JP2003247919A - Sampling device and sampling method for underwater pollutant - Google Patents

Sampling device and sampling method for underwater pollutant

Info

Publication number
JP2003247919A
JP2003247919A JP2002047612A JP2002047612A JP2003247919A JP 2003247919 A JP2003247919 A JP 2003247919A JP 2002047612 A JP2002047612 A JP 2002047612A JP 2002047612 A JP2002047612 A JP 2002047612A JP 2003247919 A JP2003247919 A JP 2003247919A
Authority
JP
Japan
Prior art keywords
water
collecting
adsorbent
particles
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002047612A
Other languages
Japanese (ja)
Inventor
Kohei Urano
紘平 浦野
Hiroyoshi Koyama
裕喜 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2002047612A priority Critical patent/JP2003247919A/en
Publication of JP2003247919A publication Critical patent/JP2003247919A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sampling device and a sampling method for underwater pollutant suitable as a means for catching pollutant over a long period of time to accurately measure a small amount of various pollutants suspended or dissolved in various environment water or waste water, capable of easily and securely catching a small amount of pollutant in a large amount of water, and recovering it with a high concentration magnification ratio. <P>SOLUTION: This sampling device or this sampling method for underwater pollutant comprises a filtering means for catching suspended substance in a water sample by filtering through a stack of particles comprising different average particle diameters, the larger, the higher they position, and an absorption means in which adsorbent is filled to catch dissolved substance in the water sample by absorption. The filtering and absorption means are connected in series, and a pump is connected with these means to allow the water sample to pass through continuously. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水中汚染物質の採
取装置及び採取方法に関し、詳しくは、環境水又は排水
中に微量存在する汚染物質を高感度で測定するために、
簡易かつ確実に大量の水から微量の汚染物質を長時間捕
集し、高濃縮倍率で回収することが可能な水中汚染物質
の採取装置及び採取方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device and a method for collecting water pollutants, and more specifically, for highly sensitively measuring pollutants present in environmental water or waste water,
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aquatic pollutant sampling apparatus and sampling method capable of simply and reliably collecting a trace amount of a pollutant from a large amount of water for a long time and recovering it at a high concentration ratio.

【0002】[0002]

【従来の技術】水中の汚染物質の測定分野においては、
古くから水試料をバケツやひしゃく等で少量の試料を短
時間に採水し、その後に有機溶剤で抽出するなどの方法
が多く使用されている。この方法は、特定の装置を必要
としないという特徴を有するものの、ダイオキシン類等
の微量の汚染物質を大量の水から回収することには、容
器や輸送などに様々な困難を伴い、また、変動する環境
水又は排水の瞬間的な測定値しか得られないという問題
点がある。さらに、採水の個人的な技術によって、懸濁
物質等の混入量が変動し、懸濁物質に吸着しやすい汚染
物質の再現性のある測定値が得られないという大きな問
題点がある。
2. Description of the Related Art In the field of measuring pollutants in water,
Since ancient times, a method has been widely used in which a small amount of water sample is sampled in a short time with a bucket or a dipper, and then extracted with an organic solvent. Although this method has the feature that it does not require a specific device, collecting trace amounts of pollutants such as dioxins from a large amount of water involves various difficulties such as containers and transportation, and also changes There is a problem in that only instantaneous measured values of environmental water or drainage can be obtained. Furthermore, there is a big problem that the amount of suspended substances mixed in varies depending on the personal technique of water sampling, and reproducible measurement values of pollutants easily adsorbed to suspended substances cannot be obtained.

【0003】一方、ごく稀に、ろ過・吸着方式による採
水器が使用されている。この捕集方法は、懸濁物質濃度
が低い水試料については、長時間、大量の水から捕集で
きるものの、ろ過材としてろ紙を用い、吸着剤として有
機汚染物質を回収するためにイオン交換性能のない非イ
オン交換性吸着樹脂を用い、吸着した有機汚染物質を有
機溶剤で脱離回収することを基本としている。また、交
流電源で駆動する大型のポンプを使用して、通水後の水
は開放系に排出することを基本としている。しかしなが
らこのような捕集方法においては、懸濁物質濃度の高い
汚染度の高い環境水あるいは排水では、ろ紙が短時間で
目詰まりして通水が困難になる。また、目詰まりしたろ
紙の圧力損失に加えて、水面から装置までの高さだけの
揚水を行う圧力差に耐えるだけの大型の交流駆動のポン
プを使用しなければならないため、交流電源がない野外
で使用することができないという問題点がある。また、
大型のろ紙と大量の吸着剤を用いているため、捕集後に
汚染物質を抽出する際にも大量の有機溶剤を必要とする
という問題点がある。さらに、イオン交換性能のない吸
着樹脂を用いているために、金属類、亜金属類、あるい
はフッ素、ホウ素等のイオン性の汚染物質は回収できな
いという問題点もある。
On the other hand, very rarely, a water sampler by a filtration / adsorption system is used. This collection method can collect a large amount of water from a large amount of water for a long time for a water sample with a low concentration of suspended substances, but uses a filter paper as a filter material and uses an ion exchange performance to collect organic pollutants as an adsorbent. It is basically based on the use of non-ion-exchangeable adsorbent resin, which does not have a non-ion exchange property, and desorbs and collects the adsorbed organic pollutants with an organic solvent. In addition, it is basically used to discharge the water after passing water to an open system by using a large pump driven by an AC power source. However, in such a collection method, environmental water or drainage having a high concentration of suspended matter and a high degree of pollution causes the filter paper to be clogged in a short time, making it difficult to pass water. In addition to the pressure loss of the clogged filter paper, it is necessary to use a large AC drive pump that can withstand the pressure difference that pumps only the height from the water surface to the device. There is a problem that it cannot be used in. Also,
Since a large filter paper and a large amount of adsorbent are used, there is a problem that a large amount of organic solvent is required when extracting contaminants after collection. Furthermore, since an adsorption resin having no ion exchange performance is used, there is a problem that metals, submetals, or ionic contaminants such as fluorine and boron cannot be recovered.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記実情に
鑑みなされたものであり、その課題は、各種の環境水あ
るいは排水中に懸濁又は溶存している様々な微量汚染物
質の濃度を正確に測定するために、長時間汚染物質を捕
集する手段として好適であり、大量の水の中の微量汚染
物質を、簡易かつ確実に捕集し、高濃縮倍率で回収する
ことが可能な、水中汚染物質の採取装置及び採取方法を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its object is to determine the concentration of various trace pollutants suspended or dissolved in various environmental waters or wastewaters. For accurate measurement, it is suitable as a means to collect pollutants for a long time, and it is possible to collect trace pollutants in a large amount of water easily and surely and to recover them at a high concentration ratio. To provide a device and a method for collecting underwater pollutants.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る水中汚染物質の採取装置は、平均粒径
の異なる粒子が、より大きい粒子がより上に積層されて
充填され、水試料中の懸濁物質をろ過により捕集するろ
過手段と、吸着剤が充填され、水試料中の溶存物質を吸
着により捕集する吸着手段とが直列に接続され、これら
手段に、水試料を連続通水可能にポンプが接続されてい
ることを特徴とするものからなる。
In order to solve the above-mentioned problems, an apparatus for collecting underwater pollutants according to the present invention comprises particles having different average particle diameters, larger particles being stacked on top of each other, and filled. A filter means for collecting suspended matter in a water sample by filtration and an adsorbing means filled with an adsorbent for collecting dissolved substances in a water sample by adsorption are connected in series to these means. It is characterized in that a pump is connected for continuous water flow.

【0006】また、本発明に係る水中汚染物質の採取方
法は、直列に接続した、平均粒径の異なる粒子をより大
きい粒子をより上に積層して充填したろ過手段と、吸着
剤を充填した吸着手段とに、ポンプを用いて水試料を連
続的に通水し、各々の手段で水試料中の懸濁物質と溶存
物質を捕集し、水試料中の微量汚染物質を濃縮回収する
ことを特徴とする方法からなる。
In addition, the method for collecting underwater pollutants according to the present invention comprises a filtration means which is connected in series and in which larger particles are stacked on top of particles having different average particle sizes, and an adsorbent is filled. A water sample is continuously passed through the adsorption means using a pump, suspended substances and dissolved substances in the water sample are collected by each means, and trace contaminants in the water sample are concentrated and recovered. The method is characterized by.

【0007】この本発明に係る装置及び方法は、水試料
を粒径の異なる粒子を大きい粒子を上に積層して充填し
た容器からなるろ過手段と、吸着剤を充填した容器から
なる吸着手段とが直列に接続され、ポンプを用いて長時
間連続的に、好ましくは24時間以上連続的に通水し
て、各々の容器で懸濁物質と溶存物質を捕集できるよう
にしたものであり、捕集した後、有機溶剤又は無機化合
物の水溶液等で測定目的の汚染物質を抽出・脱離し、濃
縮回収することを特徴とするものである。
This apparatus and method according to the present invention comprises a filtering means comprising a container in which particles of different sizes are stacked and filled with a water sample, and an adsorption means comprising a container filled with an adsorbent. Are connected in series, and water is continuously supplied for a long time using a pump, preferably for 24 hours or more, so that suspended substances and dissolved substances can be collected in each container. After being collected, the pollutant for measurement is extracted and desorbed with an organic solvent or an aqueous solution of an inorganic compound, and then concentrated and recovered.

【0008】そして、懸濁物質の捕捉には、短時間での
目詰まりを防ぐために、直径2ミリメートル以下のほぼ
球形の粒子を用いることが好ましく、とくにガラス製ま
たはセラミック製の粒子を用いることが好ましい。ま
た、装置の入口、出口にパイプ又はチューブを接続し、
その先を採水源の水中に入れておき、つまり、上記ろ過
手段、吸着手段およびポンプを備えた系における水試料
の採取口および放流口を試料採水源の水中に入れてお
き、あらかじめ系内を完全に水で満たして揚水のための
圧力損失を実質的になくした後にポンプを駆動して通水
し、水試料中の微量汚染物質を濃縮回収することが好ま
しい。このように揚水のための圧力損失をなくした後に
ポンプを駆動することによって、ポンプの消費電力を著
しく低減することが可能となる。したがって、ポンプと
して、毎分35ミリリットル以上(24時間で50リッ
トル以上に相当し、大量の試料水から微量の汚染物質を
濃縮回収するのに望ましい通水量である。)の流量で、
かつ24時間以上、汎用の鉛蓄電池等の直流電源で駆動
できる小型定量ポンプを用いることが可能となる。
In order to prevent clogging in a short time, it is preferable to use substantially spherical particles having a diameter of 2 mm or less, and particularly glass or ceramic particles for trapping the suspended matter. preferable. Also, connect pipes or tubes to the inlet and outlet of the device,
The tip is placed in the water of the water sampling source, that is, the sampling port and outlet of the water sample in the system equipped with the above-mentioned filtration means, adsorption means and pump are put in the water of the sample water source, and the inside of the system is set in advance. After completely filling with water to substantially eliminate the pressure loss for pumping, it is preferable to drive the pump to pass water to concentrate and collect trace contaminants in the water sample. By driving the pump after eliminating the pressure loss for pumping water in this way, it is possible to significantly reduce the power consumption of the pump. Therefore, as a pump, at a flow rate of 35 ml or more per minute (corresponding to 50 liters or more in 24 hours, which is a desirable flow rate for concentrating and recovering a trace amount of contaminants from a large amount of sample water).
In addition, it is possible to use a small metering pump that can be driven by a DC power source such as a general-purpose lead storage battery for 24 hours or more.

【0009】また、吸着剤として非イオン交換性吸着樹
脂又は炭素系吸着剤を用いて、ダイオキシン類、界面活
性剤類、プラスチック添加剤類、農薬類などの様々な有
機物質等を捕集することができる。また、有機溶剤で抽
出・脱離回収するほかに、吸着剤として非イオン交換性
吸着樹脂、炭素系吸着剤、イオン交換樹脂、キレート樹
脂又は活性アルミナ等のイオン交換性の無機吸着剤を用
いることにより、これに水試料を通して金属類、亜金属
類、フッ素、ホウ素等の様々なイオン性の汚染物質を吸
着させた後、酸、アルカリ又はそれらの塩などの無機化
合物の水溶液を通して抽出・脱離し、イオン性の汚染物
質をも回収可能とすることができる。
Further, a non-ion exchange adsorption resin or a carbon-based adsorbent is used as the adsorbent to collect various organic substances such as dioxins, surfactants, plastic additives, pesticides and the like. You can In addition to extraction / desorption / recovery with an organic solvent, use an ion-exchangeable inorganic adsorbent such as non-ion-exchangeable adsorption resin, carbon-based adsorption agent, ion-exchange resin, chelate resin or activated alumina as the adsorption agent. After adsorbing various ionic pollutants such as metals, submetals, fluorine, and boron through a water sample, extract and desorb through an aqueous solution of an inorganic compound such as acid, alkali, or a salt thereof. It is also possible to recover ionic pollutants.

【0010】[0010]

【発明の実施の形態】以下、本発明について、望ましい
実施の形態とともに詳細に説明するが、本発明はこれら
態様に限定されるものではない。本発明の装置及び方法
においては、直列に接続された、粒子が充填されたろ過
手段により水試料中の懸濁物質がろ過により捕集され、
吸着剤が充填された吸着手段により水試料中の溶存物質
が吸着により捕集される。ろ過手段においては、後述の
試験例1に示すように、水試料を平均粒径2ミリメート
ル以下で、平均粒径が互いに異なる粒子を、粒径のより
大きい粒子を上に積層して充填した容器で懸濁物質を捕
捉することによって、目詰まりを防ぐことができ、高流
速でも、長時間通水することが可能になる。粒子として
は、砂、アンスラサイト(無煙炭)、プラスチック製粒
子、ガラス製粒子、セラミック製粒子など、多孔質でな
い粒子であれば、いかなる粒子を用いてもよいが、溶出
物の心配がないガラス製粒子又はセラミック製粒子が好
ましく、とくにほぼ球形で、均一であるため、高流速で
通水しても圧力損失が小さく保て、取扱性も優れている
ガラスビーズ又はセラミックビーズが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below together with preferred embodiments, but the present invention is not limited to these modes. In the device and method of the present invention, suspended particles in a water sample are collected by filtration by a particle-filled filtration means connected in series,
The dissolved substance in the water sample is collected by adsorption by the adsorption means filled with the adsorbent. In the filtering means, as shown in Test Example 1 to be described later, a container in which a water sample having an average particle diameter of 2 mm or less and particles having different average particle diameters are stacked and filled with particles having a larger particle diameter. By capturing the suspended solids with, it is possible to prevent clogging and allow water to flow for a long time even at a high flow rate. The particles may be any non-porous particles such as sand, anthracite, anthracite, plastic particles, glass particles, ceramic particles, etc. Particles or particles made of ceramics are preferable, and particularly glass beads or ceramic beads, which have a substantially spherical shape and are uniform, keep pressure loss small even when water is passed at a high flow rate and have excellent handleability, are preferable.

【0011】また、後述の試験例2に示すように、初期
的に系内を満水として揚水のための圧力損失を実質的に
なくするようにした方法によれば、毎分35ミリリット
ル以上(24時間で50リットル以上に相当)の流量か
つ24時間以上、蓄電池等の直流電源で駆動するポンプ
を使用することも可能となる。
Further, as shown in Test Example 2 which will be described later, according to a method in which the system is initially filled with water to substantially eliminate the pressure loss for pumping, 35 ml / min or more (24 It is also possible to use a pump driven by a DC power source such as a storage battery for a flow rate of 50 liters or more per hour) and for 24 hours or more.

【0012】これらの本発明における基本的な工夫によ
る効果を確認するために、まず、次に説明するような試
験を行った(試験例1、2)。
In order to confirm the effects of these basic devices in the present invention, first, the following tests were conducted (Test Examples 1 and 2).

【0013】試験例1 直径11センチメートル(面積約95平方センチメート
ル)のろ紙、又は直径10.5センチメートル(断面積
が約87平方センチメートル)の容器に平均粒径が0.
4ミリメートルの砂を深さ6センチメートル充填したも
の、あるいは平均粒径0.4ミリメートルの砂の上に平
均粒径0.8ミリメートルのアンスラサイト(無煙炭)
をそれぞれ深さ3センチメートルずつ充填したもの、あ
るいは平均粒径が0.4ミリメートルと0.8ミリメー
トル及び2ミリメートルの3種類のガラスビーズを大き
い方を上に積層して、それぞれ深さ2センチメートルず
つ、充填した容器を用いて、目詰まりしやすい好気性微
生物群を1リットルあたり約10ミリグラム含む試料水
を、毎分500ミリリットルの流速で加圧通水した場合
の圧力損失を測定した結果を表1に示す。
Test Example 1 A filter paper having a diameter of 11 cm (area: about 95 square centimeters) or a container having a diameter of 10.5 cm (cross-sectional area: about 87 square centimeters) had an average particle size of 0.1.
Filled with 4 mm of sand to a depth of 6 cm, or anthracite with an average particle size of 0.8 mm on sand with an average particle size of 0.4 mm
3 cm deep each, or 3 types of glass beads with an average particle size of 0.4 mm, 0.8 mm and 2 mm are stacked on top of each other and the depth is 2 cm. The result of measuring the pressure loss when pressurized water was passed at a flow rate of 500 milliliters per minute with a sample water containing about 10 milligrams of aerobic microorganisms that tend to be clogged per liter using a container filled with each meter. Is shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】表1に示すように、ろ紙は、すぐに目詰ま
りして4時間で圧力損失が33kPaに達してそれ以上
は所定量の通水ができず、砂は12時間以上の通水がで
きなかったのに対して、粒径の異なる粒子の大きいもの
を上に積層して充填した容器では24時間以上の通水が
可能であることが示された。とくに、3種類の粒径のガ
ラスビーズを充填した装置では、水を24時間通しても
圧力損失が著しく小さく、目詰まりしにくいことが明ら
かになった。これは、ガラスビーズが球形で均一である
ために、砂やアンスラサイトなどのような不定形の従来
の天然ろ過材よりも圧力損失が生じにくく、かつ大きな
粒径のガラスビーズの層で大きな懸濁物が、中位の粒径
のガラスビーズの層で少し小さめの懸濁物質が、小さな
粒径のガラスピーズ層で小さな懸濁物質が捕捉されるこ
とによって、容器全体が有効に働くことによる。
As shown in Table 1, the filter paper was immediately clogged and the pressure loss reached 33 kPa in 4 hours, and the specified amount of water could not be passed beyond that, and the sand could not be passed for 12 hours or more. While it was not possible, it was shown that water can be passed for 24 hours or more in a container in which large particles having different particle diameters are stacked and filled. In particular, it was revealed that in the device filled with glass beads having three kinds of particle diameters, the pressure loss was extremely small even when water was passed for 24 hours, and clogging was difficult. This is because the glass beads are spherical and uniform, so pressure loss is less likely to occur than conventional amorphous natural filter media such as sand and anthracite, and a large suspension of glass beads with a large particle size is used. Due to the fact that turbidity traps a little smaller suspended matter in a layer of medium-sized glass beads and a smaller suspended matter in a layer of smaller-sized glass beads, the whole container works effectively. .

【0016】ポンプには、ベローズポンプ、ダイアフラ
ムポンプ、ギアポンプ、プランジャーポンプ、チューブ
ポンプなど、いかなる形式のポンプを用いてもよいが、
試験例2に示すように、装置の出口にパイプ又はチュー
ブを接続し、その先を河川やマンホール等の採水源の水
中に入れ、あらかじめ系内を完全に水で満たして連通系
とすることによって、揚水のための圧力損失をなくした
後に、ポンプを駆動する方法が、消費電力を著しく削減
させるために有効であることが判明した。また、この方
法及び複数粒径のガラスビーズ等を積層した圧力損失の
著しく小さなろ過材容器を使用すること等によって、ポ
ンプが毎分35ミリリットル以上(24時間で50リッ
トル以上に相当)の流量であっても、24時間以上の
間、汎用の鉛蓄電池等の直流電源でポンプを駆動するこ
とが容易になり、交流電源のない野外の任意地点での捕
集が可能となる。
As the pump, any type of pump such as a bellows pump, a diaphragm pump, a gear pump, a plunger pump or a tube pump may be used.
As shown in Test Example 2, by connecting a pipe or tube to the outlet of the device and putting the tip into the water of a water source such as a river or manhole, the system is completely filled with water in advance to form a communication system. It has been found that the method of driving the pump after eliminating the pressure loss for pumping is effective for significantly reducing the power consumption. In addition, this method and the use of a filter medium container with a significantly small pressure loss in which glass beads having a plurality of particle diameters are laminated enables the pump to operate at a flow rate of 35 ml or more per minute (equivalent to 50 liters or more in 24 hours). Even if there is, it becomes easy to drive the pump with a DC power source such as a general-purpose lead storage battery for 24 hours or more, and it is possible to collect at an arbitrary point outside the AC power source.

【0017】試験例2 ”テフロン”(登録商標)製のチューブを河川水に入
れ、5メートルの高さの橋の上に置いたろ過材容器と吸
着剤容器につなぎ、消費電力10W、最大流量が毎分1
リットルのベローズポンプを取り付けて河川水を吸引し
たところ、全く吸引できなかった。しかし、ポンプの出
口にビニールホースをつないでその先を河川内に入れ、
初めにプラスチック製の簡易足踏みポンプで水を吸引し
て系内を水で満たした後にポンプのスイッチを入れて起
動したところ、毎分500ミリリットル以上の通水が可
能となった。
Test Example 2 A tube made of "Teflon" (registered trademark) was put into river water and connected to a filter medium container and an adsorbent container placed on a bridge of 5 m in height, power consumption 10 W, maximum flow rate. Is 1 per minute
When I attached a liter bellows pump and sucked river water, I could not suck it at all. However, I connected a vinyl hose to the outlet of the pump and put the end into the river,
First, when a simple plastic foot pump sucked water to fill the system with water and then turned on the pump to start up, 500 ml / min or more of water could be passed.

【0018】本発明の基本的な構成例を図1に示す。懸
濁物質捕集用ろ過材容器からなるろ過手段1内に、異な
る粒径の粒子が大きい方を上に層状に積層されて充填さ
れ、充填粒子としては、ガラス製やセラミック製の粒
子、とくに平均粒径2mm以下の球形の粒子が好ましく
用いられる。溶存物質捕集用吸着剤容器からなる吸着手
段2内には、非イオン交換性吸着樹脂や炭素系吸着剤、
イオン交換樹脂、キレート樹脂、イオン交換性無機吸着
剤などから選ばれた吸着剤が充填される。これらろ過手
段1と吸着手段2がこの順に直列に接続され、ポンプ3
により水試料が通水され、主として、ろ過手段1により
懸濁物質が、吸着手段2により溶存物質が、連続的に捕
集される。ポンプ3としては、小型定量ポンプが好まし
く、前述したように、水で満たした連通系を形成したの
ち連続的に通水することが好ましい。捕集した微量汚染
物質を効率よく濃縮回収するためには、毎分35ミリリ
ットル以上の流量とすることが好ましく、かつ、野外で
も連続運転できるように、24時間以上、蓄電池等によ
り直流駆動できるものが好ましい。所定の時間、たとえ
ば24時間以上捕集された水中汚染物質は、抽出・脱離
される。抽出・脱離は有機溶剤や無機塩水溶液で行うこ
とができる。微量汚染物質であっても、長時間効率よく
連続的に捕集されているので、高濃縮された状態で抽出
・脱離が可能となる。さらに、必要に応じて濃縮し、そ
れを用いて試料の分析を行うことができる。
FIG. 1 shows a basic configuration example of the present invention. Particles having different particle sizes are stacked and packed in layers in the filtering means 1 composed of a filter material container for collecting suspended solids, and the packing particles include glass and ceramic particles, particularly Spherical particles having an average particle diameter of 2 mm or less are preferably used. In the adsorption means 2 composed of an adsorbent container for collecting dissolved substances, a non-ion-exchangeable adsorbent resin, a carbon-based adsorbent,
An adsorbent selected from an ion exchange resin, a chelate resin, an ion exchangeable inorganic adsorbent, etc. is filled. These filtering means 1 and adsorption means 2 are connected in series in this order, and the pump 3
The water sample is passed through, and mainly the suspended substance is continuously collected by the filtration unit 1 and the dissolved substance is continuously collected by the adsorption unit 2. As the pump 3, a small metering pump is preferable, and as described above, it is preferable to form a communication system filled with water and then continuously supply water. In order to efficiently collect and collect the collected trace pollutants, it is preferable to set the flow rate to 35 ml or more per minute, and it can be driven by direct current by a storage battery for 24 hours or more so that it can be continuously operated outdoors. Is preferred. The water pollutants collected for a predetermined time, for example, 24 hours or more, are extracted and desorbed. Extraction and desorption can be performed with an organic solvent or an aqueous solution of an inorganic salt. Even trace amounts of pollutants can be extracted and desorbed in a highly concentrated state because they are continuously collected efficiently for a long time. Further, it can be concentrated if necessary and used for analysis of the sample.

【0019】図2は、より具体的な態様例を示してお
り、河川に対して本発明に係る装置を適用した場合の概
略構成を示している。本発明に係る水中汚染物質の採取
装置11が、試料採取源としての河川12に対して設け
られ、採取装置11においては、たとえば平均粒径の異
なるガラスビーズ13が、上流側から順に大粒径のもの
13a、中粒径のもの13b、小粒径のもの13cと層
状に積層、充填された容器からなるろ過手段14と、非
イオン交換性吸着樹脂等からなる吸着剤15が充填され
た吸着手段16とが、流れ方向にこの順に直列に接続さ
れている。吸着手段16の下流側にポンプ17が配置さ
れており、これらにより構成される系18における水試
料の採取口19および放流口20が河川12の水中に入
れられ、あらかじめ系18内が水で満たされて揚水のた
めの圧力損失がなくされた後、ポンプ17で通水できる
ようになっている。
FIG. 2 shows a more specific example of an embodiment, and shows a schematic configuration when the apparatus according to the present invention is applied to a river. An underwater pollutant sampling device 11 according to the present invention is provided for a river 12 as a sampling source. In the sampling device 11, for example, glass beads 13 having different average particle diameters have a large particle size in order from the upstream side. No. 13a, medium particle size 13b, and small particle size 13c are laminated and packed in a filtering means 14, and an adsorbent 15 filled with an adsorbent 15 made of non-ion-exchangeable adsorbent resin or the like. The means 16 are connected in series in this order in the flow direction. A pump 17 is arranged on the downstream side of the adsorbing means 16, a water sample collection port 19 and a discharge port 20 in a system 18 constituted by these are put into the water of the river 12 and the system 18 is filled with water in advance. After the pressure loss for pumping up is eliminated, water can be passed by the pump 17.

【0020】以下に、本発明を実施例に基づいて説明す
る。 実施例1 粒径0.3ミリメートル、0.6ミリメートル及び2ミ
リメートルの3種類のガラスビーズを断面積約87平方
センチメートル、深さ2センチメートルずつ充填したろ
過材容器と、多孔質非イオン交換性樹脂吸着剤であるポ
リスチレン製吸着樹脂を100ミリリットル充填した吸
着剤容器とを直列に接続し、懸濁物質濃度が1リットル
あたり約7ミリグラムの河川水に、PCBを1リットル
あたり5ナノグラムとなるだけ加えた試料水を、毎分4
00ミリリットルの速度で24時間通して吸着後、ガラ
スビーズ充填容器、及び吸着剤充填容器のそれぞれを、
ジクロロメタンでソックスレー抽出してPCBの回収率
を求めた結果、PCBが97%回収され、本発明の採取
方法で、微量の非イオン性有機汚染物質を容易に、ほぼ
完全に回収可能であることが示された。
The present invention will be described below based on examples. Example 1 A filter medium container filled with three types of glass beads having particle sizes of 0.3 mm, 0.6 mm and 2 mm, each having a cross-sectional area of about 87 cm 2 and a depth of 2 cm, and a porous non-ion exchange resin. An adsorbent container filled with 100 ml of polystyrene adsorbent resin, which is an adsorbent, was connected in series, and PCB was added to river water with a concentration of suspended substances of about 7 mg per liter to 5 nanograms per liter. Sample water 4 min.
After adsorbing for 24 hours at a speed of 00 ml, each of the glass bead-filled container and the adsorbent-filled container was
As a result of soxhlet extraction with dichloromethane to obtain a PCB recovery rate, it was found that 97% of PCB was recovered, and that a trace amount of nonionic organic pollutants can be easily and almost completely recovered by the sampling method of the present invention. Was shown.

【0021】実施例2 実施例1と同じろ過材充填容器と吸着剤充填容器装置と
自動車用バッテリーで駆動する小型定量ポンプとを接続
した装置を用い、ポンプ出口にビニール管をつないで、
河川水中に入れ、あらかじめ足踏みポンプで装置内を水
で満たしてからポンプを駆動させ、懸濁物質濃度が1リ
ットルあたり約8ミリグラムの河川水を毎分400ミリ
リットルの速度で24時間、約580リットルを通して
捕集後、ガラスビーズ充填容器に空気を通して水を除い
た後、エチルアルコール約300ミリリットルで懸濁物
を洗い落として集め、この懸濁物に80℃に加熱したト
ルエンを200ミリリットル通して懸濁物に含まれてい
た汚染物質を抽出した。また、吸着剤容器にはエチルア
ルコール約200ミリリットルを通した後、50℃に加
熱したトルエンを300ミリリットル通して吸着されて
いた汚染物質を抽出した。これらの溶剤を合わせて、ロ
ータリーエバポレーターで濃縮後、JIS法に従ってダ
イオキシン類を測定した結果の例を表2に示す。本発明
の装置及び方法で、ごく微量のダイオキシン類が確実に
捕集され、高濃縮されて、容易に分析できることが示さ
れた。
Example 2 Using the same device as in Example 1 in which a filter medium filling container, an adsorbent filling container device and a small metering pump driven by an automobile battery were connected, a vinyl pipe was connected to the pump outlet,
Put it in river water, fill the inside of the device with a foot pump in advance, and then drive the pump. About 8 milligrams of suspended water concentration per liter of river water is 400 milliliters per minute for 24 hours, about 580 liters. After collecting through the glass beads, air was passed through a glass bead-filled container to remove water, and the suspension was washed off with about 300 ml of ethyl alcohol and collected, and 200 ml of toluene heated to 80 ° C was passed through the suspension to suspend it. The contaminant contained in the product was extracted. Further, after passing about 200 ml of ethyl alcohol through the adsorbent container, 300 ml of toluene heated to 50 ° C. was passed through to extract the adsorbed contaminants. Table 2 shows an example of the results of measuring dioxins according to the JIS method after concentrating these solvents together using a rotary evaporator. It has been shown that the device and method of the present invention reliably collect a very small amount of dioxins, highly concentrate them, and easily analyze them.

【0022】[0022]

【表2】 [Table 2]

【0023】実施例3 実施例2と同じ装置を用いて、同様に河川水を毎分10
0ミリリットル、8時間通水して汚染物質を捕集し、抽
出し、公定法に従って濃縮、精製後、農薬類の分析を行
った結果の例を表3に示す。すなわち、本発明の方法
で、河川水中の微量の農薬類が容易に採取、分析できる
ことが示された。
Example 3 Using the same apparatus as in Example 2, river water was similarly supplied at a rate of 10 minutes per minute.
Table 3 shows an example of the results of pesticide analysis after collecting and extracting pollutants by passing water through 0 ml for 8 hours, concentrating and purifying according to official methods. That is, it was shown that the method of the present invention enables easy collection and analysis of trace amounts of pesticides in river water.

【0024】[0024]

【表3】 [Table 3]

【0025】実施例4 実施例2と同じ装置に、下水処理場の放流水を毎分10
0ミリリットルで2時間通水ごとに採取し、懸濁物質は
ソックスレー抽出し、吸着樹脂はエチルアルコールを2
00ミリリットル通して脱離し、濃縮後、フタル酸ジ−
2−エチルヘキシルを測定した結果を表4に示す。すな
わち、本発明の方法で、下水中の微量のフタル酸エステ
ル類濃度が容易に分析でき、濃度変化が容易に監視でき
ることが示された。
Example 4 The same equipment as in Example 2 was charged with discharged water from a sewage treatment plant at 10 min / min.
Soxhlet extract the suspended solids, and collect ethyl alcohol as the adsorbent resin.
After desorbing through 00 ml and concentrating, di-phthalate
Table 4 shows the measurement results of 2-ethylhexyl. That is, it has been shown that the method of the present invention can easily analyze the concentration of a small amount of phthalate esters in sewage and easily monitor the change in concentration.

【0026】[0026]

【表4】 [Table 4]

【0027】実施例5 実施例1と同じ装置で、吸着剤としてキレート樹脂を2
0ミリリットル用いて、廃棄物埋立地から浸出した排水
を毎分100ミリリットル、1時間通水し、1規定の塩
酸溶液を60ミリリットル通して脱離して、分析した結
果を表5に示す。すなわち、本発明の装置及び方法で、
銅、亜鉛、鉛、水銀等の極微量のイオン性汚染物質を高
濃縮して回収でき、容易に分析できることが示された。
Example 5 The same apparatus as in Example 1 was used, except that a chelate resin was used as an adsorbent.
Using 0 ml, 100 ml / min of drained water leached from the landfill for 1 hour was passed, and 60 ml of 1N hydrochloric acid solution was passed through to be desorbed, and the analysis results are shown in Table 5. That is, in the device and method of the present invention,
It was shown that trace amounts of ionic pollutants such as copper, zinc, lead, and mercury could be highly concentrated and recovered, and could be easily analyzed.

【0028】[0028]

【表5】 [Table 5]

【0029】なお、吸着剤によって汚染物質を確実に回
収するためには、実施例にあるように、毎分吸着剤体積
と等量以上かつ10倍以下の速度で通水して汚染物質を
吸着させた後、有機溶媒、又は酸、アルカリあるいはそ
れらの塩などの無機化合物の溶液を吸着剤体積の2倍以
上かつ10倍以下の量だけ通して吸着した汚染物質を脱
離した後、10ミリリットル以下かつ沈殿物等が析出し
ない適切な量まで有機溶剤又は水を蒸発させることによ
って、汚染物質を高濃縮して回収することが好ましい。
In order to surely collect the pollutant by the adsorbent, as in the embodiment, water is passed at a rate equal to or more than the volume of the adsorbent per minute and 10 times or less to adsorb the pollutant. Then, an organic solvent or a solution of an inorganic compound such as an acid, an alkali, or a salt thereof is passed through an amount not less than 2 times and not more than 10 times the adsorbent volume to desorb adsorbed contaminants, and then 10 ml It is preferable to highly concentrate and recover the pollutant by evaporating the organic solvent or water to an appropriate amount below and without causing precipitation or the like.

【0030】[0030]

【発明の効果】以上説明したように、本発明に係る水中
汚染物質の採取装置及び採取方法は、各種の環境水中お
よび排水中に微量存在する多様な汚染物質を採取する手
段として好適であり、大量の環境水又は排水を長時間に
わたって通水することによって、汚染物質を簡易に高濃
縮して回収する採取装置及び方法を提供でき、環境汚染
の正確で高感度な測定を容易に可能とすることができ、
本発明の環境管理上の価値は顕著である。
INDUSTRIAL APPLICABILITY As described above, the apparatus and method for collecting underwater pollutants according to the present invention are suitable as means for collecting various pollutants that are present in trace amounts in various kinds of environmental water and wastewater. By passing a large amount of environmental water or wastewater over a long period of time, it is possible to provide a sampling device and method for easily concentrating and collecting pollutants, and easily and accurately measuring environmental pollution with high sensitivity. It is possible,
The environmental management value of the present invention is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水中汚染物質の採取装置及び方法の基
本構成の一例を示す図である。
FIG. 1 is a diagram showing an example of a basic configuration of an apparatus and method for collecting underwater pollutants of the present invention.

【図2】本発明の一実施態様に係る水中汚染物質の採取
装置の概略構成図である。
FIG. 2 is a schematic configuration diagram of an underwater pollutant sampling device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ろ過手段 2 吸着手段 3 ポンプ 11 水中汚染物質の採取装置 12 試料採取源としての河川 13 ガラスビーズ 13a 大粒径のガラスビーズ 13b 中粒径のガラスビーズ 13c 小粒径のガラスビーズ 14 ろ過手段 15 吸着剤 16 吸着手段 17 ポンプ 18 系 19 採取口 20 放流口 1 Filtering means 2 Adsorption means 3 pumps 11 Water pollutant sampling device 12 Rivers as sampling sources 13 glass beads 13a Large-sized glass beads 13b Medium-sized glass beads 13c Small size glass beads 14 Filtering means 15 Adsorbent 16 Adsorption means 17 pumps 18 series 19 Collection port 20 Outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 裕喜 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 2G052 AA06 AB22 AB27 BA22 CA12 EA05 ED01 ED03 ED06 JA10 JA13 JA16    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroki Koyama             Olga 1-2-8 Shinsuna, Koto-ku, Tokyo             Within the corporation F term (reference) 2G052 AA06 AB22 AB27 BA22 CA12                       EA05 ED01 ED03 ED06 JA10                       JA13 JA16

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径の異なる粒子が、より大きい粒
子がより上に積層されて充填され、水試料中の懸濁物質
をろ過により捕集するろ過手段と、吸着剤が充填され、
水試料中の溶存物質を吸着により捕集する吸着手段とが
直列に接続され、これら手段に、水試料を連続通水可能
にポンプが接続されていることを特徴とする水中汚染物
質の採取装置。
1. Particles having different average particle sizes are packed by laminating larger particles on top of each other, and are filled with a filtration means for collecting suspended matter in a water sample by filtration, and an adsorbent,
An aquatic pollutant sampling device characterized in that an adsorbing means for collecting dissolved substances in a water sample by adsorption is connected in series, and a pump is connected to these means so that the water sample can continuously pass through. .
【請求項2】 前記ろ過手段に充填された粒子がガラス
またはセラミックの粒子からなる、請求項1に記載の水
中汚染物質の採取装置。
2. The device for collecting underwater pollutants according to claim 1, wherein the particles with which the filtering means is filled are particles of glass or ceramics.
【請求項3】 前記ろ過手段に充填された粒子が平均粒
径2ミリメートル以下のほぼ球形の粒子からなる、請求
項1または2に記載の水中汚染物質の採取装置。
3. The underwater pollutant sampling device according to claim 1, wherein the particles filled in the filtering means are substantially spherical particles having an average particle diameter of 2 mm or less.
【請求項4】 前記ポンプが、毎分35ミリリットル以
上の流量で24時間以上、直流電源によって駆動できる
定流量ポンプからなる、請求項1〜3のいずれかに記載
の水中汚染物質の採取装置。
4. The underwater pollutant sampling device according to claim 1, wherein the pump comprises a constant flow rate pump that can be driven by a DC power source at a flow rate of 35 ml / min or more for 24 hours or more.
【請求項5】 前記吸着剤が、非イオン交換性吸着樹
脂、炭素系吸着剤、イオン交換樹脂、キレート樹脂又は
イオン交換性の無機吸着剤からなる、請求項1〜4のい
ずれかに記載の水中汚染物質の採取装置。
5. The adsorbent according to claim 1, wherein the adsorbent comprises a non-ion-exchangeable adsorbent resin, a carbon-based adsorbent, an ion-exchange resin, a chelate resin, or an ion-exchangeable inorganic adsorbent. Water pollutant sampling device.
【請求項6】 水試料の採取から放流までの通水系が、
満水可能な密封系に構成されている、請求項1〜5のい
ずれかに記載の水中汚染物質の採取装置。
6. A water flow system from collection of water sample to discharge
The underwater pollutant sampling device according to any one of claims 1 to 5, which is configured as a closed system capable of being filled with water.
【請求項7】 直列に接続した、平均粒径の異なる粒子
をより大きい粒子をより上に積層して充填したろ過手段
と、吸着剤を充填した吸着手段とに、ポンプを用いて水
試料を連続的に通水し、各々の手段で水試料中の懸濁物
質と溶存物質を捕集し、水試料中の微量汚染物質を濃縮
回収することを特徴とする、水中汚染物質の採取方法。
7. A water sample is pumped to a filtration means, which is connected in series, in which larger particles are stacked on top of particles having different average particle diameters, and an adsorption means which is filled with an adsorbent. A method for collecting a pollutant in water, which comprises continuously flowing water, collecting suspended substances and dissolved substances in a water sample by each means, and concentrating and collecting trace pollutants in a water sample.
【請求項8】 前記ろ過手段に充填する粒子としてガラ
スまたはセラミックの粒子を用いる、請求項7に記載の
水中汚染物質の採取方法。
8. The method for collecting an underwater pollutant according to claim 7, wherein glass or ceramic particles are used as particles to be filled in the filtering means.
【請求項9】 前記ろ過手段に充填する粒子として平均
粒径2ミリメートル以下のほぼ球形の粒子を用いる、請
求項7または8に記載の水中汚染物質の採取方法。
9. The method for collecting an underwater pollutant according to claim 7, wherein substantially spherical particles having an average particle size of 2 millimeters or less are used as particles to be packed in the filtering means.
【請求項10】 前記ポンプとして、毎分35ミリリッ
トル以上の流量で24時間以上、直流電源によって駆動
できる定流量ポンプを用いる、請求項7〜9のいずれか
に記載の水中汚染物質の採取方法。
10. The method for collecting submerged pollutants according to claim 7, wherein a constant flow rate pump that can be driven by a DC power supply at a flow rate of 35 ml / min or more for 24 hours or more is used as the pump.
【請求項11】 前記吸着剤として、非イオン交換性吸
着樹脂、炭素系吸着剤、イオン交換樹脂、キレート樹脂
又はイオン交換性の無機吸着剤を用いる、請求項7〜1
0のいずれかに記載の水中汚染物質の採取方法。
11. A non-ion-exchangeable adsorbent resin, a carbon-based adsorbent, an ion-exchange resin, a chelate resin, or an ion-exchangeable inorganic adsorbent is used as the adsorbent.
The method for collecting water pollutants according to any one of 0.
【請求項12】 前記ろ過手段、吸着手段およびポンプ
を備えた系における水試料の採取口および放流口を試料
採水源の水中に入れ、あらかじめ系内を水で満たして揚
水のための圧力損失を実質的になくした後にポンプで通
水し、水試料中の微量汚染物質を濃縮回収する、請求項
7〜11のいずれかに記載の水中汚染物質の採取方法。
12. A water sample collecting port and a water discharging port in a system equipped with the filtering means, the adsorbing means and the pump are put into water as a sample water collecting source, and the system is previously filled with water to reduce a pressure loss for pumping. The method for collecting underwater pollutants according to any one of claims 7 to 11, wherein water is passed through with a pump after being substantially eliminated to concentrate and collect trace pollutants in the water sample.
JP2002047612A 2002-02-25 2002-02-25 Sampling device and sampling method for underwater pollutant Pending JP2003247919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002047612A JP2003247919A (en) 2002-02-25 2002-02-25 Sampling device and sampling method for underwater pollutant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002047612A JP2003247919A (en) 2002-02-25 2002-02-25 Sampling device and sampling method for underwater pollutant

Publications (1)

Publication Number Publication Date
JP2003247919A true JP2003247919A (en) 2003-09-05

Family

ID=28660627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002047612A Pending JP2003247919A (en) 2002-02-25 2002-02-25 Sampling device and sampling method for underwater pollutant

Country Status (1)

Country Link
JP (1) JP2003247919A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101004581B1 (en) 2008-12-10 2010-12-30 한국수자원공사 Field sampler for persistent organic pollutantsPOPs for water
CN102831297A (en) * 2012-07-27 2012-12-19 中国环境科学研究院 Integration method for cause diagnosis of lake pollution
JP2016045159A (en) * 2014-08-26 2016-04-04 三菱電機株式会社 Method and apparatus for analyzing phthalic acid ester in resin
JPWO2016031063A1 (en) * 2014-08-29 2017-04-27 富士通株式会社 Analysis method, analysis apparatus, and analysis program
WO2022080480A1 (en) * 2020-10-16 2022-04-21 三浦工業株式会社 Microplastic recovery device and microplastic recovery system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101004581B1 (en) 2008-12-10 2010-12-30 한국수자원공사 Field sampler for persistent organic pollutantsPOPs for water
CN102831297A (en) * 2012-07-27 2012-12-19 中国环境科学研究院 Integration method for cause diagnosis of lake pollution
JP2016045159A (en) * 2014-08-26 2016-04-04 三菱電機株式会社 Method and apparatus for analyzing phthalic acid ester in resin
JPWO2016031063A1 (en) * 2014-08-29 2017-04-27 富士通株式会社 Analysis method, analysis apparatus, and analysis program
WO2022080480A1 (en) * 2020-10-16 2022-04-21 三浦工業株式会社 Microplastic recovery device and microplastic recovery system

Similar Documents

Publication Publication Date Title
CN103979749B (en) A kind for the treatment of apparatus and processing method thereof of removing heavy metal in sewage
CN102507263B (en) Sampling device for large-volume water sample of semi-volatile organic compounds
US20040149658A1 (en) Method for the removal of heavy metals from aqueous solution by means of silica as an adsorbent in counter-flow selective dialysis
CN105547786A (en) Large-size water sample on-site enriching device
CN207313280U (en) One kind circulation Water circulation reverse osmosis unit
CN201331439Y (en) Gas-liquid atmospheric sampling device
JP2003247919A (en) Sampling device and sampling method for underwater pollutant
CN209442805U (en) A kind of water process impurity separating device
JP2002365176A (en) Underwater sampling device
JP6082338B2 (en) Decontamination device and decontamination method for contaminated water area
CN109607855A (en) Multi-channel type farmland low concentration contains the portable absorbing treatment device of heavy metal containing sewage and method
CN206955823U (en) A kind of wastewater from chemical industry reclaims filtering and purifying
CN108507830A (en) A kind of Passive sampler and the method for sampling for nonpolar organic pollutants acquisition in sewer
CN110451714A (en) A kind of multi-stage sewage treatment device
CN213749214U (en) Portable water sample drawing device
CN207462816U (en) A kind of big flux emergency filter device
JP2004008888A (en) Oil separation method and oil separation apparatus for oil-containing liquid
CN107417029A (en) A kind of system for handling underground water pollution
Kuwabara et al. Application of a Hollow‐Fiber, Tangential‐Flow Device for Sampling Suspended Bacteria and Particles from Natural Waters
CN208476590U (en) A kind of Passive sampler acquired for nonpolar organic pollutants in sewer
CN111795862A (en) Device and method for sampling dioxin in water with automatic extraction function
CN104016496B (en) Water treatment device for absorbing and separating low concentration metal ion and organic small molecular pollutant
JP6385141B2 (en) Method for removing radioactive pollutants from radioactively contaminated water
CN218847720U (en) Device for collecting suspended matters in water body
CN201997185U (en) Membrane filter separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070420