JP2003257237A - Ion conductor - Google Patents

Ion conductor

Info

Publication number
JP2003257237A
JP2003257237A JP2002053463A JP2002053463A JP2003257237A JP 2003257237 A JP2003257237 A JP 2003257237A JP 2002053463 A JP2002053463 A JP 2002053463A JP 2002053463 A JP2002053463 A JP 2002053463A JP 2003257237 A JP2003257237 A JP 2003257237A
Authority
JP
Japan
Prior art keywords
metal
lithium
integer
represented
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002053463A
Other languages
Japanese (ja)
Other versions
JP4147787B2 (en
Inventor
Keiichi Iio
圭市 飯尾
Toshiaki Yoshihara
俊昭 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002053463A priority Critical patent/JP4147787B2/en
Publication of JP2003257237A publication Critical patent/JP2003257237A/en
Application granted granted Critical
Publication of JP4147787B2 publication Critical patent/JP4147787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Silicon Polymers (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion conductor made of an organic and inorganic composite compound that has mechanical strength of an inorganic skeleton and flexibility of an organic skeleton and further, superior ion conductivity. <P>SOLUTION: This is an ion conductor made of a compound that is obtained by applying hydrolysis and condensation polymerization of at least a metal alkoxide (A) expressed by the formula M<SP>1</SP>OR and an organic metal compound (B) expressed by the formula R<SP>1</SP><SB>b</SB>M<SP>2</SP>(OR<SP>2</SP>)<SB>4-b</SB>. In the formula, M<SP>1</SP>is an alkaline metal, R is an alkyl group as expressed by the chemical formula C<SB>a</SB>H<SB>2a+1</SB>(a is an integer between 1 and 20). M<SP>2</SP>is a metal or non-metal, R<SP>1</SP>is an organic functional group, R<SP>2</SP>is an alkyl group as expressed by the chemical formula C<SB>h</SB>H<SB>2h+1</SB>(h is an integer between 1 and 20), and b is 1, 2 or 3. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はイオン伝導体に関す
るものであり、詳しくは、電気化学的デバイスである固
体電解質、センサーなどに利用できるイオン伝導体に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ionic conductor, and more particularly to an ionic conductor that can be used for a solid electrolyte, a sensor, etc., which is an electrochemical device.

【0002】[0002]

【従来の技術】従来、リチウム一次電池およびリチウム
二次電池の電解質としては、エチレンカーボネート、プ
ロピレンカーボネート等の有機溶媒にLiBF4、Li
PF6、LiCF3SO3等のイオン性のリチウム塩を溶
解させた電解液が使用されていた。しかしながら、この
電解液は液漏れ、発火の危険性がある上、揮発しやすく
長期間の信頼性に欠けるという欠点を有している。これ
に対し、固体電解質はこのような欠点を有しておらず、
また上記のデバイスの電解質として用いた場合、電解液
を用いた場合と違いセパレータが不要になる。このよう
に固体電解質を用いると、デバイスを使用する上での安
全性の向上、またデバイス自身の小型軽量化が図れる。
固体電解質として有望な材料の候補としてはポリマー電
解質、無機固体電解質などが知られている。ポリマー電
解質は、柔軟性、加工性、薄膜成型性、軽量性、弾性等
に優れており、電気自動車用大型二次電池や、ICカー
ドなどの薄型製品の内蔵電池等への応用が期待されてい
る。無機固体電解質は電解液やポリマー電解質と違い、
不燃性であること、またリチウムイオン輸率が1という
特徴を持っている。
2. Description of the Related Art Conventionally, as an electrolyte for a lithium primary battery and a lithium secondary battery, LiBF 4 , Li is used in an organic solvent such as ethylene carbonate or propylene carbonate.
An electrolytic solution in which an ionic lithium salt such as PF 6 or LiCF 3 SO 3 is dissolved has been used. However, this electrolytic solution has the drawbacks that it may leak and ignite, and may easily volatilize and lack long-term reliability. In contrast, solid electrolytes do not have such drawbacks,
Further, when used as an electrolyte of the above device, a separator is not required, unlike the case where an electrolyte solution is used. By using the solid electrolyte in this way, it is possible to improve the safety in using the device and to reduce the size and weight of the device itself.
Polymer electrolytes, inorganic solid electrolytes, and the like are known as promising materials candidates for the solid electrolyte. Polymer electrolytes are excellent in flexibility, processability, thin-film moldability, lightness, elasticity, etc., and are expected to be applied to large secondary batteries for electric vehicles and built-in batteries for thin products such as IC cards. There is. Unlike solid electrolytes and polymer electrolytes, inorganic solid electrolytes
It is nonflammable and has a lithium ion transport number of 1.

【0003】上記のポリマー電解質としては、ポリエチ
レンオキサイド、ポリプロピレンオキサイド等のポリエ
ーテル系高分子化合物にLiClO4、LiCF3
3、リチウムスルホンイミド等のアルカリ金属塩を混
合させたものが研究されてきた。このポリマー電解質の
イオン伝導性は高分子鎖の熱運動によることが明らかに
されており、高分子の結晶化による導電性の低下を抑制
するなど、様々な導電性向上のための試みがなされてき
ている。また、ポリマー電解質の大きな問題点として、
その機械的強度が低いことがあげられる。このため、ポ
リマーの架橋、無機化合物とのハイブリッド化など様々
な対策法が研究されている。
Examples of the above-mentioned polymer electrolyte include polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide, and LiClO 4 and LiCF 3 S.
Those mixed with alkali metal salts such as O 3 and lithium sulfonimide have been studied. It has been clarified that the ionic conductivity of this polymer electrolyte is due to the thermal motion of the polymer chain, and various attempts have been made to improve the conductivity, such as suppressing the decrease in conductivity due to crystallization of the polymer. ing. Moreover, as a big problem of the polymer electrolyte,
The mechanical strength is low. Therefore, various countermeasures such as crosslinking of polymers and hybridization with inorganic compounds have been studied.

【0004】無機固体電解質としては、溶融急冷法によ
り作製されたLi2S−SiS2系をベースとする硫化物
系ガラス(近藤ら、Solid State Ioni
cs53−56巻、1183頁、1992年)、固相反
応法により作製されたLi 4SiO4−Li3PO4酸化物
系セラミックス(U.V.Alpenら、”Fast
Ion Transport in Solid" 4
63頁、1979年)等、様々な研究が行われている。
しかしながら、これらの物質は可とう性に乏しく、薄膜
化が困難であり、薄型電池、大型電池への応用が難し
い。このような理由から、真空蒸着(Y.Itoら、i
bid.、57巻、389頁、1983年)や高周波ス
パッター等(K.Miyauchiら、Solid S
tateIonics9−10巻、1469頁、198
3年)の物理蒸着によるイオン伝導性薄膜の合成が行わ
れた。しかし、このような物理蒸着は多成分系の場合原
料組成と薄膜組成が組成ずれをおこしやすく、特に、リ
チウムを多く含む場合はこの現象が顕著にみられる。こ
のため、組成ずれのない均質なLi2O−SiO2系無機
固体薄膜をゾル・ゲル法により作製したという報告があ
るが(辰巳砂ら、日本化学会誌、11巻、1958頁、
1987年)、その伝導性が若干低く、リチウム二次電
池の電解質に用いるのは困難であった。
As the inorganic solid electrolyte, a melt quenching method is used.
Made by Li2S-SiS2System-based sulfide
Glass (Kondo et al., Solid State Ioni
cs53-56, 1183, 1992), solid phase reaction
Li produced by the method FourSiOFour-Li3POFourOxide
Ceramics (UV Alpen et al., "Fast
Ion Transport in Solid "4
Page 63, 1979), etc.
However, these materials are poorly flexible, and
Is difficult to apply, making it difficult to apply to thin batteries and large batteries.
Yes. For this reason, vacuum deposition (Y. Ito et al., I.
bid. , 57, 389, 1983) and high frequency scans.
Putter et al. (K. Miyauchi et al., Solid S
TateIonics 9-10, 1469, 198
3 years) synthesis of ion conductive thin film by physical vapor deposition
It was However, such physical vapor deposition is not suitable for multi-component systems.
The composition of the film and the composition of the thin film are liable to cause compositional deviation.
This phenomenon is remarkable when it contains a large amount of thium. This
Therefore, a uniform Li without any compositional deviation2O-SiO2Inorganic
There is a report that a solid thin film was prepared by the sol-gel method.
Ruga (Tatsumi Sanda et al., The Chemical Society of Japan, Vol. 11, p. 1958,
1987), its conductivity is slightly lower,
It was difficult to use as a pond electrolyte.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、無機
骨格の機械的強度、有機骨格の可撓性、さらには優れた
イオン伝導性を有する有機無機複合化合物からなるリチ
ウムイオン伝導体を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium ion conductor comprising an organic-inorganic composite compound having a mechanical strength of an inorganic skeleton, flexibility of an organic skeleton, and further excellent ionic conductivity. To do.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、少な
くとも下記の一般式(1)で表示される金属アルコキシ
ド(A)と、下記の一般式(2)で表示される有機金属
化合物(B)を、加水分解及び重縮合反応させて得られ
る化合物からなることを特徴とするイオン伝導体であ
る。 M1OR (1) (M1:アルカリ金属、R:化学式Ca2a+1(aは1〜
20の間の整数)で表示されるアルキル基) R1 b2(OR24-b (2) (M2:金属又は非金属、R1:有機官能基、R2:化学
式Ch2h+1(hは1〜20の間の整数)で表示される
アルキル基、b:1、2又は3)
According to the invention of claim 1, at least a metal alkoxide (A) represented by the following general formula (1) and an organometallic compound represented by the following general formula (2) ( An ionic conductor comprising a compound obtained by subjecting B) to a hydrolysis and polycondensation reaction. M 1 OR (1) (M 1 : alkali metal, R: chemical formula C a H 2a + 1 (a is 1 to 1
An alkyl group represented by (an integer between 20)) R 1 b M 2 (OR 2 ) 4-b (2) (M 2 : metal or nonmetal, R 1 : organic functional group, R 2 : chemical formula Ch Alkyl group represented by H 2h + 1 (h is an integer between 1 and 20), b: 1, 2 or 3)

【0007】請求項2の発明は、金属アルコキシド
(A)に含まれるアルカリ金属M1がリチウムであるこ
とを特徴とする請求項1記載のイオン伝導体である。
The invention according to claim 2 is the ionic conductor according to claim 1, characterized in that the alkali metal M 1 contained in the metal alkoxide (A) is lithium.

【0008】請求項3の発明は、前記有機金属化合物
(B)に含まれる金属又は非金属M2が珪素であること
を特徴とする請求項1又は2に記載のイオン伝導体であ
る。
The invention of claim 3 is the ionic conductor according to claim 1 or 2, wherein the metal or nonmetal M 2 contained in the organometallic compound (B) is silicon.

【0009】請求項4の発明は、前記有機金属化合物
(B)の有機官能基R1が化学式Ck 2k+1(kは1〜2
0の間の整数)で表示されるアルキル基からなる請求項
1〜3のいずれかに記載のイオン伝導体である。
The invention of claim 4 is the organometallic compound.
(B) Organic functional group R1Is the chemical formula CkH 2k + 1(K is 1-2
An integer between 0) and an alkyl group represented by
The ionic conductor according to any one of 1 to 3.

【0010】請求項5の発明は、前記有機金属化合物
(B)の有機官能基R1が化学式−(CF2m−(mは
1〜20の間の整数)で表示されるフルオロアルキル基
を少なくとも一つ含む請求項1〜4のいずれかに記載の
イオン伝導体である。
According to the invention of claim 5, the organic functional group R 1 of the organometallic compound (B) is a fluoroalkyl group represented by the chemical formula — (CF 2 ) m — (m is an integer between 1 and 20). The ionic conductor according to any one of claims 1 to 4, which comprises at least one of:

【0011】請求項6の発明は、前記有機珪素化合物の
有機官能基R1中に化学式−(CH2CH2O)−で表示
されるエチレンオキサイドユニットを少なくとも一つ含
む請求項1〜5のいずれかに記載のイオン伝導体であ
る。
The invention of claim 6 includes at least one ethylene oxide unit represented by the chemical formula-(CH 2 CH 2 O)-in the organic functional group R 1 of the organosilicon compound. The ionic conductor according to any one of the above.

【0012】請求項7の発明は、下記の一般式(3)で
表示される金属アルコキシド(C)を出発原料に含むこ
とを特徴とする請求項1〜6に記載のイオン伝導体であ
る。 M(OR3n (3) (MはAl、B、P、Siのうちの少なくとも一つ、R
3は化学式Ch2h+1(hは1〜20の間の整数)で表示
されるアルキル基)
The invention according to claim 7 is the ionic conductor according to any one of claims 1 to 6, characterized in that the starting material contains a metal alkoxide (C) represented by the following general formula (3). M (OR 3 ) n (3) (M is at least one of Al, B, P and Si, R
3 is an alkyl group represented by the chemical formula C h H 2h + 1 (h is an integer between 1 and 20)

【0013】[0013]

【発明の実施の形態】本発明の実施の形態について詳細
に説明する。本発明における有機無機複合化合物からな
るイオン伝導体は、少なくとも電解質塩源としての金属
アルコキシド化合物(A)と、骨格形成化合物としての
有機官能基を少なくとも一つ有する有機金属化合物
(B)を出発原料とし、加水分解及び重縮合反応させて
得られる非晶質な化合物からなるものである。また、得
られた化合物は、Li2O−SiO2系等のアルカリ金属
酸化物−金属または非金属酸化物系無機固体電解質の骨
格の一部が有機官能基R1で置換された構造含む非晶質
な化合物となる。以下、出発原料として使用される各成
分について以下に詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail. The ionic conductor composed of the organic-inorganic composite compound in the present invention comprises at least a metal alkoxide compound (A) as an electrolyte salt source and an organometallic compound (B) having at least one organic functional group as a skeleton-forming compound as starting materials. And an amorphous compound obtained by hydrolysis and polycondensation reaction. Further, the obtained compound contains a structure in which part of the skeleton of an alkali metal oxide-metal or nonmetal oxide inorganic solid electrolyte such as Li 2 O—SiO 2 system is substituted with an organic functional group R 1. It becomes a crystalline compound. Hereinafter, each component used as a starting material will be described in detail below.

【0014】電解質塩源として用いられ、下記一般式
(1)で表わされる金属アルコキシド(A)は、特に制
限するものではないが、エネルギー密度などの点からリ
チウム化合物であることが好ましい。 M1OR (1) (M1:アルカリ金属、R:化学式Ca2a+1(aは1〜
20の間の整数)で表示されるアルキル基) リチウム化合物としては、水酸化リチウム、酢酸リチウ
ム、硝酸リチウム、硫酸リチウム、炭酸リチウム、リチ
ウムアルコキシド、塩化リチウム、臭化リチウム、沃化
リチウム、フッ化リチウム等が挙げられるが、この中で
リチウムアルコキシドはアルコール溶媒中で安定であ
り、かつ反応性が高いため好適である。
The metal alkoxide (A) used as an electrolyte salt source and represented by the following general formula (1) is not particularly limited, but is preferably a lithium compound from the viewpoint of energy density and the like. M 1 OR (1) (M 1 : alkali metal, R: chemical formula C a H 2a + 1 (a is 1 to 1
An alkyl group represented by an integer between 20) As the lithium compound, lithium hydroxide, lithium acetate, lithium nitrate, lithium sulfate, lithium carbonate, lithium alkoxide, lithium chloride, lithium bromide, lithium iodide, fluorinated Examples thereof include lithium. Among them, lithium alkoxide is preferable because it is stable in an alcohol solvent and has high reactivity.

【0015】リチウムアルコキシドは一般式LiOR
(Rは化学式Ca2a+1(aは1〜20の間の整数)で
表示されるアルキル基)で表示でき、LiOCH3、L
iOC25、LiOC37等が例示できるが、この中で
好ましいものはアルコール溶媒に対する溶解度の高いL
iOCH3である。
Lithium alkoxide has the general formula LiOR
(R is an alkyl group represented by the chemical formula C a H 2a + 1 (a is an integer between 1 and 20)), LiOCH 3 , L
Examples thereof include iOC 2 H 5 , LiOC 3 H 7 and the like. Among them, preferable one is L having high solubility in an alcohol solvent.
iOCH 3 .

【0016】骨格を形成する有機金属化合物(B)は、
下記一般式(2)で表わされ、有機官能基を少なくとも
一つ含んだ金属および非金属化合物のアルコキシド、硝
酸塩、酢酸塩、硫酸塩、炭酸塩等が用いられるが、中で
も反応性の高いアルコキシドを使用するのが好ましい。 R1 b2(OR24-b (2) (M2:金属又は非金属、R1:有機官能基、R2:化学
式Ch2h+1(hは1〜20の間の整数)で表示される
アルキル基、b:1、2又は3)
The organometallic compound (B) forming the skeleton is
Alkoxides, nitrates, acetates, sulfates, carbonates, etc. of metal and non-metal compounds represented by the following general formula (2) and containing at least one organic functional group are used, and among them, highly reactive alkoxides are used. Is preferably used. R 1 b M 2 (OR 2 ) 4-b (2) (M 2 : metal or non-metal, R 1 : organic functional group, R 2 : chemical formula C h H 2h + 1 (h is between 1 and 20) An alkyl group represented by (integer), b: 1, 2 or 3)

【0017】また、上記一般式(2)中のbは好ましく
は1である。bの値が大きいと重合度、膜強度が低下し
てしまうからである。
Further, b in the general formula (2) is preferably 1. This is because if the value of b is large, the degree of polymerization and the film strength will decrease.

【0018】骨格を形成する物質として、有機官能基を
含む有機金属化合物を用いることにより、上記一般式
(2)のR1由来の可撓性を有するイオン導電体とする
ことができる。また、有機官能基R1が骨格中に含まれ
ることで、導電性が向上するという効果が期待できる。
By using an organometallic compound having an organic functional group as the substance forming the skeleton, a flexible ionic conductor derived from R 1 of the above general formula (2) can be obtained. In addition, since the organic functional group R 1 is contained in the skeleton, the effect of improving conductivity can be expected.

【0019】金属および非金属元素としては、ホウ素、
珪素、リン、アルミニウム、ゲルマニウム、ガリウム、
チタン、バナジウム、ジルコニウム、ニオブ、アンチモ
ン、インジウム、スズ、タングステン等が挙げられる
が、この中でも、珪素のアルコキシドは他の金属アルコ
キシドよりもアルコール溶媒中で安定であるため、好適
である。有機官能基としては、アルキル基、ビニル基、
カルボキシル基、フェニル基、ベンジル基、フルオロア
ルキル基、アミノ基、ニトリル基、エチレンオキシド鎖
を含む官能基などを例示することができるが、この中で
好ましいものはアルキル基、フルオロアルキル基、エチ
レンオキシド鎖を含む官能基である。
As the metal and non-metal elements, boron,
Silicon, phosphorus, aluminum, germanium, gallium,
Examples thereof include titanium, vanadium, zirconium, niobium, antimony, indium, tin, and tungsten. Among them, silicon alkoxides are preferable because they are more stable in alcohol solvent than other metal alkoxides. As the organic functional group, an alkyl group, a vinyl group,
Examples thereof include a carboxyl group, a phenyl group, a benzyl group, a fluoroalkyl group, an amino group, a nitrile group, and a functional group containing an ethylene oxide chain. Among them, preferred are an alkyl group, a fluoroalkyl group and an ethylene oxide chain. It is a functional group containing.

【0020】このようなものとして、CH3Si(OC
33、C25Si(OCH33、C37Si(OCH
33、C49Si(OCH33、C511Si(OC
33、CF3(CF25(CH22Si(OC
33、CF3(CF26(CH22Si(OC
33、CF3(CF27(CH22Si(OC
33、CH3O−(CH2CH2O)6−(CH23−S
i(OCH33、CH3O−(CH2CH2O)7−(CH
23−Si(OCH33、CH3O−(CH2CH2O)8
−(CH23−Si(OCH33、CH3O−(CH2
2O)9−(CH23−Si(OCH33等が挙げられ
る。
As such, CH 3 Si (OC
H 3) 3, C 2 H 5 Si (OCH 3) 3, C 3 H 7 Si (OCH
3 ) 3 , C 4 H 9 Si (OCH 3 ) 3 , C 5 H 11 Si (OC
H 3 ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC
H 3) 3, CF 3 ( CF 2) 6 (CH 2) 2 Si (OC
H 3) 3, CF 3 ( CF 2) 7 (CH 2) 2 Si (OC
H 3) 3, CH 3 O- (CH 2 CH 2 O) 6 - (CH 2) 3 -S
i (OCH 3) 3, CH 3 O- (CH 2 CH 2 O) 7 - (CH
2) 3 -Si (OCH 3) 3, CH 3 O- (CH 2 CH 2 O) 8
- (CH 2) 3 -Si ( OCH 3) 3, CH 3 O- (CH 2 C
H 2 O) 9 - (CH 2) 3 -Si (OCH 3) 3 and the like.

【0021】金属アルコキシド(A)と有機金属化合物
(B)の配合比は、ゲル化が起こらない範囲、また製膜
した際にM1OHの析出が起こらない範囲内であれば何
れの混合比であってもよいが、好ましくは金属アルコキ
シド(A)は、モル比で有機金属化合物(B)100に
対して100〜900の範囲において使用される。さら
に好ましくはモル比で有機金属化合物(B)100に対
して300〜500である。
The mixing ratio of the metal alkoxide (A) and the organometallic compound (B) is any mixing ratio within the range where gelation does not occur and M 1 OH does not precipitate during film formation. However, the metal alkoxide (A) is preferably used in a molar ratio of 100 to 900 relative to 100 of the organometallic compound (B). More preferably, the molar ratio is 300 to 500 with respect to 100 of the organometallic compound (B).

【0022】下記一般式(3)で表わされる金属アルコ
キシド(C)は、材料の骨格を形成するために重合させ
る骨格形成化合物として用いることができる。 M3(OR3n (3) (M3はAl、B、P、Siのうちの少なくとも一つ、
3は化学式Ch2h+1(hは1〜20の間の整数)で表
示されるアルキル基)
The metal alkoxide (C) represented by the following general formula (3) can be used as a skeleton-forming compound that is polymerized to form the skeleton of the material. M 3 (OR 3 ) n (3) (M 3 is at least one of Al, B, P and Si,
R 3 is an alkyl group represented by the chemical formula C h H 2h + 1 (h is an integer between 1 and 20)

【0023】金属アルコキシド(C)は、特に限定され
るものではない。また、上記一般式(3)に含まれると
3して、M2とは異なる元素を用いれば、溶融急冷ガラ
スの場合においてみられる混合フォーマー効果(南ら、
化学、43巻、344頁、1988年)が期待できる。
The metal alkoxide (C) is not particularly limited. Further, if M 3 is included in the general formula (3) and an element different from M 2 is used, a mixing former effect (minami et al.,
Chemistry, Vol. 43, p. 344, 1988) can be expected.

【0024】金属アルコキシド(C)を加える場合、有
機金属化合物(B)との配合比は、特に限定するもので
はないが、可撓性、導電性を考慮すると、金属アルコキ
シド(C)は、モル比で有機金属化合物(B)100に
対して10〜200の範囲において使用される。さらに
好ましくはモル比で有機金属化合物(B)100に対し
て50〜100の範囲である。
When the metal alkoxide (C) is added, the compounding ratio with the organometallic compound (B) is not particularly limited, but in view of flexibility and conductivity, the metal alkoxide (C) may be added in a molar amount. It is used in a ratio of 10 to 200 relative to 100 of the organometallic compound (B). More preferably, the molar ratio is in the range of 50 to 100 relative to 100 of the organometallic compound (B).

【0025】また、本発明ではさらに電解質塩や樹脂を
加えることによりさらに導電性を向上させるなどの効果
を持たせても良い。電解質塩としてはアルカリ金属塩が
好ましく、LiClO4、LiPF6、LiSO3CF3
LiN(SO2CF32などが挙げられる。
Further, in the present invention, the effect of further improving the conductivity may be provided by further adding an electrolyte salt or a resin. The electrolyte salt is preferably an alkali metal salt, such as LiClO 4 , LiPF 6 , LiSO 3 CF 3 ,
Such as LiN (SO 2 CF 3) 2 and the like.

【0026】本発明のイオン導電体の形態は、特に限定
するものではなく、薄膜、バルク、微粒子、ファイバー
等が挙げられるが、中でも薄膜はアルコキシドの加水分
解反応が進行しやすく、薄型のデバイスへの応用も期待
できるため、好適である。
The form of the ionic conductor of the present invention is not particularly limited, and examples thereof include thin films, bulks, fine particles, fibers, etc. Among them, thin films are easily formed into thin devices because the hydrolysis reaction of alkoxides easily progresses. It is preferable because the application of can be expected.

【0027】薄膜の作製方法は、出発原料を有機溶媒中
で混合、撹拌することで加水分解反応および重縮合反応
を起こさせ、得られたゾルを基盤上にコーティングし、
その後室温下で乾燥させるというものである。ここで、
用いる有機溶媒としてはエタノール、メタノール、テト
ラヒドロフラン、アセトニトリル、ジメチルホルムアミ
ド、プロピレンカーボネートなどを例示することができ
るが、中でも好ましいものはメタノールである。コーテ
ィングの方法としてはスピンコーティング、ディップコ
ーティング等が挙げられるが、材料の出発原料の種類や
用途によって適宜選択可能である。薄膜の乾燥雰囲気と
しては、大気中、窒素雰囲気などが例示できるが、上記
の例示によって限定されることはなく、材料の出発原料
の種類や用途によって適宜選択可能である。
The thin film is produced by mixing the starting materials in an organic solvent and stirring to cause a hydrolysis reaction and a polycondensation reaction, and coating the resulting sol on a substrate.
After that, it is dried at room temperature. here,
Examples of the organic solvent to be used include ethanol, methanol, tetrahydrofuran, acetonitrile, dimethylformamide, propylene carbonate and the like. Among them, preferred is methanol. Examples of the coating method include spin coating and dip coating, which can be appropriately selected depending on the type of starting material of the material and the application. Examples of the drying atmosphere of the thin film include the atmosphere and a nitrogen atmosphere. However, the drying atmosphere is not limited to the above examples and can be appropriately selected depending on the type of starting material of the material and the application.

【0028】[0028]

【実施例】以下に、本発明の有機無機複合化合物からな
るイオン伝導体について、具体的な実施例を挙げて説明
する。
EXAMPLES The ionic conductor comprising the organic-inorganic composite compound of the present invention will be described below with reference to specific examples.

【0029】<実施例1>窒素雰囲気下のグローブボッ
クス中で、金属リチウムをメタノールに溶解させ、リチ
ウムメトキシドのメタノール溶液を作製した。この溶液
にメチルトリメトキシシラン(MTMS)を混合した。
そして、この混合比がリチウムメトキシド:MTMSが
2:1,3:1、4:1,5:1の試料をそれぞれ作製
した。それぞれの溶液に2−n−ブトキシメタノールを
加え、約1時間撹拌させることでゾルを調製した。
Example 1 Metal lithium was dissolved in methanol in a glove box under a nitrogen atmosphere to prepare a methanol solution of lithium methoxide. Methyltrimethoxysilane (MTMS) was mixed with this solution.
Then, samples with the mixing ratio of lithium methoxide: MTMS of 2: 1, 3: 1, 4: 1 and 5: 1 were prepared. 2-n-Butoxymethanol was added to each solution and stirred for about 1 hour to prepare a sol.

【0030】上記のゾル溶液をガラス基盤上にスピンコ
ーターを用いてコーティングを行った。得られた薄膜を
乾燥、熱処理することでゲル薄膜を得た。得られた薄膜
は、無色透明で均質なものであった。また、膜厚は、約
600nmで、従来のリチウムメトキシドとTEOSを
出発原料に用いたLi2O−SiO2系薄膜よりも厚いこ
とが分かった。この薄膜について、導電性測定を行っ
た。測定セルは予め白金電極をスパッタしたガラス基盤
にゲル薄膜をコーティングしたものを用いた。そして、
インピーダンスアナライザーおよびヒーターを利用し
て、周波数範囲100Hz〜40MHz、印加電圧0.
5V、測定温度範囲25℃〜300℃でセルのインピー
ダンスを測定した。図1に示すように、500Kにおけ
る伝導度はリチウム濃度の増加に伴い上昇し、リチウム
メトキシド:MTMSが4:1の時に極大となり、その
後はリチウム濃度の増加に伴い伝導度は低下するという
現象が確認された。また、500Kにおける伝導度の極
大値は2.2×10-4S・cm -1であり、有機官能基を
導入していないTEOSを用いた材料に比べて高い伝導
性を示すことがわかった。
The above sol solution was spin-coated on a glass substrate.
Coating was performed using a heater. The obtained thin film
A gel thin film was obtained by drying and heat treatment. Thin film obtained
Was colorless, transparent and homogeneous. The film thickness is about
At 600nm, conventional lithium methoxide and TEOS
Li used as the starting material2O-SiO2Thicker than the system thin film
I understood. Conductivity measurement of this thin film
It was The measurement cell is a glass substrate with a platinum electrode sputtered in advance
The one coated with a gel thin film was used. And
Using an impedance analyzer and heater
Frequency range 100 Hz to 40 MHz, applied voltage 0.
Cell impedance at 5V, measurement temperature range 25 ℃ -300 ℃
The dance was measured. As shown in Figure 1, at 500K
Conductivity increases with increasing lithium concentration,
When methoxide: MTMS is 4: 1, it becomes maximum, and
After that, the conductivity decreases as the lithium concentration increases.
The phenomenon was confirmed. Also, the conductivity pole at 500K
Large value is 2.2 x 10-FourS · cm -1With an organic functional group
Higher conductivity than materials that do not use TEOS
It turned out to show sex.

【0031】<実施例2>出発原料にリチウムメトキシ
ドのメタノール溶液、化学式CF3(CF27(CH2
2Si(OCH33で表示されるフルオロアルキルシラ
ン(FAS)を用いて実施例1と同様の作製方法、混合
比でイオン伝導体薄膜を作製し、導電性を測定した。膜
厚は、約900nmで、従来のリチウムメトキシドとT
EOSを出発原料に用いたLi2O−SiO2系薄膜より
も厚いことが分かった。図2に示すように、500Kに
おける伝導度はリチウム濃度の増加に伴い上昇し、リチ
ウムメトキシド:FASが4:1の時に極大となり、そ
の後はリチウム濃度の増加に伴い伝導度は低下するとい
う現象が確認された。また、500Kにおける伝導度の
極大値は1.9×10-4S・cm-1であり、有機官能基
を導入していないTEOSを用いた材料に比べて高い伝
導性を示すことがわかった。
<Example 2> A methanol solution of lithium methoxide was used as a starting material and had a chemical formula of CF 3 (CF 2 ) 7 (CH 2 ).
A fluoroalkylsilane (FAS) represented by 2 Si (OCH 3 ) 3 was used to prepare an ion conductor thin film with the same manufacturing method and mixing ratio as in Example 1, and the conductivity was measured. The film thickness is about 900 nm, which is the same as conventional lithium methoxide and T
It was found to be thicker than the Li 2 O—SiO 2 based thin film using EOS as a starting material. As shown in FIG. 2, the conductivity at 500 K increases with an increase in lithium concentration, reaches a maximum when lithium methoxide: FAS is 4: 1, and then decreases with an increase in lithium concentration. Was confirmed. Further, the maximum value of the conductivity at 500 K was 1.9 × 10 −4 S · cm −1 , and it was found that the conductivity was higher than that of the material using TEOS in which no organic functional group was introduced. .

【0032】<実施例3>出発原料にリチウムメトキシ
ドのメタノール溶液、2−[メトキシ(ポリエチレンオ
キシ)プロピル]トリメトキシシラン(PEOTMS)
を用いて実施例1と同様の作製方法、混合比でイオン伝
導体薄膜を作製し、導電性を測定した。膜厚は、約70
0nmで、従来のリチウムメトキシドとTEOSを出発
原料に用いたLi2O−SiO2系薄膜よりも厚いことが
分かった。図3に示すように、500Kにおける伝導度
はリチウム濃度の増加に伴い上昇し、リチウムメトキシ
ド:PEOTMSが4:1の時に極大となり、その後は
リチウム濃度の増加に伴い伝導度は低下するという現象
が確認された。また、500Kにおける伝導度の極大値
は4.3×10-4S・cm-1であり、有機官能基を導入
していないTEOSを用いた材料に比べて高い伝導性を
示すことがわかった。
Example 3 As a starting material, a solution of lithium methoxide in methanol and 2- [methoxy (polyethyleneoxy) propyl] trimethoxysilane (PEOTMS) were used.
An ion conductor thin film was prepared by using the same method and mixing ratio as in Example 1, and the conductivity was measured. The film thickness is about 70
At 0 nm, it was found to be thicker than the conventional Li 2 O—SiO 2 thin film using lithium methoxide and TEOS as starting materials. As shown in FIG. 3, the phenomenon that the conductivity at 500 K increases with an increase in lithium concentration, reaches a maximum when lithium methoxide: PEOTMS is 4: 1, and then decreases with an increase in lithium concentration. Was confirmed. Further, the maximum value of the conductivity at 500 K was 4.3 × 10 −4 S · cm −1 , and it was found that the conductivity was higher than that of the material using TEOS without introducing the organic functional group. .

【0033】<実施例4>出発原料にリチウムメトキシ
ドのメタノール溶液、テトラエトキシシラン(TEO
S)、2−[メトキシ(ポリエチレンオキシ)プロピ
ル]トリメトキシシラン(PEOTMS)を用いて実施
例1と同様の作製方法イオン伝導体薄膜を作製し、導電
性を測定した。なお、リチウムメトキシドとTEOS+
PEOTMSの比を4:1にし、TEOS:PEOTM
Sは1:1にした。膜厚は、約700nmで、従来のリ
チウムメトキシドとTEOSを出発原料に用いたLi2
O−SiO2系薄膜よりも厚いことが分かった。500
Kにおける伝導度は、TEOSの一部をPEOTMSで
置き換えることにより上昇した。この値はLiOCH3
−TEOS系、LiOCH3−PEOTMS系における
伝導度の極大値よりも高く、その値は7.2×10-4
・cm-1であった。
Example 4 As a starting material, a methanol solution of lithium methoxide and tetraethoxysilane (TEO) were used.
S) and 2- [methoxy (polyethyleneoxy) propyl] trimethoxysilane (PEOTMS) were used to prepare an ion conductor thin film in the same manner as in Example 1, and the conductivity was measured. In addition, lithium methoxide and TEOS +
The ratio of PEOTMS is set to 4: 1 and TEOS: PEOTM
S was set to 1: 1. The film thickness is about 700 nm, and Li 2 using conventional lithium methoxide and TEOS as starting materials is used.
It was found to be thicker than the O-SiO 2 thin film. 500
The conductivity at K was increased by replacing part of TEOS with PEOTMS. This value is LiOCH 3
It is higher than the maximum value of the conductivity in the -TEOS system and the LiOCH 3 -PEOTMS system, and the value is 7.2 × 10 -4 S.
・ It was cm -1 .

【0034】<比較例>出発原料にリチウムメトキシド
のメタノール溶液、テトラエトキシシラン(TEOS)
を用いて上記と同様の作製方法、イオン伝導体薄膜を作
製し、導電性を測定した。膜厚は、約300nmであっ
た。なお、混合比は、リチウムメトキシド:TEOSが
2:1,3:1、4:1とした。図4に示すように、5
00Kにおける伝導度の極大値は1.1×10-4S・c
-1であり、実施例のものと比べ低いものとなった。
<Comparative Example> As a starting material, a solution of lithium methoxide in methanol and tetraethoxysilane (TEOS) are used.
An ion conductor thin film was prepared by using the above, and the conductivity was measured. The film thickness was about 300 nm. The mixing ratio was 2: 1, 3: 1 and 4: 1 for lithium methoxide: TEOS. As shown in FIG.
The maximum value of conductivity at 00K is 1.1 × 10 −4 S · c
m -1, which is lower than that of the example.

【0035】[0035]

【発明の効果】本発明の無機有機複合化合物からなるイ
オン導電体によれば、従来までのリチウムメトキシドと
TEOSを出発原料に用いたLi2O−SiO2系薄膜よ
りも高い伝導性を示すことがわかる。また、薄膜として
用いたとき、この薄膜は無機系の薄膜よりも緻密であ
り、電池のセパレータとしての性能も向上することが期
待できる。また、得られた薄膜は無機有機複合膜である
ため、機械的強度と可撓性を併せ持つ材料である。以上
のことより、本発明における無機有機複合型のイオン伝
導体は、リチウム二次電池をはじめとする電気化学的デ
バイス用の固体電解質として好適である。
The ionic conductor comprising the inorganic-organic composite compound of the present invention exhibits higher conductivity than conventional Li 2 O—SiO 2 thin films using lithium methoxide and TEOS as starting materials. I understand. When used as a thin film, this thin film is denser than an inorganic thin film, and it can be expected that the performance as a battery separator will be improved. Further, since the obtained thin film is an inorganic-organic composite film, it is a material having both mechanical strength and flexibility. From the above, the inorganic-organic composite type ionic conductor in the present invention is suitable as a solid electrolyte for electrochemical devices such as lithium secondary batteries.

【0036】[0036]

【図面の簡単な説明】[Brief description of drawings]

【図1】LiOCH3−MTMS系無機有機複合型リチ
ウムイオン伝導体の500Kにおける伝導度の組成依存
を示すグラフである。
FIG. 1 is a graph showing the composition dependence of the conductivity of a LiOCH 3 —MTMS-based inorganic-organic composite type lithium ion conductor at 500K.

【図2】LiOCH3−FAS系無機有機複合型リチウ
ムイオン伝導体の500Kにおける伝導度の組成依存を
示すグラフである。
FIG. 2 is a graph showing the composition dependence of the conductivity of a LiOCH 3 —FAS-based inorganic-organic composite type lithium ion conductor at 500K.

【図3】LiOCH3−PEOTMS系無機有機複合型
リチウムイオン伝導体の500Kにおける伝導度の組成
依存を示すグラフである。
FIG. 3 is a graph showing the composition dependence of the conductivity of a LiOCH 3 -PEOTMS-based inorganic-organic composite type lithium ion conductor at 500K.

【図4】LiOCH3−TEOS系無機型リチウムイオ
ン伝導体の500Kにおける伝導度の組成依存を示すグ
ラフである。
FIG. 4 is a graph showing the composition dependence of the conductivity of a LiOCH 3 —TEOS-based inorganic lithium ion conductor at 500K.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J030 CA01 CA02 CB03 CC05 CC06 CC10 CC15 CC16 CC17 CC21 CC23 CC27 CD11 CE02 CG02 4J035 BA04 BA14 CA071 CA161 EA01 LA03 LB20 5G301 CA01 CA16 CA30 CD01 5H029 AJ06 AJ11 AM16 CJ11 DJ09 EJ11 EJ12 HJ02    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4J030 CA01 CA02 CB03 CC05 CC06                       CC10 CC15 CC16 CC17 CC21                       CC23 CC27 CD11 CE02 CG02                 4J035 BA04 BA14 CA071 CA161                       EA01 LA03 LB20                 5G301 CA01 CA16 CA30 CD01                 5H029 AJ06 AJ11 AM16 CJ11 DJ09                       EJ11 EJ12 HJ02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】少なくとも下記の一般式(1)で表示され
る金属アルコキシド(A)と、下記の一般式(2)で表
示される有機金属化合物(B)を、加水分解及び重縮合
反応させて得られる化合物からなることを特徴とするイ
オン伝導体。 M1OR (1) (M1:アルカリ金属、R:化学式Ca2a+1(aは1〜
20の間の整数)で表示されるアルキル基) R1 b2(OR24-b (2) (M2:金属又は非金属、R1:有機官能基、R2:化学
式Ch2h+1(hは1〜20の間の整数)で表示される
アルキル基、b:1、2又は3)
1. A hydrolysis and polycondensation reaction of at least a metal alkoxide (A) represented by the following general formula (1) and an organometallic compound (B) represented by the following general formula (2): An ionic conductor comprising a compound obtained by the above. M 1 OR (1) (M 1 : alkali metal, R: chemical formula C a H 2a + 1 (a is 1 to 1
An alkyl group represented by (an integer between 20)) R 1 b M 2 (OR 2 ) 4-b (2) (M 2 : metal or nonmetal, R 1 : organic functional group, R 2 : chemical formula Ch Alkyl group represented by H 2h + 1 (h is an integer between 1 and 20), b: 1, 2 or 3)
【請求項2】前記金属アルコキシド(A)に含まれるア
ルカリ金属M1がリチウムであることを特徴とする請求
項1記載のイオン伝導体。
2. The ionic conductor according to claim 1, wherein the alkali metal M 1 contained in the metal alkoxide (A) is lithium.
【請求項3】前記有機金属化合物(B)に含まれる金属
又は非金属M2が珪素であることを特徴とする請求項1
又は2に記載のイオン伝導体。
3. The metal or nonmetal M 2 contained in the organometallic compound (B) is silicon.
Or the ionic conductor according to 2.
【請求項4】前記有機金属化合物(B)の有機官能基R
1が化学式Ck2k+1(kは1〜20の間の整数)で表示
されるアルキル基からなる請求項1〜3のいずれかに記
載のイオン伝導体。
4. An organic functional group R of the organometallic compound (B).
1 is the chemical formula C k H 2k + 1 (k is an integer between 1-20) ion conductor according to claim 1 consisting of an alkyl group represented by.
【請求項5】前記有機金属化合物(B)の有機官能基R
1が化学式−(CF2m−(mは1〜20の間の整数)
で表示されるフルオロアルキル基を少なくとも一つ含む
請求項1〜4のいずれかに記載のイオン伝導体。
5. An organic functional group R of the organometallic compound (B)
1 is the formula - (CF 2) m - ( m is an integer between 1-20)
The ionic conductor according to any one of claims 1 to 4, comprising at least one fluoroalkyl group represented by.
【請求項6】前記有機珪素化合物の有機官能基R1中に
化学式−(CH2CH2O)−で表示されるエチレンオキ
サイドユニットを少なくとも一つ含む請求項1〜5のい
ずれかに記載のイオン伝導体。
6. The organic functional group R 1 of the organosilicon compound contains at least one ethylene oxide unit represented by the chemical formula — (CH 2 CH 2 O) —. Ionic conductor.
【請求項7】下記の一般式(3)で表示される金属アル
コキシド(C)を出発原料に含むことを特徴とする請求
項1〜6に記載のイオン伝導体。 M3(OR3n (3) (MはAl、B、P、Siのうちの少なくとも一つ、R
3は化学式Ch2h+1(hは1〜20の間の整数)で表示
されるアルキル基)
7. The ionic conductor according to claim 1, wherein the starting material contains a metal alkoxide (C) represented by the following general formula (3). M 3 (OR 3 ) n (3) (M is at least one of Al, B, P and Si, R
3 is an alkyl group represented by the chemical formula C h H 2h + 1 (h is an integer between 1 and 20)
JP2002053463A 2002-02-28 2002-02-28 Ionic conductor Expired - Fee Related JP4147787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053463A JP4147787B2 (en) 2002-02-28 2002-02-28 Ionic conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053463A JP4147787B2 (en) 2002-02-28 2002-02-28 Ionic conductor

Publications (2)

Publication Number Publication Date
JP2003257237A true JP2003257237A (en) 2003-09-12
JP4147787B2 JP4147787B2 (en) 2008-09-10

Family

ID=28664888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053463A Expired - Fee Related JP4147787B2 (en) 2002-02-28 2002-02-28 Ionic conductor

Country Status (1)

Country Link
JP (1) JP4147787B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027033A (en) * 2002-06-26 2004-01-29 Toppan Printing Co Ltd Radical polymerizable composition and ion conductor
JP2005154749A (en) * 2003-10-28 2005-06-16 Toppan Printing Co Ltd Conductive film
JP2007059236A (en) * 2005-08-25 2007-03-08 Shin Etsu Chem Co Ltd Nonaqueous electrolytic solution, and secondary battery and capacitor using this
JP2008293974A (en) * 2007-05-25 2008-12-04 Commissariat A L'energie Atomique Electrolytic organic glass, its manufacturing method, and device including the glass
JP2017201009A (en) * 2016-04-28 2017-11-09 住友化学株式会社 Composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027033A (en) * 2002-06-26 2004-01-29 Toppan Printing Co Ltd Radical polymerizable composition and ion conductor
JP2005154749A (en) * 2003-10-28 2005-06-16 Toppan Printing Co Ltd Conductive film
JP4586496B2 (en) * 2003-10-28 2010-11-24 凸版印刷株式会社 Laminate with conductive layer
JP2007059236A (en) * 2005-08-25 2007-03-08 Shin Etsu Chem Co Ltd Nonaqueous electrolytic solution, and secondary battery and capacitor using this
JP4716009B2 (en) * 2005-08-25 2011-07-06 信越化学工業株式会社 Non-aqueous electrolyte and secondary battery and capacitor using the same
JP2008293974A (en) * 2007-05-25 2008-12-04 Commissariat A L'energie Atomique Electrolytic organic glass, its manufacturing method, and device including the glass
JP2017201009A (en) * 2016-04-28 2017-11-09 住友化学株式会社 Composition
KR20190004732A (en) * 2016-04-28 2019-01-14 스미또모 가가꾸 가부시키가이샤 Composition
KR102370256B1 (en) 2016-04-28 2022-03-04 스미또모 가가꾸 가부시키가이샤 composition

Also Published As

Publication number Publication date
JP4147787B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
US5849432A (en) Wide electrochemical window solvents for use in electrochemical devices and electrolyte solutions incorporating such solvents
CN101003630B (en) Cyclic carbonate-modified siloxane and method for producing the same, non-aqueous electrolyte solution, secondary cell and capacitor
CN104321922B (en) Fluoro-containing copolymer film
US6172152B1 (en) Sol-gel compositions and polymeric ion conductive film prepared therefrom
US6558850B2 (en) Method of fabricating an electrolytic cell employing a solid polymer electrolyte
WO2006129991A1 (en) Anion receptor and electrolyte using the same
CN102723528B (en) Amphion liquid electrolyte material and preparation thereof and application in lithium battery electrolytes
WO2014059709A1 (en) Organohalogen silane containing polyether chain and use thereof in non-aqueous lithium ion battery electrolyte
US20150270574A1 (en) Halogenosilane functionalized carbonate electrolyte material, preparation method thereof and use in electrolyte for lithium ion battery
CN107078267A (en) Combination electrode
CN111416147B (en) Composite solid polymer electrolyte and preparation method thereof
KR20090019892A (en) Process for modifying the interfacial resistance of a metallic lithium electrode
WO1997016862A9 (en) Wide electrochemical window solvents for use in electrochemical devices and electrolyte solutions incorporating such solvents
WO1997016862A1 (en) Wide electrochemical window solvents for use in electrochemical devices and electrolyte solutions incorporating such solvents
WO1990010317A1 (en) All-solid-state secondary lithium battery
WO2006129992A1 (en) Anion receptor and electrolyte using the same
JP2003257237A (en) Ion conductor
JPH1173992A (en) Novel lithium polymer battery
Chagnes Lithium battery technologies: electrolytes
CN1371911A (en) Fluoalkyl phosphate and preparation process thereof
WO2007091867A1 (en) Novel crosslinker and solid polymer electrolyte using the same
WO2007091817A1 (en) Anion receptor, and electrolyte using the same
KR20120057168A (en) Polymer electrolyte composite containing the amine acrylate compounds and lithium-polymer secondary battery using the same
JP4461665B2 (en) Ionic conductor
CN104919635A (en) Silicone epoxy ether compositions, methods for making same and uses therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees