JP2003249710A - Package for housing optical semiconductor element - Google Patents

Package for housing optical semiconductor element

Info

Publication number
JP2003249710A
JP2003249710A JP2002048839A JP2002048839A JP2003249710A JP 2003249710 A JP2003249710 A JP 2003249710A JP 2002048839 A JP2002048839 A JP 2002048839A JP 2002048839 A JP2002048839 A JP 2002048839A JP 2003249710 A JP2003249710 A JP 2003249710A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor element
input
output terminal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002048839A
Other languages
Japanese (ja)
Other versions
JP3993774B2 (en
Inventor
Mitsuo Yanagisawa
美津夫 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002048839A priority Critical patent/JP3993774B2/en
Publication of JP2003249710A publication Critical patent/JP2003249710A/en
Application granted granted Critical
Publication of JP3993774B2 publication Critical patent/JP3993774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an optical coupling efficiency of an optical semiconductor element to an optical fiber from being deteriorated by largely alleviating a strain generated at a base or a frame due to a heat of the element and to allow a high-frequency signal to be smoothly transmitted when the signal of 40 GHz band is used. <P>SOLUTION: The base 3 made of a metal of a substantially rectangular shape having a placing part 3a of the optical semiconductor element 2 on an upper surface is made of the metal having a larger thermal expansion coefficient at a room temperature to 100°C than that of the frame 5, mounted to surround the part 3a on the upper surface of the base 3. The frame 5 made of a metal of a substantially rectangular shape having a mount 5a of an I/O terminal 4a having a through hole at a side 5a adjacent to one side 5d and a through hole 10 formed at one side 5d has a cutout passing through the lower end of the side 5c adjacent to the one side 5d and formed with other I/O terminal 4b made of an insulator having a thermal expansion coefficient at room temperature to 100°C and larger than that of the frame 5 and smaller than that of the base 3. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光半導体素子を収
容するための光半導体素子収納用パッケージ(以下、光
半導体パッケージともいう)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor element housing package (hereinafter, also referred to as an optical semiconductor package) for housing an optical semiconductor element.

【0002】[0002]

【従来の技術】従来の光通信分野で用いられる半導体レ
ーザ素子(LD)やフォトダイオ−ド等の半導体受光素
子(PD)等の光半導体素子を収納するための光半導体
パッケージを図3に示す。同図に示すように、光半導体
パッケージ1は、一般に銅(Cu)−タングステン
(W)合金等の金属から成る基体3を有する。この基体
3の熱膨張係数は、室温(RT;Room Temperature)〜
100℃において7×10-6〜9×10-6/℃程度である。こ
の基体3は、内部で発生した熱を効率良く外部に放熱す
る機能を有している。
2. Description of the Related Art FIG. 3 shows an optical semiconductor package for accommodating an optical semiconductor element such as a semiconductor laser element (LD) or a semiconductor light receiving element (PD) such as a photodiode used in the conventional optical communication field. . As shown in the figure, the optical semiconductor package 1 generally has a base 3 made of a metal such as a copper (Cu) -tungsten (W) alloy. The thermal expansion coefficient of the base 3 is from room temperature (RT) to
It is about 7 × 10 −6 to 9 × 10 −6 / ° C. at 100 ° C. The base 3 has a function of efficiently radiating the heat generated inside to the outside.

【0003】光半導体パッケージ1は、上面にLDやP
D等の光半導体素子2が載置固定される載置部3aを有
する基体3と、Fe−Ni−Co合金やFe−Ni合金
等の金属から成る枠体5とから主に構成されている。こ
の枠体5の熱膨張係数はRT〜100℃において5×10-6
/℃〜6×10-6/℃程度である。枠体5は、載置部3a
を囲むように基体3の上面に接合されている。この枠体
5は、各種電子部品を囲むとともに入出力端子34や光フ
ァイバ12を取りつけるためのものである。枠体5の側部
に設けられた入出力端子34の取り付け部35には、光半導
体素子2と外部電気回路とを電気的に接続する絶縁端子
である入出力端子34が嵌着接合されている。
The optical semiconductor package 1 has an LD and a P on the upper surface.
It is mainly composed of a base body 3 having a mounting portion 3a on which the optical semiconductor element 2 such as D is mounted and fixed, and a frame body 5 made of a metal such as Fe—Ni—Co alloy or Fe—Ni alloy. . The thermal expansion coefficient of this frame 5 is 5 × 10 −6 at RT to 100 ° C.
/ ° C to 6 x 10 -6 / ° C. The frame 5 has a mounting portion 3a.
Is bonded to the upper surface of the base 3 so as to surround the. The frame 5 is for surrounding various electronic components and for mounting the input / output terminal 34 and the optical fiber 12. The input / output terminal 34, which is an insulating terminal for electrically connecting the optical semiconductor element 2 and an external electric circuit, is fitted and joined to the mounting portion 35 of the input / output terminal 34 provided on the side of the frame body 5. There is.

【0004】枠体5には、他の側部に光半導体素子2と
光結合するための光伝送路である貫通穴10が形成されて
いる。この貫通穴10の枠体5外側開口の周囲に、枠体5
の熱膨張係数に近似した金属からなる筒状の光ファイバ
固定部材(以下、固定部材ともいう)11の一端が銀ロウ
等のロウ材で接合されるか、または貫通穴10に固定部材
11が嵌着接合される。固定部材11には、戻り光を防ぐ光
アイソレーター(図示せず)と光ファイバ12とが樹脂接
着剤等で接着された金属ホルダ13が固定されている。ま
た、固定部材11の内側には、非晶質ガラス等からなり集
光レンズとして機能するとともに光半導体パッケージ1
内部を気密に塞ぐ透光性部材16が固定される。
A through hole 10 which is an optical transmission line for optically coupling with the optical semiconductor element 2 is formed on the other side portion of the frame body 5. Around the outer opening of the frame 5 of the through hole 10, the frame 5
One end of a tubular optical fiber fixing member (hereinafter, also referred to as a fixing member) 11 made of a metal having a thermal expansion coefficient close to that of the above is joined with a brazing material such as silver brazing, or the fixing member is fixed to the through hole 10.
11 is fitted and joined. An optical isolator (not shown) for preventing returning light and an optical fiber 12 are fixed to the fixing member 11 by a metal holder 13 which is bonded with a resin adhesive or the like. In addition, the inside of the fixing member 11 is made of amorphous glass or the like and functions as a condenser lens, and at the same time, the optical semiconductor package 1
A transparent member 16 that hermetically closes the inside is fixed.

【0005】また、固定部材11と金属ホルダ13とは、そ
れぞれの端面同士がYAGレーザ溶接等により固定され
る。一方、固定部材11と透光性部材とは、200〜400℃の
融点を有するAu(金)−Sn(錫)合金等の低融点ロ
ウ材によりロウ付けされて固定される。
The end faces of the fixing member 11 and the metal holder 13 are fixed by YAG laser welding or the like. On the other hand, the fixing member 11 and the translucent member are fixed by brazing with a low melting point brazing material such as Au (gold) -Sn (tin) alloy having a melting point of 200 to 400 ° C.

【0006】光半導体素子2の下面にはペルチェ素子等
の熱電冷却素子17が配置されていおり、光半導体素子2
の作動時に熱電冷却素子17により光半導体素子2を冷却
して、光半導体素子2の発熱による光出力の低下や寿命
の劣化を防止する。さらに、載置部3a上には、光半導
体素子2の駆動用または信号増幅用のLSI等の半導体
素子(図示せず)が設けられる。半導体素子の下面にも
熱電冷却素子17またはヒートシンクを配設し得る。そし
て、光半導体素子2の電極が、ボンディングワイヤを介
して入出力端子34の線路導体6に電気的に接続される。
A thermoelectric cooling element 17 such as a Peltier element is arranged on the lower surface of the optical semiconductor element 2 and
During operation, the thermoelectric cooling element 17 cools the optical semiconductor element 2 to prevent a decrease in light output and a deterioration in life due to heat generation of the optical semiconductor element 2. Further, a semiconductor element (not shown) such as an LSI for driving the optical semiconductor element 2 or for signal amplification is provided on the mounting portion 3a. The thermoelectric cooling element 17 or the heat sink may be arranged on the lower surface of the semiconductor element. Then, the electrode of the optical semiconductor element 2 is electrically connected to the line conductor 6 of the input / output terminal 34 via the bonding wire.

【0007】この入出力端子34は、セラミックスから成
る平板部7とその上面に設置された立壁部8とから成
る。平板部7の上面には、高周波信号の伝送路(入力線
路および/または出力線路)としてメタライズ金属層か
ら成る線路導体6が設けられている。この入出力端子34
は、外部電気回路と光半導体素子2とを電気的に接続す
るとともに光半導体パッケージ1の内部を気密に塞ぐた
めのものである。一般に、入出力端子34はアルミナを主
成分とするセラミックスから構成されており、その熱膨
張係数はRT〜100℃で6×10-6〜7×10-6/℃程度で
ある。
The input / output terminal 34 comprises a flat plate portion 7 made of ceramics and a standing wall portion 8 installed on the upper surface thereof. On the upper surface of the flat plate portion 7, a line conductor 6 made of a metallized metal layer is provided as a transmission line (input line and / or output line) for high frequency signals. This input / output terminal 34
Is for electrically connecting an external electric circuit and the optical semiconductor element 2 and hermetically closing the inside of the optical semiconductor package 1. Generally, the input / output terminal 34 is made of ceramics containing alumina as a main component, and its thermal expansion coefficient is about 6 × 10 −6 to 7 × 10 −6 / ° C. at RT to 100 ° C.

【0008】そして、基体3の載置部3aに光半導体素
子2を熱電冷却素子17を介して樹脂接着剤、ロウ材等の
接着材により接着固定する。次に、光半導体素子2の電
極をボンディングワイヤを介して入出力端子34の線路導
体6に電気的に接続する。その後、光アイソレーターと
光ファイバ12が固定された金属ホルダ13を固定部材11に
溶接する。次に、枠体5の上面に蓋体14をシーム溶接や
ロウ付け等によって接合し、基体3と枠体5と蓋体14と
からなる容器内部に光半導体素子2および半導体素子を
気密に収容して、製品としての光半導体装置となる。こ
の光半導体装置は外部電気回路から供給される駆動信号
によって光半導体素子2を光励起させ、励起した光を光
ファイバ12に授受させるとともに光ファイバ12内を伝達
させることによって、高速かつ大容量の光通信等に使用
され、光通信分野等に多用されている。
Then, the optical semiconductor element 2 is bonded and fixed to the mounting portion 3a of the base body 3 through the thermoelectric cooling element 17 with an adhesive material such as a resin adhesive or a brazing material. Next, the electrode of the optical semiconductor element 2 is electrically connected to the line conductor 6 of the input / output terminal 34 via a bonding wire. After that, the metal holder 13 to which the optical isolator and the optical fiber 12 are fixed is welded to the fixing member 11. Next, the lid body 14 is joined to the upper surface of the frame body 5 by seam welding, brazing or the like, and the optical semiconductor element 2 and the semiconductor element are hermetically housed in the container formed of the base body 3, the frame body 5 and the lid body 14. Then, it becomes an optical semiconductor device as a product. This optical semiconductor device optically excites the optical semiconductor element 2 by a drive signal supplied from an external electric circuit, transmits and receives the excited light to and from the optical fiber 12, and transmits the light in the optical fiber 12. It is used for communication, etc., and is often used in the field of optical communication.

【0009】近年、高速で大容量の通信に対する需要が
急激に増加しており、従って高速大容量伝送に関する研
究開発が進められている。とりわけ、光通信装置におい
て光信号を発信する光半導体装置等の光発信装置が注目
されており、光信号の高出力化と高速化が伝送容量を向
上させるための課題となっている。従来の光半導体装置
の光信号は出力5〜10mW程度であり、搭載される光半
導体素子も20mW程度の駆動電力であった。しかし、よ
り大出力の光半導体装置では、光出力も20mWのレベル
まで向上してきている。また、このような光半導体装置
に搭載されている光半導体素子も50mWレベルの駆動電
力が要求されている。さらに、従来の光半導体装置に用
いられていた高周波信号は10GHz帯であったが、40G
Hz帯域まで向上してきており、より高速化されてきて
いる。
In recent years, the demand for high-speed and large-capacity communication has been rapidly increasing, and therefore research and development relating to high-speed and large-capacity transmission have been promoted. In particular, an optical transmission device such as an optical semiconductor device that transmits an optical signal has been attracting attention in an optical communication device, and higher output and higher speed of the optical signal have been problems for improving the transmission capacity. The optical signal of the conventional optical semiconductor device has an output of about 5 to 10 mW, and the optical semiconductor element mounted has a driving power of about 20 mW. However, in an optical semiconductor device with a higher output, the optical output has been improved to the level of 20 mW. Further, the optical semiconductor element mounted on such an optical semiconductor device is also required to have a driving power of 50 mW level. In addition, the high-frequency signal used in conventional optical semiconductor devices was in the 10 GHz band,
The frequency has been improved to the Hz band, and the speed has been further increased.

【0010】また、従来、作動時に多量の熱を発生する
光半導体素子2を冷却するとともに光半導体素子2の温
度を一定にして、光半導体素子2から発信される光信号
の周波数や出力を安定に保つ目的で、各種冷却装置が設
けられていた。例えば、光半導体素子2の熱を効率良く
拡散するために、基体3の載置部3aにCu−W合金等
の高熱伝導性の材料から成る基台を設けたり、基体3と
光半導体素子2との間に熱電冷却素子17を設けていた。
Further, conventionally, the optical semiconductor element 2 which generates a large amount of heat at the time of operation is cooled and the temperature of the optical semiconductor element 2 is kept constant to stabilize the frequency and output of the optical signal transmitted from the optical semiconductor element 2. Various cooling devices were provided for the purpose of keeping. For example, in order to efficiently diffuse the heat of the optical semiconductor element 2, a mounting base 3a of the base 3 is provided with a base made of a material having a high thermal conductivity such as Cu-W alloy, or the base 3 and the optical semiconductor element 2 are provided. The thermoelectric cooling element 17 was provided between the and.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記従
来の光半導体パッケージ1においては、作動時の温度が
最高で85℃付近まで達するため、基体3、枠体5および
入出力端子34の熱膨張差によって、光半導体パッケージ
1が歪み、作動前の初期状態での光半導体素子2の光信
号を光ファイバに結合した場合に比べて、作動時の高温
状態での光出力が低下するという問題が発生していた。
However, in the above-described conventional optical semiconductor package 1, since the temperature during operation reaches a maximum of about 85 ° C., the difference in thermal expansion between the base body 3, the frame body 5, and the input / output terminal 34. As a result, the optical semiconductor package 1 is distorted, and the optical output in the high temperature state during operation is reduced as compared with the case where the optical signal of the optical semiconductor element 2 in the initial state before operation is coupled to the optical fiber. Was.

【0012】このような光出力の変動を測定するため
に、光半導体パッケージ1の内部に光出力が50mW程度
の高出力の光半導体素子2を収容した光半導体装置を試
作した。その光半導体装置から伸びる光ファイバ12の先
端に光パワーメーターを接続し、光半導体装置を85℃の
雰囲気内に置いて試験を行ったところ、試験前の初期状
態での光出力と85℃の雰囲気内に置いた後の作動状態で
の光出力とを比較すると、作動状態で損失が±0.4〜±
0.8dB増大した。これは、従来では見られない大きな
損失であり、光半導体装置として使用不可能な程度の光
出力のばらつきが確認された。
In order to measure such fluctuations in the optical output, an optical semiconductor device in which an optical semiconductor element 2 of high output having an optical output of about 50 mW is housed inside an optical semiconductor package 1 was prototyped. An optical power meter was connected to the tip of the optical fiber 12 extending from the optical semiconductor device, and a test was conducted by placing the optical semiconductor device in an atmosphere of 85 ° C., and the optical output in the initial state before the test and 85 ° C. Comparing the optical output in the operating state after placing it in the atmosphere, the loss in the operating state is ± 0.4 to ±
It increased by 0.8 dB. This is a large loss that has not been seen in the past, and it has been confirmed that the optical output has a variation that cannot be used as an optical semiconductor device.

【0013】従来、同様の試験をした場合±0.5dB以内
に変動を抑えることが要求されていたが、従来の試験で
使用した光半導体素子2は光出力が20mW程度であり、
今回の試験で使用したものは従来の倍近い高出力のもの
である。このことが、特性劣化の要因となっていること
が顕著に現れており、高出力の光半導体素子2を使用し
た場合、光半導体パッケージ1により大きな歪みを発生
させることが判明した。
Conventionally, it has been required to suppress the fluctuation within ± 0.5 dB in the same test, but the optical semiconductor element 2 used in the conventional test has an optical output of about 20 mW,
The one used in this test has a high output that is nearly double that of the conventional one. It is obvious that this is a factor of characteristic deterioration, and it has been found that when the high-power optical semiconductor element 2 is used, the optical semiconductor package 1 causes large distortion.

【0014】また10GHz帯域から40GHz帯域へと高
周波化した高周波信号を入力しため、40GHz付近で3
dB以上の共振現象が発生した。この原因は冷却のため
に使用した熱電冷却素子の端子から不要な電磁界が漏れ
て、10GHz帯域では見られなかった共振が発生したも
のである。このため、40GHz帯域での高周波信号の立
ちあがり速度は15psec(ピコ秒)となり、10pse
c程度の立ちあがり速度が必要な高速化に対応できない
という問題点があった。
In addition, since a high frequency signal that has been increased in frequency from 10 GHz band to 40 GHz band is input, 3
A resonance phenomenon of dB or more occurred. The cause of this is that unnecessary electromagnetic fields leaked from the terminals of the thermoelectric cooling element used for cooling, causing resonance that was not seen in the 10 GHz band. Therefore, the rising speed of the high-frequency signal in the 40 GHz band is 15 psec (picoseconds), which is 10 pse.
There is a problem that it is not possible to cope with the high speed required for a rising speed of about c.

【0015】従って、本発明は上記の問題点に鑑みて完
成されたものであり、その目的は、光半導体素子の作動
時の熱によって基体や枠体に発生する応力による歪みを
大幅に緩和して、光半導体素子と光ファイバとの光結合
効率の劣化を防止し、また40GHz帯域の高周波信号で
使用する際に円滑に高周波信号を伝送できる光半導体パ
ッケージを提供することにある。
Therefore, the present invention has been completed in view of the above problems, and an object thereof is to relieve the strain caused by the stress generated in the base body or the frame body by the heat during the operation of the optical semiconductor element. Therefore, it is another object of the present invention to provide an optical semiconductor package that prevents deterioration of optical coupling efficiency between an optical semiconductor element and an optical fiber and that can smoothly transmit a high frequency signal when used with a high frequency signal in the 40 GHz band.

【0016】[0016]

【課題を解決するための手段】本発明の光半導体素子収
納用パッケージは、上面に光半導体素子が載置される載
置部を有する略四角形の金属製の基体と、該基体の上面
に前記載置部を囲繞するように取着され、一側部に貫通
孔が形成されているとともに前記一側部に隣接する側部
に形成された貫通穴または前記側部の上端に形成された
切欠き部から成る入出力端子の取付部が形成された略四
角形の金属製の枠体と、前記貫通孔に嵌着されるかまた
は前記貫通孔の枠体外側開口の周囲に一端が接合された
筒状の光ファイバ固定部材と、前記取付部に嵌着された
入出力端子とを具備した光半導体素子収納用パッケージ
において、前記基体は室温〜100℃での熱膨張係数が前
記枠体よりも大きい金属から成り、前記枠体は前記一側
部に隣接する前記側部の下端に内外を貫通する切欠きが
形成されているとともに該切欠きに室温〜100℃での熱
膨張係数が前記枠体より大きく前記基体よりも小さい絶
縁体から成る他の入出力端子が嵌着されていることを特
徴とする。
A package for housing an optical semiconductor element according to the present invention comprises a substantially rectangular metal base having a mounting portion on which an optical semiconductor element is mounted, and a front surface of the base. Attached so as to surround the placing portion, a through hole is formed in one side portion and a through hole formed in a side portion adjacent to the one side portion or a cut formed in an upper end of the side portion. A substantially rectangular metal frame body having an input / output terminal mounting portion formed of a notch portion is fitted into the through hole, or one end of the through hole is joined around the frame body outside opening. In a package for storing an optical semiconductor element, which comprises a tubular optical fiber fixing member and an input / output terminal fitted to the mounting portion, the base body has a coefficient of thermal expansion at room temperature to 100 ° C higher than that of the frame body. The frame is made of a large metal and the frame is adjacent to the one side. Has a notch penetrating the inside and the outside at the lower end thereof, and another input / output terminal made of an insulator having a coefficient of thermal expansion at room temperature to 100 ° C. larger than that of the frame body and smaller than that of the base body is fitted into the notch. It is characterized by being worn.

【0017】本発明の光半導体素子収納用パッケージ
は、上記の構成により、枠体の側部の下端に内外を貫通
するように形成された切欠きに、室温〜100℃での熱膨
張係数が枠体より大きく基体よりも小さい絶縁体から成
る他の入出力端子が嵌着されていることから、枠体と基
体の熱膨張差が緩和され、枠体の変形を防ぎ光結合効率
を良好に保持することが可能となる。従って、動作時の
高温状態でも光半導体素子と光ファイバとの間で安定し
た光結合が維持でき、光半導体装置として光出力の変動
を±0.3dB以下にすることができる。
In the package for accommodating an optical semiconductor element of the present invention, the notch formed so as to penetrate the inside and outside of the lower end of the side portion of the frame having the above-mentioned structure has a coefficient of thermal expansion at room temperature to 100 ° C. Since another input / output terminal made of an insulator that is larger than the frame body and smaller than the base body is fitted, the difference in thermal expansion between the frame body and the base body is mitigated, deformation of the frame body is prevented, and optical coupling efficiency is improved. It becomes possible to hold. Therefore, stable optical coupling can be maintained between the optical semiconductor element and the optical fiber even in a high temperature state during operation, and the fluctuation of the optical output of the optical semiconductor device can be suppressed to ± 0.3 dB or less.

【0018】本発明の光半導体素子収納用パッケージ
は、好ましくは、前記光半導体素子は、熱電冷却素子を
介して前記基体の前記載置部に載置されるとともに前記
入出力端子に電気的に接続されており、前記熱電冷却素
子は前記他の入出力端子に電気的に接続されていること
を特徴とする。
In the package for accommodating an optical semiconductor element of the present invention, preferably, the optical semiconductor element is mounted on the mounting portion of the base through a thermoelectric cooling element and electrically connected to the input / output terminal. The thermoelectric cooling element is electrically connected to the other input / output terminal.

【0019】本発明の光半導体素子収納用パッケージ
は、40GHz帯域の高周波信号を伝送させる接続端子や
接続線を入出力端子に接続し、熱電冷却素子の接続端子
や接続線を他の入出力端子側に接続することにより、熱
電冷却素子の接続端子や接続線から漏れる不要な電磁界
による共振を小さくして、高周波信号を円滑に伝送させ
ることができる。従って、40GHz帯域での共振による
損失を3dB以下に抑制でき、また光半導体装置の性能
を示す立ちあがり時間も10psec以下を達成すること
が可能となる。
In the package for accommodating an optical semiconductor element of the present invention, a connection terminal or a connection line for transmitting a high frequency signal of 40 GHz band is connected to the input / output terminal, and a connection terminal or a connection line of the thermoelectric cooling element is connected to another input / output terminal. By connecting to the side, resonance due to an unnecessary electromagnetic field leaking from the connection terminal or connection line of the thermoelectric cooling element can be reduced, and a high frequency signal can be smoothly transmitted. Therefore, the loss due to resonance in the 40 GHz band can be suppressed to 3 dB or less, and the rise time, which shows the performance of the optical semiconductor device, can be 10 psec or less.

【0020】[0020]

【発明の実施の形態】本発明の光半導体素子収納用パッ
ケージについて以下に詳細に説明する。図1は本発明の
光半導体パッケージについての実施の形態の一例を示す
断面図、図2は図1の光半導体パッケージの固定部材側
からみた場合の断面図である。図1,図2において、従
来の光半導体パッケージを示す図3と同じ部材について
は同じ符号で示した。
BEST MODE FOR CARRYING OUT THE INVENTION The optical semiconductor element housing package of the present invention will be described in detail below. FIG. 1 is a cross-sectional view showing an example of an embodiment of an optical semiconductor package of the present invention, and FIG. 2 is a cross-sectional view of the optical semiconductor package of FIG. 1 when viewed from the fixing member side. 1 and 2, the same members as those in FIG. 3 showing the conventional optical semiconductor package are denoted by the same reference numerals.

【0021】図1,図2において、1は、基体3、枠体
5、枠体5の取付部5aに嵌着された入出力端子(以
下、第一の入出力端子ともいう)4a、枠体5の取付部
5bに嵌着された他の入出力端子(以下、第二の入出力
端子ともいう)4bから主に構成された光半導体パッケ
ージである。これらの基体3、枠体5、第一の入出力端
子4a、第二の入出力端子4b、光ファイバ12、透光性
部材16を固定した筒状の光ファイバ12の固定部材11と
で、内部に光半導体素子2を収容するための容器が構成
される。
In FIGS. 1 and 2, 1 is an input / output terminal (hereinafter also referred to as a first input / output terminal) 4a fitted to the base 3, the frame 5, and the mounting portion 5a of the frame 5, and a frame. The optical semiconductor package is mainly composed of another input / output terminal (hereinafter, also referred to as a second input / output terminal) 4b fitted to the mounting portion 5b of the body 5. The base 3, the frame 5, the first input / output terminal 4a, the second input / output terminal 4b, the optical fiber 12, and the fixing member 11 of the tubular optical fiber 12 to which the translucent member 16 is fixed, A container for housing the optical semiconductor element 2 is formed inside.

【0022】第一の入出力端子4aは、枠体5の一側部
5dに隣接する側部5cに形成された貫通穴または側部
5cの上端に内外を貫通するように形成された切欠き部
から成る取付部5aに嵌着される。また、第二の入出力
端子4bは、枠体5の一側部5dに隣接する側部5cの
下端に内外を貫通するように形成された切欠きから成る
取付部5bに嵌着される。
The first input / output terminal 4a has a through hole formed in the side portion 5c adjacent to the one side portion 5d of the frame body 5 or a notch formed at the upper end of the side portion 5c so as to penetrate inside and outside. It is fitted to the mounting portion 5a composed of the parts. Further, the second input / output terminal 4b is fitted to a mounting portion 5b formed by a notch formed so as to penetrate the inside and outside of the lower end of the side portion 5c adjacent to the one side portion 5d of the frame body 5.

【0023】そして、基体3の上面の載置部3aに光半
導体素子2を載置固定し、枠体5の上面に蓋体(図示せ
ず)を接合して気密封止することにより光半導体装置と
なる。
Then, the optical semiconductor element 2 is mounted and fixed on the mounting portion 3a on the upper surface of the base body 3, and a lid (not shown) is joined to the upper surface of the frame 5 to hermetically seal the optical semiconductor. It becomes a device.

【0024】本発明の光半導体パッケージ1は、金属か
らなる基体3と、その上面に光半導体素子2の載置部3
aを囲むように接合され、入出力端子4a,4bの取付
部5a,5bを有する枠体5と、例えば、高周波信号に
対して精密なインピーダンス制御が可能な第一の入出力
端子4aと、10A程度の高電流に耐えうる第二の入出力
端子4bとを具備する。即ち、本発明において好ましく
は、光半導体素子2は、熱電冷却素子17を介して基体3
の載置部3aに載置されるとともに第一の入出力端子4
aに電気的に接続されており、熱電冷却素子17は第二の
入出力端子4bに電気的に接続されている構成とし得
る。
The optical semiconductor package 1 of the present invention comprises a base 3 made of metal and a mounting portion 3 for mounting the optical semiconductor element 2 on the upper surface thereof.
a frame 5 joined so as to surround a and having mounting portions 5a, 5b of the input / output terminals 4a, 4b; and, for example, a first input / output terminal 4a capable of precise impedance control with respect to a high frequency signal, A second input / output terminal 4b capable of withstanding a high current of about 10 A is provided. That is, in the present invention, preferably, the optical semiconductor element 2 has the base 3 through the thermoelectric cooling element 17.
Mounted on the mounting portion 3a of the first input / output terminal 4
The thermoelectric cooling element 17 may be electrically connected to a, and the thermoelectric cooling element 17 may be electrically connected to the second input / output terminal 4b.

【0025】本発明の光半導体パッケージ1では、室温
〜100℃での熱膨張係数が枠体5より大きく基体3より
も小さい絶縁体から成る第二の入出力端子4bを用い
る。これにより、光出力が15mWを超える20mW程度で
も、その変動を±0.3dB以内に収めることができる。
これは、枠体5と基体3の熱膨張差による光半導体パッ
ケージ1全体の歪みを、第二の入出力端子で抑制するこ
とによって、光出力の変動を低減できるということであ
る。第二の入出力端子4bの熱膨張係数が上記範囲から
外れると、光出力の変動は±0.5〜±0.8dBと大きくな
り、安定した光出力を得ることは難しい。
The optical semiconductor package 1 of the present invention uses the second input / output terminal 4b made of an insulator having a thermal expansion coefficient larger than that of the frame body 5 and smaller than that of the base body 3 at room temperature to 100 ° C. As a result, even if the optical output is about 20 mW exceeding 15 mW, the fluctuation can be kept within ± 0.3 dB.
This means that the fluctuation of the optical output can be reduced by suppressing the distortion of the entire optical semiconductor package 1 due to the difference in thermal expansion between the frame body 5 and the base body 3 at the second input / output terminal. If the coefficient of thermal expansion of the second input / output terminal 4b deviates from the above range, the fluctuation of the optical output becomes large at ± 0.5 to ± 0.8 dB, and it is difficult to obtain a stable optical output.

【0026】また本発明において、第一の入出力端子4
aの熱膨張係数と第二の入出力端子4bの熱膨張係数と
を同じにすることが好ましい。即ち、(枠体5の熱膨張
係数)<(第一の入出力端子4aの熱膨張係数=第二の
入出力端子4bの熱膨張係数)<(基体の熱膨張係
数)、とするのがよい。例えば、第一,第二の入出力端
子4a,4bの熱膨張係数を6.59×10-6/℃(アルミナ
セラミックス等)とし、枠体5の熱膨張係数を5.19×10
-6/℃(Fe−Ni−Co合金等)とし、基体3の熱膨
張係数を7.06×10-6/℃(Cu−W合金等)とする。な
お、これらの熱膨張係数は、RT〜100℃におけるもの
である。
In the present invention, the first input / output terminal 4
It is preferable that the coefficient of thermal expansion of a and the coefficient of thermal expansion of the second input / output terminal 4b be the same. That is, (the coefficient of thermal expansion of the frame 5) <(the coefficient of thermal expansion of the first input / output terminal 4a = the coefficient of thermal expansion of the second input / output terminal 4b) <(the coefficient of thermal expansion of the substrate) Good. For example, the thermal expansion coefficient of the first and second input / output terminals 4a and 4b is 6.59 × 10 −6 / ° C. (alumina ceramics, etc.), and the thermal expansion coefficient of the frame body 5 is 5.19 × 10 5.
-6 / ° C (Fe-Ni-Co alloy or the like), and the thermal expansion coefficient of the base body 3 is 7.06 x 10 -6 / ° C (Cu-W alloy or the like). In addition, these thermal expansion coefficients are in RT-100 degreeC.

【0027】また、より好ましくは、第一,第二の入出
力端子4a,4bの熱膨張係数を同じとし、それをAと
した場合、(A−枠体5の熱膨張係数)<3×10-6
℃、かつ(基体3の熱膨張係数−A)<3×10-6/℃が
よい。この範囲から外れると、第一の入出力端子4aと
第二の入力端子4bとで枠体5を上下で挟むように設置
することで抑制していた、基体3と枠体5との熱膨張差
から生じる光半導体パッケージ1の歪みを、抑制するこ
とが困難になる。即ち、上述の光出力の変動試験で±0.
5dB以内を達成きない結果となる。
More preferably, when the first and second input / output terminals 4a and 4b have the same coefficient of thermal expansion and A is the same, (A-coefficient of thermal expansion of the frame 5) <3 × 10 -6 /
C., and (coefficient of thermal expansion of the substrate 3−A) <3 × 10 −6 / ° C. is preferable. If it deviates from this range, the thermal expansion of the base body 3 and the frame body 5, which is suppressed by installing the frame body 5 so as to be sandwiched between the first input / output terminal 4a and the second input terminal 4b, is suppressed. It becomes difficult to suppress the distortion of the optical semiconductor package 1 caused by the difference. That is, ± 0 in the above-mentioned optical output fluctuation test.
The result is that it does not reach within 5 dB.

【0028】また、第一の入出力端子4aと第二の入出
力端子4bは、熱膨張係数を同じにするうえで同じ絶縁
体から成るのがよい。そして、例えば、第一の入出力端
子4aは光半導体素子2に高周波信号を入出力するもの
とされ、高周波信号のインピーダンスを整合させるよう
に線路導体6の幅等が構成される。また、第二の入出力
端子4bは熱電冷却素子17に駆動用の直流の大電流を入
力するものとされ、直流1Aを効率的に流すのに0.8m
mの幅の線路導体として、大電流を通すように構成され
る。このような高周波信号に対する構成と大電流に対す
る構成を、従来一つの入出力端子に施していたものを、
それぞれ別個の入出力端子に施すことで、熱電冷却素子
17の接続端子等からの電磁界の漏れによる高周波信号へ
の影響を小さくできる。熱電冷却素子17の接続端子等か
らの電磁界の影響を十分に抑制するには、第一の入出力
端子4aの線路導体6と第二の入出力端子4bの線路導
体との距離にほぼ依存する。この距離は、具体的には2
mm以上あればよい。
The first input / output terminal 4a and the second input / output terminal 4b are preferably made of the same insulator in order to have the same coefficient of thermal expansion. Then, for example, the first input / output terminal 4a is adapted to input / output a high frequency signal to / from the optical semiconductor element 2, and the width of the line conductor 6 is configured so as to match the impedance of the high frequency signal. Further, the second input / output terminal 4b is for inputting a large DC current for driving into the thermoelectric cooling element 17, and is 0.8 m in order to efficiently flow 1A DC.
As a line conductor having a width of m, it is configured to pass a large current. Conventionally, a configuration for such high frequency signals and a configuration for large current is applied to one input / output terminal,
Thermoelectric cooling element by applying to each separate input / output terminal
It is possible to reduce the influence on the high frequency signal due to the leakage of the electromagnetic field from the 17 connecting terminals and the like. In order to sufficiently suppress the influence of the electromagnetic field from the connection terminal or the like of the thermoelectric cooling element 17, it depends substantially on the distance between the line conductor 6 of the first input / output terminal 4a and the line conductor of the second input / output terminal 4b. To do. This distance is specifically 2
It should be at least mm.

【0029】上記のように第一の入出力端子4aと第二
の入出力端子4bとで機能を分担することにより、従来
40GHz程度で発生していた共振による損失が6dB程
度から3dB程度に半減される。これにより、光半導体
装置を用いた光モジュールのEYE特性に影響を及ぼさ
ない特性となる。EYE特性とは、デジタル信号が円滑
に伝送できているかを示す特性であり、パルス発生器で
発生させた信号パルスを光モジュールに入力し、光モジ
ュール内で光電変換を行ったのち、光信号として出力さ
れる。その時に、矩形パターンのデジタル信号を光ファ
イバーから出力するというような測定を行なって評価を
行なう。そして、1,0の点以外に認識点があるとエラ
ーとして処理される。共振がある場合エラーモードの発
生が高くなる。デジタル信号の合否判断としては、矩形
波の軌跡がどのくらいオープンになっているかで表す。
一般に矩形波の軌跡から得られる空間を窓と呼んでお
り、窓にかかる点が発生すれば、1,0とは判定されず
にエラーとの認識となる。
As described above, the functions are shared by the first input / output terminal 4a and the second input / output terminal 4b.
The loss due to resonance generated at about 40 GHz is halved from about 6 dB to about 3 dB. As a result, the EYE characteristics of the optical module using the optical semiconductor device are not affected. The EYE characteristic is a characteristic that indicates whether or not a digital signal can be smoothly transmitted. The signal pulse generated by the pulse generator is input to the optical module, photoelectric conversion is performed in the optical module, and then the optical signal is output. Is output. At that time, evaluation is performed by performing a measurement such as outputting a rectangular pattern digital signal from an optical fiber. Then, if there is a recognition point other than the points 1, 0, it is processed as an error. When there is resonance, the occurrence of error mode is high. The pass / fail judgment of the digital signal is represented by how open the locus of the rectangular wave is.
Generally, the space obtained from the locus of a rectangular wave is called a window, and if a point on the window occurs, it is recognized as an error without being determined as 1,0.

【0030】このように、共振による損失を小さくして
EYE特性等を良好にするには、上記のように第一の入
出力端子4aと第二の入出力端子4bの線路導体間の距
離を2mm以上とするのがよい。これは、上記距離を0.
2mmずつ離していった場合の実験から導かれたもので
あり、2mm以上では共振による損失は小さくなってい
くが、2mm未満では共振による損失が従来に近くなり
良好な製品としての使用が困難となる。
As described above, in order to reduce the loss due to resonance and improve the EYE characteristics, the distance between the line conductors of the first input / output terminal 4a and the second input / output terminal 4b is set as described above. It is preferable to set it to 2 mm or more. This reduces the distance to 0.
It is derived from the experiment in case of separating by 2 mm. When it is 2 mm or more, the loss due to resonance becomes small, but when it is less than 2 mm, the loss due to resonance becomes close to the conventional one and it is difficult to use it as a good product. Become.

【0031】固定部材11の枠体5外側の端面には、光フ
ァイバ12と戻り光防止用の光アイソレーター(図示せ
ず)とが樹脂接着剤で接着された金属ホルダ13が、YA
Gレーザ溶接等により接合される。さらに、光半導体素
子2の下面にはペルチェ素子等の熱電冷却素子17が配置
されており、光半導体素子2の作動時にそれを冷却す
る。
A metal holder 13 to which an optical fiber 12 and an optical isolator (not shown) for preventing returning light are adhered with a resin adhesive is attached to the end surface of the fixing member 11 on the outer side of the frame 5.
It is joined by G laser welding or the like. Further, a thermoelectric cooling element 17 such as a Peltier element is arranged on the lower surface of the optical semiconductor element 2 and cools it when the optical semiconductor element 2 operates.

【0032】また、載置部3a上には、光半導体素子2
の駆動用または信号増幅用のLSI等の半導体素子(図
示せず)が設けられ、半導体素子の下面にも熱電冷却素
子17またはCu−W合金からなるヒートシンクを配設し
得る。そして、光半導体素子2と半導体素子とをボンデ
ィングワイヤ、内部配線パターン(図示せず)等を介し
て接続し、半導体素子は第一の入出力端子4aにボンデ
ィングワイヤで接続される。そして、光半導体素子2の
各電極が、ボンディングワイヤを介して第一の入出力端
子4aの枠体5外側に設けられた外部リード端子に電気
的に接続されることとなる。
The optical semiconductor element 2 is placed on the mounting portion 3a.
A semiconductor element (not shown) such as an LSI for driving or signal amplification is provided, and a thermoelectric cooling element 17 or a heat sink made of Cu-W alloy may be arranged on the lower surface of the semiconductor element. Then, the optical semiconductor element 2 and the semiconductor element are connected via a bonding wire, an internal wiring pattern (not shown) or the like, and the semiconductor element is connected to the first input / output terminal 4a by a bonding wire. Then, each electrode of the optical semiconductor element 2 is electrically connected to the external lead terminal provided outside the frame body 5 of the first input / output terminal 4a via the bonding wire.

【0033】略四角形の基体3は、光半導体素子2を支
持する支持部材および光半導体素子2の熱を放熱する放
熱板として機能し、その上面の略中央部に光半導体素子
2を載置するための載置部3aを有している。載置部3
aには光半導体素子2が熱電冷却素子17を間に挟んでA
u−Si(シリコン)ロウ材等の接着剤を介して接着さ
れるとともに、この接着剤を介して光半導体素子2の熱
が載置部3aに伝えられ、外部に効率よく放熱され、光
半導体素子2の作動性を良好にする。この基体3は、C
u−W合金等の100W/m・K以上の熱伝導率を有する
金属からなる。例えば、Cu−W合金は多孔質のW焼結
体にCuを含浸させることにより作製される。
The substantially quadrangular base 3 functions as a support member for supporting the optical semiconductor element 2 and as a heat radiating plate for radiating the heat of the optical semiconductor element 2, and the optical semiconductor element 2 is mounted on the substantially central portion of the upper surface thereof. It has a mounting portion 3a for. Placement part 3
The optical semiconductor element 2 has a thermoelectric cooling element 17 in between a
While being bonded via an adhesive such as a u-Si (silicon) brazing material, the heat of the optical semiconductor element 2 is transferred to the mounting portion 3a via this adhesive, and is efficiently radiated to the outside. The operability of the element 2 is improved. This base 3 is C
It is made of a metal having a thermal conductivity of 100 W / mK or more, such as a u-W alloy. For example, a Cu-W alloy is produced by impregnating a porous W sintered body with Cu.

【0034】なお、基体3の表面には耐食性に優れかつ
ロウ材との濡れ性に優れる金属、具体的には厚さ0.5〜
9μmのNi層と厚さ0.5〜5μmのAu層をメッキ法に
より順次被着させておくのが良く、基体3が酸化腐食す
るのを有効に防止するとともに、基体3の上面に熱電冷
却素子17を強固に接着することができる。
On the surface of the substrate 3, a metal having excellent corrosion resistance and wettability with the brazing material, specifically, a thickness of 0.5 to
It is preferable that a Ni layer of 9 μm and an Au layer of 0.5 to 5 μm in thickness be sequentially deposited by a plating method so as to effectively prevent oxidative corrosion of the base body 3 and to form a thermoelectric cooling element 17 on the upper surface of the base body 3. Can be firmly adhered.

【0035】また、基体3は、その上面に光半導体素子
2の載置部3aを囲むように平面視形状が略四角形の枠
体5が接合されており、枠体5の内側に光半導体素子2
を収容するための空所が形成される。この枠体5は、F
e−Ni−Co合金等の金属から成る。また枠体5は、
その金属のインゴットに圧延加工や打ち抜き加工等の従
来周知の金属加工方法を施すことによって所定形状に製
作される。
A frame 5 having a substantially quadrangular shape in plan view is joined to the upper surface of the base 3 so as to surround the mounting portion 3a of the optical semiconductor element 2, and the optical semiconductor element is provided inside the frame 5. Two
A cavity is formed to accommodate the. This frame 5 is F
It is made of a metal such as an e-Ni-Co alloy. Further, the frame body 5 is
The metal ingot is manufactured into a predetermined shape by subjecting the metal ingot to a conventionally known metal processing method such as rolling or punching.

【0036】次に、枠体5は、一側部5dに光透過用の
貫通穴10を有するとともに一側部5dに隣接する側部5
cに第一の入出力端子4aの取付部5aおよび第二の入
出力端子4bの取付部5bを有する形状に作製される。
貫通穴10は、枠体5の一側部5dにドリルによる孔開け
加工により所定形状に形成される。取付部5a,5b
は、フライスによる切削加工や打ち抜き加工で形成され
る。さらに、光半導体素子2と外部電気回路との電気的
接続を行う手段として、枠体5の内面の一部および外面
の一部に、ボンディングワイヤや外部リード端子等を接
続するための厚さ0.5〜9μmのNi層や厚さ0.5〜5μ
mのAu層等の金属層をメッキ法により被着させておく
と良い。
Next, the frame 5 has a through hole 10 for transmitting light on one side 5d and the side 5 adjacent to the one side 5d.
It is manufactured in a shape having a mounting portion 5a of the first input / output terminal 4a and a mounting portion 5b of the second input / output terminal 4b in c.
The through hole 10 is formed in a predetermined shape by drilling a hole in the one side portion 5d of the frame body 5. Mounting parts 5a, 5b
Are formed by cutting or punching with a milling cutter. Further, as a means for electrically connecting the optical semiconductor element 2 and an external electric circuit, a thickness of 0.5 for connecting a bonding wire, an external lead terminal, etc. to a part of the inner surface and a part of the outer surface of the frame body 5. ~ 9μm Ni layer and thickness 0.5 ~ 5μ
It is advisable to deposit a metal layer such as Au layer of m by a plating method.

【0037】また、固定部材11が、貫通穴10の枠体5外
側開口の周囲に一端が接合されるかまたは貫通穴10に嵌
着され外周面が接合されて、枠体5に設けられる。この
固定部材11は、内部で光信号が伝送されるように筒状に
形成され、Fe−Ni−Co合金やFe−Ni合金等の
金属から成り、銀ロウ等のロウ材を介して接合される。
また、固定部材11は、基体3と同様の加工法で所定形状
に加工製作されるとともに、酸化防止等の目的でその表
面に厚さ0.5〜9μmのNi層や厚さ0.5〜5μmのAu
層等の金属層をメッキ法により被着させておくと良い。
Further, the fixing member 11 is provided on the frame body 5 by joining one end around the outside opening of the frame body 5 of the through hole 10 or by fitting it into the through hole 10 and joining the outer peripheral surface thereof. The fixing member 11 is formed in a tubular shape so that an optical signal is transmitted inside, is made of a metal such as Fe-Ni-Co alloy or Fe-Ni alloy, and is joined through a brazing material such as silver brazing. It
Further, the fixing member 11 is processed and manufactured into a predetermined shape by the same processing method as that of the substrate 3, and a Ni layer having a thickness of 0.5 to 9 μm or an Au layer having a thickness of 0.5 to 5 μm is formed on the surface thereof for the purpose of preventing oxidation.
It is advisable to deposit a metal layer such as a layer by a plating method.

【0038】固定部材11の内側には、集光レンズとして
機能するとともに光半導体パッケージ1の内部を塞ぐ非
晶質ガラス等からなる透光性部材16が、その接合部の表
面に形成されたメタライズ層を介して、200〜400℃の融
点を有するAu−Sn合金等の低融点のロウ材で接合さ
れる。この透光性部材16は、熱膨張係数が4×10-6〜12
×10-6/℃(室温〜400℃)のサファイア(単結晶アル
ミナ)や非晶質ガラス等からなり、球状、半球状、凸レ
ンズ状、ロッドレンズ状等とされる。即ち透光性部材16
は、光ファイバ12を伝わってきた外部のレーザ光等の光
を光半導体素子2に入力させる、または光半導体素子2
で出力したレーザ光等の光を光ファイバ12に入力させる
ための集光用部材である。透光性部材16が、例えば結晶
軸の存在しない非晶質ガラスの場合、酸化珪素(SiO
2)、酸化鉛(PbO)を主成分とする鉛系、または硼
酸系やケイ砂を主成分とする硼珪酸系のものを用いる。
Inside the fixing member 11, a light-transmitting member 16 made of amorphous glass or the like, which functions as a condenser lens and closes the inside of the optical semiconductor package 1, is formed on the surface of the joining portion by metallization. The layers are joined with a low melting point brazing material such as an Au—Sn alloy having a melting point of 200 to 400 ° C. This translucent member 16 has a coefficient of thermal expansion of 4 × 10 −6 to 12
It is made of sapphire (single crystal alumina) having a temperature of × 10 −6 / ° C. (room temperature to 400 ° C.), amorphous glass, or the like, and has a spherical shape, a hemispherical shape, a convex lens shape, a rod lens shape, or the like. That is, the translucent member 16
Allows the light such as the external laser light transmitted through the optical fiber 12 to be input to the optical semiconductor element 2 or
It is a condensing member for inputting the light such as the laser light output in 1) into the optical fiber 12. When the translucent member 16 is, for example, an amorphous glass having no crystal axis, silicon oxide (SiO 2
2 ), a lead-based material containing lead oxide (PbO) as a main component, or a borosilicate-based material containing boric acid or silica sand as a main component.

【0039】また、透光性部材16は、その熱膨張係数が
枠体5のそれと異なっていても、固定部材11が熱膨張差
による応力を吸収緩和するので、結晶軸が応力のために
ある方向に揃うことによって光の屈折率の変化を起こす
ことは発生し難い。従って、この透光性部材16を用いる
ことによって光半導体素子2と光ファイバ12との間の光
の結合効率を高くできる。
Further, even if the coefficient of thermal expansion of the translucent member 16 is different from that of the frame 5, the fixing member 11 absorbs and relaxes the stress due to the difference in thermal expansion, so that the crystal axis is due to the stress. It is difficult to cause a change in the refractive index of light by aligning the directions. Therefore, by using this translucent member 16, the light coupling efficiency between the optical semiconductor element 2 and the optical fiber 12 can be increased.

【0040】第一の入出力端子4aは、上面に線路導体
6が形成された略長方形の平板部7と、線路導体6を間
に挟んで平板部7の上面に接合され、枠体5の内外を遮
断するように形成された略直方体の立壁部8とから成っ
ている。立壁部8は、その上面にメタライズ層等から成
る接地導体が形成され、側面にその接地導体を延出する
ように接地導体が形成されている。また、平板部7およ
び立壁部8は、酸化アルミニウムセラミックス、窒化ア
ルミニウムセラミックス、ガラスセラミックス等の誘電
体から成る。
The first input / output terminal 4a is joined to the substantially rectangular flat plate portion 7 having the line conductor 6 formed on the upper surface thereof and the upper surface of the flat plate portion 7 with the line conductor 6 sandwiched therebetween. It comprises a substantially rectangular parallelepiped standing wall portion 8 formed so as to block the inside and the outside. The standing wall portion 8 has a ground conductor formed of a metallized layer or the like on its upper surface, and a ground conductor formed on its side surface so as to extend the ground conductor. The flat plate portion 7 and the standing wall portion 8 are made of a dielectric material such as aluminum oxide ceramics, aluminum nitride ceramics, glass ceramics.

【0041】平板部7上面の線路導体6や接地導体は
W,Mo,Mn等で形成されており、例えばW等の粉末
に有機溶剤、溶媒を添加混合して得た金属ペーストを、
平板部7および立壁部8用のセラミックグリーンシート
に、スクリーン印刷法により所定パターンに印刷塗布し
ておくことによって平板部7および立壁部8に形成され
る。線路導体6や接地導体の表面には、酸化防止のため
とボンディングワイヤや外部リード端子18等を強固に接
続するために、厚さ0.5〜9μmのNi層や厚さ0.5〜5
μmのAu層等の金属層をメッキ法により被着させてお
くと良い。
The line conductor 6 and the ground conductor on the upper surface of the flat plate portion 7 are formed of W, Mo, Mn or the like. For example, a metal paste obtained by adding and mixing an organic solvent or a solvent to a powder of W or the like,
The ceramic green sheets for the flat plate portion 7 and the standing wall portion 8 are formed on the flat plate portion 7 and the standing wall portion 8 by printing and applying a predetermined pattern by a screen printing method. On the surface of the line conductor 6 and the ground conductor, a Ni layer having a thickness of 0.5 to 9 μm and a thickness of 0.5 to 5 are formed in order to prevent oxidation and firmly connect the bonding wire, the external lead terminal 18 and the like.
It is advisable to deposit a metal layer such as an Au layer having a thickness of μm by a plating method.

【0042】また、Fe−Ni−Co合金等から成る蓋
体(図示せず)が、枠体5の上面にシーム溶接等によっ
て接合され、光半導体素子2を光半導体パッケージ1内
に気密封止する。
A lid (not shown) made of Fe-Ni-Co alloy or the like is joined to the upper surface of the frame 5 by seam welding or the like to hermetically seal the optical semiconductor element 2 in the optical semiconductor package 1. To do.

【0043】本発明の光半導体パッケージ1は、LD,
PD等の光半導体素子2およびLSI等の半導体素子を
収納した光通信用の場合、一側部5dに内外を貫通する
貫通穴10を形成するとともに一側部5dに隣接する側部
5cに第一,第二の入出力端子4a,4bの取付部5
a,5bを形成して成る枠体5を、基体3の上面に接合
する。貫通穴10の枠体5外側開口の周囲に筒状の固定部
材11を接合し、固定部材11の内側に透光性部材16を接合
する。取付部5a,5bに第一,第二の入出力端子4
a,4bを嵌着接合する。そして、光半導体素子2と半
導体素子とを熱電冷却素子17を介して載置部3aに載置
するとともに互いにボンディングワイヤで接続する。ま
た、半導体素子と第一の入出力端子4aの線路導体6の
一端とをボンディングワイヤで接続し、熱電冷却素子17
と第二の入出力端子4bの線路導体とをリード線等で接
続する。その後、枠体5上面に蓋体をシーム溶接等によ
って接合する。しかる後、固定部材11の枠体5外側端面
に、光ファイバ12と戻り光防止用のアイソレーターとが
樹脂接着剤で接着された金属ホルダ13を、YAGレーザ
溶接等で接合することによって、製品としての光半導体
装置となる。
The optical semiconductor package 1 of the present invention comprises an LD,
In the case of optical communication in which an optical semiconductor element 2 such as a PD and a semiconductor element such as an LSI are housed, a through hole 10 penetrating the inside and outside is formed in one side portion 5d and a side portion 5c adjacent to the one side portion 5d is provided with a first hole. Mounting part 5 for the first and second input / output terminals 4a and 4b
The frame body 5 formed by forming a and 5b is bonded to the upper surface of the base body 3. A cylindrical fixing member 11 is joined around the outer opening of the frame body 5 of the through hole 10, and a transparent member 16 is joined inside the fixing member 11. The first and second input / output terminals 4 are attached to the mounting portions 5a and 5b.
A and 4b are fitted and joined. Then, the optical semiconductor element 2 and the semiconductor element are mounted on the mounting portion 3a via the thermoelectric cooling element 17 and are connected to each other by bonding wires. Further, the semiconductor element and one end of the line conductor 6 of the first input / output terminal 4a are connected by a bonding wire, and the thermoelectric cooling element 17
And the line conductor of the second input / output terminal 4b are connected by a lead wire or the like. Then, the lid is joined to the upper surface of the frame 5 by seam welding or the like. Thereafter, a metal holder 13 in which an optical fiber 12 and an isolator for preventing returning light are adhered with a resin adhesive to the outer end surface of the frame 5 of the fixing member 11 is joined by YAG laser welding or the like to obtain a product. Optical semiconductor device.

【0044】かくして、本発明の光半導体パッケージ
は、熱電冷却素子を第二の入出力端子に接続し、40GH
z帯域等の高周波信号が第一の入出力端子4aを流れる
ように機能分離することができ、その場合高周波信号の
共振による損失を小さくして高周波信号を円滑に伝送す
ることができる。また、枠体と基体の熱膨張差による歪
みが緩和され、枠体の変形を防ぎ、光結合効率の劣化を
効果的に防止する。その結果、本発明の光半導体パッケ
ージを用いて光半導体装置とした場合、光半導体素子の
光出力を効率良く光ファイバに伝達することができる。
Thus, in the optical semiconductor package of the present invention, the thermoelectric cooling element is connected to the second input / output terminal, and 40 GHz
The high frequency signal in the z band or the like can be functionally separated so as to flow through the first input / output terminal 4a, in which case the loss due to resonance of the high frequency signal can be reduced and the high frequency signal can be smoothly transmitted. Further, distortion due to the difference in thermal expansion between the frame body and the substrate is relaxed, deformation of the frame body is prevented, and deterioration of the optical coupling efficiency is effectively prevented. As a result, when an optical semiconductor device is formed using the optical semiconductor package of the present invention, the optical output of the optical semiconductor element can be efficiently transmitted to the optical fiber.

【0045】なお、本発明は上記実施の形態に限定され
ず、本発明の要旨を逸脱しない範囲内で種々の変更を行
うことは何等支障ない。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the present invention.

【0046】[0046]

【発明の効果】本発明の光半導体素子収納用パッケージ
は、上面に光半導体素子が載置される載置部を有する略
四角形の金属製の基体は、室温〜100℃での熱膨張係数
が枠体よりも大きい金属から成り、基体の上面に載置部
を囲繞するように取着され、一側部に貫通孔が形成され
ているとともに一側部に隣接する側部に形成された貫通
穴または側部の上端に内外を貫通するように形成された
切欠き部から成る入出力端子の取付部が形成された略四
角形の金属製の枠体は、一側部に隣接する側部の下端に
内外を貫通する切欠きが形成されているとともにその切
欠きに室温〜100℃での熱膨張係数が枠体より大きく基
体よりも小さい絶縁体から成る他の入出力端子が嵌着さ
れていることにより、枠体と基体の熱膨張差が緩和さ
れ、枠体の変形を防ぎ光結合効率を良好に保持すること
が可能となる。従って、動作時の高温状態でも光半導体
素子と光ファイバとの間で安定した光結合が維持でき、
光半導体装置として光出力の変動を±0.3dB以下にす
ることができる。
In the package for accommodating an optical semiconductor element of the present invention, the substantially rectangular metal base having the mounting portion on which the optical semiconductor element is mounted has a coefficient of thermal expansion at room temperature to 100 ° C. It is made of a metal that is larger than the frame, is attached to the upper surface of the base so as to surround the mounting portion, has a through hole in one side, and a through hole formed in the side adjacent to the one side. The substantially rectangular metal frame in which the mounting portion of the input / output terminal, which is formed by the notch formed so as to penetrate the inside or the outside at the upper end of the hole or the side portion, is formed on the side portion adjacent to one side portion. A notch that penetrates the inside and outside is formed at the lower end, and another input / output terminal made of an insulator whose thermal expansion coefficient at room temperature to 100 ° C is larger than that of the frame body and smaller than that of the base body is fitted in the notch. This reduces the difference in thermal expansion between the frame and the substrate, preventing deformation of the frame and If the efficiency and it is possible to satisfactorily retain. Therefore, stable optical coupling can be maintained between the optical semiconductor element and the optical fiber even at high temperature during operation,
As an optical semiconductor device, the fluctuation of the optical output can be suppressed to ± 0.3 dB or less.

【0047】本発明の光半導体素子収納用パッケージ
は、好ましくは、光半導体素子は、熱電冷却素子を介し
て基体の載置部に載置されるとともに入出力端子に電気
的に接続されており、熱電冷却素子は他の入出力端子に
電気的に接続されていることにより、40GHz帯域の高
周波信号を伝送させる接続端子や接続線を入出力端子に
接続し、熱電冷却素子の接続端子や接続線を他の入出力
端子側に接続することにより、熱電冷却素子の接続端子
や接続線から漏れる不要な電磁界による共振を小さくし
て、高周波信号を円滑に伝送させることができる。従っ
て、40GHz帯域での共振による損失を3dB以下に抑
制でき、また光半導体装置の性能を示す立ちあがり時間
も10psec以下を達成することが可能となる。
In the optical semiconductor element accommodating package of the present invention, preferably, the optical semiconductor element is mounted on the mounting portion of the base body through the thermoelectric cooling element and electrically connected to the input / output terminal. , The thermoelectric cooling element is electrically connected to the other input / output terminal, so that the connecting terminal or the connecting wire for transmitting the high frequency signal of 40 GHz band is connected to the input / output terminal, and the connecting terminal or the connecting terminal of the thermoelectric cooling element is connected. By connecting the wire to the other input / output terminal side, resonance due to an unnecessary electromagnetic field leaking from the connection terminal of the thermoelectric cooling element or the connection wire can be reduced, and a high frequency signal can be smoothly transmitted. Therefore, the loss due to resonance in the 40 GHz band can be suppressed to 3 dB or less, and the rise time, which shows the performance of the optical semiconductor device, can be 10 psec or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光半導体素子収納用パッケージについ
て実施の形態の一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an embodiment of an optical semiconductor element housing package of the present invention.

【図2】本発明の光半導体素子収納用パッケージの光フ
ァイバ固定部材側からみた場合の断面図である。
FIG. 2 is a cross-sectional view of the package for storing an optical semiconductor element of the present invention when viewed from the optical fiber fixing member side.

【図3】従来の光半導体素子収納用パッケージの断面図
である。
FIG. 3 is a sectional view of a conventional package for storing an optical semiconductor element.

【符号の説明】[Explanation of symbols]

1:光半導体素子収納用パッケージ 2:光半導体素子 3:基体 3a:載置部 4a:第一の入出力端子 4b:第二の入出力端子 5:枠体 5a:第一の入出力端子の取付部 5b:第二の入出力端子の取付部 5c:側部 5d:一側部 10:貫通穴 11:光ファイバ固定部材 12:光ファイバ 1: Package for storing optical semiconductor elements 2: Optical semiconductor element 3: Base 3a: Placement part 4a: First input / output terminal 4b: second input / output terminal 5: frame 5a: Mounting part for the first input / output terminal 5b: Mounting portion for second input / output terminal 5c: side part 5d: One side 10: Through hole 11: Optical fiber fixing member 12: Optical fiber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上面に光半導体素子が載置される載置部
を有する略四角形の金属製の基体と、該基体の上面に前
記載置部を囲繞するように取着され、一側部に貫通孔が
形成されているとともに前記一側部に隣接する側部に形
成された貫通穴または前記側部の上端に形成された切欠
き部から成る入出力端子の取付部が形成された略四角形
の金属製の枠体と、前記貫通孔に嵌着されるかまたは前
記貫通孔の枠体外側開口の周囲に一端が接合された筒状
の光ファイバ固定部材と、前記取付部に嵌着された入出
力端子とを具備した光半導体素子収納用パッケージにお
いて、前記基体は室温〜100℃での熱膨張係数が前記枠
体よりも大きい金属から成り、前記枠体は前記一側部に
隣接する前記側部の下端に内外を貫通する切欠きが形成
されているとともに該切欠きに室温〜100℃での熱膨張
係数が前記枠体より大きく前記基体よりも小さい絶縁体
から成る他の入出力端子が嵌着されていることを特徴と
する光半導体素子収納用パッケージ。
1. A substantially rectangular metal base having a mounting portion on which an optical semiconductor element is mounted, and a side portion attached to the upper surface of the base so as to surround the mounting portion. A through hole is formed in the side wall and a mounting portion for an input / output terminal is formed, which is formed of a through hole formed in a side portion adjacent to the one side portion or a notch formed in an upper end of the side portion. A rectangular metal frame body, a tubular optical fiber fixing member that is fitted into the through hole or one end of which is joined to the periphery of the frame body outside opening of the through hole, and is fitted to the mounting portion. In the package for storing an optical semiconductor element having an input / output terminal, the base body is made of a metal having a coefficient of thermal expansion at room temperature to 100 ° C. larger than that of the frame body, and the frame body is adjacent to the one side portion. A notch that penetrates the inside and outside is formed at the lower end of the side part that A package for accommodating an optical semiconductor element, characterized in that another input / output terminal made of an insulator having a coefficient of thermal expansion at room temperature to 100 ° C. larger than that of the frame body and smaller than that of the base body is fitted in the notch.
【請求項2】 前記光半導体素子は、熱電冷却素子を介
して前記基体の前記載置部に載置されるとともに前記入
出力端子に電気的に接続されており、前記熱電冷却素子
は前記他の入出力端子に電気的に接続されていることを
特徴とする請求項1記載の光半導体素子収納用パッケー
ジ。
2. The optical semiconductor element is mounted on the mounting portion of the base through a thermoelectric cooling element and is electrically connected to the input / output terminal, and the thermoelectric cooling element is the other one. The package for accommodating an optical semiconductor element according to claim 1, wherein the package is electrically connected to the input / output terminal of.
JP2002048839A 2002-02-25 2002-02-25 Optical semiconductor element storage package Expired - Fee Related JP3993774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002048839A JP3993774B2 (en) 2002-02-25 2002-02-25 Optical semiconductor element storage package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002048839A JP3993774B2 (en) 2002-02-25 2002-02-25 Optical semiconductor element storage package

Publications (2)

Publication Number Publication Date
JP2003249710A true JP2003249710A (en) 2003-09-05
JP3993774B2 JP3993774B2 (en) 2007-10-17

Family

ID=28661505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048839A Expired - Fee Related JP3993774B2 (en) 2002-02-25 2002-02-25 Optical semiconductor element storage package

Country Status (1)

Country Link
JP (1) JP3993774B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187277A (en) * 2013-03-25 2014-10-02 Kyocera Corp Package for housing optical semiconductor element, and optical semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187277A (en) * 2013-03-25 2014-10-02 Kyocera Corp Package for housing optical semiconductor element, and optical semiconductor device

Also Published As

Publication number Publication date
JP3993774B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
JP2002158391A (en) Optical semiconductor air-tight sealed vessel, optical semiconductor module, and optical fiber amplifier
JP2001060635A (en) Optical semiconductor element housing package
JP4605957B2 (en) Package for storing semiconductor elements
JP3993774B2 (en) Optical semiconductor element storage package
JP3314163B2 (en) Package for storing semiconductor elements
JP2002184888A (en) Input/output terminal and semiconductor element housing package
JP3673491B2 (en) I / O terminal and semiconductor element storage package
JP2002232058A (en) Package for storing optical semiconductor element
JP4172783B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP3881554B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP4514647B2 (en) Electronic component storage package and electronic device
JP4045110B2 (en) Package for storing semiconductor elements
JP2004140188A (en) Package for storing semiconductor element
JP2003037196A (en) Package for housing optical semiconductor element
JP2003318303A (en) Input and output terminal, package for containing semiconductor device, and semiconductor device
JP2004259609A (en) Package for semiconductor device housing
JP2004165507A (en) Package for storing semiconductor element
JP2004152826A (en) Package for housing semiconductor device
JP2004063916A (en) Package for containing optical semiconductor element, and optical semiconductor device
JP2001217331A (en) Package for accommodating semiconductor element
JP2004259972A (en) Package for housing semiconductor element
JP2003198027A (en) Package for optical semiconductor element
JP2001102636A (en) Package for housing optical semiconductor element
JP2004200242A (en) Package for housing semiconductor element
JP2003179293A (en) Package for containing optical semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees