JP2003253489A - Method of plating electronic component and electronic component - Google Patents

Method of plating electronic component and electronic component

Info

Publication number
JP2003253489A
JP2003253489A JP2002057296A JP2002057296A JP2003253489A JP 2003253489 A JP2003253489 A JP 2003253489A JP 2002057296 A JP2002057296 A JP 2002057296A JP 2002057296 A JP2002057296 A JP 2002057296A JP 2003253489 A JP2003253489 A JP 2003253489A
Authority
JP
Japan
Prior art keywords
plating
electrode
potential
film
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002057296A
Other languages
Japanese (ja)
Other versions
JP3879118B2 (en
Inventor
Masanori Endo
正則 遠藤
Shoichi Higuchi
庄一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002057296A priority Critical patent/JP3879118B2/en
Publication of JP2003253489A publication Critical patent/JP2003253489A/en
Application granted granted Critical
Publication of JP3879118B2 publication Critical patent/JP3879118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid peeling of electrodes or failures in electric connections and to obtain high quality electronic components having excellent reliability. <P>SOLUTION: When a nickel coating 7 and a tin coating 8 are formed on an article to be plated, which article is a ceramic base body 3 having electrodes 6 on its surface, the nickel coating 7 and the tin coating 8 are successively formed on the article by subjecting the article to plating treatment while impressing a potential of -0.7 V versus the standard hydrogen electrode potential or an electrochemically nobler potential than -0.7 V to the article to be treated. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電子部品のめっき方
法、及び電子部品に関し、より詳しくはセラミックス素
体の表面に電極が形成された電子部品のめっき方法、及
び該めっき方法を使用して製造された電子部品に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for plating electronic parts and electronic parts, and more particularly to a method for plating electronic parts in which electrodes are formed on the surface of a ceramic body, and manufacturing using the plating method. Related electronic components.

【0002】[0002]

【従来の技術】セラミックス素体の表面に電極が形成さ
れた電子部品では、従来より、電極の耐熱性やはんだ濡
れ性を向上させるために電極表面にニッケルめっきやス
ズめっきを施すことが行われている。
2. Description of the Related Art Electronic components having electrodes formed on the surface of a ceramic body have conventionally been nickel-plated or tin-plated to improve heat resistance and solder wettability of the electrodes. ing.

【0003】すなわち、この種の電子部品では、例え
ば、めっき金属で形成された陽極板をアノードとし、陰
極板及び被めっき物が内有されたバレル側をカソードと
し、バレルを回転、揺動等させながらアノード、カソー
ド間に電流を流して電位を印加し、これにより被めっき
物の電極上に金属を析出させ、めっき皮膜を形成してい
る。
That is, in this type of electronic component, for example, an anode plate made of plated metal is used as an anode, a barrel side having a cathode plate and an object to be plated is used as a cathode, and the barrel is rotated and rocked. While doing so, an electric current is applied between the anode and the cathode to apply a potential, thereby depositing a metal on the electrode of the object to be plated to form a plating film.

【0004】そして、従来のめっき処理は、めっき浴中
でのアノード及びカソード間に流れる電流値とめっき時
間を管理することにより行っており、また生産性の向上
を図る観点から、アノード及びカソード間に大電流を通
電して短時間でめっき処理を行なっている。すなわち、
NiやSn等のめっき金属に対しできるだけ電気化学的
に卑に偏位した電位が被めっき物に印加され、めっき処
理されている。
The conventional plating treatment is carried out by controlling the current value flowing between the anode and the cathode in the plating bath and the plating time, and from the viewpoint of improving the productivity, the anode and the cathode are treated together. A large amount of current is applied to the plating process in a short time. That is,
A potential that is electrochemically deviated to the base metal as much as possible with respect to a plating metal such as Ni or Sn is applied to the object to be plated for plating.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
めっき方法では、上述したように、短時間でめっき処理
を行なうべく前記めっき金属に対しできるだけ電気化学
的に卑に偏位した電位を被めっき物に印加しているた
め、電極近傍のセラミック素体、すなわち金属酸化物
が、めっき時に印加された電位によって還元されるた
め、セラミック素体の構造が化学的に破壊され、その結
果、電極のセラミック素体への密着強度が低下し、電極
がセラミック素体から剥離したり、導通不良を招来する
虞があるという問題点があった。すなわち、めっき反応
を進行させるためにはめっき金属の平衡電極電位よりも
電気化学的に卑な電位を被めっき物に印加する必要があ
るが、貴卑の程度が比較的貴である電位を被めっき物の
電極に印加した場合は、電極近傍のセラミック素体は金
属酸化物の状態を維持するが、印加電位が卑に移行する
に従って金属酸化物の表層面はイオン化し、更には金属
へと状態変化する。つまり、めっき時の被めっき物への
印加電位が卑になる程、金属酸化物は還元分解され易く
なり、セラミック素体の構造破壊が進行して電極のセラ
ミック素体への密着強度が低下し、このため薄膜電極の
場合は電極のセラミック素体からの剥離や導通不良が生
じ易くなり、また厚膜電極の場合でも導通不良が生じ易
くなるという問題点があった。
However, in the conventional plating method, as described above, the potential which is electrochemically shifted to the base metal as electrochemically as possible with respect to the plated metal so as to perform the plating treatment in a short time is applied. Since the ceramic element body near the electrode, that is, the metal oxide, is reduced by the potential applied during plating, the structure of the ceramic element body is chemically destroyed. There is a problem that the adhesion strength to the element body is lowered, the electrode may be peeled off from the ceramic element body, or conduction failure may be caused. That is, in order for the plating reaction to proceed, it is necessary to apply an electrochemically base potential to the object to be plated, which is lower than the equilibrium electrode potential of the plating metal. When applied to the electrode of the plated product, the ceramic body in the vicinity of the electrode maintains the state of the metal oxide, but as the applied potential shifts to the base, the surface layer surface of the metal oxide is ionized and further becomes a metal. The state changes. That is, as the potential applied to the object to be plated during plating becomes more base, the metal oxide is more easily reductively decomposed, the structural destruction of the ceramic body progresses, and the adhesion strength of the electrode to the ceramic body decreases. Therefore, in the case of the thin film electrode, there is a problem that peeling of the electrode from the ceramic body and poor conduction are likely to occur, and also in the case of the thick film electrode, poor conduction is likely to occur.

【0006】本発明はこのような問題点に鑑みなされた
ものであって、電極剥離や導通不良が生じるのを回避し
て信頼性に優れた高品質な電子部品を得ることのできる
電子部品のめっき方法、及び該めっき方法を使用して製
造された電子部品を提供することを目的とする。
The present invention has been made in view of the above problems, and it is an electronic component capable of obtaining a high-quality electronic component having excellent reliability by avoiding peeling of electrodes and defective conduction. An object of the present invention is to provide a plating method and an electronic component manufactured by using the plating method.

【0007】[0007]

【課題を解決するための手段】本発明者らは、めっき処
理を行なっても電極のセラミック素体への密着強度が低
下するのを回避すべく鋭意研究をしたところ、斯かる密
着強度は被めっき物の電極への印加電位に応じて変化す
ることを見出した。すなわち、めっき反応を進行させる
ためには、上述したようにめっき金属の平衡電極電位よ
りも電気化学的に卑な電位を被めっき物に印加する必要
があるが、過度に卑に偏位した電位を印加すると密着強
度が低下することが判った。そして、本発明者らは、被
めっき物への印加電位が、標準水素電極電位を基準に−
0.7V又は−0.7Vよりも電気化学的に貴な場合
は、前記被めっき物にめっき処理を施しても電極とセラ
ミック素体との密着強度を低下するのを回避することが
できるという知見を得た。
Means for Solving the Problems The inventors of the present invention have conducted diligent research in order to prevent the adhesion strength of the electrode to the ceramic body from being deteriorated even if plating treatment is performed. It was found that the plating material changes depending on the applied potential to the electrode. That is, in order to proceed the plating reaction, it is necessary to apply an electrochemically base potential to the object to be plated as compared with the equilibrium electrode potential of the plating metal as described above, but a potential that is excessively base shifted. It was found that the adhesion strength was reduced by applying. Then, the present inventors have found that the applied potential to the object to be plated is − based on the standard hydrogen electrode potential.
When it is electrochemically nobler than 0.7 V or −0.7 V, it is possible to avoid the reduction of the adhesion strength between the electrode and the ceramic body even if the plating object is plated. I got the knowledge.

【0008】本発明はこのような知見に基づきなされた
ものであって、本発明に係る電子部品のめっき方法は、
セラミックス素体の表面に電極が形成された被めっき物
にめっき処理を施し、前記電極の表面にめっき皮膜を形
成する電子部品のめっき方法において、標準水素電極電
位を基準に−0.7V又は−0.7Vよりも電気化学的
に貴な電位を前記被めっき物に印加しながらめっき処理
を施すことを特徴としている。
The present invention has been made on the basis of such knowledge, and the plating method for electronic parts according to the present invention is
In a plating method for an electronic component, in which an object to be plated having an electrode formed on the surface of a ceramic body is subjected to a plating treatment to form a plating film on the surface of the electrode, a -0.7 V or-based on a standard hydrogen electrode potential is used. It is characterized in that the plating treatment is performed while applying an electrochemically nobler potential than 0.7 V to the object to be plated.

【0009】上記めっき方法によれば、−0.7V(v
s.NHE(標準水素電極))又は−0.7Vよりも電
気化学的に貴な電位を前記被めっき物に印加して前記め
っき皮膜を形成しているので、被めっき物への印加電位
が過度に卑となることもなく、セラミック素体が還元分
解して構造破壊するのを回避して所望の密着強度を確保
することが可能となる。
According to the above plating method, -0.7V (v
s. NHE (standard hydrogen electrode) or an electric potential nobler electrochemically than -0.7 V is applied to the object to be plated to form the plating film, so that the potential applied to the object to be plated is excessive. Without becoming base, it is possible to prevent the ceramic body from undergoing reductive decomposition and structural destruction, and to secure a desired adhesion strength.

【0010】また、上記めっき方法は、特にニッケルめ
っき、スズめっき、或いはスズ合金めっきを行う場合に
優れた作用効果を発揮する。
In addition, the above-mentioned plating method exhibits excellent working effects particularly when nickel plating, tin plating, or tin alloy plating is performed.

【0011】すなわち、本発明の電子部品のめっき方法
は、前記めっき皮膜は、ニッケル、スズ、又はスズ合金
のいずれかであることを特徴とするのが好ましい。
That is, the method for plating an electronic component of the present invention is preferably characterized in that the plating film is made of nickel, tin, or a tin alloy.

【0012】また、本発明の電子部品のめっき方法は、
被めっき物が浸漬されるめっき液が、水素イオン指数p
Hが4〜10であることを特徴とするのも好ましく、水
素イオン指数pHを斯かる範囲となるようにめっき液を
調製することにより、めっき液に添加される物質種の選
択範囲を拡大することが可能となる。
The method for plating an electronic component of the present invention is
The plating solution in which the object to be plated is immersed has a hydrogen ion index p.
It is also preferable that H is 4 to 10, and the selection range of the substance species to be added to the plating solution is expanded by preparing the plating solution such that the hydrogen ion exponent pH is in such a range. It becomes possible.

【0013】また、本発明の電子部品のめっき方法は、
前記電極が、スパッタリング処理を施して作製された薄
膜電極であることを特徴とするのも好ましく、また前記
電極が、導電性材料とガラス成分とを含有した導電性ペ
ーストを塗布・焼付処理を施して作製された厚膜電極で
あることを特徴とするのも好ましく、これにより薄膜電
極及び厚膜電極のいずれにおいても電極剥離や導通不良
等の不具合が生じるのを回避することが可能となる。
Further, the method of plating an electronic component of the present invention is
It is also preferable that the electrode is a thin film electrode produced by performing a sputtering process, and the electrode is formed by applying and baking a conductive paste containing a conductive material and a glass component. It is also preferable that the thick film electrode is manufactured by the above method, which makes it possible to avoid problems such as electrode peeling and poor conduction in both the thin film electrode and the thick film electrode.

【0014】また、本発明に係る電子部品は、上述した
めっき方法を使用して製造されていることを特徴とし、
またセラミックス素体が、誘電体材料、圧電体材料、絶
縁体材料、又は半導体材料の中から選択された1種以上
のセラミック材料で形成されていることを特徴としてい
る。
The electronic component according to the present invention is characterized by being manufactured by using the above-mentioned plating method,
Further, the ceramic body is characterized by being formed of one or more ceramic materials selected from a dielectric material, a piezoelectric material, an insulating material, or a semiconductor material.

【0015】上記構成によれば、−0.7V(vs.N
HE(標準水素電極))又は−0.7Vよりも電気化学
的に貴な電位を前記被めっき物に印加して前記めっき皮
膜が形成されているので、薄膜又は厚膜の電極がセラミ
ックス素体から剥離したり導通不良が生じることもなく
なり、信頼性に優れた種々の所望の電子部品を得ること
が可能となる。
According to the above configuration, -0.7V (vs.N
Since a plating film is formed by applying a noble potential electrochemically higher than HE (standard hydrogen electrode) or -0.7 V to the object to be plated, the thin film or thick film electrode is a ceramic body. It is possible to obtain various desired electronic components having excellent reliability without peeling off from the substrate or defective conduction.

【0016】[0016]

【発明の実施の形態】次に、本発明の実施の形態を図面
を参照しながら詳説する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0017】図1は本発明に係る電子部品の一実施の形
態としてのチップ型セラミック発振子の斜視図であり、
図2は図1のA−A断面図である。
FIG. 1 is a perspective view of a chip type ceramic oscillator as an embodiment of an electronic component according to the present invention.
2 is a sectional view taken along line AA of FIG.

【0018】該チップ型セラミック発振子は、チタン酸
バリウム等の金属酸化物を主成分とした上下一対の誘電
体基板1a、1bと、該誘電体基板1a、1bに挟着さ
れたチタン酸鉛やチタン酸・ジルコン酸鉛(PZT)等
の金属酸化物を主成分とした圧電体基板2とを備え、こ
れら誘電体基板1a、1b及び圧電体基板2とでセラミ
ック素体3を構成している。
The chip-type ceramic oscillator is composed of a pair of upper and lower dielectric substrates 1a and 1b containing a metal oxide such as barium titanate as a main component, and lead titanate sandwiched between the dielectric substrates 1a and 1b. And a piezoelectric substrate 2 mainly composed of a metal oxide such as titanic acid / lead zirconate (PZT). The dielectric substrate 1a, 1b and the piezoelectric substrate 2 form a ceramic body 3. There is.

【0019】また、セラミック素体3の両側面にはスパ
ッタリング法により膜厚0.1μm〜1.0μmの薄膜
電極4が形成され、誘電体基板1aの上端部及び誘電体
基板1bの下端部には導電性ペーストが塗布・焼成され
て膜厚1μm〜50μmの厚膜電極5a、5bが形成さ
れ、薄膜電極4と厚膜電極5a、5bとで電極部6を構
成している。
Further, thin film electrodes 4 having a film thickness of 0.1 μm to 1.0 μm are formed on both side surfaces of the ceramic body 3 by a sputtering method, and are formed on the upper end portion of the dielectric substrate 1a and the lower end portion of the dielectric substrate 1b. The conductive paste is applied and fired to form thick film electrodes 5a and 5b having a film thickness of 1 μm to 50 μm. The thin film electrode 4 and the thick film electrodes 5a and 5b form the electrode portion 6.

【0020】そして、電極部6の表面には膜厚0.5μ
m〜5μmのニッケル皮膜4が被着され、さらに、該ニ
ッケル皮膜4の表面は膜厚1μm〜10μmのスズ皮膜
5が被着されている。
The thickness of the electrode portion 6 is 0.5 μm on the surface.
The nickel coating 4 having a thickness of m to 5 μm is deposited, and the surface of the nickel coating 4 is coated with the tin coating 5 having a thickness of 1 μm to 10 μm.

【0021】以下、上記チップ型セラミック発振子の製
造方法について詳述する。
The method of manufacturing the above chip-type ceramic oscillator will be described in detail below.

【0022】まず、所定の周波数を発振するように研磨
したチタン酸鉛やPZT等で形成された圧電体基板2
を、同様に研磨したチタン酸バリウム等の一対の誘電体
基板1a、1bで挟持し、接着剤で互いに接着し、セラ
ミック素体3を形成する。
First, a piezoelectric substrate 2 made of lead titanate, PZT, or the like, which is polished so as to oscillate at a predetermined frequency.
Are sandwiched between a pair of dielectric substrates 1a and 1b such as barium titanate which are similarly polished, and they are bonded to each other with an adhesive to form a ceramic body 3.

【0023】次いで、所定の導電性材料をターゲット物
質とし、側面部に対し所定のマスキングを行いならがス
パッタリング処理を施し、膜厚0.1μm〜1.0μm
の薄膜電極4を形成する。
Next, a predetermined conductive material is used as a target substance, and the side surface is subjected to predetermined masking and then subjected to a sputtering process to obtain a film thickness of 0.1 μm to 1.0 μm.
Thin film electrode 4 is formed.

【0024】尚、上記導電性材料としては、特に限定さ
れるものではなく、例えばNi−Cr、NiとCuの合
金であるモネルメタル等の合金やCu、Ti、Ag等の
金属材料を使用することができる。
The conductive material is not particularly limited, and for example, an alloy such as Ni-Cr, an alloy of Ni and Cu such as Monel metal, or a metal material such as Cu, Ti or Ag may be used. You can

【0025】次いで、CuやAg等の導電性材料にガラ
ス成分や有機ビヒクルを含有した導電性ペーストを用意
し、該導電性ペーストをセラミック素体3の上端部及び
下端部に塗布、焼付処理を施し、膜厚1μm〜50μm
の厚膜電極5a、5bを形成する。
Next, a conductive paste containing a glass component and an organic vehicle in a conductive material such as Cu or Ag is prepared, and the conductive paste is applied to the upper and lower ends of the ceramic body 3 and baked. Applied, film thickness 1 μm to 50 μm
The thick film electrodes 5a and 5b are formed.

【0026】そして、このように電極部6(薄膜電極4
及び厚膜電極5a、5b)の形成されたセラミック素体
3を被めっき物とし、湿式電解バレル法で前記被めっき
物にニッケルめっき及びスズめっきを施し、ニッケル皮
膜7及びスズ皮膜8を形成する。
In this way, the electrode portion 6 (thin film electrode 4
And the ceramic body 3 on which the thick film electrodes 5a, 5b) are formed is used as an object to be plated, and the object to be plated is subjected to nickel plating and tin plating by a wet electrolytic barrel method to form a nickel film 7 and a tin film 8. .

【0027】図3は本実施の形態で使用した湿式電解バ
レルめっき装置の概略図である。
FIG. 3 is a schematic view of the wet electrolytic barrel plating apparatus used in this embodiment.

【0028】すなわち、該めっき装置は、めっき金属
(ニッケル又はスズ)で形成された陽極板(アノード)
11と陰極板(カソード)12が内挿されたバレル13
とがめっき液9の満たされた電解槽10に浸漬され、陽
極版11と陰極版12とはポテンショスタット14を介
して電気的に接続されている。また、前記電解槽10
は、KCl溶液15に参照電極16が浸漬されたKCl
槽17と塩橋18を介して接続されている。そして、塩
橋18内にはKClと寒天とが充填されており、めっき
液9とKCl溶液15とが互いに混ざり合うことなく、
電子が移動するように構成されている。
That is, the plating apparatus has an anode plate (anode) made of a plating metal (nickel or tin).
Barrel 13 in which 11 and cathode plate (cathode) 12 are inserted
Are immersed in an electrolytic bath 10 filled with a plating solution 9, and the anode plate 11 and the cathode plate 12 are electrically connected via a potentiostat 14. In addition, the electrolytic bath 10
Is KCl in which the reference electrode 16 is immersed in the KCl solution 15.
It is connected via a tank 17 and a salt bridge 18. The salt bridge 18 is filled with KCl and agar so that the plating solution 9 and the KCl solution 15 do not mix with each other.
The electrons are configured to move.

【0029】このように構成されためっき装置において
は、バレル13に所定個数の被めっき物を入れて陽極板
11と陰極板12との間に電流を通電し、被めっき物へ
の印加電位が所定電位となるように参照電極16を介し
てポテンショスタット14で制御しつつ電解めっきを行
い、これによりニッケルめっき皮膜7及びスズめっき皮
膜8が形成される。
In the thus constructed plating apparatus, a predetermined number of objects to be plated are put in the barrel 13 and a current is passed between the anode plate 11 and the cathode plate 12, so that the potential applied to the objects to be plated is increased. The nickel plating film 7 and the tin plating film 8 are formed by performing electrolytic plating while controlling the potentiostat 14 via the reference electrode 16 so as to have a predetermined potential.

【0030】すなわち、ニッケル皮膜7を形成する場合
は、電解槽10を所定のニッケルイオン源を含有しため
っき液9で満たすと共に、ニッケル製の陽極板11と陰
極板12との間に電流を通電して電解ニッケルめっきを
施し、これにより電極部6の表面にニッケル皮膜7が形
成される。
That is, when the nickel film 7 is formed, the electrolytic bath 10 is filled with the plating solution 9 containing a predetermined nickel ion source, and a current is passed between the anode plate 11 and the cathode plate 12 made of nickel. Then, electrolytic nickel plating is applied, whereby a nickel film 7 is formed on the surface of the electrode portion 6.

【0031】また、スズ皮膜8を形成する場合は、電解
槽10を所定の錯化剤やスズイオン源を含有しためっき
液9で満たすと共に、スズ製の陽極板11と陰極板12
との間に電流を通電して電解スズめっきを施し、これに
よりニッケル皮膜7の表面にスズ皮膜8が形成される。
When the tin film 8 is formed, the electrolytic cell 10 is filled with the plating solution 9 containing a predetermined complexing agent and a tin ion source, and the tin anode plate 11 and cathode plate 12 are formed.
An electric current is passed between and to perform electrolytic tin plating, whereby a tin film 8 is formed on the surface of the nickel film 7.

【0032】そして、本実施の形態では、前記ニッケル
皮膜7及びスズ皮膜8は、−0.7V(vs.NHE;
以下、同様)又は−0.7Vよりも電気化学的に貴な電
位を前記被めっき物に印加することにより、めっき処理
を施している。
In the present embodiment, the nickel film 7 and the tin film 8 are -0.7 V (vs. NHE;
The same applies to the following) or a potential that is electrochemically nobler than -0.7 V is applied to the object to be plated to perform the plating treatment.

【0033】すなわち、めっき皮膜を形成すべくめっき
反応を生じさせるためには、めっき金属であるNi(−
0.25V)やSn(−0.14V)の平衡電極電位よ
りも電気化学的に卑な電位を被めっき物に印加する必要
があるが、一方、印加電位を−0.7Vよりも電気化学
的に卑な電位に設定してめっき処理を施した場合は、セ
ラミック素体3を形成する金属酸化物が還元分解して表
層面に金属が析出し、セラミック素体3の構造が化学的
に破壊され、めっき処理後の電極とセラミック素体との
密着強度が低下し、電極剥離や導通不良を招来する虞が
ある。
That is, in order to cause a plating reaction to form a plating film, the plating metal Ni (-
0.25 V) or Sn (-0.14 V), which is electrochemically lower than the equilibrium electrode potential, needs to be applied to the object to be plated, but on the other hand, the applied potential is electrochemically lower than -0.7 V. When the plating treatment is performed by setting the potential to be a base, the metal oxide forming the ceramic body 3 is reductively decomposed and metal is deposited on the surface layer, so that the structure of the ceramic body 3 is chemically changed. There is a possibility that the electrodes may be destroyed and the adhesion strength between the electrode and the ceramic body after the plating treatment may be reduced, resulting in electrode peeling and poor conduction.

【0034】そこで、本実施の形態では、印加電位を−
0.7V又は−0.7Vよりも電気化学的に貴な電位に
制御しつつめっき処理を行なっている。
Therefore, in the present embodiment, the applied potential is set to −
The plating process is performed while controlling the potential to be electrochemically nobler than 0.7 V or -0.7 V.

【0035】また、斯かるめっき液の水素イオン指数p
Hは、強酸性溶液や強アルカリ性溶液ではセラミック素
体3中のガラス成分がダメージを受けるため、3〜10
に調製する必要があり、さらに錯化剤の選択自由度を増
加させる観点からは4〜10となるように調製するのが
好ましい。
The hydrogen ion exponent p of such a plating solution is also
H is 3 to 10 because the glass component in the ceramic body 3 is damaged in a strongly acidic solution or a strongly alkaline solution.
In view of increasing the degree of freedom of selection of the complexing agent, it is preferable to adjust it to 4 to 10.

【0036】尚、ニッケルめっき液及びスズめっき液に
は、金属イオン源(ニッケルイオン源又はスズイオン
源)や錯化剤の他、pH調整剤、光沢剤等が含有される
ことがある。
The nickel plating solution and the tin plating solution may contain a metal ion source (nickel ion source or tin ion source) and a complexing agent, as well as a pH adjusting agent, a brightening agent and the like.

【0037】ここで、ニッケルイオンの供給源としては
各種ニッケル塩を使用することができ、例えば硫酸ニッ
ケル、塩化ニッケル、スルファミン酸ニッケル、酢酸ニ
ッケル等を使用することができる。
Here, various nickel salts can be used as the source of nickel ions, for example, nickel sulfate, nickel chloride, nickel sulfamate, nickel acetate, etc. can be used.

【0038】また、スズイオンの供給源としても各種ス
ズ塩を使用することができ、例えば硫酸第一スズ、酢酸
第一スズ、スルファミン酸第一スズ等を使用することが
できる。
Various tin salts can also be used as the source of tin ions, for example, stannous sulfate, stannous acetate, stannous sulfamate, etc. can be used.

【0039】また、錯化剤は、ニッケルイオンやスズイ
オンをめっき浴中に存在させて沈殿物が生成するのを防
止し、浴の安定性を向上させるために添加されるが、斯
かる錯化剤としては、クエン酸、グルコン酸、酢酸、グ
リシン、ピロリン酸、酒石酸、ホウ酸、或いははこれら
の酸を含有した塩を使用することができる。
Further, a complexing agent is added to prevent nickel ions and tin ions from existing in the plating bath to form precipitates and to improve the stability of the bath. As the agent, citric acid, gluconic acid, acetic acid, glycine, pyrophosphoric acid, tartaric acid, boric acid, or salts containing these acids can be used.

【0040】また、pH調整剤は、めっき液中での水素
イオン指数pHが3〜10、好ましくは4〜10の範囲
となるように適宜添加されるが、斯かるpH調整剤とし
ては、水酸化ナトリウムや水酸化カリウム等の各種水酸
化物、或いはアンモニウム水等を使用することができ
る。
The pH adjusting agent is appropriately added so that the pH value of the hydrogen ion index in the plating solution is in the range of 3 to 10, preferably 4 to 10. The pH adjusting agent is water. Various hydroxides such as sodium oxide and potassium hydroxide, or ammonium water can be used.

【0041】また、光沢剤としては、例えば、ノニオン
系界面活性剤を使用することができる。
As the brightener, for example, a nonionic surfactant can be used.

【0042】このように本実施の形態では、めっき時に
印加電位を制御し、−0.7V又は−0.7Vよりも電
気化学的に貴な電位を前記被めっき物に印加しているの
で、セラミック素体が還元分解して化学的に構造破壊さ
れるのを回避することができる。したがって電極部6と
セラミック素体3との密着強度が低下することなく所望
のめっき皮膜(ニッケル皮膜7及びスズ皮膜8)を形成
することができ、電極剥離や導通不良等の生じることの
ないチップ型セラミック発振子を得ることができる。
As described above, in the present embodiment, the applied potential is controlled during plating, and -0.7V or a potential electrochemically nobler than -0.7V is applied to the object to be plated. It is possible to prevent the ceramic body from being reductively decomposed and chemically structurally destroyed. Therefore, a desired plating film (nickel film 7 and tin film 8) can be formed without lowering the adhesion strength between the electrode portion 6 and the ceramic body 3, and the chip does not cause electrode peeling or conduction failure. A ceramic resonator can be obtained.

【0043】尚、本発明は上記実施の形態に限定される
ものではない。上記実施の形態ではスズめっき液を使用
してニッケル皮膜7上にスズめっきを施しているが、ス
ズめっきに代えてスズ−鉛、スズ−銀、スズ−銅、スズ
−ビスマス等のスズ合金めっきを施すようにしてもよ
い。
The present invention is not limited to the above embodiment. Although tin plating is applied to the nickel film 7 using the tin plating solution in the above embodiment, tin alloy plating such as tin-lead, tin-silver, tin-copper, tin-bismuth, etc. is used instead of tin plating. May be applied.

【0044】また、上記実施の形態では、上下一対の誘
電体基板で圧電体基板を挟着しているが、前記誘電体基
板に代えてアルミナ等で形成された絶縁体基板を使用し
た場合にも適用可能なことはいうまでもない。
Further, in the above embodiment, the piezoelectric substrate is sandwiched between the pair of upper and lower dielectric substrates. However, when an insulating substrate made of alumina or the like is used instead of the dielectric substrate, Needless to say, is also applicable.

【0045】また、上記実施の形態では薄膜電極をスパ
ッタリング法で形成しているが真空蒸着法により蒸着処
理してもよい。
In addition, although the thin film electrode is formed by the sputtering method in the above embodiment, the thin film electrode may be formed by the vacuum evaporation method.

【0046】また、本実施の形態では電子部品の一例と
してチップ型セラミック発振子について説明したが、ス
パッタリング法や蒸着法により薄膜電極が形成されたチ
ップ型セラミックフィルタ、チップ型EMIフィルタ
ー、チップ3端子コンデンサ、或いは半導体セラミック
で形成されたチップ型サーミスタについても同様に適用
することができ、また導電性ペーストが塗布、焼成され
て厚膜電極が形成されたチップ型積層コンデンサ、チッ
プ型インダクタンス素子、或いはチップ型サーミスタや
チップ型バリスタについても同様に適用することができ
る。
Although the chip-type ceramic oscillator has been described as an example of the electronic component in the present embodiment, a chip-type ceramic filter having a thin film electrode formed by a sputtering method or a vapor deposition method, a chip-type EMI filter, and a chip 3 terminal. The same can be applied to a capacitor or a chip type thermistor formed of a semiconductor ceramic, and a chip type multilayer capacitor having a thick film electrode formed by applying and firing a conductive paste, a chip type inductance element, or The same can be applied to the chip type thermistor and the chip type varistor.

【0047】また、電子部品の構造はチップ形状に限ら
れることはなく、ディスク形状等であってもよく、ま
た、内部電極を有する電子部品にも適用可能なことはい
うまでもない。
The structure of the electronic component is not limited to the chip shape, but may be a disc shape or the like, and needless to say, it can be applied to an electronic component having an internal electrode.

【0048】[0048]

【実施例】次に、本発明の実施例を具体的に説明する。EXAMPLES Next, examples of the present invention will be specifically described.

【0049】〔第1の実施例〕めっき液には、一般に、
錯化剤や金属イオン源の他、pH調整剤、光沢剤等が添
加されるが、電極の密着強度については、含有量の多い
錯化剤の影響を最も受けやすいと考えられる。
[First Embodiment] The plating solution generally contains
In addition to the complexing agent and the metal ion source, a pH adjusting agent, a brightening agent, etc. are added, and it is considered that the adhesion strength of the electrode is most affected by the complexing agent having a large content.

【0050】そこで、本発明者らは、錯化剤としてクエ
ン酸溶液及びグルコン酸溶液を使用し、異なる印加電位
を電極に印加して密着強度の優劣を評価した。
Therefore, the present inventors used citric acid solutions and gluconic acid solutions as complexing agents, and applied different applied potentials to the electrodes to evaluate the superiority and inferiority of the adhesion strength.

【0051】すなわち、チタン酸鉛の粉末から縦30m
m、横10mm、厚さ1mmの圧電体基板を作製し、次
いで、Ni−Cr合金をターゲットとしてスパッタリン
グを行って膜厚0.2μmの薄膜電極を作製し、試験片
を作製した。
That is, the length of the lead titanate powder is 30 m.
A piezoelectric substrate having m, a width of 10 mm, and a thickness of 1 mm was prepared, and then sputtering was performed using a Ni—Cr alloy as a target to prepare a thin film electrode having a film thickness of 0.2 μm, and a test piece was prepared.

【0052】次いで、水素イオン指数pHを3.0、
4.0、5.0に夫々調製したクエン酸溶液を用意し、
前記試験片をクエン酸溶液に浸漬し、Ag|AgClを
参照電極(+0.2V vs.NHE)としてポテンシ
ョスタットで電位を制御しながら、印加電位を−0.5
V〜−1.3Vの範囲に設定し、各印加電位毎に60分
間電位を印加した。そしてこの後、薄膜電極の表面に粘
着テープを貼着し、粘着テープを試験片から剥がした場
合に電極が剥離するか否かをテストした。
Then, the hydrogen ion exponent pH is set to 3.0,
Prepare the prepared citric acid solutions at 4.0 and 5.0 respectively,
The test piece was immersed in a citric acid solution, and the applied potential was adjusted to -0.5 while controlling the potential with a potentiostat using Ag | AgCl as a reference electrode (+0.2 V vs. NHE).
The voltage was set in the range of V to -1.3 V, and the potential was applied for 60 minutes for each applied potential. Then, after this, an adhesive tape was attached to the surface of the thin film electrode, and it was tested whether or not the electrode peels when the adhesive tape is peeled from the test piece.

【0053】表1はそのテスト結果を示し、図中、○印
は電極剥離が生じず、密着強度が良好であった場合を示
し、×印は電極剥離の生じた場合を示している。
Table 1 shows the test results. In the figure, ◯ indicates the case where electrode peeling did not occur and adhesion strength was good, and X indicates the case where electrode peeling occurred.

【0054】[0054]

【表1】 この表1から明らかなように、水素イオン指数pHが
3.0以上のクエン酸溶液に対し、−0.7V又は−
0.7Vよりも電気化学的に貴な電位を電極に印加する
ことにより、電極剥離の発生を防止することのできるこ
とが分かった。
[Table 1] As is clear from Table 1, with respect to a citric acid solution having a hydrogen ion exponent pH of 3.0 or more, -0.7 V or-
It was found that the electrode peeling can be prevented by applying an electrochemically nobler potential than 0.7 V to the electrodes.

【0055】次いで、本発明者らは、水素イオン濃度p
Hを3.0、4.0、5.0に夫々調製したグルコン酸
溶液を用意し、上述と同様にして前記試験片に電位を印
加し、電極の剥離テストを行った。
Next, the present inventors have found that the hydrogen ion concentration p
Gluconic acid solutions prepared by adjusting H to 3.0, 4.0 and 5.0 were prepared, a potential was applied to the test piece in the same manner as described above, and an electrode peeling test was performed.

【0056】表2はそのテスト結果を示し、図中、○印
は電極剥離が生じず、密着強度が良好であった場合を示
し、×印は電極剥離の生じた場合を示している。
Table 2 shows the test results. In the figure, ◯ indicates the case where electrode peeling did not occur and the adhesion strength was good, and X indicates the case where electrode peeling occurred.

【0057】[0057]

【表2】 この表2から明らかなように、水素イオン指数pHが
4.0以上のグルコン酸溶液に対し、−0.7V又は−
0.7Vよりも電気化学的に貴な電位を電極に印加する
ことにより、電極剥離の発生を防止することのできるこ
とが分かった。
[Table 2] As is clear from Table 2, with respect to a gluconic acid solution having a hydrogen ion exponent pH of 4.0 or more, -0.7 V or-
It was found that the electrode peeling can be prevented by applying an electrochemically nobler potential than 0.7 V to the electrodes.

【0058】したがって、めっき液をpH4.0以上に
調製することにより、クエン酸のみならずグルコン酸に
おいても−0.7V又は−0.7Vよりも電気化学的に
貴な電位範囲において電極に電位を印加しても電極剥離
が生じることはなく、したがって、めっき液をpH4.
0以上に調製することにより、めっき液に含有される物
質種の選択の自由度が拡大することが確認された。
Therefore, by adjusting the pH of the plating solution to 4.0 or more, not only citric acid but also gluconic acid has a potential of −0.7 V or −0.7 V which is electrochemically nobler than the potential of the electrode. No electrode peeling occurs even when the voltage is applied, and therefore the plating solution is adjusted to pH 4.
It was confirmed that the degree of freedom in selecting the substance species contained in the plating solution is increased by adjusting the amount to 0 or more.

【0059】尚、水素イオン指数pHが3.0未満のめ
っき液については、セラミック素体へのダメージが大き
く、使用に適さないことが明白であるため、pH3.0
未満については電極剥離テストは行わなかった。
It should be noted that the plating solution having a hydrogen ion exponent pH of less than 3.0 has a large damage to the ceramic body and is obviously unsuitable for use.
The electrode peeling test was not performed for less than.

【0060】〔第2の実施例〕次に、本発明者らは、種
々のニッケルめっき液及びスズめっき液を使用し、被め
っき物に異なる電位を印加して電極部の表面にニッケル
皮膜及びスズ皮膜を積層形成した試験片(実施例1〜5
及び比較例1〜5)を作製し、電極剥離、導通不良、は
んだ濡れ性、及び耐熱性について評価した。
Second Embodiment Next, the present inventors used various nickel plating solutions and tin plating solutions and applied different potentials to the object to be plated to form a nickel film and a nickel film on the surface of the electrode part. Test pieces having a tin film laminated thereon (Examples 1 to 5)
And Comparative Examples 1 to 5) were prepared and evaluated for electrode peeling, poor conduction, solder wettability, and heat resistance.

【0061】〔実施例1〕まず、チタン酸鉛の粉末から
縦3.1mm、横3.7mm、厚さ0.7mmに成形さ
れた圧電体基板を作製し、チタン酸バリウムの粉末から
縦3.1mm、横3.7mm、厚さ0.7mmに成形さ
れた誘電体基板を作製した。そして、圧電体基板を上下
一対の誘電体基板で挟持し、接着剤で接着してセラミッ
ク素体を作製した。
[Example 1] First, a piezoelectric substrate molded from lead titanate powder to a length of 3.1 mm, a width of 3.7 mm and a thickness of 0.7 mm was prepared. A dielectric substrate molded to have a thickness of 0.1 mm, a width of 3.7 mm and a thickness of 0.7 mm was produced. Then, the piezoelectric substrate was sandwiched between a pair of upper and lower dielectric substrates and bonded with an adhesive to manufacture a ceramic body.

【0062】次いで、該セラミック素体に対し、マスキ
ングしながらNi−Cr合金をターゲットとしてスパッ
タリングを行い、該セラミック素体の両側面部の端部及
び中央部に膜厚0.2μmの薄膜電極を短冊状に形成し
た。
Then, the ceramic body was sputtered while masking with a Ni--Cr alloy as a target, and thin film electrodes with a thickness of 0.2 μm were formed at the end and center of both side surfaces of the ceramic body. Formed into a shape.

【0063】そしてこの後、Ag粉末、ホウケイ酸ガラ
ス等のガラス成分、及び有機ビヒクルを含有した導電性
ペーストを用意し、前記薄膜電極に連接可能となるよう
にセラミック素体の上端部及び下端部に導電性ペースト
を塗布して焼付け処理を行ない、膜厚20μmの厚膜電
極を形成し、被めっき物を作製した。
After that, a conductive paste containing Ag powder, a glass component such as borosilicate glass, and an organic vehicle is prepared, and the upper and lower end portions of the ceramic body are connected so that they can be connected to the thin film electrodes. Then, a conductive paste was applied to the substrate and baked to form a thick film electrode having a film thickness of 20 μm, and an object to be plated was prepared.

【0064】次に、硫酸ニッケル及びクエン酸を主成分
とした水素イオン指数pHが8.0のニッケルめっき液
を作製すると共に、上記被めっき物を陰極板の内挿され
たバレル内に入れ、該バレル及びニッケル板(陽極板)
を前記ニッケルめっき液に浸漬した。そして、Ag|A
gClを参照電極に使用し印加電位が−0.7Vとなる
ようにポテンショスタットで電位制御を行いながら、ア
ノード(陽極板)、カソード(陰極板)間に60分間通
電して電解めっきを行い。膜厚5μmのニッケル皮膜を
電極部(薄膜電極及び厚膜電極)の表面に形成した。
Next, a nickel plating solution containing nickel sulfate and citric acid as main components and having a hydrogen ion exponent pH of 8.0 was prepared, and the above-mentioned object to be plated was placed in the barrel inserted in the cathode plate. The barrel and nickel plate (anode plate)
Was immersed in the nickel plating solution. And Ag | A
While using gCl as a reference electrode and controlling the potential with a potentiostat so that the applied potential was −0.7 V, electrolysis was performed by applying electricity for 60 minutes between the anode (anode plate) and the cathode (cathode plate). A nickel film having a film thickness of 5 μm was formed on the surfaces of the electrode parts (thin film electrode and thick film electrode).

【0065】次いで、スルファミン酸第一スズ及びグル
コン酸を主成分とした水素イオン指数pHが10.0の
スズめっき液を作製すると共に、スズ製の陽極板を使用
し、上述と同様、印加電位が−0.7Vとなるようにポ
テンショスタットで電位制御を行いながら電解めっきを
施し、ニッケル皮膜の表面に膜厚10μmのスズ皮膜を
形成した。
Then, a tin plating solution containing stannous sulfamate and gluconic acid as main components and having a hydrogen ion exponent pH of 10.0 was prepared, and an anode plate made of tin was used. Was controlled by a potentiostat so as to be −0.7 V, and electrolytic plating was performed to form a tin film having a thickness of 10 μm on the surface of the nickel film.

【0066】〔実施例2〕実施例1と同様の手順で被め
っき物を作製した後、硫酸ニッケル及びグリシンを主成
分とした水素イオン指数pHが9.0のニッケルめっき
液を作製し、実施例1と同様の手順で印加電位が−0.
6Vとなるようにポテンショスタットで電位制御を行い
ながら電解めっきを施し、膜厚2μmのニッケル皮膜を
電極部の表面に形成した。
[Example 2] An object to be plated was prepared by the same procedure as in Example 1, and then a nickel plating solution containing nickel sulfate and glycine as a main component and having a hydrogen ion exponent pH of 9.0 was prepared and carried out. By the same procedure as in Example 1, the applied potential was −0.
Electrolytic plating was performed while controlling the potential with a potentiostat to 6 V to form a nickel film having a thickness of 2 μm on the surface of the electrode portion.

【0067】次いで、硫酸第一スズ及びグルコノラクト
ンを主成分とした水素イオン指数pHが8.0のスズめ
っき液を作製し、上述と同様、印加電位が−0.6Vと
なるようにポテンショスタットで電位制御を行いながら
電解めっきを施し、膜厚3μmのスズ皮膜をニッケル皮
膜の表面に形成した。
Next, a tin plating solution containing stannous sulfate and gluconolactone as the main components and having a hydrogen ion exponent pH of 8.0 was prepared, and potentiometer was applied so that the applied potential was -0.6 V, as described above. Electrolytic plating was performed while controlling the potential with a stat to form a tin film with a thickness of 3 μm on the surface of the nickel film.

【0068】〔実施例3〕実施例1と同様の手順で被め
っき物を作製した後、スルファミン酸ニッケル及びピロ
リン酸カリウムを主成分とした水素イオン指数pHが
8.5のニッケルめっき液を作製し、実施例1と同様の
手順で印加電位が−0.7Vとなるようにポテンショス
タットで電位制御を行いながら電解めっきを行い、膜厚
3μmのニッケル皮膜を電極部の表面に形成した。
Example 3 An object to be plated was prepared by the same procedure as in Example 1, and then a nickel plating solution containing nickel sulfamate and potassium pyrophosphate as main components and having a hydrogen ion index pH of 8.5 was prepared. Then, in the same procedure as in Example 1, electrolytic plating was performed while controlling the potential with a potentiostat so that the applied potential was −0.7 V, and a nickel film with a thickness of 3 μm was formed on the surface of the electrode portion.

【0069】次いで、硫酸第一スズ及びグルコン酸ナト
リウムを主成分とした水素イオン指数pHが9.0のス
ズめっき液を作製し、上述と同様、印加電位が−0.7
Vとなるようにポテンショスタットで電位制御を行いな
がら電解めっきを施し、膜厚6μmのスズ皮膜をニッケ
ル皮膜の表面に形成した。
Next, a tin plating solution containing stannous sulfate and sodium gluconate as main components and having a hydrogen ion exponent pH of 9.0 was prepared, and the applied potential was -0.7 as in the above.
Electroplating was performed while controlling the potential with a potentiostat to V, and a tin film having a thickness of 6 μm was formed on the surface of the nickel film.

【0070】〔実施例4〕実施例1と同様の手順で被め
っき物を作製した後、酢酸ニッケル及び酒石酸を主成分
とした水素イオン指数pHが6.0のニッケルめっき液
を作製し、実施例1と同様の手順で印加電位が−0.7
Vとなるようにポテンショスタットで電位制御を行いな
がら電解めっきを行い、膜厚5μmのニッケル皮膜を電
極部の表面に形成した。
Example 4 After preparing an object to be plated by the same procedure as in Example 1, a nickel plating solution containing nickel acetate and tartaric acid as main components and having a hydrogen ion exponent pH of 6.0 was prepared and carried out. With the same procedure as in Example 1, the applied potential was -0.7.
Electroplating was performed while controlling the potential with a potentiostat so that V was V, and a nickel film having a film thickness of 5 μm was formed on the surface of the electrode portion.

【0071】次いで、酢酸第一スズ及びピロリン酸ナト
リウムを主成分とした水素イオン指数pHが8.0のス
ズめっき液を作製し、上述と同様、印加電位が−0.7
Vとなるようにポテンショスタットで電位制御を行いな
がら電解めっきを施し、膜厚10μmのスズ皮膜をニッ
ケル皮膜の表面に形成した。
Then, a tin plating solution containing stannous acetate and sodium pyrophosphate as main components and having a hydrogen ion exponent pH of 8.0 was prepared, and the applied potential was -0.7 as in the above.
Electroplating was performed while controlling the potential with a potentiostat so that V was V, and a tin film having a thickness of 10 μm was formed on the surface of the nickel film.

【0072】〔実施例5〕実施例1と同様の手順で被め
っき物を作製した後、硫酸ニッケル及びホウ酸を主成分
とした水素イオン指数pHが4.0のニッケルめっき液
を作製し、実施例1と同様の手順で印加電位が−0.7
Vとなるようにポテンショスタットで電位制御を行いな
がら電解めっきを行い、膜厚5μmのニッケル皮膜を電
極部の表面に形成した。
Example 5 An object to be plated was prepared in the same procedure as in Example 1, and then a nickel plating solution containing nickel sulfate and boric acid as main components and having a hydrogen ion index pH of 4.0 was prepared. The applied potential was -0.7 by the same procedure as in Example 1.
Electroplating was performed while controlling the potential with a potentiostat so that V was V, and a nickel film having a film thickness of 5 μm was formed on the surface of the electrode portion.

【0073】次いで、スルファミン酸第一スズ及びグル
コン酸を主成分とした水素イオン指数pHが5.0のス
ズめっき液を作製し、上述と同様、印加電位が−0.7
Vとなるようにポテンショスタットで電位制御を行いな
がら電解めっきを施し、膜厚10μmのスズ皮膜をニッ
ケル皮膜の表面に形成した。
Next, a tin plating solution containing stannous sulfamate and gluconic acid as main components and having a hydrogen ion exponent pH of 5.0 was prepared, and the applied potential was -0.7 as in the above.
Electroplating was performed while controlling the potential with a potentiostat so that V was V, and a tin film having a thickness of 10 μm was formed on the surface of the nickel film.

【0074】〔比較例1〕実施例1と同様の手順で被め
っき物を作製した後、硫酸ニッケル及びホウ酸を主成分
とした水素イオン指数pHが4.0のニッケルめっき液
を作製し、実施例1と同様の手順で印加電位が−0.9
Vとなるようにポテンショスタットで電位制御を行いな
がら電解めっきを行い、膜厚5μmのニッケル皮膜を電
極部の表面に形成した。
[Comparative Example 1] An object to be plated was prepared in the same procedure as in Example 1, and then a nickel plating solution containing nickel sulfate and boric acid as main components and having a hydrogen ion exponent pH of 4.0 was prepared. The applied potential was -0.9 by the same procedure as in Example 1.
Electroplating was performed while controlling the potential with a potentiostat so that V was V, and a nickel film having a film thickness of 5 μm was formed on the surface of the electrode portion.

【0075】次いで、硫酸第一スズ及びクエン酸を主成
分とした水素イオン指数pHが5.0のスズめっき液を
作製し、上述と同様、印加電位が−0.9Vとなるよう
にポテンショスタットで電位制御を行いながら電解めっ
きを施し、膜厚10μmのスズ皮膜をニッケル皮膜の表
面に形成した。
Next, a tin plating solution containing stannous sulfate and citric acid as the main components and having a hydrogen ion exponent pH of 5.0 was prepared, and the potentiostat was applied so that the applied potential was -0.9 V, as described above. Electroplating was performed while controlling the electric potential by means of to form a tin film having a film thickness of 10 μm on the surface of the nickel film.

【0076】〔比較例2〕実施例1と同様の手順で被め
っき物を作製した後、スルファミン酸ニッケル及びホウ
酸を主成分とした水素イオン指数pHが4.5のニッケ
ルめっき液を作製し、実施例1と同様の手順で印加電位
が−1,2Vとなるようにポテンショスタットで電位制
御を行いながら電解めっきを行い、膜厚5μmのニッケ
ル皮膜を電極部の表面に形成した。
[Comparative Example 2] An object to be plated was prepared in the same procedure as in Example 1, and then a nickel plating solution containing nickel sulfamate and boric acid as main components and having a hydrogen ion index pH of 4.5 was prepared. In the same procedure as in Example 1, electrolytic plating was performed while controlling the potential with a potentiostat so that the applied potential was -1,2 V, and a nickel film with a thickness of 5 μm was formed on the surface of the electrode portion.

【0077】次いで、スルファミン酸第一スズ及びクレ
ゾールスルホン酸を主成分とした水素イオン指数pHが
4.0のスズめっき液を作製し、上述と同様、印加電位
が−1.2Vとなるようにポテンショスタットで電位制
御を行いながら電解めっきを施し、膜厚3μmのスズ皮
膜をニッケル皮膜の表面に形成した。
Next, a tin plating solution containing stannous sulfamate and cresol sulfonic acid as the main components and having a hydrogen ion exponent pH of 4.0 was prepared, and the applied potential was set to -1.2 V as described above. Electrolytic plating was performed while controlling the potential with a potentiostat to form a tin film with a thickness of 3 μm on the surface of the nickel film.

【0078】〔比較例3〕実施例1と同様の手順で被め
っき物を作製した後、塩化ニッケル及びホウ酸を主成分
とした水素イオン指数pHが4.0のニッケルめっき液
を作製し、実施例1と同様の手順で印加電位が−1,1
Vとなるようにポテンショスタットで電位制御を行いな
がら電解めっきを行い、膜厚3μmのニッケル皮膜を電
極部の表面に形成した。
[Comparative Example 3] An object to be plated was prepared in the same procedure as in Example 1, and then a nickel plating solution containing nickel chloride and boric acid as main components and having a hydrogen ion exponent pH of 4.0 was prepared. In the same procedure as in Example 1, the applied potential was -1,1.
Electroplating was performed while controlling the potential with a potentiostat so that V was V, and a nickel film having a film thickness of 3 μm was formed on the surface of the electrode portion.

【0079】次いで、酢酸第一スズ及びクエン酸アンモ
ニウムを主成分とした水素イオン指数pHが4.0のス
ズめっき液を作製し、上述と同様、印加電位が−1.1
Vとなるようにポテンショスタットで電位制御を行いな
がら電解めっきを施し、膜厚6μmのスズ皮膜をニッケ
ル皮膜の表面に形成した。
Next, a tin plating solution containing stannous acetate and ammonium citrate as main components and having a hydrogen ion exponent pH of 4.0 was prepared, and the applied potential was -1.1 as in the above.
Electroplating was performed while controlling the potential with a potentiostat to V, and a tin film having a thickness of 6 μm was formed on the surface of the nickel film.

【0080】〔比較例4〕実施例1と同様の手順で被め
っき物を作製した後、硫酸ニッケル及びクエン酸を主成
分とした水素イオン指数pHが8.0のニッケルめっき
液を作製し、実施例1と同様の手順で印加電位が−1.
0Vとなるようにポテンショスタットで電位制御を行い
ながら電解めっきを行い、膜厚5μmのニッケル皮膜を
電極部の表面に形成した。
[Comparative Example 4] An object to be plated was prepared by the same procedure as in Example 1, and then a nickel plating solution containing nickel sulfate and citric acid as a main component and having a hydrogen ion index pH of 8.0 was prepared. In the same procedure as in Example 1, the applied potential was -1.
Electrolytic plating was performed while controlling the potential with a potentiostat to 0 V to form a nickel film having a film thickness of 5 μm on the surface of the electrode portion.

【0081】次いで、スルファミン酸第一スズ及びグル
コン酸を主成分とした水素イオン指数pHが10.0の
スズめっき液を作製し、上述と同様、印加電位が−1.
0Vとなるようにポテンショスタットで電位制御を行い
ながら電解めっきを施し、膜厚10μmのスズ皮膜をニ
ッケル皮膜の表面に形成した。
Then, a tin plating solution containing stannous sulfamate and gluconic acid as main components and having a hydrogen ion exponent pH of 10.0 was prepared, and the applied potential was -1.
Electrolytic plating was performed while controlling the potential with a potentiostat to 0 V to form a tin film with a thickness of 10 μm on the surface of the nickel film.

【0082】〔比較例5〕実施例1と同様の手順で被め
っき物を作製した後、硫酸ニッケル及びホウ酸を主成分
とした水素イオン指数pHが4.0のニッケルめっき液
を作製し、実施例1と同様の手順で印加電位が−1.0
Vとなるようにポテンショスタットで電位制御を行いな
がら電解めっきを行い、膜厚5μmのニッケル皮膜を電
極部の表面に形成した。
[Comparative Example 5] An object to be plated was prepared in the same manner as in Example 1, and then a nickel plating solution containing nickel sulfate and boric acid as main components and having a hydrogen ion exponent pH of 4.0 was prepared. In the same procedure as in Example 1, the applied potential was -1.0.
Electroplating was performed while controlling the potential with a potentiostat so that V was V, and a nickel film having a film thickness of 5 μm was formed on the surface of the electrode portion.

【0083】次いで、硫酸第一スズ及びグルコン酸ナト
リウムを主成分とした水素イオン指数pHが5.0のス
ズめっき液を作製し、上述と同様、印加電位が−1.0
Vとなるようにポテンショスタットで電位制御を行いな
がら電解めっきを施し、膜厚10μmのスズ皮膜をニッ
ケル皮膜の表面に形成した。
Next, a tin plating solution containing stannous sulfate and sodium gluconate as the main components and having a hydrogen ion index pH of 5.0 was prepared, and the applied potential was -1.0 as in the above.
Electroplating was performed while controlling the potential with a potentiostat so that V was V, and a tin film having a thickness of 10 μm was formed on the surface of the nickel film.

【0084】このようにして本発明者らは実施例1〜5
及び比較例1〜5の試験片を各々10個ずつ作製し、電
極剥離、導通不良の有無、はんだ濡れ性、及び耐熱性を
評価した。
In this way, the inventors of the present invention described Examples 1-5.
Also, 10 test pieces of each of Comparative Examples 1 to 5 were produced and evaluated for electrode peeling, presence / absence of conduction failure, solder wettability, and heat resistance.

【0085】ここで、電極剥離は、各10個の試験片の
薄膜電極に粘着テープを貼着し、粘着テープを各試験片
から剥がした場合に電極が剥離するか否かで評価した。
Here, the peeling of the electrode was evaluated by whether or not the electrode was peeled when the adhesive tape was adhered to the thin film electrodes of each of 10 test pieces and the adhesive tape was peeled off from each test piece.

【0086】また、導通不良は、−40℃:30分、1
25℃:30分を1サイクルとして2000サイクル繰
り返すヒートショックを行い、導通不良の有無を調べ
た。
Continuity failure is -40 ° C. for 30 minutes, 1
The heat shock was repeated by repeating 2000 cycles at 25 ° C. for 30 minutes as one cycle, and the presence or absence of conduction failure was examined.

【0087】また、はんだ濡れ性は、メニスコグラフ法
によりはんだの引張力とはんだの排斥力とが等しくなる
ゼロクロス時間で評価した。すなわち、浸漬速度1mm
/sec、浸漬深さ0.25mm、浸漬時間5secで浴温2
35℃のはんだ溶融槽(60%Sn−40%Pb)に浸
漬し、前記ゼロクロス時間を測定してはんだ濡れ性を評
価した。
The solder wettability was evaluated by the meniscograph method at the zero cross time when the tensile force of the solder and the repulsive force of the solder were equal. That is, the immersion speed is 1 mm
/ Sec, immersion depth 0.25 mm, immersion time 5 sec, bath temperature 2
It was immersed in a solder melting bath (60% Sn-40% Pb) at 35 ° C, and the zero cross time was measured to evaluate the solder wettability.

【0088】また、耐熱性は、270℃のはんだ溶融槽
(60%Sn−40%Pb)に各試験片を30秒間浸漬
した後、電極がはんだに溶融せずに残存した残存面積を
測定して評価し、残存面積が90%以上の場合を良
(◎)、残存面積が75%以上90%未満の場合を可
(○)、残存面積が50%以上75%未満の場合をやや
不良(△)、残存面積が50未満の場合を不可(×)で
評価した。
The heat resistance was measured by immersing each test piece in a solder melting bath (60% Sn-40% Pb) at 270 ° C. for 30 seconds, and then measuring the remaining area of the electrode left without melting the solder. When the remaining area is 90% or more, it is good (⊚), when the remaining area is 75% or more and less than 90%, it is acceptable (○), and when the remaining area is 50% or more and less than 75%, it is a little bad ( Δ), and the case where the remaining area was less than 50 was evaluated as bad (x).

【0089】表3は各実施例及び比較例のニッケルめっ
き液の組成、pH、及びめっき皮膜の膜厚を夫々示し、
表4は各実施例及び比較例のスズめっき液の組成、p
H、及びめっき皮膜の膜厚を夫々示し、表5は各実施例
及び比較例のおける印加電位と測定結果を夫々示してい
る。
Table 3 shows the composition, pH, and film thickness of the plating film of the nickel plating solutions of Examples and Comparative Examples, respectively.
Table 4 shows the composition of the tin plating solution of each Example and Comparative Example, p
H and the film thickness of the plating film are shown respectively, and Table 5 shows the applied potential and the measurement results in each of the examples and comparative examples.

【0090】[0090]

【表3】 [Table 3]

【0091】[0091]

【表4】 [Table 4]

【表5】 この表3〜表5から明らかなように比較例1〜5は、標
準水素電極電位を基準に−0.7Vよりも電気化学的に
卑である−0.9V〜−1.2Vの電位を被めっき物に
印加してめっき処理を行なっているので、電極剥離が3
0%〜80%の確率で発生し、導通不良も10%〜50
%の確率で発生した。また、印加電位が卑な方向に移行
するに従い電極剥離や導通不良の発生する確率が増加す
ることが確認された。
[Table 5] As is clear from Tables 3 to 5, in Comparative Examples 1 to 5, the potential of -0.9V to -1.2V, which is electrochemically base rather than -0.7V, is used as a reference with respect to the standard hydrogen electrode potential. Since the plating process is performed by applying it to the object to be plated, electrode peeling is 3
Occurrence with a probability of 0% to 80%, and conduction failure is also 10% to 50%.
Occurred with a probability of%. It was also confirmed that the probability of electrode peeling or poor conduction increases as the applied potential shifts to the base direction.

【0092】また、比較例1〜5は、電極剥離が生じ易
くなっているため、ゼロクロス時間も2.0秒〜4.1
秒と長くなり、はんだ濡れ性も悪化していることが確認
された。特に、比較例2は、印加電位が卑な上にニッケ
ル皮膜やスズ皮膜の膜厚も薄いため、これらの相乗作用
によりゼロクロス時間も4.1secと長くなってはんだ
濡れ性が悪化し、また耐熱性も悪いことが確認された。
Further, in Comparative Examples 1 to 5, since electrode peeling is likely to occur, the zero-cross time is also 2.0 seconds to 4.1.
It was confirmed that it became longer and the solder wettability deteriorated. Particularly, in Comparative Example 2, since the applied potential is base and the film thickness of the nickel film and the tin film are thin, the synergistic effect of these causes the zero crossing time to be extended to 4.1 sec, which deteriorates the solder wettability, and also the heat resistance. It was confirmed that the sex was bad.

【0093】これに対して実施例1〜5は、標準水素電
極電位を基準に−0.7V又は−0.7Vよりも電気化
学的に貴な電位を被めっき物に印加してめっき処理を行
なっているので、セラミック素体の構造破壊が生じるこ
ともなく、したがって電極剥離や導通不良も生じず、ゼ
ロクロス時間も0.8sec〜1.7secと短く、はんだ濡
れ性が良好であり、また耐熱性も優れていることが確認
された。
On the other hand, in Examples 1 to 5, the plating treatment was performed by applying -0.7 V or a potential electrochemically nobler than -0.7 V to the object to be plated on the basis of the standard hydrogen electrode potential. As a result, no structural destruction of the ceramic body occurs, therefore no electrode peeling or conduction failure occurs, the zero-cross time is as short as 0.8 seconds to 1.7 seconds, solder wettability is good, and heat resistance is high. It was confirmed that the property is also excellent.

【0094】[0094]

【発明の効果】以上詳述したように本発明に係る電子部
品のめっき方法は、セラミックス素体の表面に電極が形
成された被めっき物にめっき処理を施し、前記電極の表
面にめっき皮膜を形成する電子部品のめっき方法におい
て、標準水素電極電位を基準に−0.7V又は−0.7
Vよりも電気化学的に貴な電位を前記被めっき物に印加
しながらめっき処理を施しているので、被めっき物への
印加電位が過度に卑となることもなく、セラミック素体
が還元分解して構造破壊するのを回避して密着強度を向
上させることができ、これにより電極剥離や導通不良の
生じることのない電子部品を製造することができる。
As described in detail above, in the method for plating an electronic component according to the present invention, the object to be plated having the electrode formed on the surface of the ceramic body is subjected to a plating treatment to form a plating film on the surface of the electrode. In the method of plating an electronic component to be formed, the standard hydrogen electrode potential is used as a reference of -0.7 V or -0.7 V.
Since the plating treatment is performed while applying a potential that is electrochemically nobler than V to the object to be plated, the potential applied to the object to be plated does not become excessively base, and the ceramic body is reductively decomposed. Then, structural destruction can be avoided and the adhesion strength can be improved, whereby an electronic component without peeling of electrodes or defective conduction can be manufactured.

【0095】また、前記めっき皮膜は、ニッケル、ス
ズ、又はスズ合金のいずれかであることを特徴とするの
が好ましく、これにより耐熱性やはんだ濡れ性も良好な
所望の電子部品を得ることが可能となる。
Further, it is preferable that the plating film is made of any one of nickel, tin, and a tin alloy, whereby a desired electronic component having good heat resistance and solder wettability can be obtained. It will be possible.

【0096】また、本発明は、被めっき物が浸漬される
めっき液の水素イオン指数pHを4〜10とすることに
より、錯化剤等のめっき液に混入される物質種の選択自
由度の拡大が可能となる。
Further, according to the present invention, the hydrogen ion exponent pH of the plating solution in which the object to be plated is immersed is set to 4 to 10 so that the degree of freedom in selection of the species of substances mixed in the plating solution such as the complexing agent is increased. Can be expanded.

【0097】また、上記めっき方法を使用することによ
り、薄膜電極及び厚膜電極のいずれにおいても電極剥離
や導通不良等の不具合が生じるのを回避することが可能
となる。
Further, by using the above-mentioned plating method, it is possible to avoid the occurrence of problems such as electrode peeling and conduction failure in both thin film electrodes and thick film electrodes.

【0098】そして、本発明に係る電子部品は、上述し
た製造方法で製造され、またセラミックス素体が、誘電
体材料、圧電体材料、絶縁体材料、又は半導体材料の中
から選択された1種以上のセラミック材料で形成されて
いるので、電極剥離や導通不良が生じず、しかも良好な
耐熱性やはんだ濡れ性を有する信頼性に優れた高品質な
各種電子部品を得ることができる。
The electronic component according to the present invention is manufactured by the manufacturing method described above, and the ceramic body is one type selected from a dielectric material, a piezoelectric material, an insulating material, or a semiconductor material. Since it is formed of the above ceramic material, it is possible to obtain various kinds of high-quality electronic components which are free from electrode peeling and poor conduction and have good heat resistance and solder wettability and which are excellent in reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電子部品の一実施の形態としての
チップ型セラミック発振子の斜視図である。
FIG. 1 is a perspective view of a chip-type ceramic oscillator as an embodiment of an electronic component according to the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】湿式電解バレルめっき装置の概略図であるFIG. 3 is a schematic view of a wet electrolytic barrel plating apparatus.

【符号の説明】[Explanation of symbols]

3 セラミック素体 5a 厚膜電極 5b 薄膜電極 6 電極 7 ニッケル皮膜(めっき皮膜) 8 スズ皮膜(めっき皮膜) 3 Ceramic body 5a thick film electrode 5b thin film electrode 6 electrodes 7 Nickel coating (plating coating) 8 Tin film (plating film)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K024 AA03 AA07 AA21 AB02 AB17 BA15 BB09 CA01 CA03 CA05 CA16 CB26 GA01    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K024 AA03 AA07 AA21 AB02 AB17                       BA15 BB09 CA01 CA03 CA05                       CA16 CB26 GA01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス素体の表面に電極が形成さ
れた被めっき物にめっき処理を施し、前記電極の表面に
めっき皮膜を形成する電子部品のめっき方法において、 標準水素電極電位を基準に−0.7V又は−0.7Vよ
りも電気化学的に貴な電位を前記被めっき物に印加しな
がらめっき処理を施すことを特徴とする電子部品のめっ
き方法。
1. A method for plating an electronic component, wherein an object to be plated having an electrode formed on the surface of a ceramic body is subjected to a plating treatment to form a plating film on the surface of the electrode, wherein a standard hydrogen electrode potential is used as a reference. A plating method for an electronic component, which comprises performing a plating treatment while applying a potential electrochemically nobler than 0.7 V or -0.7 V to the object to be plated.
【請求項2】 前記めっき皮膜は、ニッケル、スズ、又
はスズ合金のいずれかであることを特徴とする請求項1
記載の電子部品の製造方法。
2. The plating film is made of nickel, tin, or a tin alloy.
A method for manufacturing the described electronic component.
【請求項3】 被めっき物が浸漬されるめっき液は、水
素イオン指数pHが4〜10であることを特徴とする電
子部品のめっき方法。
3. A method for plating an electronic component, wherein the plating solution in which the object to be plated is immersed has a hydrogen ion exponent pH of 4 to 10.
【請求項4】 前記電極は、スパッタリング処理を施し
て作製された薄膜電極であることを特徴とする請求項1
乃至請求項3のいずれかに記載の電子部品のめっき方
法。
4. The electrode is a thin film electrode manufactured by performing a sputtering process.
A method for plating an electronic component according to claim 3.
【請求項5】 前記電極は、導電性材料及びガラス成分
を含有した導電性ペーストを塗布・焼付処理を施して作
製された厚膜電極であることを特徴とする請求項1乃至
請求項3のいずれかに記載の電子部品のめっき方法。
5. The thick electrode according to claim 1, wherein the electrode is a thick film electrode prepared by applying and baking a conductive paste containing a conductive material and a glass component. The method for plating an electronic component according to any one of the above.
【請求項6】 請求項1乃至請求項5のいずれかに記載
のめっき方法を使用して製造されていることを特徴とす
る電子部品。
6. An electronic component manufactured using the plating method according to any one of claims 1 to 5.
【請求項7】 セラミックス素体が、誘電体材料、圧電
体材料、絶縁体材料、又は半導体材料の中から選択され
た1種以上のセラミック材料で形成されていることを特
徴とする請求項6記載の電子部品。
7. The ceramic body is formed of at least one ceramic material selected from a dielectric material, a piezoelectric material, an insulating material, or a semiconductor material. Electronic components listed.
JP2002057296A 2002-03-04 2002-03-04 Electronic component plating method Expired - Fee Related JP3879118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057296A JP3879118B2 (en) 2002-03-04 2002-03-04 Electronic component plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002057296A JP3879118B2 (en) 2002-03-04 2002-03-04 Electronic component plating method

Publications (2)

Publication Number Publication Date
JP2003253489A true JP2003253489A (en) 2003-09-10
JP3879118B2 JP3879118B2 (en) 2007-02-07

Family

ID=28667600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057296A Expired - Fee Related JP3879118B2 (en) 2002-03-04 2002-03-04 Electronic component plating method

Country Status (1)

Country Link
JP (1) JP3879118B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007172A (en) * 2008-06-30 2010-01-14 Tdk Corp Nickel electroplating liquid and plating method
JP2010275613A (en) * 2009-05-29 2010-12-09 Tdk Corp Tin electroplating solution and method of manufacturing electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007172A (en) * 2008-06-30 2010-01-14 Tdk Corp Nickel electroplating liquid and plating method
JP2010275613A (en) * 2009-05-29 2010-12-09 Tdk Corp Tin electroplating solution and method of manufacturing electronic component

Also Published As

Publication number Publication date
JP3879118B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
EP0591198B1 (en) Method for coating a dielectric ceramic piece
CN102376449B (en) Laminate type ceramic electronic component and manufacturing method therefor
US8520361B2 (en) Laminated electronic component
JP2009267146A (en) Multilayer ceramic electronic component
JP4539719B2 (en) Manufacturing method of ceramic electronic component and Sn plating bath
JP4678194B2 (en) Electronic component manufacturing method and electronic component
JP3879118B2 (en) Electronic component plating method
JPH08264371A (en) Manufacture of electronic component with electroless plated film
JP4666134B2 (en) Nickel plating bath and electronic parts
CN102376450A (en) Laminate type ceramic electronic component and manufacturing method therefor
JP2007242715A (en) Method of manufacturing ceramic electronic component
US6358390B1 (en) Method for forming electrode
JP5000912B2 (en) Chip varistor
JP4904853B2 (en) Manufacturing method of ceramic electronic component
JP4710204B2 (en) Method for forming end face electrode of electronic component
JP4936210B2 (en) Manufacturing method of electronic parts
JP2002285377A (en) Ceramic electronic part and method for forming copper electrode thereon
JP2007204822A (en) Plating method
JP2000077253A (en) Electronic component, electronic component chip, and component manufacturing method
JP2003147573A (en) Method of manufacturing electronic parts and electronic parts
JP4228392B2 (en) Plating method and electronic component manufacturing method
JP2013209708A (en) Product coated with black film
JPH0822903A (en) Square chip resistor and manufacturing method thereof
US1749995A (en) Process for securing good electrical contact with crystalline cuprous oxide
JP2003239095A (en) Method of plating ceramic electronic parts and ceramic electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061029

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees