浄水処理設
備は蛍光強度を指標として、トリハロメタン生成能低
減、あるいは溶解性有機物低減に必要な最小限のオゾン
注入量を制御するシステムを有し、蛍光増白剤による蛍
光発現の影響を排除し、オゾン注入制御の制御性の向上
を実現するものである。
Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIG. As an example of the water treatment system according to the present invention, an advanced water purification treatment facility having an ozone injection facility and a pre-chlorination facility before ozone treatment will be described. This advanced water purification facility has a system that controls the minimum ozone injection amount required for reducing trihalomethane production capacity or reducing soluble organic substances using fluorescence intensity as an index, eliminating the influence of fluorescence expression by fluorescent whitening agents. However, the controllability of ozone injection control is improved.

【0044】図6は本発明の第2の実施の形態を示す構
成図である。図6に示すように凝集沈殿槽1の上流側
に、前塩素処理設備13が設けられている。前塩素処理
設備13では、鉄、マンガン、アンモニア、亜硝酸の除
去、沈殿池内の藻類繁茂の抑制、沈殿池の沈降汚泥腐敗
の防止などのために、前塩素処理が被処理水に対して行
われる。
FIG. 6 is a block diagram showing a second embodiment of the present invention. As shown in FIG. 6, a pre-chlorination facility 13 is provided on the upstream side of the coagulating sedimentation tank 1. In the pre-chlorination facility 13, pre-chlorination is performed on the water to be treated in order to remove iron, manganese, ammonia and nitrous acid, suppress algae overgrowth in the settling basin, and prevent settling sludge decay in the settling basin. Be seen.

【0045】前塩素処理設備13では、次亜塩素酸ナト
リウムが被処理水に対して1mg/Lの添加率で添加され
ている。図4に示すように、この次亜塩素酸ナトリウム
の添加率は、蛍光増白剤の蛍光発現の影響を排除するた
めの注入率と同程度である。従って、前塩素処理設備1
3における前塩素処理により、蛍光増白剤の蛍光発現の
影響を排除できるため、蛍光分析計前処理部5を除去し
てもよい。この場合、オゾン反応槽2内部の被処理水
は、採水口4からバイパスライン5aを経て直接蛍光分
析計6へ導かれ、この蛍光分析計6により被処理水の蛍
光強度が連続的に測定される。
In the pre-chlorination facility 13, sodium hypochlorite is added to the water to be treated at an addition rate of 1 mg / L. As shown in FIG. 4, the addition rate of this sodium hypochlorite is about the same as the injection rate for eliminating the influence of the fluorescence expression of the optical brightener. Therefore, the pre-chlorination facility 1
Since the pre-chlorination treatment in 3 can eliminate the influence of the fluorescence expression of the fluorescent whitening agent, the fluorescence analyzer pre-treatment unit 5 may be removed. In this case, the water to be treated in the ozone reaction tank 2 is directly guided from the water sampling port 4 to the fluorescence analyzer 6 via the bypass line 5a, and the fluorescence intensity of the water to be treated is continuously measured by the fluorescence analyzer 6. It

【0046】図6において、図1乃至図5に示す第1の
実施の形態と同一部分には同一符号を付して詳細な説明
は省略する。
In FIG. 6, the same parts as those in the first embodiment shown in FIGS. 1 to 5 are designated by the same reference numerals and detailed description thereof will be omitted.

【0047】次に図6に示す第2の本実施形態の作用に
ついて説明する。オゾン注入率演算装置10において、
図5の関係を用い、目標とするトリハロメタン生成能に
対応した蛍光強度を目標蛍光強度とする。すなわち、オ
ゾン注入率演算装置10において、蛍光分析計6により
連続測定された被処理水の蛍光強度が目標蛍光強度に近
づくようフィードバック(FB)演算を行い、目標オゾ
ン注入率11を求めてオゾン発生器7へ出力する。オゾ
ン発生器7では目標オゾン注入率11に従ってオゾン化
空気8が生成され、このオゾン化空気8はオゾン反応槽
2へ注入される。
Next, the operation of the second embodiment shown in FIG. 6 will be described. In the ozone injection rate calculation device 10,
Using the relationship of FIG. 5, the fluorescence intensity corresponding to the target trihalomethane-forming ability is set as the target fluorescence intensity. That is, in the ozone injection rate calculation device 10, feedback (FB) calculation is performed so that the fluorescence intensity of the water to be treated continuously measured by the fluorescence analyzer 6 approaches the target fluorescence intensity, and the target ozone injection rate 11 is calculated to generate ozone. Output to the container 7. In the ozone generator 7, the ozonized air 8 is generated according to the target ozone injection rate 11, and the ozonized air 8 is injected into the ozone reaction tank 2.

【0048】本実施の形態によれば、前塩素処理設備1
3(または前塩素処理設備13および蛍光分析計前処理
部5)において、被処理水を処理することにより、蛍光
増白剤の蛍光発現性を排除した後に蛍光分析計6により
被処理水中の蛍光強度が測定される。次にこのようにし
て測定された蛍光強度からオゾン注入率演算装置10に
より目標オゾン注入率11を算出し、オゾン注入量をF
B制御するので、トリハロメタン生成能の低減及び溶解
性有機物の低減を精度高く実現することができ、かつオ
ゾン処理の運転効率を上げることができる。
According to this embodiment, the pre-chlorination facility 1
3 (or the pre-chlorination facility 13 and the fluorescence analyzer pretreatment unit 5), the treated water is treated to eliminate the fluorescence expression of the fluorescent whitening agent, and then the fluorescence in the treated water is measured by the fluorescence analyzer 6. The intensity is measured. Next, the target ozone injection rate 11 is calculated by the ozone injection rate calculation device 10 from the fluorescence intensity measured in this way, and the ozone injection amount is F
Since the B control is performed, it is possible to accurately reduce the trihalomethane generation ability and the soluble organic substances, and it is possible to improve the operation efficiency of the ozone treatment.

【0049】なお、上記各実施の形態において、蛍光分
析計前処理部5および前塩素処理設備13において添加
される酸化剤として次亜塩素酸ナトリウムを使用した
が、その他にオゾン、二酸化塩素、塩素ガスなどの酸化
剤を添加してもよい。これら酸化剤の添加量は、残留濃
度が検出されない程度の添加量が望ましいが、その10
倍くらいまでの範囲内であれば使用可能である。酸化剤
の添加率は1mg/Lが望ましいが、0.1〜10mg/L
の範囲の添加率であってもよい。
In each of the above-mentioned embodiments, sodium hypochlorite was used as the oxidizing agent added in the fluorescence analyzer pretreatment unit 5 and the prechlorination facility 13, but in addition, ozone, chlorine dioxide, chlorine An oxidizing agent such as gas may be added. The amount of these oxidizing agents added is preferably such that no residual concentration can be detected.
It can be used within a range up to about twice. The addition rate of oxidant is preferably 1 mg / L, but 0.1-10 mg / L
The addition rate may be within the range.

【0050】また、蛍光分析計前処理部5として、酸化
剤添加装置を設ける代わりに光照射装置を設けてもよ
い。この場合、蛍光分析計前処理部5において、紫外線
を10秒〜10分間被処理水中に照射することが好まし
い。
As the fluorescence analyzer pretreatment section 5, a light irradiation device may be provided instead of the oxidant addition device. In this case, in the fluorescence analyzer pretreatment unit 5, it is preferable to irradiate the water to be treated with ultraviolet rays for 10 seconds to 10 minutes.

【0051】また上記各実施の形態において、水処理機
構としてオゾン反応槽2、散気管9、オゾン発生器7お
よび注入率演算装置10からなるオゾン注入装置を設け
た例を示したが、これに限らず水処理機構としては粉末
活性炭を注入する粉末活性炭注入装置、凝集剤を注入す
る凝集剤注入装置、塩素剤を注入する塩素剤注入装置、
または膜ろ過装置を用い、蛍光分析計6からの蛍光強度
に基づいてこれらの水処理機構を制御してもよい。
In each of the above-described embodiments, an example in which an ozone injecting device including the ozone reaction tank 2, the air diffuser 9, the ozone generator 7 and the injection rate calculating device 10 is provided as the water treatment mechanism is shown. Not limited to water treatment mechanism, powder activated carbon injection device for injecting powder activated carbon, coagulant injection device for injecting coagulant, chlorine agent injection device for injecting chlorine agent,
Alternatively, a membrane filtration device may be used to control these water treatment mechanisms based on the fluorescence intensity from the fluorescence analyzer 6.

【0052】さらに蛍光分析計6からの蛍光強度を用い
て、蛍光分析計前処理部5における酸化剤添加量または
紫外線照射量を制御してもよい。
Further, the fluorescence intensity from the fluorescence analyzer 6 may be used to control the amount of oxidizing agent added or the amount of UV irradiation in the fluorescence analyzer pretreatment section 5.

【0053】[0053]

【発明の効果】以上のように、本発明によれば、被処理
水中に蛍光増白剤が含まれている場合でも、被処理水に
酸化剤を添加するか又は光を照射して蛍光増白剤の影響
を排除することが可能となる。このため、トリハロメタ
ン生成能の低減、及び溶解性有機物の低減を精度良く実
現することが可能となり、かつ被処理水の水処理の運転
効率を向上させることができる。
As described above, according to the present invention, even when the water to be treated contains an optical brightener, the water to be treated is added with an oxidizing agent or irradiated with light to enhance the fluorescence. It is possible to eliminate the influence of whitening agents. Therefore, it is possible to accurately reduce the trihalomethane generation ability and the soluble organic matter, and it is possible to improve the operation efficiency of the water treatment of the water to be treated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による蛍光分析計を用いた水処理システ
ムの第1の実施の形態を示す構成図。
FIG. 1 is a configuration diagram showing a first embodiment of a water treatment system using a fluorescence analyzer according to the present invention.

【図2】蛍光増白剤の分子式の一例を示す図。FIG. 2 is a view showing an example of a molecular formula of a fluorescent whitening agent.

【図3】蛍光強度の蛍光増白剤による影響を示す図。FIG. 3 is a diagram showing the influence of a fluorescent whitening agent on the fluorescence intensity.

【図4】蛍光増白剤の蛍光強度と次亜塩素酸ナトリウム
添加率の関係を示す図。
FIG. 4 is a graph showing the relationship between the fluorescence intensity of a fluorescent whitening agent and the sodium hypochlorite addition rate.

【図5】前処理工程後の蛍光強度とトリハロメタン生成
能の関係を示す図。
FIG. 5 is a diagram showing the relationship between the fluorescence intensity after the pretreatment step and the trihalomethane production ability.

【図6】本発明による蛍光分析計を用いた水処理システ
ムの第2の実施の形態を示す構成図。
FIG. 6 is a configuration diagram showing a second embodiment of a water treatment system using a fluorescence analyzer according to the present invention.

【符号の説明】[Explanation of symbols]

1 凝集沈殿槽 2 オゾン反応槽 4 採水口 5 蛍光分析計前処理部 6 蛍光分析計 7 オゾン発生器 8 オゾン化空気 9 散気管 10 オゾン注入率演算装置 11 目標オゾン注入率 13 前塩素処理設備 1 coagulation sedimentation tank 2 Ozone reaction tank 4 Water sampling port 5 Fluorescence analyzer pretreatment section 6 Fluorescence analyzer 7 Ozone generator 8 ozonized air 9 Air diffuser 10 Ozone injection rate calculator 11 Target ozone injection rate 13 Pre-chlorination equipment

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/44 C02F 1/44 K 1/78 1/78 G01N 21/64 G01N 21/64 Z (72)発明者 居 安 巨太郎 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 金 子 政 雄 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 阿 部 法 光 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 鈴 木 節 雄 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 田 口 健 二 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 林 巧 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 菊 池 宏 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 工 藤 寿 雪 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 平 本 昭 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 海 賀 信 好 神奈川県川崎市幸区堀川町66番2 東芝エ ンジニアリング株式会社内 Fターム(参考) 2G043 AA01 BA14 CA03 DA02 DA05 EA01 GA25 GB21 KA02 KA03 KA05 MA01 4D006 GA02 KA01 KB04 KB30 KE11P PB08 4D024 AA04 AB02 AB11 BA02 BB01 BC04 DA04 DB10 DB23 4D037 AA11 AB05 AB12 AB13 BA18 CA01 CA03 CA08 4D050 AA12 AA15 AB03 AB17 AB18 BB02 BB06 BD06 CA06 CA09 CA15 CA16 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 1/44 C02F 1/44 K 1/78 1/78 G01N 21/64 G01N 21/64 Z (72) Inventor Kotaro Ian 1 Toshiba Town, Fuchu City, Tokyo (72) Inventor of Toshiba Fuchu Works (72) Inventor Masao Kaneko 1 Toshiba Town, Fuchu, Tokyo Tokyo Fuchu Office, Ltd. (72) Inventor Abe Fukitsu, Tokyo, Fuchu-shi, Toshiba No. 1 at Toshiba Fuchu Works, Ltd. (72) Inventor Setsuo Suzuki No. 1, Toshiba-cho, Fuchu-shi, Tokyo Tokyo Fuchu Works, Ltd. (72) Inventor Kenji Taguchi Tokyo 1-1-1, Shibaura, Minato-ku, Toshiba Headquarters Office (72) Inventor Takumi Hayashi 1st, Toshiba-cho, Fuchu, Tokyo Tokyo Fuchu Works (72) Inventor Hiroshi Kikuike Kyoto Fuchu-shi, Toshiba No. 1 at Fuchu Works, Toshiba Corp. (72) Inventor Toshiyuki Kudo No. 1, Toshiba-cho, Fuchu-shi, Tokyo Tokyo Fuchu Works, Ltd. (72) Inventor Akira Hiramoto Tokyo-Fuchu-shi, Tokyo No. 1 Toshiba Fuchu Works (72) Inventor Nobuyoshi Kaiga 66-2 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa F-term (reference) 2F043 AA01 BA14 CA03 DA02 DA05 EA01 GA25 GB21 KA02 of Toshiba Engineering Co., Ltd. KA03 KA05 MA01 4D006 GA02 KA01 KB04 KB30 KE11P PB08 4D024 AA04 AB02 AB11 BA02 BB01 BC04 DA04 DB10 DB23 4D037 AA11 AB05 AB12 AB13 BA18 CA01 CA03 CA08 4D050 AA12 AA15 AB03 AB17 AB18 BB02 CA06 CA06 CA06 CA06 CA06

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】蛍光分析計を用いた水処理システムにおい
て、 蛍光増白剤を含む被処理水を採水する採水部と、 採水部に接続され、被処理水の蛍光強度を検出する蛍光
分析計と、 蛍光分析計からの信号に基づいて、被処理水に対して水
処理を行う水処理機構とを備え、 蛍光分析計より上流側に、被処理水中に酸化剤を添加す
る酸化剤添加装置または被処理水中に光を照射する光照
射装置を設置して、被処理水中の蛍光増白剤による蛍光
発現性を抑えることを特徴とする蛍光分析計を用いた水
処理システム。
1. In a water treatment system using a fluorescence analyzer, a water sampling section for sampling water to be treated containing a fluorescent whitening agent, and a water sampling section connected to the water sampling section to detect the fluorescence intensity of the water to be treated. Equipped with a fluorescence analyzer and a water treatment mechanism that performs water treatment on the water to be treated based on the signal from the fluorescence analyzer.Oxidation that adds an oxidant to the water to be treated upstream of the fluorescence analyzer. A water treatment system using a fluorescence analyzer, characterized in that an agent addition device or a light irradiation device for irradiating light into the water to be treated is installed to suppress the fluorescence expression due to the fluorescent whitening agent in the water to be treated.
【請求項2】蛍光分析計は、励起光波長が400〜45
0nmのとき、蛍光波長が400〜450nmの間に存在す
るある特定の波長の蛍光強度を検出することを特徴とす
る請求項1記載の蛍光分析計を用いた水処理システム。
2. A fluorescence analyzer having an excitation light wavelength of 400 to 45.
The water treatment system using the fluorescence analyzer according to claim 1, wherein when the wavelength is 0 nm, the fluorescence intensity of a specific wavelength existing between 400 and 450 nm is detected.
【請求項3】蛍光分析計は、励起光側と検出側の波長の
幅を20nm以下とすることを特徴とする請求項1記載の
蛍光分析計を用いた水処理システム。
3. The water treatment system using the fluorescence analyzer according to claim 1, wherein the fluorescence analyzer has a wavelength width on the excitation light side and the detection side of 20 nm or less.
【請求項4】酸化剤添加装置によって酸化剤が添加され
た被処理水が蛍光分析計に達するまでの接触時間は、1
0秒〜10分の間であることを特徴とする請求項1記載
の蛍光分析計を用いた水処理システム。
4. The contact time for the water to be treated to which the oxidant has been added by the oxidant addition device to reach the fluorescence spectrometer is 1
The water treatment system using the fluorescence analyzer according to claim 1, wherein the water treatment system is for 0 second to 10 minutes.
【請求項5】光照射装置は、10秒〜10分の光照射時
間だけ紫外線を被処理水へ照射することを特徴とする請
求項1記載の蛍光分析計を用いた水処理システム。
5. The water treatment system using a fluorescence analyzer according to claim 1, wherein the light irradiation device irradiates the water to be treated with ultraviolet rays for a light irradiation time of 10 seconds to 10 minutes.
【請求項6】酸化剤添加装置は、酸化剤として塩素剤を
使用することを特徴とする請求項1記載の蛍光分析計を
用いた水処理システム。
6. A water treatment system using a fluorescence analyzer according to claim 1, wherein the oxidizing agent adding device uses a chlorine agent as an oxidizing agent.
【請求項7】酸化剤添加装置は、酸化剤としてオゾンガ
スを使用することを特徴とする請求項1記載の蛍光分析
計を用いた水処理システム。
7. The water treatment system using a fluorescence analyzer according to claim 1, wherein the oxidizing agent adding device uses ozone gas as an oxidizing agent.
【請求項8】酸化剤添加装置は、酸化剤の残留濃度が検
出されない添加量だけ酸化剤を添加することを特徴とす
る請求項1記載の蛍光分析計を用いた水処理システム。
8. The water treatment system using a fluorescence analyzer according to claim 1, wherein the oxidant addition device adds the oxidant in an amount such that the residual concentration of the oxidant is not detected.
【請求項9】酸化剤添加装置は酸化剤の添加率を水量
[L]に対する酸化剤添加量[mg]の割合[mg/L]と
して表すとき、0.1〜10mg/Lの添加率で酸化剤を
添加することを特徴とする請求項1記載の蛍光分析計を
用いた水処理システム。
9. An oxidant addition device, wherein the oxidant addition rate is expressed as the ratio [mg / L] of the oxidant addition amount [mg] to the water amount [L], the addition rate is 0.1 to 10 mg / L. The water treatment system using the fluorescence analyzer according to claim 1, wherein an oxidizing agent is added.
【請求項10】水処理機構は、オゾン注入装置であるこ
とを特徴とする請求項1記載の蛍光分析計を用いた水処
理システム。
10. A water treatment system using a fluorescence analyzer according to claim 1, wherein the water treatment mechanism is an ozone injection device.
【請求項11】水処理機構は、粉末活性炭注入装置であ
ることを特徴とする請求項1記載の蛍光分析計を用いた
水処理システム。
11. The water treatment system using a fluorescence analyzer according to claim 1, wherein the water treatment mechanism is a powdered activated carbon injection device.
【請求項12】水処理機構は、凝集剤注入装置であるこ
とを特徴とする請求項1記載の蛍光分析計を用いた水処
理システム。
12. The water treatment system using a fluorescence analyzer according to claim 1, wherein the water treatment mechanism is a coagulant injection device.
【請求項13】水処理機構は、塩素剤注入装置であるこ
とを特徴とする請求項1記載の蛍光分析計を用いた水処
理システム。
13. The water treatment system using a fluorescence analyzer according to claim 1, wherein the water treatment mechanism is a chlorine agent injection device.
【請求項14】水処理機構は、膜ろ過装置であることを
特徴とする請求項1記載の蛍光分析計を用いた水処理シ
ステム。
14. The water treatment system using a fluorescence analyzer according to claim 1, wherein the water treatment mechanism is a membrane filtration device.
JP2002066918A 2002-03-12 2002-03-12 Water treatment system using a fluorescence analyzer Expired - Fee Related JP3889294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002066918A JP3889294B2 (en) 2002-03-12 2002-03-12 Water treatment system using a fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066918A JP3889294B2 (en) 2002-03-12 2002-03-12 Water treatment system using a fluorescence analyzer

Publications (2)

Publication Number Publication Date
JP2003260474A true JP2003260474A (en) 2003-09-16
JP3889294B2 JP3889294B2 (en) 2007-03-07

Family

ID=28671527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066918A Expired - Fee Related JP3889294B2 (en) 2002-03-12 2002-03-12 Water treatment system using a fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP3889294B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008012254A1 (en) 2007-03-01 2008-09-04 Kabushiki Kaisha Toshiba Ultra-violet radiation system for disinfection of water with ultraviolet rays, has fluorescence measuring instrument designed to stimulate continuous spectrum peak wavelength or fluorescence spectrum peak wavelength to be measured
KR101164274B1 (en) 2006-03-20 2012-07-09 쿠리타 고교 가부시키가이샤 Method for evaluating feed water of reverse osmosis membrane apparatus, and method and apparatus for treating water
CN101164914B (en) * 2004-04-22 2012-09-05 株式会社东芝 Water treatment system
CN116239264A (en) * 2023-03-24 2023-06-09 吴桥县六合德利化工有限责任公司 Waste water recovery process for preparing sodium o-sulfonate benzaldehyde

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101164914B (en) * 2004-04-22 2012-09-05 株式会社东芝 Water treatment system
KR101164274B1 (en) 2006-03-20 2012-07-09 쿠리타 고교 가부시키가이샤 Method for evaluating feed water of reverse osmosis membrane apparatus, and method and apparatus for treating water
DE102008012254A1 (en) 2007-03-01 2008-09-04 Kabushiki Kaisha Toshiba Ultra-violet radiation system for disinfection of water with ultraviolet rays, has fluorescence measuring instrument designed to stimulate continuous spectrum peak wavelength or fluorescence spectrum peak wavelength to be measured
US8802007B2 (en) 2007-03-01 2014-08-12 Kabushiki Kaisha Toshiba Ultraviolet irradiation system and water quality monitoring instrument
CN116239264A (en) * 2023-03-24 2023-06-09 吴桥县六合德利化工有限责任公司 Waste water recovery process for preparing sodium o-sulfonate benzaldehyde

Also Published As

Publication number Publication date
JP3889294B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
Soares et al. Remediation of a synthetic textile wastewater from polyester-cotton dyeing combining biological and photochemical oxidation processes
Neamtu et al. Decolorization of disperse red 354 azo dye in water by several oxidation processes—a comparative study
Ince et al. UV/H2O2 degradation and toxicity reduction of textile azo dyes: Remazol Black-B, a case study
Gottschalk et al. Ozonation of water and waste water: A practical guide to understanding ozone and its applications
Neamtu et al. Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes
Xing et al. Application of low-dosage UV/chlorine pre-oxidation for mitigating ultrafiltration (UF) membrane fouling in natural surface water treatment
Amr et al. Pretreatment of stabilized leachate using ozone/persulfate oxidation process
Selcuk Decolorization and detoxification of textile wastewater by ozonation and coagulation processes
Ince et al. Treatability of a textile azo dye by UV/H2O2
Martınez et al. Pre-oxidation of an extremely polluted industrial wastewater by the Fenton’s reagent
Monteagudo et al. Ferrioxalate-induced solar photo-Fenton system for the treatment of winery wastewaters
Arslan-Alaton et al. Electrocoagulation of a real reactive dyebath effluent using aluminum and stainless steel electrodes
Zheng et al. Reuse of reverse osmosis concentrate in textile and dyeing industry by combined process of persulfate oxidation and lime-soda softening
Liu et al. Activated carbon catalytic ozonation of reverse osmosis concentrate after coagulation pretreatment from coal gasification wastewater reclamation for zero liquid discharge
Ilhan et al. Treatability of raw textile wastewater using Fenton process and its comparison with chemical coagulation
Mangalgiri et al. UV-based advanced oxidation of dissolved organic matter in reverse osmosis concentrate from a potable water reuse facility: A Parallel-Factor (PARAFAC) analysis approach
da Silva et al. Combined AOP/GAC/AOP systems for secondary effluent polishing: optimization, toxicity and disinfection
Massoudinejad et al. The removal of COD and color from textile industry by chlorine hypochlorite
JP2007083186A (en) Water treatment system
Fan et al. Control of ultrafiltration membrane fouling during the recycling of sludge water based on Fe (II)-activated peroxymonosulfate pretreatment
Hosseinitabar et al. Application of iron electrode in textile industry wastewater treatment using electro-fenton technique: Experimental and statistical study
JP2010063954A (en) Liquid treatment apparatus
JP2003260474A (en) Water treatment system using fluorescence analyzer
JP4660211B2 (en) Water treatment control system and water treatment control method
JP3856352B2 (en) Operation method in water purification system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3889294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees