JP2003252191A - Method and device for estimating road surface condition - Google Patents

Method and device for estimating road surface condition

Info

Publication number
JP2003252191A
JP2003252191A JP2002059397A JP2002059397A JP2003252191A JP 2003252191 A JP2003252191 A JP 2003252191A JP 2002059397 A JP2002059397 A JP 2002059397A JP 2002059397 A JP2002059397 A JP 2002059397A JP 2003252191 A JP2003252191 A JP 2003252191A
Authority
JP
Japan
Prior art keywords
road surface
tire
air chamber
pressure
pressure fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002059397A
Other languages
Japanese (ja)
Other versions
JP4145534B2 (en
Inventor
Hiroshi Morinaga
啓詩 森永
Hidetoshi Yokota
英俊 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2002059397A priority Critical patent/JP4145534B2/en
Publication of JP2003252191A publication Critical patent/JP2003252191A/en
Application granted granted Critical
Publication of JP4145534B2 publication Critical patent/JP4145534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0491Constructional details of means for attaching the control device
    • B60C23/0494Valve stem attachments positioned inside the tyre chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for detecting a road surface condition with high accuracy by inhibiting cavernous resonance generated in a tire. <P>SOLUTION: A tire air chamber 5 is divided in to a tire main air chamber 6 and a sub-air chamber 7 by a lid member 4, the tire main air chamber 6 and the sub-air chamber 7 are communicated through a communication hole 8 to configurate a wheel 1 comprising a Helmholtz resonance sound absorber. A fixed-type pressure sensor unit 10 formed by mounting a pressure sensor, a battery, a sensor driving circuit, and a radio transmission circuit, is attached to a well part 3w of a rim 3, a signal of minute pressure fluctuation of detected tire internal pressure is transmitted to a car body side not shown in a drawing, the frequency of the signal of minute pressure fluctuation is analyzed, the pressure fluctuation value is calculated within a predetermined frequency band, and the road surface condition in traveling is estimated on the basis of the calculated pressure fluctuation value. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、車両の走行時の路
面状態を推定する方法とその装置とに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for estimating a road surface condition when a vehicle is running.

【0002】[0002]

【従来の技術】自動車の走行安定性を高めるため、タイ
ヤと路面との間の摩擦係数(路面摩擦係数)あるいは路
面状態を精度良く推定し、車両制御へフィードバックす
ることが求められている。特に、制駆動や操舵といった
危険回避の操作を起こす前に、予め路面摩擦係数を推定
することができれば、例えば、ABSブレーキのより高
度な制御等が可能になり、安全性を一段と高められると
考えられる。また、運転者にその危険度を伝えるだけで
も、運転者が早めの減速動作を行えるようになり、事故
の減少が期待できる。本出願人は、例えば、特願200
1−36048において、走行中の路面状態を精度良く
推定するとともに、上記推定された路面状態に基づいて
車両の走行状態をフィードバック制御することのできる
路面状態の推定方法とその装置を提案している。この手
法は、タイヤが定常走行時においても踏面内で滑りを生
じているという事実に基づいており、伝播されたタイヤ
内の気体の微小変動を検出して、これを周波数分析し、
得られた圧力変動スペクトルの所定の周波数帯域におけ
る圧力変動レベルを検出して路面摩擦係数を推定するも
のである。上記技術を更に具体的に説明すると、タイヤ
は、定常走行時においても、その踏面においてワイピン
グ変形に伴う滑りを生じており、路面摩擦係数が低下す
るとこの滑り量が増大する。この現象により、タイヤの
1kHz以上の高周波振動が増大し、この振動がタイヤ
内の気体にも伝播する。したがって、タイヤ内の微小圧
力変動をモニタリングして周波数分析し、更に必要とさ
れる幾つかの周波数帯域の圧力変動レベル(帯域値)を
求め、係数を掛けるなどの演算処理を行うことにより、
路面摩擦係数を推定することができる。ここで、上記周
波数帯域としては、上記路面の滑りの寄与が大きい複数
の帯域に対して、速度や路面の凹凸などの路面入力が大
きい帯域を複数選び、補正演算を行うことにより、速度
などの情報がなくとも、路面摩擦係数を推定することが
できる。
2. Description of the Related Art In order to improve the running stability of an automobile, it is required to accurately estimate a friction coefficient between a tire and a road surface (road surface friction coefficient) or a road surface condition and feed it back to vehicle control. In particular, if the road surface friction coefficient can be estimated in advance before a risk-avoidance operation such as braking / driving or steering is performed, for example, it will be possible to perform higher-level control of the ABS brake and further improve safety. To be In addition, it is possible to expect a reduction in accidents by allowing the driver to carry out a deceleration operation earlier by simply notifying the driver of the degree of danger. The applicant is, for example, Japanese Patent Application No. 200
1-36048 proposes a road surface state estimation method and apparatus capable of accurately estimating a road surface state during traveling and feedback controlling the traveling state of a vehicle based on the estimated road surface state. . This method is based on the fact that the tire slips in the tread even during steady running, detects minute fluctuations of the gas in the propagated tire, and analyzes the frequency of this.
The road friction coefficient is estimated by detecting the pressure fluctuation level in a predetermined frequency band of the obtained pressure fluctuation spectrum. More specifically describing the above technique, the tire causes slippage due to wiping deformation on the tread surface even during steady running, and the slip amount increases when the road surface friction coefficient decreases. Due to this phenomenon, the high frequency vibration of the tire of 1 kHz or more increases, and this vibration also propagates to the gas in the tire. Therefore, by monitoring minute pressure fluctuations in the tire and performing frequency analysis, further obtaining pressure fluctuation levels (band values) in some required frequency bands, and performing arithmetic processing such as multiplication by a coefficient,
The road friction coefficient can be estimated. Here, as the frequency band, a plurality of bands having a large road surface input such as speed and unevenness of the road surface are selected with respect to a plurality of bands in which the contribution of the road surface is large, and a correction calculation is performed to determine the speed etc. The road friction coefficient can be estimated without information.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記シ
ステムでは、一定速の直進走行中、あるいは、緩やかな
加減速、操舵時には、路面摩擦係数を精度良く推定でき
るが、路面の凹凸が激しい場合には、タイヤ内におい
て、非常に大きなピークを発生する空洞共鳴音が増大
し、推定精度の低下を招くことがある。すなわち、上記
空洞共鳴音は、タイヤ内圧を検出して路面滑り振動の推
定を行う上での外乱要素となる。
However, in the above system, the road surface friction coefficient can be accurately estimated during straight traveling at a constant speed, or during gentle acceleration / deceleration and steering. In a tire, a cavity resonance sound that produces a very large peak may increase, leading to a decrease in estimation accuracy. That is, the cavity resonance sound becomes a disturbance factor in detecting the tire internal pressure and estimating the road surface slip vibration.

【0004】本発明は、従来の問題点に鑑みてなされた
もので、タイヤ内で発生する空洞共鳴音を抑制して路面
状態を精度良く検出する方法とその装置を提供すること
を目的とする。
The present invention has been made in view of the conventional problems, and an object of the present invention is to provide a method and apparatus for suppressing a cavity resonance noise generated in a tire and detecting a road surface condition with high accuracy. .

【0005】[0005]

【課題を解決するための手段】本発明の請求項1に記載
の路面状態推定装置は、ヘルムホルツ共鳴吸音器を備え
たホイールと、上記ホイールのタイヤ気室側に取付けら
れる、タイヤ内圧を検出する圧力検出手段と、この圧力
検出手段で検出されたタイヤ内圧の微小圧力変動の信号
を車体側に送信する無線通信装置と、上記微小圧力変動
の信号を周波数分析して所定の周波数帯域内での圧力変
動値を算出する圧力変動値算出手段と、上記算出された
圧力変動値から走行時の路面状態を推定する路面状態推
定手段とを備え、上記ヘルムホルツ共鳴吸音器により、
上記タイヤ内圧の微小圧力変動の信号に対するノイズ成
分となるタイヤ内の空洞共鳴音を低減して、路面状態を
精度良く検出するようにしたものである。上記ヘルムホ
ルツ共鳴吸音器は、ホイール内に蓋部材などを用いて副
気室を形成するとともに、この副気室とタイヤ主気室と
を連通孔により連通させ、上記副気室による音の共鳴吸
収現象を利用してタイヤ空洞共鳴音の大きさを低減する
もので、本発明者らが検討したところ、副気室の体積を
V(cm3)、連通孔の総断面積をS(cm2)、連通孔長さ
をL(cm)、連通孔の個数をNとすると、ヘルムホルツ
共鳴吸音器の共鳴周波数F0(Hz)は、下記の式で表わ
せる。 但し、cはタイヤ気室内での音速(cm/sec)であ
る。したがって、上記ヘルムホルツ共鳴吸音器の各設計
値を適宜設定することにより、上記空洞共鳴音周辺の周
波数帯域の音を大幅に低減することができる。
According to a first aspect of the present invention, there is provided a road surface state estimating device for detecting a tire internal pressure, which is attached to a wheel having a Helmholtz resonance sound absorber and a tire air chamber side of the wheel. Pressure detection means, a wireless communication device for transmitting a signal of a minute pressure fluctuation of the tire internal pressure detected by the pressure detection means to the vehicle body side, a frequency analysis of the signal of the minute pressure fluctuation, and within a predetermined frequency band. A pressure fluctuation value calculating means for calculating a pressure fluctuation value, and a road surface state estimating means for estimating a road surface state during traveling from the calculated pressure fluctuation value are provided, and by the Helmholtz resonance sound absorber,
The cavity resonance sound in the tire, which is a noise component for the signal of the minute pressure fluctuation of the tire internal pressure, is reduced so that the road surface condition can be accurately detected. The Helmholtz resonance sound absorber forms a sub air chamber by using a lid member or the like in the wheel, and communicates the sub air chamber with the tire main air chamber through a communication hole to absorb resonance of sound by the sub air chamber. The inventors of the present invention have studied that the volume of the tire cavity resonance sound is reduced by utilizing the phenomenon. As a result, the volume of the auxiliary air chamber is V (cm 3 ), and the total cross-sectional area of the communication hole is S (cm 2). ), The communication hole length is L (cm), and the number of communication holes is N, the resonance frequency F 0 (Hz) of the Helmholtz resonance sound absorber can be expressed by the following equation. However, c is the sound velocity (cm / sec) in the tire air chamber. Therefore, by appropriately setting the design values of the Helmholtz resonance sound absorber, the sound in the frequency band around the cavity resonance sound can be significantly reduced.

【0006】請求項2に記載の路面状態推定装置は、タ
イヤの滑り振動を精度良く検出して路面状態の推定精度
を向上させるため、上記圧力検出手段として、上記微小
圧力変動に対して、少なくとも1kHz以上の応答性を
有するものを用いるようにしたものである。
In the road surface condition estimating device according to the second aspect of the present invention, in order to improve the accuracy of estimating the road surface condition by detecting the slipping vibration of the tire with high accuracy, the pressure detecting means serves as at least the minute pressure fluctuation. A device having a response of 1 kHz or higher is used.

【0007】請求項3に記載の路面状態推定装置は、タ
イヤのサイズ(タイヤ気室内の平均周長)で決まる、上
記ホイールに装着されるタイヤの空洞共鳴周波数をFc
としたときに、上記ヘルムホルツ共鳴吸音器の共鳴周波
数F0の設定範囲を、Fc−100Hz≦F0≦Fc+10
0Hzとなるようにしたもので、これにより、タイヤの
空洞共鳴音を確実にかつ大幅に低減することができ、路
面状態の推定精度を著しく向上させることが可能とな
る。
According to a third aspect of the road surface condition estimating apparatus of the present invention, the cavity resonance frequency of the tire mounted on the wheel, which is determined by the size of the tire (average circumference in the tire air chamber), is F c.
Then, the setting range of the resonance frequency F 0 of the Helmholtz resonance absorber is F c −100 Hz ≦ F 0 ≦ F c +10
Since it is set to 0 Hz, the cavity resonance noise of the tire can be reliably and significantly reduced, and the road surface condition estimation accuracy can be significantly improved.

【0008】請求項4に記載の路面状態推定装置は、上
記ヘルムホルツ共鳴吸音器を、ホイールのリムとリムの
径方向外側に配置される複数の蓋部材との間に形成さ
れ、周方向に間隔をあけて設けられた少なくとも3個以
上の密閉隔壁により分割された複数の副気室と、タイヤ
主気室と上記副気室とを連通する連通孔とから構成した
ものである。なお、上記連通孔は蓋部材に設けてもよい
し、隣接する蓋部材間に隙間を設けて連通孔を形成して
もよい。
According to a fourth aspect of the present invention, in the road surface state estimating device, the Helmholtz resonance sound absorber is formed between a rim of a wheel and a plurality of lid members arranged radially outside the rim, and is circumferentially spaced. It is composed of a plurality of sub air chambers divided by at least three or more hermetically-sealed partition walls provided with a space, and a communication hole communicating the tire main air chamber with the sub air chamber. The communication hole may be provided in the lid member, or the communication hole may be formed by providing a gap between adjacent lid members.

【0009】請求項5に記載の路面状態推定装置は、操
縦安定性を確保しつつタイヤ空洞共鳴音の低減を効率的
に行うため、上記副気室の総体積を、タイヤ主気室の2
%以上、25%以下としたものである。
In the road surface state estimating device according to the fifth aspect, in order to efficiently reduce the tire cavity resonance noise while ensuring the steering stability, the total volume of the sub air chamber is set to be equal to that of the tire main air chamber.
% And 25% or less.

【0010】また、請求項6に記載の路面状態推定方法
は、上記請求項1〜請求項5のいずれかに記載の路面状
態推定装置を用い、タイヤ内圧の時間変動を検出して周
波数分析し、少なくとも2つの周波数帯域内での圧力変
動の平均値を算出して、上記算出された圧力変動の平均
値から走行時の路面状態を推定するようにしたことを特
徴とする。
A road surface condition estimating method according to a sixth aspect of the present invention uses the road surface state estimating device according to any of the first to fifth aspects of the present invention to detect a time variation of a tire internal pressure and perform a frequency analysis. An average value of pressure fluctuations in at least two frequency bands is calculated, and a road surface condition during traveling is estimated from the calculated average value of pressure fluctuations.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面に基づき説明する。図1は、本発明の一実施の
形態を示す模式図で、1はタイヤ2を装着するためのホ
イール、3はホイールのタイヤ装着部であるホイールリ
ム(以下、リムという)、4はリム3の径方向外側に配
置された、タイヤ2とリム3との間に形成される、タイ
ヤ気室5をタイヤ主気室6と副気室7とに分離するため
の蓋部材、8は上記タイヤ主気室6と副気室7とを連通
する連通孔、10は圧力センサ,バッテリ,センサ駆動
回路,無線送信回路などが1つのケース内に収納され、
上記リム3に設けられたスナップイン型タイヤバルブと
一体化されたバルブ固定型圧力センサユニットで、上記
圧力センサの検出面が上記主気室6側に位置するように
上記リム3のウエル部3wに取付けらる。本例では、図
2(a)に示すように、上記蓋部材4を周方向に複数個
配置するとともに、上記蓋部材4との間、周方向に間隔
をあけて少なくとも3個以上の密閉隔壁9を設けて、周
方向に不連続な複数の副気室7(7a,7b,‥‥)を
形成し、上記副気室7a,7b,‥‥のそれぞれに、タ
イヤ主気室6と副気室7a,7b,‥‥とを連通する連
通孔8(8a,8b,‥‥)を形成することにより、ヘ
ルムホルツ共鳴吸音器を構成する。これにより、製造が
容易で、かつ、十分な空洞共鳴効果を有するホイール1
を得ることができる。なお、図2(b)に示すように、
各蓋部材41を周方向に一定間隔をあけながら配置し
て、スリット状の連通孔81を形成することもできる。
この場合には、位置決めのため、リム3と蓋部材41に
嵌め合わせ構造を形成するためのスペ−サ41zを蓋部
材41の端部に設けておく等の工夫が必要となるが、工
数的には最小限で、目的とする形態を得ることができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an embodiment of the present invention, 1 is a wheel for mounting a tire 2, 3 is a wheel rim (hereinafter referred to as rim) which is a tire mounting portion of the wheel, and 4 is a rim 3. A lid member, which is arranged between the tire 2 and the rim 3 and is arranged on the outer side in the radial direction, for separating the tire air chamber 5 into a tire main air chamber 6 and a sub air chamber 7, and 8 is the tire A communication hole 10 for communicating the main air chamber 6 and the sub air chamber 7 has a pressure sensor, a battery, a sensor drive circuit, a wireless transmission circuit, etc., housed in one case,
A valve fixed type pressure sensor unit integrated with a snap-in type tire valve provided on the rim 3, and a well portion 3w of the rim 3 so that a detection surface of the pressure sensor is located on the main air chamber 6 side. To be installed. In this example, as shown in FIG. 2 (a), a plurality of lid members 4 are arranged in the circumferential direction, and at least three or more closed partition walls are circumferentially spaced from the lid member 4. 9 are provided to form a plurality of auxiliary air chambers 7 (7a, 7b, ...) Discontinuous in the circumferential direction, and the auxiliary air chambers 7a, 7b ,. By forming a communication hole 8 (8a, 8b, ...) Which communicates with the air chambers 7a, 7b ,. As a result, the wheel 1 is easy to manufacture and has a sufficient cavity resonance effect.
Can be obtained. Note that, as shown in FIG.
It is also possible to form the slit-shaped communication holes 81 by arranging the respective lid members 41 at regular intervals in the circumferential direction.
In this case, for positioning, it is necessary to devise a spacer 41z for forming a fitting structure on the rim 3 and the lid member 41 at the end portion of the lid member 41, but this is man-hourly. It is possible to obtain the desired morphology with a minimum.

【0012】上記ヘルムホルツ共鳴吸音器の共鳴周波数
0(Hz)は、それぞれの副気室の体積をV(cm3)、連
通孔の総断面積をS(cm2)、連通孔長さをL(cm)、
連通孔の個数をN、タイヤ気室内での音速をc(cm/
sec)とすると、下記の式で表わせる。 一方、周知のように、装着されるタイヤの空洞共鳴周波
数をFcは、タイヤのサイズ(タイヤ気室内の平均周
長)で決まる。そこで、本例では、上記副気室7(7
a,7b,‥‥)の体積Vや連通孔8(8a,8b,‥
‥)の総断面積Sなどのヘルムホルツ共鳴吸音器の各設
計値を適宜設定して、上記ヘルムホルツ共鳴吸音器の共
鳴周波数F0の設定範囲を、上記タイヤの空洞共鳴周波
数Fcの±100Hzの範囲(Fc−100Hz≦F0
c+100Hz)となるように設定することにより、
タイヤの空洞共鳴音を大幅に低減するようにしている。
なお、副気室7の総体積が、タイヤ主気室6の体積の2
%未満になると、空洞共鳴音低減効果が小さくなり、2
5%より大きいと、タイヤバネ定数が下がりすぎるの
で、振動減衰性や操縦安定性が低下して好ましくないの
で、副気室総体積としては、タイヤ主気室6の体積の2
%〜25%とすることが好ましく、更に好ましくは3〜
15%がよい。
The resonance frequency F 0 (Hz) of the Helmholtz resonance sound absorber is V (cm 3 ) for the volume of each sub-air chamber, S (cm 2 ) for the total cross-sectional area of the communication hole, and for the communication hole length. L (cm),
The number of communication holes is N, and the sound velocity in the tire air chamber is c (cm / cm
sec) can be expressed by the following equation. On the other hand, as is known, F c is the cavity resonance frequency of the tire to be mounted, determined by the size of the tire (the average circumferential length of the tire chamber). Therefore, in this example, the auxiliary air chamber 7 (7
a, 7b, ...) and the communication hole 8 (8a, 8b ,.
), The design values of the Helmholtz resonance sound absorber such as the total cross-sectional area S are appropriately set, and the setting range of the resonance frequency F 0 of the Helmholtz resonance sound absorber is ± 100 Hz of the cavity resonance frequency F c of the tire. Range (F c −100 Hz ≦ F 0
F c +100 Hz)
The tire cavity resonance noise is greatly reduced.
The total volume of the auxiliary air chamber 7 is 2 times the volume of the tire main air chamber 6.
When it is less than%, the effect of reducing the cavity resonance sound becomes small and 2
If it is more than 5%, the tire spring constant is lowered too much, which is not preferable because the vibration damping property and the steering stability are deteriorated. Therefore, the sub air chamber total volume is 2 times the volume of the tire main air chamber 6.
% To 25%, more preferably 3 to 25%
15% is good.

【0013】本発明のホイール1は、詳細には、リム3
のウエル部3wが、従来品より軸方向に幅広であるか、
あるいは、径方向に深い構造になっている。径方向に深
い構造とはビ−ド部2aとホイールベース部3aの径差
が大きいという意味で、ブレーキスペースに余裕がある
場合は、ホイールベース部3aの径を小さくすることで
径差を大きくできるが、余裕がない場合はビート部2a
の径を大きくし、タイヤ高さを小さくする(タイヤ外径
を同じにする)、いわゆるインチアップ手法により径差
を大きくする。また、ウエル部3wを軸方向に幅広にす
ることに対しては、実質的に大きな制約はない。但し、
ウエル部3wの幅を広くしても必要とする副気室体積は
得られるが、より大きな体積を確保できるという観点か
らは、径方向に深くした方が好ましい。上記構成のホイ
ール1は、従来の鋳造法、あるいは鍛造法などにより製
造することができ、安価に製造することができる。
The wheel 1 of the present invention comprises, in particular, a rim 3
Is the well portion 3w wider than the conventional product in the axial direction,
Alternatively, the structure is deep in the radial direction. The structure deep in the radial direction means that the diameter difference between the bead portion 2a and the wheel base portion 3a is large. Therefore, if there is a sufficient brake space, the diameter of the wheel base portion 3a can be reduced to increase the diameter difference. You can, but if you can't afford the beat part 2a
The diameter difference is increased by increasing the diameter and reducing the tire height (making the tire outer diameter the same), so-called an inch-up method. In addition, there is no substantial restriction on widening the well portion 3w in the axial direction. However,
Although the required auxiliary air chamber volume can be obtained even if the width of the well portion 3w is widened, it is preferable to make it deeper in the radial direction from the viewpoint of ensuring a larger volume. The wheel 1 having the above structure can be manufactured by a conventional casting method or a forging method, and can be manufactured at low cost.

【0014】なお、リム3の径方向外側に結合され、複
数の副気室7を形成する複数の蓋部材4の外周面、及
び、リム3の上記蓋部材4で覆われていない外周面のプ
ロファイルは、ウエル部3wを有する通常のJATMA
規格に従うラインになるように設定される。また、蓋部
材4(あるいは蓋部材41)の材質はホイール1本体と
同じ金属材料であってもよいし、異なる金属材料や樹脂
などの材料でもよい。蓋部材の結合方式は、同一の金属
材料であれば溶接が好ましく選択されるが、異なる部材
の場合はボルトや接着、嵌め合わせによる固定方式とな
る。蓋部材4(あるいは蓋部材41)の厚みは、材質に
依存するが、タイヤリム組み時に塑性変形せず、かつ走
行中の遠心力により大きく変形しない程度の剛性を確保
する範囲で、薄くすることが重量増加を抑制するので好
ましい。但し、連通孔の厚みは、共鳴周波数に影響する
要素であるので、厚み設定は厳密に行う必要がある。こ
のような構成とすることによって、ホイール1本体とは
別に製造した蓋部材4を結合するだけで副気室を形成で
きるので、製造工数やコスト、重量の増加が少なく、ま
た、回転バランスも従来レベルを確保した上で、簡便に
副気室を形成することができる。また、ホイール1本体
とタイヤ2の中に蓋部材4を配置し、副気室7を形成す
る方式になっているので、エア漏れの懸念がない。ま
た、ホイール1本体と蓋部材4(あるいは蓋部材41)
との結合後は、ホイール1のリム形状は、従来のホイー
ルのリムと同様のプロファイルとなるため、タイヤのリ
ム組み、リム解きを従来の手法で行うことができる。
The outer peripheral surfaces of the plurality of lid members 4 which are connected to the outer side of the rim 3 in the radial direction and which form the plurality of sub air chambers 7, and the outer peripheral surface of the rim 3 which is not covered by the lid member 4 are formed. The profile is a normal JATMA having a well portion 3w.
It is set so that the line conforms to the standard. Further, the material of the lid member 4 (or the lid member 41) may be the same metal material as the wheel 1 main body, or may be a different metal material or resin. Welding is preferably selected as the joining method for the lid members if they are made of the same metal material, but if they are different members, fixing methods such as bolts, bonding, and fitting are used. The thickness of the lid member 4 (or the lid member 41) depends on the material, but can be made thin within a range that does not plastically deform when the tire rim is assembled and that does not significantly deform due to centrifugal force during traveling. It is preferable because it suppresses an increase in weight. However, since the thickness of the communication hole is an element that affects the resonance frequency, it is necessary to strictly set the thickness. With such a configuration, the auxiliary air chamber can be formed only by coupling the lid member 4 manufactured separately from the wheel 1 main body, so that the number of manufacturing steps, cost, and weight are small, and the rotation balance is conventional. The auxiliary air chamber can be easily formed after ensuring the level. Further, since the lid member 4 is arranged in the wheel 1 main body and the tire 2 to form the auxiliary air chamber 7, there is no concern about air leakage. Further, the wheel 1 main body and the lid member 4 (or the lid member 41)
After coupling with the wheel 1, the rim shape of the wheel 1 has the same profile as the rim of the conventional wheel.

【0015】また、上記副気室7の数は3つ以上必要で
あることが、検討の結果判明した。すなわち、副気室7
の数が少ないと、共鳴吸音遅れが生じ、結果として、タ
イヤ内の空洞共鳴音を効果的に低減できない。この場
合、隔壁9の数を多くすることが効果的であり、例え
ば、連通孔8だけを周方向に分散しても効果が上がらな
い。好ましくは、副気室7の数は4個以上が良く、5個
以上であれば更に好ましい。また、回転バランスを悪化
させないように、各隔壁9は同寸法で、周上等配分位置
に設置することが好ましい。隔壁9の厚みには特に制約
はなく、重量抑制の意味では、薄くすることが好まし
い。また、材質も特に制約はなく、ホイール1本体と一
体で作成するのであれば、アルミ、鉄などのホイール1
本体と同じ材質としてもよい。あるいは、密閉性を向上
させるという観点からは、ゴムなどの圧縮性を持ち、か
つ低比重の材料も好ましく使用しうる。
As a result of the study, it was found that the number of the auxiliary air chambers 7 should be three or more. That is, the auxiliary air chamber 7
If the number is smaller, resonance sound absorption delay occurs, and as a result, the cavity resonance sound in the tire cannot be effectively reduced. In this case, it is effective to increase the number of partition walls 9, and for example, even if only the communication holes 8 are dispersed in the circumferential direction, the effect is not improved. Preferably, the number of the auxiliary air chambers 7 is preferably 4 or more, more preferably 5 or more. Further, it is preferable that the partition walls 9 have the same size and are installed at equally distributed positions on the circumference so that the rotation balance is not deteriorated. There is no particular restriction on the thickness of the partition wall 9, and it is preferable to reduce the thickness in order to suppress weight. In addition, the material is not particularly limited, and if it is made integrally with the wheel 1 main body, the wheel 1 made of aluminum, iron, etc.
The same material as the body may be used. Alternatively, from the viewpoint of improving the hermeticity, a material such as rubber having a compressibility and a low specific gravity can be preferably used.

【0016】次に、本発明による路面状態推定方法につ
いて説明する。図3は、本発明の路面状態推定装置20
の構成を示す図で、本装置20は、圧力センサ11を有
しタイヤバルブと一体化されたバルブ固定型圧力センサ
ユニット10が取付けられた転動側(ホイール側)A
と、非転動側である車体側Bの後述する演算部とを無線
により接続するように構成したものである。ホイール側
Aのバルブ固定型圧力センサユニット10は、タイヤ内
の気体の圧力を検出する圧力センサ11と、この圧力セ
ンサ11の出力の時間軸上における微小振動成分(AC
成分)からその微小の圧力変動を検出する圧力センサ回
路12と、A/D変換器13a,情報圧縮回路13b,
送信器13cを備え、上記検出されたタイヤ内の気体の
圧力変動の情報信号をデジタル信号に変換して圧縮し、
この圧縮された信号をアンテナ14から車体側Bに無線
により送信する送信回路13と、圧力センサ11,圧力
センサ回路12,送信回路13を駆動するためのバッテ
リ15とを備える。ここで、上記圧力センサユニット1
0としては、少なくとも1kHz以上、好ましくは5k
Hz以上、更に好ましくは10kHz以上の応答性を有
する圧力センサ11及び圧力センサ回路12を備えたも
のを使用する。これにより、上記圧力変動の測定精度を
向上させることができる。なお、上記バルブ固定型圧力
センサユニット10は、図1に示すように、ホイール1
のリム3に設けられたスナップイン型タイヤバルブと一
体化され、リム3のウエル部3wに取付けらる。また、
本例では、上記タイヤバルブにアンテナ機構を持たせる
ようにしているが、アンテナ14を別途設けてもよい。
また、車体側Bには、上記圧縮された振動情報信号を受
信するアンテナ21を備えた受信器22と、上記受信さ
れた圧力変動情報信号を復元して周波数分析する周波数
分析手段であるFFTアナライザー23と、FFTアナ
ライザー23で得られた圧力変動スペクトルから路面摩
擦係数を推定する演算回路24とを備えた路面摩擦係数
演算手段25を備える。また、車体側Bには、上記推定
された路面摩擦係数の値を表示するμ表示器31と、上
記路面摩擦係数に基づいてABSブレーキの油圧を制御
するABSブレーキ制御器(車両制御手段)32が設置
される。
Next, a road surface state estimating method according to the present invention will be described. FIG. 3 shows a road surface state estimating device 20 of the present invention.
In this figure, the present device 20 is a rolling side (wheel side) A to which a valve fixed type pressure sensor unit 10 having a pressure sensor 11 and integrated with a tire valve is attached.
And a later-described calculation unit on the vehicle body side B, which is the non-rolling side, are wirelessly connected. The valve fixed type pressure sensor unit 10 on the wheel side A includes a pressure sensor 11 that detects the pressure of gas in the tire, and a minute vibration component (AC) on the time axis of the output of the pressure sensor 11.
Component), a pressure sensor circuit 12 for detecting the minute pressure fluctuation, an A / D converter 13a, an information compression circuit 13b,
The transmitter 13c is provided, and the information signal of the pressure fluctuation of the gas in the tire detected is converted into a digital signal and compressed,
A transmission circuit 13 for wirelessly transmitting the compressed signal from the antenna 14 to the vehicle body side B, a pressure sensor 11, a pressure sensor circuit 12, and a battery 15 for driving the transmission circuit 13 are provided. Here, the pressure sensor unit 1
0 is at least 1 kHz or higher, preferably 5 kHz
A sensor including a pressure sensor 11 and a pressure sensor circuit 12 having a response of Hz or more, and more preferably 10 kHz or more is used. Thereby, the measurement accuracy of the pressure fluctuation can be improved. In addition, as shown in FIG. 1, the fixed valve pressure sensor unit 10 has a wheel 1
It is integrated with the snap-in type tire valve provided on the rim 3 and is attached to the well portion 3w of the rim 3. Also,
In this example, the tire valve is provided with the antenna mechanism, but the antenna 14 may be separately provided.
Further, on the vehicle body side B, a receiver 22 having an antenna 21 for receiving the compressed vibration information signal, and an FFT analyzer which is a frequency analysis means for restoring the received pressure fluctuation information signal and analyzing the frequency. 23 and a calculation circuit 24 for estimating the road surface friction coefficient from the pressure fluctuation spectrum obtained by the FFT analyzer 23. Further, on the vehicle body side B, a μ indicator 31 for displaying the value of the estimated road surface friction coefficient, and an ABS brake controller (vehicle control means) 32 for controlling the hydraulic pressure of the ABS brake based on the road surface friction coefficient. Is installed.

【0017】次に、上記構成の路面状態推定装置20の
動作について説明する。バルブ固定型圧力センサユニッ
ト10では、圧力センサ11及び圧力センサ回路12に
より走行中のタイヤに充填されている気体の圧力変動を
検出し、送信回路13にて上記データをA/D変換して
圧縮し、アンテナ14から車体側Bに送信する。車体側
Bでは、上記送信された圧縮信号を、アンテナ21を介
して受信器22で受信し、これをFFTアナライザー2
3に送って周波数分析し、圧力変動スペクトルを求め
る。演算回路24では、上記圧力変動スペクトルの少な
くとも2つの周波数帯域内での圧力変動の平均値を算出
して、上記算出された圧力変動の平均値から路面摩擦係
数μの推定値を演算する。図4は、タイヤのサイズが1
95/60R15のタイヤを搭載した1800CCの乗
用車を使用し、乾燥アスファルト路と氷盤路とをそれぞ
れ速度60km/hrで走行して得られたタイヤ内圧力
変動スペクトルの一例を示す図である。同図から明らか
なように、路面摩擦係数の低い氷盤路における圧力変動
スペクトルは、乾燥アスファルト路の場合に比較して
1.5kHz以上の周波数帯域で圧力変動レベルが高く
なっていることが判る。したがって、得られた圧力変動
スペクトルのうち、路面の滑り易さの影響を受けにくい
帯域である300Hz〜1000Hz帯域の圧力変動平
均値と、路面状態による圧力変動レベルの差が大きい1
000Hz〜5000Hz帯域の圧力変動平均値とのそ
れぞれの平均値を算出して、上記算出された圧力変動の
平均値の比を求め、予め上記と同様の走行試験により求
めた、路面摩擦係数μと圧力変動値の比のデータとを比
較することにより、路面摩擦係数の推定値を求めること
ができる。
Next, the operation of the road surface state estimating device 20 having the above configuration will be described. In the valve fixed type pressure sensor unit 10, the pressure sensor 11 and the pressure sensor circuit 12 detect the pressure fluctuation of the gas filled in the running tire, and the transmission circuit 13 A / D-converts the data to compress it. Then, the signal is transmitted from the antenna 14 to the vehicle body side B. On the vehicle body side B, the transmitted compressed signal is received by the receiver 22 via the antenna 21, and this is received by the FFT analyzer 2
3, and frequency analysis is performed to obtain a pressure fluctuation spectrum. The arithmetic circuit 24 calculates an average value of pressure fluctuations in at least two frequency bands of the pressure fluctuation spectrum, and calculates an estimated value of the road surface friction coefficient μ from the calculated average value of pressure fluctuations. In Figure 4, the tire size is 1
It is a figure which shows an example of the pressure fluctuation spectrum in a tire obtained by running a dry asphalt road and an icy road at a speed of 60 km / hr using a 1800 CC passenger car equipped with a 95 / 60R15 tire. As is clear from the figure, in the pressure fluctuation spectrum in the ice-based road where the road surface friction coefficient is low, the pressure fluctuation level is higher in the frequency band of 1.5 kHz or more than in the case of the dry asphalt road. . Therefore, in the obtained pressure fluctuation spectrum, there is a large difference between the pressure fluctuation average value in the 300 Hz to 1000 Hz band which is less affected by the slipperiness of the road surface and the pressure fluctuation level depending on the road surface condition.
The average value of the pressure fluctuation average value in the 000 Hz to 5000 Hz band is calculated, the ratio of the calculated average value of the pressure fluctuation is calculated, and the road surface friction coefficient μ is calculated in advance by the same running test as the above. An estimated value of the road surface friction coefficient can be obtained by comparing the pressure fluctuation value ratio data.

【0018】ところで、路面の凹凸が激しい場合には、
タイヤ内において、非常に大きなピークを発生する空洞
共鳴音が増大するので、路面摩擦係数の推定精度が低下
する場合がある。図5は、通常ホイ−ルを搭載した車両
と、本発明によるヘルムホルツ共鳴吸音器付きホイ−ル
1を搭載した車両とを路面凹凸が大きい乾燥アスファル
ト路を速度60km/hrで走行したときのタイヤ内圧
力の周波数解析結果を示す図で、本発明のホイール1を
備えた路面状態推定装置20で測定したタイヤ内の圧力
変動スペクトルは、空洞共鳴音の発生による圧力変動レ
ベルのピ−クが大きく低減し、外乱要因が減少している
ことが判る。
By the way, when the unevenness of the road surface is severe,
In the tire, the cavity resonance sound that produces a very large peak increases, so that the estimation accuracy of the road surface friction coefficient may decrease. FIG. 5 shows tires when a vehicle equipped with a normal wheel and a vehicle equipped with the wheel 1 with a Helmholtz resonance sound absorber according to the present invention are run on a dry asphalt road having large road surface irregularities at a speed of 60 km / hr. It is a figure which shows the frequency-analysis result of internal pressure, and the pressure fluctuation spectrum in a tire measured by the road surface state estimation apparatus 20 provided with the wheel 1 of this invention WHEREIN: The peak of the pressure fluctuation level by generation | occurrence | production of a cavity resonance sound is large. It can be seen that the disturbance factor is reduced.

【0019】上記路面状態推定装置20で推定された路
面摩擦係数の値は、μ表示器31に送られ表示される。
また、ABSブレーキ制御器32に送り、上記推定され
た路面摩擦係数に応じてABSブレーキの油圧を制御す
る。本例では、上記のように、ヘルムホルツ共鳴吸音器
により、上記タイヤ内圧の微小圧力変動の信号に対する
ノイズ成分となるタイヤ内の空洞共鳴音を大幅に低減す
るようにしているので、路面摩擦係数を精度良く推定す
ることがき、車両の走行状態を安定して制御することが
できる。
The value of the road surface friction coefficient estimated by the road surface state estimating device 20 is sent to and displayed on the μ display 31.
Further, it is sent to the ABS brake controller 32 to control the hydraulic pressure of the ABS brake according to the estimated road surface friction coefficient. In the present example, as described above, the Helmholtz resonance sound absorber is used to significantly reduce the cavity resonance noise in the tire that becomes a noise component for the signal of the minute pressure fluctuation of the tire internal pressure. Accurate estimation can be performed, and the traveling state of the vehicle can be stably controlled.

【0020】なお、上記実施の形態では、圧力センサ1
1で検出したタイヤ内圧の変動情報から路面摩擦係数の
値を推定してこれをμ表示器31に表示するようにした
が、タイヤが接地している路面状態を通常状態、要注意
状態、危険状態などに分類して走行時における路面の滑
り易さ=危険度を表示するようにしてもよい。また、上
記例では、路面摩擦係数演算手段25を車体側Bに設け
たが、これをホイール側Aに設け、上記送信回路13に
より、上記路面摩擦係数演算手段25で推定された路面
摩擦係数の値を車体側Bに送信するようにしてもよい。
また、上記例では、圧力変動値の比から路面摩擦係数の
推定値を求めるようにしたが、必要とされる幾つかの周
波数帯域の圧力変動レベル(帯域値)を求め、係数を掛
けるなどの演算処理を行うことにより、路面摩擦係数を
推定するようにしてもよい。ここで、上記周波数帯域と
しては、上記路面の滑りの寄与が大きい複数の帯域に対
して、速度や路面の凹凸などの路面入力が大きい帯域を
複数選び、補正演算を行えば、速度などの情報がなくと
も、路面摩擦係数を精度良く推定することができる。
In the above embodiment, the pressure sensor 1
Although the value of the road surface friction coefficient was estimated from the fluctuation information of the tire internal pressure detected in 1 and displayed on the μ display 31, the road surface condition where the tire is in contact with the ground is normal, caution, dangerous. It may be possible to display the degree of slippage of the road surface during driving = the degree of danger by classifying into states and the like. Further, in the above example, the road surface friction coefficient calculating means 25 is provided on the vehicle body side B, but it is provided on the wheel side A, and the transmission circuit 13 calculates the road surface friction coefficient estimated by the road surface friction coefficient calculating means 25. The value may be transmitted to the vehicle body side B.
Further, in the above example, the estimated value of the road surface friction coefficient is calculated from the ratio of the pressure fluctuation values, but the pressure fluctuation level (band value) of several required frequency bands is calculated and multiplied by the coefficient. The road surface friction coefficient may be estimated by performing arithmetic processing. Here, as the frequency band, a plurality of bands having a large road surface input such as speed and unevenness of the road surface are selected with respect to a plurality of bands having a large contribution of the slip of the road surface, and a correction calculation is performed. Even without it, the road surface friction coefficient can be accurately estimated.

【0021】<実施例>本発明の路面状態推定装置20
を搭載した車両を、路面凹凸が大きい乾燥アスファルト
補修路を走行し、連続的に路面摩擦係数を測定した結果
を図6示す。また、比較例として、ヘルムホルツ共鳴吸
音器が付いていない通常のホイールに本発明と同様の圧
力センサユニットを配し、路面摩擦係数を推定した結果
も併せて示す。なお、同路面の路面摩擦係数は、通常の
制動試験によって計測したところ、0.91であった。
同図から明らかなように、本発明品は、摩擦係数推定値
が安定している。これは、空洞共鳴音を大幅に低減する
ことにより、外乱要因を減少していることによるもの
で、本発明により、路面摩擦係数を精度良く求めること
ができることが確認された。
<Embodiment> A road surface state estimating apparatus 20 of the present invention.
Fig. 6 shows the results of continuously measuring the road surface friction coefficient of a vehicle equipped with a vehicle running on a dry asphalt repair road with large unevenness on the road surface. Further, as a comparative example, the results of estimating the road surface friction coefficient by arranging a pressure sensor unit similar to that of the present invention on an ordinary wheel without a Helmholtz resonance sound absorber are also shown. The road surface friction coefficient of the road surface was 0.91 as measured by a normal braking test.
As is clear from the figure, the friction coefficient estimated value of the product of the present invention is stable. This is because the factor of disturbance is reduced by significantly reducing the cavity resonance noise, and it was confirmed that the road surface friction coefficient can be accurately obtained by the present invention.

【0022】[0022]

【発明の効果】以上説明したように本発明の路面状態推
定装置は、ヘルムホルツ共鳴吸音器を備えたホイール
と、上記ホイールのタイヤ気室側に取付けられる、タイ
ヤ内圧を検出する圧力検出手段と、上記微小圧力変動の
信号を周波数分析して所定の周波数帯域内での圧力変動
値を算出する圧力変動値算出手段と、上記算出された圧
力変動値から走行時の路面状態を推定する路面状態推定
手段とを備え、上記ヘルムホルツ共鳴吸音器により、上
記タイヤ内圧の微小圧力変動の信号に対するノイズ成分
となるタイヤ内の空洞共鳴音を大幅に低減するようにし
たので、路面摩擦係数を精度良く推定することがき、車
両の走行状態を安定して制御することができる。
As described above, the road surface condition estimating apparatus of the present invention comprises a wheel having a Helmholtz resonance sound absorber, and pressure detecting means for detecting the tire internal pressure, which is attached to the tire air chamber side of the wheel. Pressure fluctuation value calculating means for frequency-analyzing the signal of the minute pressure fluctuation to calculate a pressure fluctuation value within a predetermined frequency band, and road surface condition estimation for estimating a road surface condition during traveling from the calculated pressure fluctuation value. Means, and by means of the Helmholtz resonance sound absorber, it is possible to significantly reduce the cavity resonance noise in the tire that becomes a noise component for the signal of the minute pressure fluctuation of the tire internal pressure, so that the road surface friction coefficient is accurately estimated. Therefore, the running state of the vehicle can be controlled stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施の形態を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】 本実施の形態に係わるホイールの構成を示す
図である。
FIG. 2 is a diagram showing a configuration of a wheel according to the present embodiment.

【図3】 本実施の形態に係わる路面状態推定装置の構
成を示す図である。
FIG. 3 is a diagram showing a configuration of a road surface state estimating device according to the present embodiment.

【図4】 乾燥アスファルト路と氷盤路におけるタイヤ
内圧の変動スペクトルを示す図である。
FIG. 4 is a diagram showing variation spectra of tire internal pressure on a dry asphalt road and an iced road.

【図5】 空洞共鳴音の減衰効果を示す図である。FIG. 5 is a diagram showing a damping effect of cavity resonance sound.

【図6】 本発明による路面摩擦係数の推定結果を示す
図である。
FIG. 6 is a diagram showing an estimation result of a road surface friction coefficient according to the present invention.

【符号の説明】[Explanation of symbols]

1 ホイール、2 タイヤ、2a ビ−ド部、3 ホイ
ールリム、3a ホイールベース部、3w ウエル部、
4 蓋部材、5 タイヤ気室、6 タイヤ主気室、7
副気室、8 連通孔、9 隔壁、10 バルブ固定型圧
力センサユニット、11 圧力センサ、12 圧力セン
サ回路、13 送信回路、13a A/D変換器、13
b 情報圧縮回路、13c 送信器、14 送信用のア
ンテナ、15 バッテリ、20 路面摩擦係数推定装
置、21 受信用のアンテナ、22 受信器、23 F
FTアナライザー、24 演算回路、25 路面摩擦係
数演算手段、31 μ表示器、32 ABSブレーキ制
御器。
1 wheel, 2 tire, 2a bead part, 3 wheel rim, 3a wheel base part, 3w well part,
4 lid members, 5 tire air chambers, 6 tire main air chambers, 7
Sub air chamber, 8 communication holes, 9 partition walls, 10 valve fixed type pressure sensor unit, 11 pressure sensor, 12 pressure sensor circuit, 13 transmission circuit, 13a A / D converter, 13
b information compression circuit, 13c transmitter, 14 transmission antenna, 15 battery, 20 road surface friction coefficient estimation device, 21 reception antenna, 22 receiver, 23 F
FT analyzer, 24 arithmetic circuit, 25 road surface friction coefficient arithmetic means, 31 μ display, 32 ABS brake controller.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B60B 21/02 G08C 17/00 B Fターム(参考) 2F073 AA21 AA35 AB02 AB03 BB01 BC02 CC01 FG20 GG01 GG04 GG09 3D046 BB23 BB28 HH16 HH46 HH50 JJ16 KK11 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // B60B 21/02 G08C 17/00 BF term (reference) 2F073 AA21 AA35 AB02 AB03 BB01 BC02 CC01 FG20 GG01 GG04 GG09 3D046 BB23 BB28 HH16 HH46 HH50 JJ16 KK11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ヘルムホルツ共鳴吸音器を備えたホイー
ルと、上記ホイールのタイヤ気室側に取付けられる、タ
イヤ内圧を検出する圧力検出手段と、この圧力検出手段
で検出されたタイヤ内圧の微小圧力変動の信号を車体側
に送信する無線通信装置と、上記微小圧力変動の信号を
周波数分析して所定の周波数帯域内での圧力変動値を算
出する圧力変動値算出手段と、上記算出された圧力変動
値から走行時の路面状態を推定する路面状態推定手段と
を備えたことを特徴とする路面状態推定装置。
1. A wheel provided with a Helmholtz resonance sound absorber, pressure detection means for detecting tire internal pressure, which is mounted on the tire air chamber side of the wheel, and minute pressure fluctuations of the tire internal pressure detected by this pressure detection means. Wireless communication device for transmitting the signal of the above to the vehicle body side, a pressure fluctuation value calculation means for frequency-analyzing the signal of the minute pressure fluctuation to calculate a pressure fluctuation value within a predetermined frequency band, and the calculated pressure fluctuation. A road surface state estimating device comprising: a road surface state estimating means for estimating a road surface state during traveling from a value.
【請求項2】 上記圧力検出手段は、上記微小圧力変動
に対して、少なくとも1kHz以上の応答性を有してい
ることを特徴とする請求項1に記載の路面状態推定装
置。
2. The road surface state estimating device according to claim 1, wherein the pressure detecting means has a responsiveness of at least 1 kHz or more to the minute pressure fluctuation.
【請求項3】 上記ホイールに装着されるタイヤの空洞
共振周波数をFcとしたときに、上記ヘルムホルツ共鳴
吸音器の共鳴周波数F0を以下に示す範囲に設定したこ
とを特徴とする請求項1または請求項2に記載の路面状
態推定装置。Fc−100Hz≦F0≦Fc+100Hz
3. The resonance frequency F 0 of the Helmholtz resonance sound absorber is set in the following range, where F c is the cavity resonance frequency of the tire mounted on the wheel. Alternatively, the road surface state estimating device according to claim 2. F c -100Hz ≦ F 0 ≦ F c + 100Hz
【請求項4】 上記ヘルムホルツ共鳴吸音器を、ホイー
ルのリムとリムの径方向外側に配置される複数の蓋部材
との間に形成され、周方向に間隔をあけて設けられた少
なくとも3個以上の密閉隔壁により分割された複数の副
気室と、タイヤ主気室と上記副気室とを連通する連通孔
とから構成したことを特徴とする請求項1〜請求項3の
いずれかに記載の路面状態推定装置。
4. The Helmholtz resonance sound absorber is formed between the rim of the wheel and a plurality of lid members arranged radially outside the rim, and at least three or more are provided at intervals in the circumferential direction. 4. A plurality of sub air chambers divided by the closed partition wall of claim 1, and a communication hole that communicates the tire main air chamber with the sub air chamber. Road surface condition estimation device.
【請求項5】 上記副気室の総体積を、タイヤ主気室の
2%以上、25%以下としたことを特徴とする請求項1
〜請求項4のいずれかに記載の路面状態推定装置。
5. The total volume of the sub air chamber is 2% or more and 25% or less of the tire main air chamber.
~ The road surface state estimating device according to claim 4.
【請求項6】 上記請求項1〜請求項5のいずれかに記
載の路面状態推定装置を用い、タイヤ内圧の時間変動を
検出して周波数分析し、少なくとも2つの周波数帯域内
での圧力変動の平均値を算出して、上記算出された圧力
変動の平均値から走行時の路面状態を推定することを特
徴とする路面状態推定方法。
6. The road surface condition estimating apparatus according to claim 1, wherein time variation of tire internal pressure is detected and frequency analyzed to detect pressure variation within at least two frequency bands. A road surface state estimating method, comprising: calculating an average value and estimating a road surface state during traveling from the calculated average value of the pressure fluctuations.
JP2002059397A 2002-03-05 2002-03-05 Road surface state estimation method and apparatus Expired - Fee Related JP4145534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002059397A JP4145534B2 (en) 2002-03-05 2002-03-05 Road surface state estimation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002059397A JP4145534B2 (en) 2002-03-05 2002-03-05 Road surface state estimation method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008122906A Division JP2008195397A (en) 2008-05-09 2008-05-09 Road surface state estimating device

Publications (2)

Publication Number Publication Date
JP2003252191A true JP2003252191A (en) 2003-09-10
JP4145534B2 JP4145534B2 (en) 2008-09-03

Family

ID=28669108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002059397A Expired - Fee Related JP4145534B2 (en) 2002-03-05 2002-03-05 Road surface state estimation method and apparatus

Country Status (1)

Country Link
JP (1) JP4145534B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120306A (en) * 2006-11-14 2008-05-29 Honda Motor Co Ltd Vehicular wheel and manufacturing method therefor
JP2009037402A (en) * 2007-08-01 2009-02-19 Yokohama Rubber Co Ltd:The Data transmitting device
EP2039538A1 (en) * 2007-09-19 2009-03-25 HONDA MOTOR CO., Ltd. Vehicle wheel with pressure sensor
JP2009107357A (en) * 2007-10-26 2009-05-21 Honda Motor Co Ltd Wheel for vehicle
JP2015174499A (en) * 2014-03-13 2015-10-05 本田技研工業株式会社 vehicle wheel
JP2015174496A (en) * 2014-03-13 2015-10-05 本田技研工業株式会社 vehicle wheel
JP2020011561A (en) * 2018-07-17 2020-01-23 本田技研工業株式会社 Vehicle wheel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120306A (en) * 2006-11-14 2008-05-29 Honda Motor Co Ltd Vehicular wheel and manufacturing method therefor
JP4520971B2 (en) * 2006-11-14 2010-08-11 本田技研工業株式会社 Vehicle wheel and method of manufacturing vehicle wheel
JP2009037402A (en) * 2007-08-01 2009-02-19 Yokohama Rubber Co Ltd:The Data transmitting device
EP2039538A1 (en) * 2007-09-19 2009-03-25 HONDA MOTOR CO., Ltd. Vehicle wheel with pressure sensor
US7896043B2 (en) 2007-09-19 2011-03-01 Honda Motor Co., Ltd. Vehicle wheel with sub air chamber and pressure sensor
JP2009107357A (en) * 2007-10-26 2009-05-21 Honda Motor Co Ltd Wheel for vehicle
JP4523959B2 (en) * 2007-10-26 2010-08-11 本田技研工業株式会社 Vehicle wheel
JP2015174499A (en) * 2014-03-13 2015-10-05 本田技研工業株式会社 vehicle wheel
JP2015174496A (en) * 2014-03-13 2015-10-05 本田技研工業株式会社 vehicle wheel
JP2020011561A (en) * 2018-07-17 2020-01-23 本田技研工業株式会社 Vehicle wheel

Also Published As

Publication number Publication date
JP4145534B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
EP2514640B1 (en) Method and apparatus for estimation of road condition and tire running state, ABS and car control making use thereof
JP4817753B2 (en) Road surface state estimation method, road surface state estimation device, and vehicle control device
JP3892722B2 (en) Road surface state and tire running state estimation device and vehicle control device
JP4549975B2 (en) Tire condition estimation method
JP4263400B2 (en) Road friction coefficient estimation method and road friction coefficient estimation device
JP5557569B2 (en) Road surface condition estimation method
EP1106397A3 (en) System and method for monitoring vehicle conditions affecting tires
KR20020035568A (en) Method and system for controlling the behaviour of a vehicle by controlling its tyres
WO2001098123A1 (en) Method for estimating vehicular running state, vehicular running state estimating device, vehicle control device, and tire wheel
JP5559204B2 (en) Method and apparatus for continuously detecting wheel state quantities of wheels
JP4629246B2 (en) Tire running state detection method, tire running state detection device, road surface state estimation method, and road surface state estimation device
JP4554176B2 (en) Road surface condition estimation method
JP4629756B2 (en) Road surface state estimation method and road surface state estimation device
JP4030572B2 (en) Vehicle braking distance prediction device and vehicle braking distance prediction method
JP2010274906A (en) Road surface state estimation method, vehicle control method, and road surface state estimation device
JP4145534B2 (en) Road surface state estimation method and apparatus
US6584427B2 (en) Method and apparatus for estimating tire air pressure
JP3948678B2 (en) Wheel turning stability evaluation method and wheel turning stability evaluation apparatus
JP3289401B2 (en) Tire pressure detector
JP2008195397A (en) Road surface state estimating device
US6917864B2 (en) Method and apparatus for detecting decrease in tire air-pressure, and program for judging decompression of tire
EP1371507A3 (en) Method and apparatus for detecting decrease in tire air-pressure and for judging decompression of tire
KR20200083026A (en) System and method for mornitoring condition of tire and road surface during vehicle driving
JP2005140503A (en) Wheel for vehicle and load monitor for vehicle
JP3892723B2 (en) ABS braking control method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Ref document number: 4145534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees