JP2003246642A - Glass and optical fiber using the same - Google Patents

Glass and optical fiber using the same

Info

Publication number
JP2003246642A
JP2003246642A JP2002049667A JP2002049667A JP2003246642A JP 2003246642 A JP2003246642 A JP 2003246642A JP 2002049667 A JP2002049667 A JP 2002049667A JP 2002049667 A JP2002049667 A JP 2002049667A JP 2003246642 A JP2003246642 A JP 2003246642A
Authority
JP
Japan
Prior art keywords
glass
network
crystallization
oxide
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002049667A
Other languages
Japanese (ja)
Inventor
Hiroyuki In
浩之 因
Hiromichi Takebe
博倫 武部
Kenji Morinaga
健次 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden Co Inc
Japan Science and Technology Agency
Original Assignee
Daiden Co Inc
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden Co Inc, Japan Science and Technology Corp filed Critical Daiden Co Inc
Priority to JP2002049667A priority Critical patent/JP2003246642A/en
Publication of JP2003246642A publication Critical patent/JP2003246642A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/008Polycrystalline optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass which is less liable to crystallize even when reheated to its glass transition temperature or above because thermal latitude is largely extended in spite of a high phosphate content, enhances the yield of working such as fiber formation and obtains required characteristics, and to provide an optical fiber using the glass. <P>SOLUTION: The phosphate-rich glass containing ≥38 mol% diphosphorus pentoxide is made less liable to crystallize by lowering crystallization calorific value in the glass to ≤60 J/g and enhancing thermal stability as glass, even when the glass is held at a temperature close to its crystallization temperature in working accompanied by reheating to its glass transition temperature or above, a longer time can be ensured before perfect crystallization, conditions in working such as optical fiber formation can be greatly mitigated and working into an optical fiber or the like is reliably carried out while exhibiting the features of phosphate glass. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リン酸塩高含有ガ
ラスに関し、特に製造時及びファイバ状加工時に結晶化
の影響を受けにくいガラス、及び当該ガラスで形成され
る光ファイバに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass having a high phosphate content, and more particularly to a glass that is not easily affected by crystallization during manufacturing and fiber processing, and an optical fiber formed from the glass.

【0002】[0002]

【従来の技術】近年、光通信を中心とする広い分野で光
ファイバが使用されている。一般的に普及しているほと
んどの光ファイバは石英ガラス系と呼ばれるもので、例
えば火炎堆積法によりプリフォームを作製した後、この
プリフォームを高温で加熱・延伸してファイバを得るも
のである。この光ファイバに用いられる石英ガラスは、
透明度が高く、伝送特性が良好である他、安定で耐候性
にも優れるという特長を有する一方、溶融温度が高く、
高温で製造・加工を行う必要があり、また、複屈折の影
響を受けやすかった。
2. Description of the Related Art In recent years, optical fibers have been used in a wide range of fields centered on optical communication. Most of the commonly used optical fibers are of the so-called silica glass type. For example, a preform is produced by a flame deposition method, and then this preform is heated and stretched at a high temperature to obtain a fiber. The quartz glass used for this optical fiber is
In addition to having high transparency and good transmission characteristics, it has the features of being stable and excellent in weather resistance, while having a high melting temperature,
It had to be manufactured and processed at high temperatures, and it was easily affected by birefringence.

【0003】一方、リン酸塩ガラスは、その構造中に含
まれる二重結合の作用により塩基性酸化物の優れた溶媒
となること、また、溶融温度が石英ガラスに比べて低
く、固化する際の密度ゆらぎに依存するレイリー散乱が
小さくなること、さらに、低光弾性であること、という
ような特長を有しており、ランタノイドドープガラス素
子や光ファイバ等の光学素子用ガラス材料として近年注
目を集めている。このリン酸塩ガラスで光ファイバ型素
子を形成する場合、リン酸塩ガラスの優れた材料特性を
引き出すためには、ガラス中のリン酸塩含有割合を高く
するのが望ましい。また、場合によっては、リン酸塩と
共に特定の網目修飾酸化物の含有率も同時に高く設定す
ることが望ましい。こうしたリン酸塩ガラスをはじめと
する非石英ガラスや、石英以外に複数の元素で構成され
るいわゆる多成分ガラスで光ファイバを製造する場合に
は、前記石英ガラスと同様の火炎堆積法を用いることが
難しいため、ロッドインチューブ法や、直接融体からフ
ァイバ化する二重るつぼ法などを用いていた。
On the other hand, phosphate glass is an excellent solvent for basic oxides due to the action of double bonds contained in its structure, and its melting temperature is lower than that of quartz glass, so that it solidifies. Rayleigh scattering, which is dependent on the density fluctuation of H., is small and has low photoelasticity, and has recently attracted attention as a glass material for optical elements such as lanthanoid-doped glass elements and optical fibers. I am collecting. When forming an optical fiber type element with this phosphate glass, it is desirable to increase the phosphate content in the glass in order to bring out the excellent material properties of the phosphate glass. In some cases, it is desirable to set the content of the specific network modifying oxide together with the phosphate to be high at the same time. When manufacturing an optical fiber with non-quartz glass such as phosphate glass, or so-called multi-component glass composed of a plurality of elements other than quartz, use the flame deposition method similar to the above quartz glass. However, the rod-in-tube method and the double crucible method in which fibers are directly formed from the melt were used.

【0004】このうち、ロッドインチューブ法でプリフ
ォームを作製してから光ファイバを得ようとする場合、
プリフォームの外周をヒータで適正な温度まで加熱して
ファイバ状に延伸させる必要がある。ただし、一般にガ
ラスは、結晶化温度まで加熱されると結晶化する性質を
有しており、結晶化すると、流動性などガラスの優れた
特性が消失するため、こうした特性を積極的に利用する
ファイバ加工は著しく困難になり、連続的なファイバ化
ができなくなる。このため、ガラスの組成や製造方法の
工夫により、ファイバ化のために加熱する際に結晶化温
度に達しないようにし、結晶化を避けつつファイバ化す
る手法が種々提案されてきた。
Of these, when trying to obtain an optical fiber after producing a preform by the rod-in-tube method,
It is necessary to heat the outer periphery of the preform to a proper temperature with a heater and draw it into a fiber shape. However, glass generally has a property of crystallizing when heated to a crystallization temperature, and when crystallized, excellent properties of glass such as fluidity disappear, so that a fiber that positively utilizes such properties is used. Processing becomes extremely difficult, and continuous fiberization becomes impossible. For this reason, various methods have been proposed in which the composition of glass and the manufacturing method are devised so that the temperature for crystallization does not reach the crystallization temperature during heating to avoid crystallization and the fiber is formed.

【0005】[0005]

【発明が解決しようとする課題】従来のガラスのファイ
バ化は以上のように行われていたが、リン酸塩高含有ガ
ラスについては、ガラス転移温度以上への再加熱におい
て結晶化させずにファイバ化できる温度範囲が狭く、結
晶化温度より低い温度でも、一定時間保持されれば結晶
化することがあり、製造時に結晶化温度近くに保持され
るような箇所が少しでも生じると、一部に結晶が析出し
てファイバ全体が不良となる危険性が高くなる。
Although the conventional fiberization of glass has been carried out as described above, the glass having a high phosphate content is not crystallized by reheating to a glass transition temperature or higher. The temperature range that can be crystallized is narrow, and even if the temperature is lower than the crystallization temperature, it may crystallize if held for a certain period of time. There is a high risk that crystals will precipitate and the entire fiber will become defective.

【0006】リン酸塩ガラスのファイバ製造プロセスで
は、ヒータでプリフォームを外周から加熱しなければな
らないが、ガラスは熱伝導性が悪く、プリフォームの中
心部は外周部に比べて温まりにくく温度も低い。逆に、
このプリフォームの中心部が十分に加熱される状況で
は、外周部分は中心部より高い温度に長時間保持された
状態となってしまう。この加熱状態の差異はプリフォー
ムの径が太くなるほど顕著となり、プリフォームの径が
10mmφであれば外周部分の結晶化を招かずファイバ
化できるものの、実用的なサイズである50mmφ程度
になると中心部に比べ温度が著しく高くなるプリフォー
ム外周部で結晶化が起り、非晶質部分と結晶質部分が混
在してプリフォームの変形を招き、安定且つ連続的なフ
ァイバ化が困難になる上、仮にファイバ化できたとして
も、微小な結晶を含む状態となり、設計した特性を発揮
できなくなるという課題を有していた。こうした結晶化
の問題は温度と保持時間に強く依存するため、ファイバ
製造プロセス中での厳密な温度管理を実現できれば、こ
の問題を解消することもできるが、このような製造プロ
セスを実用化するにはコストがかかり、実現は難しいと
いう課題を有していた。
In the fiber manufacturing process of phosphate glass, the preform has to be heated from the outer periphery by a heater, but the glass has poor thermal conductivity, and the central portion of the preform is harder to heat up than the outer peripheral portion and the temperature is high. Low. vice versa,
When the center of the preform is sufficiently heated, the outer peripheral portion is kept at a temperature higher than that of the center for a long time. This difference in the heating state becomes more remarkable as the diameter of the preform becomes thicker, and if the diameter of the preform is 10 mmφ, it can be made into a fiber without crystallization of the outer peripheral portion, but if it becomes a practical size of about 50 mmφ, the central portion becomes Crystallization occurs at the outer periphery of the preform where the temperature is significantly higher than that of the amorphous form, and amorphous and crystalline parts are mixed to cause deformation of the preform, making stable and continuous fiber formation difficult. Even if it could be made into a fiber, there was a problem that it would be in a state of containing fine crystals and the designed characteristics could not be exhibited. Since the problem of crystallization strongly depends on the temperature and the holding time, it is possible to solve this problem if strict temperature control can be realized in the fiber manufacturing process, but it is necessary to put such a manufacturing process into practical use. Had a problem that it was costly and difficult to realize.

【0007】一方、一般の光ファイバではコアに対して
クラッドの容積がほとんどを占め、コアの特性でほとん
ど決る機能面に対し、製造に関しては外周で容積の大部
分を占めるクラッドの性質で製造条件の大半が決る。こ
のため、結晶化の問題を解消する他の方法として、リン
酸塩系多成分ガラスなど結晶化しにくいガラスのクラッ
ドとリン酸塩高含有ガラスのコアとを組み合わせること
も考えられるが、この場合、両者の性質が大きく異なる
ため、光ファイバのコアとクラッドとして機能し得る物
性の条件を満たせず、ファイバ化できないか、ファイバ
化できても光ファイバとして機能させられないという課
題を有していた。
On the other hand, in a general optical fiber, the volume of the clad occupies most of the core and the functional surface is almost determined by the characteristics of the core. Most of is decided. Therefore, as another method for solving the problem of crystallization, it is also possible to combine a cladding of glass that is difficult to crystallize such as a phosphate-based multi-component glass and a core of a phosphate-rich glass, but in this case, Since the properties of the two are significantly different, the physical properties that can function as the core and the clad of the optical fiber are not satisfied, and there is a problem that they cannot be made into fibers or cannot be made to function as optical fibers even if they can be made into fibers.

【0008】また、ガラスのファイバ化を二重るつぼ法
で行う場合、融体を急冷させるため結晶化の影響を低減
することができるものの、形成される光ファイバの構造
をるつぼのノズルからの吐出量により調整するため、フ
ァイバ中に極めて小さなコア部を要するシングルモード
ファイバの製造は困難であるという課題を有していた。
こうしたことから、従来、リン酸塩高含有ガラスを少な
くともコアに持つ光ファイバは安定的に連続製造できな
かった。
When the glass fiber is formed by the double crucible method, the melt is rapidly cooled to reduce the influence of crystallization, but the structure of the optical fiber to be formed is discharged from the nozzle of the crucible. There is a problem that it is difficult to manufacture a single-mode fiber that requires an extremely small core portion in the fiber because the adjustment is performed by the amount.
For this reason, conventionally, it has not been possible to stably and continuously manufacture an optical fiber having at least a phosphate-rich glass in its core.

【0009】本発明は前記課題を解消するためになされ
たもので、リン酸塩を高い割合で含みながら、熱的許容
範囲を大幅に広げてガラス転移温度以上に再加熱されて
も結晶化しにくく、ファイバ化等の加工の歩留まりを向
上させられ、所望の特性が得られるガラス、及び当該ガ
ラスを用いた光ファイバを提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is difficult to crystallize even if it is reheated to a temperature higher than the glass transition temperature by greatly expanding the thermal tolerance while containing a high proportion of phosphate. It is an object of the present invention to provide a glass which can improve a processing yield such as fiberization and can obtain desired characteristics, and an optical fiber using the glass.

【0010】[0010]

【課題を解決するための手段】本発明に係るガラスは、
少なくとも網目形成成分としての五酸化二リンを38モ
ル%以上含んでなり、結晶化発熱量が60J/g以下で
あるものである。このように本発明においては、五酸化
二リンを38モル%以上含むリン酸塩高含有ガラスにお
ける結晶化発熱量を60J/g以下とし、ガラスとして
の熱的安定性を向上させることにより、材料としての結
晶化が起りにくくなり、ガラス転移温度以上への再加熱
を伴う加工で結晶化温度近傍に保持された場合でも、完
全に結晶化するまでの時間的余裕をより長く確保でき、
光ファイバ化等の加工条件を大幅に緩和でき、リン酸塩
ガラスの特長を発揮させつつ、光ファイバ等への加工を
確実に行えると共に、ガラスに対する応力緩和処理時間
の短縮が図れるなど、ガラス自体の生産条件も大幅に緩
和できる。また、加工に際して、仮に結晶化を誘発し得
る温度領域に達する部分があっても、特に表面結晶化の
影響を緩和できることにより、結晶発生に伴う材料の変
形等を抑制でき、加工の際の悪影響を著しく低減させら
れる。
The glass according to the present invention comprises:
It contains at least 38 mol% of diphosphorus pentoxide as a network-forming component and has a crystallization heat value of 60 J / g or less. As described above, in the present invention, the crystallization heat value in the phosphate-rich glass containing diphosphorus pentoxide in an amount of 38 mol% or more is set to 60 J / g or less to improve the thermal stability of the glass. As a result, crystallization hardly occurs, and even when the temperature is maintained near the crystallization temperature in the process involving reheating to a glass transition temperature or higher, it is possible to secure a longer time margin until complete crystallization,
Processing conditions such as optical fiber can be significantly eased, while the advantages of phosphate glass can be exhibited, processing to optical fiber etc. can be reliably performed, and stress relaxation processing time for glass can be shortened. The production conditions can be greatly eased. Further, during processing, even if there is a portion that reaches a temperature region where crystallization can be induced, the effect of surface crystallization can be alleviated, so that deformation of the material due to crystal generation can be suppressed, and adverse effects during processing Can be significantly reduced.

【0011】また、本発明に係るガラスは必要に応じ
て、周期表3B〜5B族のいずれか一又は複数の元素の
酸化物を0.1モル%以上含むと共に、少なくともイオ
ンの電子分極性が高い元素を含む網目修飾成分を有して
なり、前記網目修飾成分と前記網目形成成分とのモル比
率が1.0以上となるものである。このように本発明に
おいては、五酸化二リンを38モル%以上とすると共
に、網目修飾成分をそれ以上含ませ、さらに、周期表3
B〜5B族のいずれか一又は複数の元素の酸化物を含ま
せた組成とすることにより、結晶化が起りにくい上に、
リン酸塩高含有ガラスの特徴及び特性を備えるか、又
は、それに極めて近い特徴及び特性となる材料とするこ
とができる。
Further, the glass according to the present invention contains, if necessary, 0.1 mol% or more of an oxide of one or a plurality of elements of Groups 3B to 5B of the Periodic Table, and at least the electronic polarizability of ions. It has a network modifying component containing a high element, and the molar ratio of the network modifying component and the network forming component is 1.0 or more. As described above, in the present invention, the phosphorus pentoxide content is 38 mol% or more, and the network modifying component is further included.
When the composition contains an oxide of one or more elements of the B to 5B group, crystallization is less likely to occur, and
It can be a material with or very close to the features and properties of high phosphate glass.

【0012】また、本発明に係るガラスは必要に応じ
て、前記網目修飾成分と網目形成成分とをそれぞれ構成
する各元素を含む一又は複数の物質を出発原料とされる
と共に、当該出発原料に対し、網目修飾成分の増加用添
加材料として網目修飾成分に含まれる前記イオンの電子
分極性が高い元素のフッ化物、イオンの電子分極性が高
い元素のフッ化物及び酸化物、又は、所定のフッ化物及
びイオンの電子分極性が高い元素の酸化物を所定量添加
されるものである。
Further, the glass according to the present invention uses, as necessary, one or a plurality of substances containing the respective elements constituting the network-modifying component and the network-forming component, as a starting material. On the other hand, as an additive material for increasing the network modifying component, a fluoride of an element having a high electron polarizability of the ion contained in the network modifying component, a fluoride and an oxide of an element having a high electron polarizability of the ion, or a predetermined fluorine A predetermined amount of an oxide of an element having high electronic polarizability of a compound and an ion is added.

【0013】このように本発明においては、ガラス固化
状態における網目修飾成分の割合を増やす添加材料とし
て網目修飾成分に含まれるイオンの電子分極性が高い元
素やフッ素を含んだ物質を添加し、原料融液に微量のフ
ッ素が含まれた状態としつつ、網目修飾成分のモル比率
を高くし、製造時における原料融液の挙動をフッ素で安
定化してガラス状態へ移行させられることにより、結晶
化等が抑えられて品質劣化の無い清浄なガラス状態とな
り、支障なく網目修飾成分のモル比率を多くしたガラス
を得られる。
As described above, in the present invention, as an additive material for increasing the proportion of the network modifying component in the vitrified state, a substance containing fluorine or an element having a high electron polarizability of ions contained in the network modifying component is added to prepare a raw material. While keeping a small amount of fluorine in the melt, by increasing the molar ratio of the network modification component, the behavior of the raw material melt at the time of production can be crystallized by being stabilized by fluorine and being transferred to the glass state. Is suppressed and a clean glass state without quality deterioration is obtained, and a glass having a large molar ratio of the network modifying component can be obtained without any trouble.

【0014】また、本発明に係るガラスは必要に応じ
て、前記出発原料を加熱融解させた原料融液中にフッ素
と反応する所定ガスを吹込み、前記原料融液中のフッ素
を前記所定ガスと反応させ、フッ化物ガスの状態で原料
融液中から揮発させた上でガラス固化状態とされるもの
である。このように本発明においては、出発原料を融解
させた後にフッ素と反応する所定ガスを吹込んでフッ素
をフッ化物ガスとして揮発させ、原料融液中のフッ素量
を低減することにより、ガラス状態でのフッ素の存在に
よる悪影響を抑えられ、清浄で均質性の向上したガラス
を製造できる。
Further, in the glass according to the present invention, a predetermined gas that reacts with fluorine is blown into the raw material melt obtained by heating and melting the starting raw material so that the fluorine in the raw material melt is added to the predetermined gas. And is volatilized from the raw material melt in the state of a fluoride gas to be in a vitrified state. Thus, in the present invention, by blowing a predetermined gas that reacts with fluorine after melting the starting material to volatilize fluorine as a fluoride gas and reduce the amount of fluorine in the material melt, The adverse effects of the presence of fluorine can be suppressed, and clean, homogeneous glass can be produced.

【0015】また、本発明に係るガラスは必要に応じ
て、前記網目修飾成分と網目形成成分のモル比率が1.
25以上となるものである。このように本発明において
は、微量のフッ素を含ませた上で網目修飾成分の割合を
増やしてモル比率を1.25以上に高くし、製造時にお
ける原料融液の挙動をフッ素で安定化しつつガラス状態
へ移行させることにより、網目修飾成分が多くても原料
融液を支障無くガラス状態へ移行させられ、且つ結晶化
も起りにくい上に、網目修飾成分の割合を適切にするこ
とで、リン酸塩ガラスの優れた特性をより安定的に引出
せる。
The glass according to the present invention may have a molar ratio of the network modifying component and the network forming component of 1.
It will be 25 or more. As described above, in the present invention, the amount of the network modifying component is increased by adding a trace amount of fluorine to increase the molar ratio to 1.25 or more, and the behavior of the raw material melt at the time of production is stabilized by fluorine. By shifting to the glass state, even if there are many network modifying components, the raw material melt can be shifted to the glass state without hindrance, and crystallization hardly occurs, and by adjusting the proportion of the network modifying components appropriately, phosphorus It is possible to draw out the excellent properties of the salt glass more stably.

【0016】また、本発明に係るガラスは必要に応じ
て、前記網目修飾成分が、酸化バリウムであり、前記周
期表3B〜5B族元素の酸化物が、酸化ホウ素及び/又
は酸化ゲルマニウムであるものである。このように本発
明においては、網目修飾成分として光弾性定数を小さく
する性質のある酸化バリウムを含むと共に、結晶化発熱
量を減少させる添加物として酸化ホウ素及び/又は酸化
ゲルマニウムを含んでなり、酸化バリウムの割合を調整
されて、主成分であるリン酸塩の含有量も調整されつつ
所定の光弾性定数とされることにより、特に低光弾性と
なる特性を有する他のガラス材料と、屈折率、熱膨張
率、軟化温度などの特性について一致性が良く、且つ結
晶化しにくい材料を得ることができ、例えば光ファイバ
のコア部又はクラッド部として他のガラス材料と一体に
適切な加工が行える。さらに、酸化ホウ素や酸化ゲルマ
ニウムは結晶化の抑制に加えて、光弾性定数や屈折率、
熱的特性を調整でき、添加量調整で目的に応じた特性を
適宜設定できる。
Further, in the glass according to the present invention, the network modifying component is barium oxide, and the oxide of a group 3B to 5B element of the periodic table is boron oxide and / or germanium oxide, if necessary. Is. As described above, in the present invention, barium oxide having a property of reducing the photoelastic constant is contained as the network modifying component, and boron oxide and / or germanium oxide is contained as an additive for reducing the heat value of crystallization. By adjusting the proportion of barium and adjusting the content of the phosphate, which is the main component, to a predetermined photoelastic constant, another glass material having a property of particularly low photoelasticity and a refractive index It is possible to obtain a material having good conformity with respect to characteristics such as coefficient of thermal expansion and softening temperature and being hard to crystallize. For example, suitable processing can be performed integrally with other glass materials as a core portion or a clad portion of an optical fiber. Furthermore, boron oxide and germanium oxide have the effects of suppressing crystallization as well as photoelastic constant and refractive index,
The thermal characteristics can be adjusted, and the characteristics according to the purpose can be appropriately set by adjusting the addition amount.

【0017】また、本発明に係るガラスは必要に応じ
て、二酸化ケイ素及び/又はアルミナを所定量含有する
ものである。このように本発明においては、ガラスの諸
性質に影響を与える二酸化ケイ素及び/又はアルミナを
添加物として含み、製造時における原料融液状態からガ
ラス状態への移行後までその挙動や物性を所望の状態に
制御することにより、液相温度、化学的安定性、光弾性
定数、屈折率、透過率、及び耐久性等の各種特性を調整
して性能向上が図れる。
Further, the glass according to the present invention contains a predetermined amount of silicon dioxide and / or alumina, if necessary. As described above, in the present invention, silicon dioxide and / or alumina, which affects various properties of glass, is contained as an additive, and its behavior and physical properties are desired until after the transition from the raw material melt state to the glass state during production. By controlling the state, various properties such as liquidus temperature, chemical stability, photoelastic constant, refractive index, transmittance, and durability can be adjusted to improve performance.

【0018】また、本発明に係る光ファイバは、前記請
求項1ないし7のいずれかに記載のガラスを少なくとも
一部に含んで形成されるものである。このように本発明
においては、少なくとも一部が、結晶化発熱量が60J
/g以下であるリン酸塩高含有ガラスで形成され、ファ
イバ材料としてのリン酸塩ガラスの熱的安定性が向上す
ることにより、ガラス転移温度以上への再加熱を伴うフ
ァイバ状加工で材料外周部が結晶化温度近傍に保持され
た場合でも、完全に結晶化するまでの時間的余裕をより
長く確保でき、加工条件を大幅に緩和可能となり、リン
酸塩ガラスの特長を発揮させつつ、ファイバ状加工を確
実に行えて容易に製造できる。さらに、ファイバ各部が
光ファイバとして機能し得る物性条件を満たす適切な構
成をとることができ、リン酸塩高含有ガラスの光ファイ
バとして確実に機能させられる。
The optical fiber according to the present invention is formed by including at least a part of the glass according to any one of claims 1 to 7. As described above, in the present invention, at least a part thereof has a crystallization heat value of 60 J.
/ G or less of the glass with a high phosphate content, and the thermal stability of the phosphate glass as a fiber material is improved, so that the outer circumference of the material is increased by the fiber-like processing accompanied by the reheating to the glass transition temperature or more. Even if the part is kept near the crystallization temperature, the time to fully crystallize can be secured longer, the processing conditions can be greatly relaxed, and the features of phosphate glass can be exhibited Shaped processing can be performed reliably and can be easily manufactured. Furthermore, each part of the fiber can have an appropriate configuration that satisfies the physical property condition that it can function as an optical fiber, and can reliably function as an optical fiber of phosphate-rich glass.

【0019】また、本発明に係る光ファイバは必要に応
じて、少なくともクラッド部が前記ガラスで形成される
ものである。このように本発明においては、コア部とク
ラッド部が存在する光ファイバのうち、クラッド部が結
晶化発熱量が60J/g以下であるリン酸塩高含有ガラ
スで形成され、ファイバに占める容積が多く且つ高熱に
さらされる外周側に位置することで光ファイバ製造時に
最も結晶化の影響を受けやすいクラッド部で熱的安定性
が向上することにより、ガラス転移温度以上への再加熱
を伴うファイバ状加工でクラッド部が結晶化温度近傍に
保持された場合でも、完全に結晶化するまでの時間的余
裕をより長く確保でき、加工条件を大幅に緩和可能とな
り、ファイバ状加工を確実に行えて容易に製造できる。
Further, in the optical fiber according to the present invention, at least the clad portion is formed of the glass, if necessary. As described above, in the present invention, of the optical fibers having the core portion and the cladding portion, the cladding portion is formed of the phosphate-rich glass having a crystallization heat value of 60 J / g or less, and the volume occupied by the fiber is large. Since the thermal stability is improved in the clad part that is most susceptible to crystallization during optical fiber manufacturing because it is located on the outer peripheral side where it is exposed to a lot of high heat, the fiber shape with reheating above the glass transition temperature Even if the cladding is kept near the crystallization temperature during processing, the time to fully crystallize can be secured longer, the processing conditions can be greatly relaxed, and fiber processing can be performed reliably and easily. Can be manufactured.

【0020】[0020]

【発明の実施の形態】以下、本発明の一実施の形態を説
明する。本実施の形態に係るガラスは、網目形成成分と
して五酸化二リン(P25)を38モル%以上含むリン
酸塩ガラスであり、その結晶化発熱量が、60J/g以
下となるものである。本実施の形態に係るガラスにおけ
る網目修飾成分としては、アルカリ土類金属の中でも陽
イオンの電子分極性が高い元素の酸化物を用い、この網
目修飾成分と網目形成成分とのモル比率が1.0以上と
なるような含有量とする。この網目修飾成分としてより
好ましくは酸化バリウム(BaO)を用いる。これに加
えて、ガラスの結晶化を抑制するための添加物として、
周期表3B〜5B族のいずれか一又は複数の元素の酸化
物を用い、ガラス中での含有割合が0.1モル%以上と
なるように添加する。この添加物としてより好ましく
は、酸化ホウ素(B23)、酸化ゲルマニウム(GeO
2)のいずれか一方、又は両方を用いる。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below. The glass according to the present embodiment is a phosphate glass containing 38 mol% or more of diphosphorus pentoxide (P 2 O 5 ) as a network forming component, and its crystallization heat value is 60 J / g or less. Is. As the network modifying component in the glass according to the present embodiment, an oxide of an element having a high cation electronic polarizability among alkaline earth metals is used, and the molar ratio of the network modifying component to the network forming component is 1. The content is set to 0 or more. More preferably, barium oxide (BaO) is used as this network modification component. In addition to this, as an additive for suppressing the crystallization of glass,
An oxide of any one or more elements of Groups 3B to 5B of the periodic table is used and added so that the content in the glass is 0.1 mol% or more. More preferably, the additive is boron oxide (B 2 O 3 ), germanium oxide (GeO).
Use either or both of 2 ).

【0021】また、これら基本組成に対し必要に応じ、
化学的耐久性、熱的安定性、屈折率調整、高品位ガラス
形成等のために添加する物質として、アルミナ(Al2
3)、二酸化ケイ素(SiO2)などがある。これらア
ルミナ、二酸化ケイ素を添加する場合、ガラス中での含
有割合がアルミナについては0.1〜6モル%、二酸化
ケイ素については0.1〜5モル%となるように添加す
る。加えて、前記効果を与える他の添加物として、La
23 、Nb25 、Sb23 、Na2O 、Li2O 、
Cs2O 、Ta25 、CaO 、K2O 、SnO 、T
iO2 、ZrO2、SrO 、As23 、ZnO 、WO
3 、TeO2 などを添加することもできる。
If necessary, these basic compositions are
As a substance added for chemical durability, thermal stability, refractive index adjustment, high-quality glass formation, etc., alumina (Al 2
O 3 ), silicon dioxide (SiO 2 ), and the like. When these alumina and silicon dioxide are added, the content ratio in the glass is 0.1 to 6 mol% for alumina and 0.1 to 5 mol% for silicon dioxide. In addition, as another additive that gives the above effect, La
2 O 3 , Nb 2 O 5 , Sb 2 O 3 , Na 2 O, Li 2 O,
Cs 2 O, Ta 2 O 5 , CaO, K 2 O, SnO 2, T
iO 2 , ZrO 2 , SrO 2 , As 2 O 3 , ZnO, WO
It is also possible to add 3 , TeO 2 or the like.

【0022】さらに、光弾性定数の小さいガラスと一体
で加工する際にこのガラスと諸特性を適合させたり、結
晶化しにくい特徴を有したまま光弾性定数を小さくした
りするなどの目的で、網目修飾成分の割合を高める場
合、この網目修飾成分に含まれるイオンの電子分極性が
高い元素のフッ化物等を添加することもある。なお、フ
ッ素やアルミナは、同系ガラスの光弾性定数を大きくす
る性質を有していることから、ガラス自体の光弾性定数
を小さくしたい場合はその添加量をなるべく少なくする
ことが好ましい。
Further, when the glass having a small photoelastic constant is integrally processed, various characteristics are adapted to the glass, and the photoelastic constant is reduced while having a characteristic of being hard to crystallize. When increasing the proportion of the modifying component, a fluoride of an element having a high electron polarizability of ions contained in the network modifying component may be added. Since fluorine and alumina have the property of increasing the photoelastic constant of similar glasses, it is preferable to add as little as possible when it is desired to decrease the photoelastic constant of the glass itself.

【0023】次に、本実施の形態に係るガラスの製造に
ついて説明する。このガラスの製造においては、網目修
飾成分及び網目形成成分を構成する元素を含む所定の一
又は複数の出発原料を使用し、ガラスとなった時の網目
修飾成分と網目形成成分とのモル比率が所望の割合とな
るよう、適宜調整すると共に、結晶化しにくくするため
の周期表3B〜5B族元素の酸化物を加える。また、網
目修飾成分の割合を高くしたい場合、この網目修飾成分
に含まれるイオンの電子分極性が高い元素のフッ化物
(例えば、フッ化バリウム)を添加したり、このフッ化
物と共に同じイオンの電子分極性が高い元素の酸化物
(例えば、酸化バリウム)を添加したり、前記イオンの
電子分極性が高い元素の酸化物と共に別の所定元素のフ
ッ化物を添加したりすることもある。
Next, the production of the glass according to this embodiment will be described. In the production of this glass, a predetermined one or a plurality of starting materials containing the elements constituting the network-modifying component and the network-forming component are used, and the molar ratio of the network-modifying component and the network-forming component when it becomes glass is used. It is appropriately adjusted so as to have a desired ratio, and an oxide of an element of Group 3B to 5B of the periodic table is added to prevent crystallization. Further, when it is desired to increase the proportion of the network modifying component, a fluoride (for example, barium fluoride) of an element having a high electron polarizability of ions contained in the network modifying component is added, or an electron of the same ion is added together with the fluoride. An oxide of an element having a high polarizability (for example, barium oxide) may be added, or a fluoride of another predetermined element may be added together with the oxide of an element having a high electron polarizability of the ions.

【0024】出発原料及び添加材料をるつぼで融解させ
ると、原料融液中には添加したフッ化物から生成したフ
ッ素が存在している。前記所定ガスとして例えば湿潤空
気を原料融液中に吹込み、この空気中の水分を原料融液
中のフッ素と反応させると、フッ素がフッ化水素とな
る。このフッ化水素の原料融液からの揮発で、原料融液
からフッ素のみが減少する。この後、原料融液を撹拌、
曝気等により均一化し、さらに型中で冷却するとガラス
が得られる。
When the starting material and the additive material are melted in the crucible, fluorine generated from the added fluoride is present in the material melt. When, for example, moist air is blown into the raw material melt as the predetermined gas and the water in the air is reacted with fluorine in the raw material melt, the fluorine becomes hydrogen fluoride. By volatilization of the hydrogen fluoride from the raw material melt, only fluorine is reduced from the raw material melt. After that, the raw material melt is stirred,
Glass is obtained by homogenizing by aeration and cooling in a mold.

【0025】周期表3B〜5B族元素の酸化物、特に、
発熱量低減効果が大である酸化ホウ素、酸化ゲルマニウ
ムがリン酸塩ガラスに加わることで、ガラスの結晶化発
熱量が60J/g以下まで減少する。ガラスの結晶化発
熱量が60J/g以下と小さいということは、所定の昇
温速度で昇温させた場合に、ガラス転移温度以上の温度
範囲でガラスの熱的安定度が増している、すなわち、ガ
ラスが結晶化せずにガラスのまま存在する割合が増して
いることを示しており、前記所定の昇温速度で昇温させ
ると、ガラス転移温度以上の所定時間保持されると結晶
化が起きやすいファイバ加工温度範囲でもガラスが結晶
化することなく軟化・溶融することとなる。よって、ガ
ラスを結晶化させずにファイバ化できる。
Oxides of Group 3B-5B elements of the Periodic Table, especially
By adding boron oxide and germanium oxide, which have a great effect of reducing the heat generation amount, to the phosphate glass, the heat generation amount for crystallization of the glass is reduced to 60 J / g or less. The fact that the heat of crystallization of glass is as small as 60 J / g or less means that the thermal stability of the glass is increased in the temperature range of the glass transition temperature or higher when the temperature is raised at a predetermined heating rate, that is, , Shows that the ratio of the glass that remains as glass without crystallization is increasing, and when the temperature is raised at the predetermined heating rate, crystallization occurs when the glass is kept for a predetermined time at or above the glass transition temperature. Even in the fiber processing temperature range where it is likely to occur, the glass softens and melts without crystallizing. Therefore, the glass can be made into a fiber without being crystallized.

【0026】なお、結晶化は、一般にガラスをガラス転
移温度以上の温度で熱した場合にその加熱時間に依存し
て起るが、ガラス材料によりその挙動が異なるために、
比較する手段として例えば材料の結晶化特性を確認する
ためのDSC(示差走査熱量測定法)やDTA(示差熱
分析)のような手法を用いる。続いて、本実施の形態に
係るガラス製光ファイバの形成について概略を説明す
る。あらかじめ前記製造工程を経て互いに屈折率の異な
るコア用ガラス材料とクラッド用ガラス材料を得る。屈
折率はコア用ガラス材料の方が大きくなっている。
The crystallization generally occurs depending on the heating time when the glass is heated at a temperature higher than the glass transition temperature, but the behavior varies depending on the glass material.
As a means for comparison, for example, a method such as DSC (differential scanning calorimetry) or DTA (differential thermal analysis) for confirming crystallization characteristics of materials is used. Subsequently, the outline of the formation of the glass optical fiber according to the present embodiment will be described. A glass material for a core and a glass material for a clad having different refractive indexes are obtained in advance through the above manufacturing steps. The refractive index of the glass material for the core is higher.

【0027】これらガラス材料に対し、機械加工を行っ
てコア部とクラッド部としてそれぞれ径の異なる円柱状
に仕上げ、クラッド部にはコア部が収納可能な孔を穿設
し、ロッドインチューブ法でプリフォームを得る。この
後、プリフォームを外周側からヒータで加熱し、ガラス
転移温度以上の温度に保持して軟化させ、端部をファイ
バ状に延伸させていくと、光ファイバが得られる。前記
ガラス材料はそれぞれガラス転移温度以上の結晶化し得
る温度範囲と重複する軟化温度に所定時間保持された場
合でも結晶化しにくいことから、容易にファイバ状加工
が行える。
These glass materials are machined to form cylindrical parts having different diameters as the core part and the clad part, and holes for accommodating the core part are bored in the clad part, and the rod-in-tube method is used. Get the preform. After that, the preform is heated from the outer peripheral side by a heater, held at a temperature equal to or higher than the glass transition temperature to be softened, and the end portion is drawn into a fiber shape to obtain an optical fiber. Since each of the glass materials is difficult to crystallize even when it is held at the softening temperature overlapping the temperature range where it can be crystallized, which is equal to or higher than the glass transition temperature, for a predetermined time, it is possible to easily perform fiber processing.

【0028】なお、こうしたクラッド部とコア部を有す
る光ファイバにおいては、少なくとも外周のクラッド部
に、本実施の形態に係る結晶化しにくいガラスで、且つ
コア部とほぼ同等な、光ファイバとしての機能に必要な
所望の設計で定義される物性値を有するガラス材料を配
置すれば、例えば、結晶化し得る一般的なリン酸塩高含
有ガラスをコア部として用いるなど、コア部に結晶化発
熱量の小さな材料を使用しなくても、確実に機能する光
ファイバを製造することができる。一方、コア部を結晶
化しにくいガラスとすることも当然可能であり、光ファ
イバの製造プロセスに応じてコア部の結晶化しにくさの
程度を適宜設定し、ファイバ化の加工条件をさらに緩和
することもできる。
In an optical fiber having such a clad part and a core part, at least the clad part on the outer periphery is made of the glass according to the present embodiment which is hardly crystallized, and has a function as an optical fiber which is almost equal to the core part. If a glass material having a physical property value defined by a desired design required for is arranged, for example, a general phosphate-rich glass that can be crystallized is used as the core part, the crystallization heat value of the crystallization is generated in the core part. It is possible to manufacture a reliable optical fiber without using a small material. On the other hand, it is naturally possible to use glass that is hard to crystallize the core portion, and the degree of difficulty in crystallizing the core portion can be appropriately set according to the manufacturing process of the optical fiber to further relax the processing conditions for fiberization. You can also

【0029】このように、本実施の形態に係るガラス
は、リン酸塩高含有ガラスに周期表3B〜5B族のいず
れか一又は複数の元素の酸化物を含ませ、このガラスに
おける結晶化発熱量を60J/g以下とし、ガラスとし
ての熱的安定性を向上させることから、材料としての結
晶化が起りにくくなり、ガラス転移温度以上への再加熱
を伴う加工で結晶化温度近傍に保持された場合でも、完
全に結晶化するまでの時間的余裕をより長く確保でき、
光ファイバ化等の加工条件を大幅に緩和でき、リン酸塩
ガラスの特長を発揮させつつ、光ファイバ等への加工を
確実に行えると共に、ガラスに対する応力緩和処理時間
の短縮が図れるなど、ガラス自体の生産条件も大幅に緩
和できる。また、微量のフッ素を含ませつつ網目修飾成
分のモル比率を高くするよう原材料を調整すると、製造
時における原料融液の挙動をフッ素で安定化して支障無
くガラス状態へ移行させられることとなり、品質劣化の
無い清浄なガラス状態となることに加え、網目修飾成分
の割合を多くして、低光弾性等の特性を有する他のガラ
スと物性の適合するガラス材も得られるなど、ガラスの
物性の調整もより容易に行える。
As described above, in the glass according to the present embodiment, the phosphate-rich glass is made to contain an oxide of any one or more elements of Groups 3B to 5B of the Periodic Table, and the crystallization heat in this glass is increased. Since the amount is set to 60 J / g or less and the thermal stability as a glass is improved, crystallization as a material is less likely to occur, and the temperature is maintained near the crystallization temperature by processing accompanied by reheating to a glass transition temperature or higher. Even if it is, you can secure a longer time to completely crystallize,
Processing conditions such as optical fiber can be greatly relaxed, while the characteristics of phosphate glass can be fully exhibited, processing to optical fiber etc. can be reliably performed, and stress relaxation processing time for glass can be shortened. The production conditions can be greatly eased. In addition, if the raw material is adjusted to increase the molar ratio of the network modifying component while containing a small amount of fluorine, the behavior of the raw material melt during production will be stabilized by fluorine and can be transferred to the glass state without any trouble. In addition to a clean glass state without deterioration, the proportion of the network modifying component is increased to obtain a glass material that has physical properties compatible with other glasses having properties such as low photoelasticity. Adjustment is also easier.

【0030】なお、前記実施の形態に係るガラスにおい
ては、コア用とクラッド用の各材料として光ファイバを
形成する構成としているが、これに限らず、化学的に結
晶化する性質を有するものの、その製造時または加工熱
処理時に結晶化しない作業範囲(温度、保持時間)の広
いリン酸塩高含有ガラスとして様々な用途に使用可能で
ある。また、前記実施の形態に係るガラスにおいては、
屈折率を異ならせた二つの材料とされてそれぞれ光ファ
イバのコア部とクラッド部をなす構成としているが、こ
れに限らず、コア部又はクラッド部のいずれか一方のみ
に用いる構成とすることもできる。さらに、全体が同じ
材質の特殊な光ファイバや、一般的なガラス製ファイバ
等を形成するために、ファイバ全体で一様な唯一の構造
体として用いる構成とすることもできる。
In the glass according to the above-mentioned embodiment, the optical fiber is formed as each material for the core and the clad, but it is not limited to this, but it has the property of being chemically crystallized, It can be used for various purposes as a glass with a high content of phosphate, which has a wide working range (temperature, holding time) that does not crystallize during its production or processing heat treatment. Further, in the glass according to the above embodiment,
Two materials having different refractive indexes are used to form the core and the clad of the optical fiber, respectively, but the present invention is not limited to this, and it is also possible to use only one of the core and the clad. it can. Further, in order to form a special optical fiber made of the same material as a whole or a general glass fiber, it may be configured to be used as a single and uniform structure for the whole fiber.

【0031】[0031]

【実施例】本発明に係るガラスを用いた光ファイバの製
造しやすさについての評価結果、及び、添加物含有量を
変化させた場合の各種特性について比較した評価結果を
説明する。本実施例では、ガラスの網目修飾成分として
酸化バリウム(BaO)、網目形成成分として五酸化二
リン(P25)が生成されるように、基本組成の出発原
料としてメタリン酸バリウム(Ba(PO32)を用い
てガラス製造を行う。出発原料をそのままガラスとした
時のBaOとP25のモル比率は1.0となる。また、
添加物として炭酸バリウム(BaCO3)又はフッ化バ
リウム(BaF2)を混合し、網目修飾成分として生成
される酸化バリウム(BaO)の割合を調整する。さら
に、ガラスの結晶化を抑える添加物として酸化ホウ素
(B23)又は酸化ゲルマニウム(GeO2)を用い
る。
EXAMPLES The evaluation results of the ease of manufacturing an optical fiber using the glass according to the present invention and the evaluation results comparing various characteristics when the content of the additive is changed will be described. In this example, barium metaphosphate (Ba (Ba (M)) was used as the starting material of the basic composition so that barium oxide (BaO) was produced as the network-modifying component of glass and diphosphorus pentoxide (P 2 O 5 ) was produced as the network-forming component. Glass production is carried out using PO 3 ) 2 ). The molar ratio of BaO and P 2 O 5 is 1.0 when the starting material is glass as it is. Also,
Barium carbonate (BaCO 3 ) or barium fluoride (BaF 2 ) is mixed as an additive to adjust the proportion of barium oxide (BaO) produced as a network modification component. Further, boron oxide (B 2 O 3 ) or germanium oxide (GeO 2 ) is used as an additive that suppresses crystallization of glass.

【0032】(実施例1)まず、本発明に係るリン酸塩
高含有ガラスを、結晶化発熱量が異なるようにして複数
製造し、ファイバ線引の成否について比較評価を行う。
実施例A、B、C、Dとして、それぞれ結晶化発熱量
[J/g]が142、98、51、32であるガラスを
製造した。各実施例は五酸化二リンをそれぞれガラス全
体に対して41.5、42.7、41.4、42.0モ
ル%含んでいる。以上の各実施例におけるガラスのリン
酸塩含有割合及び結晶化発熱量を表1上側にまとめて示
す。
(Example 1) First, a plurality of glasses having a high phosphate content according to the present invention were produced with different crystallization calorific values, and comparative evaluations were made regarding the success or failure of fiber drawing.
As Examples A, B, C and D, glasses having crystallization heat values [J / g] of 142, 98, 51 and 32 were produced. Each of the examples contains 41.5, 42.7, 41.4, and 42.0 mol% of phosphorus pentoxide with respect to the entire glass, respectively. The phosphate content ratio of the glass and the heat value of crystallization in each of the above examples are collectively shown in the upper side of Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】これら各実施例のガラスを、ファイバ化の
成否について比較した評価結果を説明する。各例のガラ
スで試料として40mmφのロッドを成形し、縦形に配
置した管状炉内にロッドを吊り下げて、ロッドが自然落
下または変形するまで昇温速度1℃/minで加熱を継
続した。各例についてロッド引落し部の変形の有無、及
びファイバ線引の可否などの評価内容を表1下側に示
す。
The evaluation results comparing the glass of each of these examples with respect to the success or failure of fiber formation will be described. A 40 mmφ rod was molded as a sample from the glass of each example, the rod was suspended in a vertically arranged tubular furnace, and heating was continued at a heating rate of 1 ° C./min until the rod spontaneously dropped or deformed. For each example, the evaluation contents such as whether or not the rod dropout portion is deformed and whether or not fiber drawing is possible are shown in the lower side of Table 1.

【0035】結晶化発熱量が60J/gを上回る実施例
AとBでは、ロッド引き落とし部が結晶化のために変形
し、連続的にファイバ化できなかったものの、発熱量が
60J/g以下となる実施例CとDではファイバ化可能
で、ロッド引き落とし部の変形も見られなかった。ま
た、光学顕微鏡で観察した結果、実施例CとDでは結晶
の析出も見られなかった。
In Examples A and B in which the heat value for crystallization exceeded 60 J / g, the rod pull-down portion was deformed due to crystallization and could not be continuously formed into a fiber, but the heat value was 60 J / g or less. In Examples C and D, the fiber can be formed, and no deformation of the rod withdrawal part was observed. In addition, as a result of observation with an optical microscope, no precipitation of crystals was observed in Examples C and D.

【0036】このことから、本発明に係る結晶化発熱量
60J/g以下のガラスは、ガラス転移温度を超える温
度範囲での加工でも結晶化せず、確実にファイバ化でき
ることが確認できた。 (実施例2)本発明に係るガラスを、酸化ホウ素又は酸
化ゲルマニウムの含有割合(モル%)を変えて複数製造
し、結晶化発熱量や光弾性定数、屈折率等の比較を行
う。第1の実施例として、ガラス全体に対して酸化バリ
ウムが48.6モル%、五酸化二リンが46.1モル
%、酸化ホウ素が0.4モル%それぞれ含まれ、酸化バ
リウムと五酸化二リンとのモル比率が1.054となる
ガラスを製造した。
From this, it was confirmed that the glass having a crystallization heat value of 60 J / g or less according to the present invention does not crystallize even when processed in a temperature range exceeding the glass transition temperature, and can be reliably made into a fiber. (Example 2) A plurality of glasses according to the present invention are manufactured by changing the content ratio (mol%) of boron oxide or germanium oxide, and the calorific value of crystallization, photoelastic constant, refractive index, etc. are compared. As a first example, barium oxide is contained in an amount of 48.6 mol%, diphosphorus pentoxide is contained in an amount of 46.1 mol%, and boron oxide is contained in an amount of 0.4 mol%. A glass having a molar ratio with phosphorus of 1.054 was produced.

【0037】次に、第2の実施例として、酸化バリウム
が48.8モル%、五酸化二リンが45.7モル%、酸
化ホウ素が0.7モル%それぞれ含まれ、酸化バリウム
と五酸化二リンとのモル比率が1.068となるガラス
を製造した。また、第3の実施例として、酸化バリウム
が48.1モル%、五酸化二リンが44.9モル%、酸
化ホウ素が1.3モル%それぞれ含まれ、酸化バリウム
と五酸化二リンとのモル比率が1.071となるガラス
を製造した。
Next, as a second embodiment, barium oxide is contained in an amount of 48.8 mol%, diphosphorus pentoxide is contained in an amount of 45.7 mol%, and boron oxide is contained in an amount of 0.7 mol%. A glass having a molar ratio with diphosphorus of 1.068 was produced. As a third embodiment, barium oxide is 48.1 mol%, diphosphorus pentoxide is 44.9 mol%, and boron oxide is 1.3 mol%, respectively. A glass having a molar ratio of 1.071 was produced.

【0038】さらに、第4の実施例として、ガラス全体
に対して酸化バリウムが51.7モル%、五酸化二リン
が39.6モル%、酸化ゲルマニウムが0.7モル%そ
れぞれ含まれ、酸化バリウムと五酸化二リンとのモル比
率が1.306となるガラスを製造した。また、第5の
実施例として、酸化バリウムが51.4モル%、五酸化
二リンが39.7モル%、酸化ゲルマニウムが1.1モ
ル%それぞれ含まれ、酸化バリウムと五酸化二リンとの
モル比率が1.295となるガラスを製造した。
Further, as a fourth embodiment, barium oxide (51.7 mol%), diphosphorus pentoxide (39.6 mol%), and germanium oxide (0.7 mol%) are included in the whole glass, respectively. A glass having a molar ratio of barium to phosphorus pentoxide of 1.306 was produced. In addition, as a fifth example, barium oxide is contained in an amount of 51.4 mol%, diphosphorus pentoxide is included in an amount of 39.7 mol%, and germanium oxide is included in an amount of 1.1 mol%, respectively. A glass having a molar ratio of 1.295 was produced.

【0039】また、第6の実施例として、酸化バリウム
が51.1モル%、五酸化二リンが39.3モル%、酸
化ゲルマニウムが1.5モル%それぞれ含まれ、酸化バ
リウムと五酸化二リンとのモル比率が1.300となる
ガラスを製造した。なお、酸化バリウムと五酸化二リン
のモル比率については、酸化ホウ素を含む場合には、出
発原料のメタリン酸バリウムに添加物として炭酸バリウ
ムを適量混合して調整し、酸化ゲルマニウムを含む場合
には、出発原料のメタリン酸バリウムに添加物としてフ
ッ化バリウムを適量混合して調整する。以上の各実施例
におけるガラスの組成内容を表2上側にまとめて示す。
As a sixth embodiment, barium oxide is 51.1 mol%, diphosphorus pentoxide is 39.3 mol%, and germanium oxide is 1.5 mol%, respectively. A glass having a molar ratio with phosphorus of 1.300 was produced. Regarding the molar ratio of barium oxide and diphosphorus pentoxide, when boron oxide is contained, barium metaphosphate as a starting material is adjusted by mixing an appropriate amount of barium carbonate as an additive, and when germanium oxide is contained, Then, barium metaphosphate as a starting material is mixed with an appropriate amount of barium fluoride as an additive for preparation. The compositional contents of the glass in each of the above examples are collectively shown on the upper side of Table 2.

【0040】[0040]

【表2】 [Table 2]

【0041】各実施例のガラスの製造では、出発原料で
あるメタリン酸バリウムと添加物である炭酸バリウム
(あるいはフッ化バリウム)の融解後、特にフッ化バリ
ウム添加の場合、原料融液中には添加したフッ化バリウ
ムから生成したフッ素が存在している。湿潤空気を原料
融液中に吹込み、この空気中の水分を原料融液中のフッ
素と反応させると、フッ素がフッ化水素となる。このフ
ッ化水素の原料融液からの揮発で、原料融液からフッ素
のみが減少する。続いて、原料融液中に塩素ガスを吹込
み、塩素と原料融液中の水分とを反応させると、水をな
す水素が塩化水素となる。この塩化水素が原料融液から
ガス状態で揮発し、原料融液から水分も減少する。この
後、原料融液を撹拌して均一化し、さらに型中で徐冷す
るとガラスが得られる。
In the production of the glass of each Example, after melting barium metaphosphate as a starting material and barium carbonate (or barium fluoride) as an additive, particularly in the case of adding barium fluoride, the raw material melt contains Fluorine generated from the added barium fluoride is present. When moist air is blown into the raw material melt and the water in the air is reacted with the fluorine in the raw material melt, the fluorine becomes hydrogen fluoride. By volatilization of the hydrogen fluoride from the raw material melt, only fluorine is reduced from the raw material melt. Then, when chlorine gas is blown into the raw material melt to react chlorine with water in the raw material melt, hydrogen forming water becomes hydrogen chloride. This hydrogen chloride volatilizes in a gas state from the raw material melt, and the water content also decreases from the raw material melt. After that, the raw material melt is stirred to be homogenized, and then gradually cooled in a mold to obtain glass.

【0042】上記のようにして製造されたガラスについ
て、結晶化発熱量と屈折率、及び光弾性定数について実
際の値をそれぞれ計測した。この計測値を表2下側に示
す。この計測は、発熱量の面積測定法など、JIS K
7122「プラスチックの転移熱測定方法」に準じて実
施した。ただし、被試験体がプラスチックではないた
め、試験片には粒状(0.5mm〜2mm程度)に粗砕
したものを使用している。
With respect to the glass manufactured as described above, the actual values of the crystallization heat value, the refractive index, and the photoelastic constant were measured. The measured values are shown on the lower side of Table 2. This measurement is based on JIS K
7122 “Plastic transition heat measurement method”. However, since the object to be tested is not plastic, the test piece used is one that is roughly crushed into particles (about 0.5 mm to 2 mm).

【0043】なお、結晶化発熱量は、DSCにより測
定、評価しているが、これに限らず、TG-DTA等の
他の手法により測定することもできる。ただし、測定条
件及び発熱量の計測法により数値は変動し得るため、評
価基準を統一して比較対照する(特に、標準的な評価手
法が確立された場合にはそれに合わせる)ことが望まし
い。また、屈折率は、波長589.3nmの可視光に対
するものである。さらに、光弾性定数は、He−Neレ
ーザ光を用い、直径10mm、長さ10mmのガラスの
所定方向に圧縮荷重を加えた場合におけるガラスの中心
に生じる光路差を測定することにより求めている。
Although the crystallization heat value is measured and evaluated by DSC, it is not limited to this and can be measured by another method such as TG-DTA. However, since the numerical values may vary depending on the measurement conditions and the measurement method of the calorific value, it is desirable to unify and compare the evaluation criteria (especially if a standard evaluation method is established, match it). The refractive index is for visible light having a wavelength of 589.3 nm. Further, the photoelastic constant is obtained by measuring the optical path difference generated in the center of the glass when a compressive load is applied to the glass having a diameter of 10 mm and a length of 10 mm in a predetermined direction using He-Ne laser light.

【0044】表2に示すように、光弾性定数について
は、酸化ホウ素を添加した各例で0.6[×10
-12(1/Pa)]以下の値、酸化バリウムと五酸化二
リンとのモル比率を1.25以上とした酸化ゲルマニウ
ム添加の各例で0.3[×10-12(1/Pa)]を下
回る値がそれぞれ得られている。また、屈折率について
は、全ての例で1.6前後の値となっており、同程度の
光弾性定数となる鉛ガラスと比べても十分低い値が得ら
れている。ここで、酸化ホウ素又は酸化ゲルマニウムの
含有割合変化に対する発熱量の増減について各実施例を
比較すると、酸化ホウ素、酸化ゲルマニウム含有量が大
きくなると共に、結晶化発熱量が小さくなっていること
がわかる。そして、いずれの実施例においても、結晶化
発熱量が60J/gを下回っていた。
As shown in Table 2, the photoelastic constant was 0.6 [× 10] in each example in which boron oxide was added.
-12 (1 / Pa)] or less, and 0.3 [× 10 -12 (1 / Pa) in each case of adding germanium oxide in which the molar ratio of barium oxide and diphosphorus pentoxide is 1.25 or more. The values below are obtained respectively. In addition, the refractive index is around 1.6 in all the examples, which is sufficiently lower than that of lead glass having the same photoelastic constant. Here, comparing the respective examples with respect to the increase / decrease in the amount of heat generation with respect to the change in the content ratio of boron oxide or germanium oxide, it can be seen that the amount of boron oxide and germanium oxide increases and the amount of heat generated by crystallization decreases. Then, in any of the examples, the heat value of crystallization was less than 60 J / g.

【0045】続いて、前記第4の実施例の組成となるガ
ラス、すなわち、酸化バリウムが51.7モル%、五酸
化二リンが39.6モル%、酸化ゲルマニウムが0.7
モル%それぞれ含まれるガラスであるコア用材料と、第
3の実施例の組成となるガラス、すなわち、酸化バリウ
ムが48.1モル%、五酸化二リンが44.9モル%、
酸化ホウ素が1.3モル%それぞれ含まれるガラスであ
るクラッド用材料とを用いて、光ファイバを製造した。
コア用材料とクラッド用材料の屈折率はそれぞれ1.5
99(nD)、1.595(nD)である。
Subsequently, the glass having the composition of the fourth embodiment, that is, 51.7 mol% barium oxide, 39.6 mol% diphosphorus pentoxide, and 0.7% germanium oxide were used.
The core material, which is a glass contained in each mol%, and the glass having the composition of the third embodiment, that is, 48.1 mol% barium oxide and 44.9 mol% diphosphorus pentoxide,
An optical fiber was manufactured by using a clad material which is glass containing 1.3 mol% each of boron oxide.
The core material and the cladding material each have a refractive index of 1.5.
They are 99 (nD) and 1.595 (nD).

【0046】これらガラス材料に対し、機械加工により
コア部とクラッド部としてそれぞれ径の異なる円柱状に
仕上げ、クラッド部にはコア部が収納可能な孔を穿設
し、ロッドインチューブ法でプリフォーム(40mm
φ)を得た。この後、プリフォームをガラス転移温度以
上となる650℃で所定時間加熱して延伸させると、結
晶化することもなく、コア径10μm、クラッド径12
5μmの透明な光ファイバが連続的に製造できた。以上
各実施例により、本発明のガラスは、酸化ホウ素や酸化
ゲルマニウムを適宜含んで結晶化発熱量が60J/g以
下となることで、ガラス転移温度以上への再加熱を伴う
ファイバ状加工におけるガラスの結晶化を抑制でき、光
ファイバを容易に製造できることが確認できた。
These glass materials are machined into cylindrical shapes with different diameters for the core and the clad, and holes for accommodating the core are formed in the clad, and preformed by the rod-in-tube method. (40 mm
φ) was obtained. After that, when the preform is heated and stretched at 650 ° C. which is higher than the glass transition temperature for a predetermined time, the preform is not crystallized, and the core diameter is 10 μm and the clad diameter is 12 μm.
A 5 μm transparent optical fiber could be continuously manufactured. According to each of the above examples, the glass of the present invention has a crystallization calorific value of 60 J / g or less by appropriately containing boron oxide or germanium oxide, so that the glass in the fibrous processing accompanied by reheating to the glass transition temperature or more. It has been confirmed that the crystallization of the can be suppressed and the optical fiber can be easily manufactured.

【0047】[0047]

【発明の効果】以上のように本発明によれば、五酸化二
リンを38モル%以上含むリン酸塩高含有ガラスにおけ
る結晶化発熱量を60J/g以下とし、ガラスとしての
熱的安定性を向上させることにより、材料としての結晶
化が起りにくくなり、ガラス転移温度以上への再加熱を
伴う加工で結晶化温度近傍に保持された場合でも、完全
に結晶化するまでの時間的余裕をより長く確保でき、光
ファイバ化等の加工条件を大幅に緩和でき、リン酸塩ガ
ラスの特長を発揮させつつ、光ファイバ等への加工を確
実に行えると共に、ガラスに対する応力緩和処理時間の
短縮が図れるなど、ガラス自体の生産条件も大幅に緩和
できるという効果を奏する。また、加工に際して、仮に
結晶化を誘発し得る温度領域に達する部分があっても、
特に表面結晶化の影響を緩和できることにより、結晶発
生に伴う材料の変形等を抑制でき、加工の際の悪影響を
著しく低減させられるという効果を有する。
As described above, according to the present invention, the heat of crystallization in the glass having a high phosphate content of 38 mol% or more of diphosphorus pentoxide is set to 60 J / g or less, and the thermal stability of the glass is improved. As a result, crystallization as a material is less likely to occur, and even when the temperature is kept near the crystallization temperature during processing accompanied by reheating to a glass transition temperature or higher, there is a time margin until complete crystallization. It can be secured for a longer time, processing conditions such as optical fiber can be greatly relaxed, and while making the best use of the features of phosphate glass, processing to optical fiber etc. can be reliably performed and the stress relaxation processing time for glass can be shortened. As a result, the production conditions of the glass itself can be greatly relaxed. In addition, during processing, even if there is a portion that reaches a temperature range that can induce crystallization,
In particular, by being able to reduce the influence of surface crystallization, it is possible to suppress the deformation of the material and the like due to the generation of crystals, and it is possible to significantly reduce the adverse effects during processing.

【0048】また、本発明によれば、五酸化二リンを3
8モル%以上とすると共に、網目修飾成分をそれ以上含
ませ、さらに、周期表3B〜5B族のいずれか一又は複
数の元素の酸化物を含ませた組成とすることにより、結
晶化が起りにくい上に、リン酸塩高含有ガラスの特徴及
び特性を備えるか、又は、それに極めて近い特徴及び特
性となる材料とすることができるという効果を有する。
Further, according to the present invention, diphosphorus pentoxide is added to 3
Crystallization occurs when the composition is 8 mol% or more and further contains a network modifying component and further contains an oxide of any one or more elements of Groups 3B to 5B of the periodic table. In addition to being difficult, it has the effect that it can be a material that has, or is very close to, the features and characteristics of high phosphate content glass.

【0049】また、本発明によれば、ガラス固化状態に
おける網目修飾成分の割合を増やす添加材料として網目
修飾成分に含まれるイオンの電子分極性が高い元素やフ
ッ素を含んだ物質を添加し、原料融液に微量のフッ素が
含まれた状態としつつ、網目修飾成分のモル比率を高く
し、製造時における原料融液の挙動をフッ素で安定化し
てガラス状態へ移行させられることにより、結晶化等が
抑えられて品質劣化の無い清浄なガラス状態となり、支
障なく網目修飾成分のモル比率を多くしたガラスを得ら
れるという効果を有する。
Further, according to the present invention, as an additive material for increasing the ratio of the network modifying component in the vitrified state, an element having a high electron polarizability of ions contained in the network modifying component or a substance containing fluorine is added to prepare a raw material. While keeping a small amount of fluorine in the melt, by increasing the molar ratio of the network modification component, the behavior of the raw material melt at the time of production can be crystallized by being stabilized by fluorine and being transferred to the glass state. Is suppressed, resulting in a clean glass state without quality deterioration, and it is possible to obtain a glass in which the molar ratio of the network modifying component is increased without any trouble.

【0050】また、本発明によれば、出発原料を融解さ
せた後にフッ素と反応する所定ガスを吹込んでフッ素を
フッ化物ガスとして揮発させ、原料融液中のフッ素量を
低減することにより、ガラス状態でのフッ素の存在によ
る悪影響を抑えられ、清浄で均質性の向上したガラスを
製造できるという効果を有する。また、本発明によれ
ば、微量のフッ素を含ませた上で網目修飾成分の割合を
増やしてモル比率を1.25以上に高くし、製造時にお
ける原料融液の挙動をフッ素で安定化しつつガラス状態
へ移行させることにより、網目修飾成分が多くても原料
融液を支障無くガラス状態へ移行させられ、且つ結晶化
も起りにくい上に、網目修飾成分の割合を適切にするこ
とで、リン酸塩ガラスの優れた特性をより安定的に引出
せるという効果を有する。
Further, according to the present invention, by melting a starting raw material and then blowing a predetermined gas which reacts with fluorine to volatilize the fluorine as a fluoride gas to reduce the amount of fluorine in the raw material melt, the glass can be reduced. This has the effect of suppressing the adverse effects of the presence of fluorine in the state and producing a clean glass with improved homogeneity. Further, according to the present invention, the amount of the network modifying component is increased by adding a trace amount of fluorine to increase the molar ratio to 1.25 or more, while stabilizing the behavior of the raw material melt during production with fluorine. By shifting to the glass state, even if there are many network modifying components, the raw material melt can be shifted to the glass state without hindrance, and crystallization hardly occurs, and by adjusting the proportion of the network modifying components appropriately, phosphorus It has an effect that the excellent characteristics of the salt glass can be more stably drawn out.

【0051】また、本発明によれば、網目修飾成分とし
て光弾性定数を小さくする性質のある酸化バリウムを含
むと共に、結晶化発熱量を減少させる添加物として酸化
ホウ素及び/又は酸化ゲルマニウムを含んでなり、酸化
バリウムの割合を調整されて、主成分であるリン酸塩の
含有量も調整されつつ所定の光弾性定数とされることに
より、特に低光弾性となる特性を有する他のガラス材料
と、屈折率、熱膨張率、軟化温度などの特性について一
致性が良く、且つ結晶化しにくい材料を得ることがで
き、例えば光ファイバのコア部又はクラッド部として他
のガラス材料と一体に適切な加工が行えるという効果を
有する。さらに、酸化ホウ素や酸化ゲルマニウムは結晶
化の抑制に加えて、光弾性定数や屈折率、熱的特性を調
整でき、添加量調整で目的に応じた特性を適宜設定でき
るという効果を有する。
Further, according to the present invention, barium oxide having a property of reducing a photoelastic constant is contained as a network modifying component, and boron oxide and / or germanium oxide is contained as an additive for reducing a heat value of crystallization. By adjusting the proportion of barium oxide and adjusting the content of the phosphate as the main component to be a predetermined photoelastic constant, other glass materials having characteristics of particularly low photoelasticity are obtained. , Materials with good matching in properties such as refractive index, coefficient of thermal expansion, softening temperature, and hard to crystallize. For example, suitable processing integrally with other glass materials as the core or clad of optical fiber. It has the effect that Furthermore, boron oxide and germanium oxide have the effect of being able to adjust the photoelastic constant, refractive index, and thermal characteristics in addition to suppressing crystallization, and the characteristics according to the purpose can be set appropriately by adjusting the addition amount.

【0052】また、本発明によれば、ガラスの諸性質に
影響を与える二酸化ケイ素及び/又はアルミナを添加物
として含み、製造時における原料融液状態からガラス状
態への移行後までその挙動や物性を所望の状態に制御す
ることにより、液相温度、化学的安定性、光弾性定数、
屈折率、透過率、及び耐久性等の各種特性を調整して性
能向上が図れるという効果を有する。
Further, according to the present invention, silicon dioxide and / or alumina, which influences various properties of glass, is added as an additive, and its behavior and physical properties are maintained until the transition from the raw material melt state to the glass state during production. Liquid phase temperature, chemical stability, photoelastic constant,
There is an effect that performance can be improved by adjusting various characteristics such as refractive index, transmittance, and durability.

【0053】また、本発明によれば、少なくとも一部
が、結晶化発熱量が60J/g以下であるリン酸塩高含
有ガラスで形成され、ファイバ材料としてのリン酸塩ガ
ラスの熱的安定性が向上することにより、ガラス転移温
度以上への再加熱を伴うファイバ状加工で材料外周部が
結晶化温度近傍に保持された場合でも、完全に結晶化す
るまでの時間的余裕をより長く確保でき、加工条件を大
幅に緩和可能となり、リン酸塩ガラスの特長を発揮させ
つつ、ファイバ状加工を確実に行えて容易に製造できる
という効果を有する。さらに、ファイバ各部が光ファイ
バとして機能し得る物性条件を満たす適切な構成をとる
ことができ、リン酸塩高含有ガラスの光ファイバとして
確実に機能させられるという効果を有する。
Further, according to the present invention, at least a part is formed of a high phosphate content glass having a crystallization calorific value of 60 J / g or less, and the thermal stability of the phosphate glass as a fiber material. As a result, it is possible to secure a longer time margin until complete crystallization even when the material outer periphery is kept near the crystallization temperature in the fiber-like processing that involves reheating to above the glass transition temperature. The processing conditions can be greatly relaxed, and the advantages of phosphate glass can be exerted, while the fiber-shaped processing can be performed reliably and the manufacturing is easy. Further, each fiber portion can have an appropriate configuration that satisfies the physical property condition that it can function as an optical fiber, and has an effect that it can surely function as an optical fiber of phosphate-rich glass.

【0054】また、本発明によれば、コア部とクラッド
部が存在する光ファイバのうち、クラッド部が結晶化発
熱量が60J/g以下であるリン酸塩高含有ガラスで形
成され、ファイバに占める容積が多く且つ高熱にさらさ
れる外周側に位置することで光ファイバ製造時に最も結
晶化の影響を受けやすいクラッド部で熱的安定性が向上
することにより、ガラス転移温度以上への再加熱を伴う
ファイバ状加工でクラッド部が結晶化温度近傍に保持さ
れた場合でも、完全に結晶化するまでの時間的余裕をよ
り長く確保でき、加工条件を大幅に緩和可能となり、フ
ァイバ状加工を確実に行えて容易に製造できるという効
果を有する。
Further, according to the present invention, of the optical fibers having the core portion and the clad portion, the clad portion is formed of a high phosphate content glass having a crystallization calorific value of 60 J / g or less. Since it occupies a large volume and is located on the outer peripheral side that is exposed to high heat, the thermal stability is improved in the clad part that is most susceptible to crystallization during optical fiber manufacturing, and reheating above the glass transition temperature is possible. Even if the clad part is kept near the crystallization temperature in the accompanying fibrous processing, it is possible to secure a longer time margin until complete crystallization, and it is possible to greatly relax the processing conditions, ensuring fibrous processing. It has the effect that it can be manufactured easily.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C03C 13/04 C03C 13/04 G02B 6/00 376 G02B 6/00 376A (72)発明者 森永 健次 福岡県筑紫郡那珂川町大字片縄1232−35 Fターム(参考) 2H050 AB08 4G062 AA01 AA06 BB09 CC10 DA02 DA03 DB02 DB03 DC01 DC02 DC03 DD05 DD06 DE01 DE02 DF01 EA01 EA02 EB01 EB02 EC01 EC02 ED01 EE01 EE02 EF01 EF02 EG05 EG06 FA01 FA10 FB01 FB02 FC01 FC02 FD01 FD02 FE01 FE02 FF01 FG01 FH01 FH02 FJ01 FK01 FK02 FL01 GA01 GA10 GB01 GC01 GD01 GD02 GE01 GE02 HH01 HH02 HH03 HH05 HH07 HH08 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ04 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM02 NN40─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C03C 13/04 C03C 13/04 G02B 6/00 376 G02B 6/00 376A (72) Inventor Kenji Morinaga Fukuoka Prefecture 1232-35 F term, Nakagawa-machi, Nakagawa-machi, Chikushi-gun (reference) 2H050 AB08 4G062 AA01 AA06 BB09 CC10 DA02 DA03 DB02 DB03 DC01 DC02 DC03 DD05 DD06 DE01 DE02 DF01 EA01 EA02 FB01 FA02 FA01 EF01 EF01 EF01 FA02 FA02 EF01 EF01 EF01 EF01 FA02 FA02 FA02 FA02 FA01 FA02 FA02 FA01 FA02 FA02 FA01 FA02 FA02 FA02 FA02 FA02 FC01 FC02 FD01 FD02 FE01 FE02 FF01 FG01 FH01 FH02 FJ01 FK01 FK02 FL01 GA01 GA10 GB01 GC01 GD01 GD02 GE01 GE02 HH01 HH02 HH03 HH05 HH07 07 HKK08 KK KK KK JJ01 KK

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも網目形成成分としての五酸化
二リンを38モル%以上含んでなり、 結晶化発熱量が60J/g以下であることを特徴とする
ガラス。
1. A glass comprising at least 38 mol% of diphosphorus pentoxide as a network-forming component and having a crystallization heat value of 60 J / g or less.
【請求項2】 前記請求項1に記載のガラスにおいて、 周期表3B〜5B族のいずれか一又は複数の元素の酸化
物を0.1モル%以上含むと共に、少なくともイオンの
電子分極性が高い元素を含む網目修飾成分を有してな
り、前記網目修飾成分と前記網目形成成分とのモル比率
が1.0以上となることを特徴とするガラス。
2. The glass according to claim 1, wherein the glass contains 0.1 mol% or more of an oxide of any one or more elements of Groups 3B to 5B of the periodic table and has at least a high electronic polarizability of ions. A glass comprising a network-modifying component containing an element, wherein the molar ratio of the network-modifying component to the network-forming component is 1.0 or more.
【請求項3】 前記請求項1又は2に記載のガラスにお
いて、 前記網目修飾成分と網目形成成分とをそれぞれ構成する
各元素を含む一又は複数の物質を出発原料とされると共
に、当該出発原料に対し、網目修飾成分の増加用添加材
料として網目修飾成分に含まれる前記イオンの電子分極
性が高い元素のフッ化物、イオンの電子分極性が高い元
素のフッ化物及び酸化物、又は、所定のフッ化物及びイ
オンの電子分極性が高い元素の酸化物を所定量添加され
ることを特徴とするガラス。
3. The glass according to claim 1 or 2, wherein the starting material is one or a plurality of substances containing the respective elements constituting the network modifying component and the network forming component, respectively. On the other hand, a fluoride of an element having a high electron polarizability of the ion contained in the network modifying component as an additive material for increasing the network modifying component, a fluoride and an oxide of an element having a high electron polarizability of the ion, or a predetermined amount A glass comprising a predetermined amount of a fluoride and an oxide of an element having high electron polarizability of ions.
【請求項4】 前記請求項3に記載のガラスにおいて、 前記出発原料を加熱融解させた原料融液中にフッ素と反
応する所定ガスを吹込み、前記原料融液中のフッ素を前
記所定ガスと反応させ、フッ化物ガスの状態で原料融液
中から揮発させた上でガラス固化状態とされることを特
徴とするガラス。
4. The glass according to claim 3, wherein a predetermined gas that reacts with fluorine is blown into the raw material melt obtained by heating and melting the starting material, and the fluorine in the raw material melt is used as the predetermined gas. A glass characterized by being reacted and volatilized from a raw material melt in the state of a fluoride gas, and then brought into a vitrified state.
【請求項5】 前記請求項3又は4に記載のガラスにお
いて、 前記網目修飾成分と網目形成成分のモル比率が1.25
以上となることを特徴とするガラス。
5. The glass according to claim 3 or 4, wherein a molar ratio of the network modifying component and the network forming component is 1.25.
A glass characterized by the above.
【請求項6】 前記請求項2ないし5のいずれかに記載
のガラスにおいて、 前記網目修飾成分が、酸化バリウムであり、 前記周期表3B〜5B族元素の酸化物が、酸化ホウ素及
び/又は酸化ゲルマニウムであることを特徴とするガラ
ス。
6. The glass according to any one of claims 2 to 5, wherein the network modifying component is barium oxide, and the oxide of a group 3B to 5B element of the periodic table is boron oxide and / or oxide. A glass characterized by being germanium.
【請求項7】 前記請求項1ないし6のいずれかに記載
のガラスにおいて、 二酸化ケイ素及び/又はアルミナを所定量含有すること
を特徴とするガラス。
7. The glass according to claim 1, which contains a predetermined amount of silicon dioxide and / or alumina.
【請求項8】 前記請求項1ないし7のいずれかに記載
のガラスを少なくとも一部に含んで形成されることを特
徴とする光ファイバ。
8. An optical fiber comprising at least a part of the glass according to any one of claims 1 to 7.
【請求項9】 前記請求項8に記載の光ファイバにおい
て、 少なくともクラッド部が前記ガラスで形成されることを
特徴とする光ファイバ。
9. The optical fiber according to claim 8, wherein at least a clad portion is formed of the glass.
JP2002049667A 2002-02-26 2002-02-26 Glass and optical fiber using the same Pending JP2003246642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002049667A JP2003246642A (en) 2002-02-26 2002-02-26 Glass and optical fiber using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002049667A JP2003246642A (en) 2002-02-26 2002-02-26 Glass and optical fiber using the same

Publications (1)

Publication Number Publication Date
JP2003246642A true JP2003246642A (en) 2003-09-02

Family

ID=28662120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002049667A Pending JP2003246642A (en) 2002-02-26 2002-02-26 Glass and optical fiber using the same

Country Status (1)

Country Link
JP (1) JP2003246642A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092087A1 (en) * 2003-04-15 2004-10-28 Kabushiki Kaisha Ohara Glass having low photoelastic constant
JP2007051030A (en) * 2005-08-18 2007-03-01 Mitsumi Electric Co Ltd Glass, glass powder, optical fiber, optical fiber array, and optical waveguide
JP2007230860A (en) * 2006-03-02 2007-09-13 Heraeus Quarzglas Gmbh & Co Kg Method for manufacturing material of objective projection lens for liquid immersion lithography
CN112110649A (en) * 2020-09-23 2020-12-22 中国计量大学 Tellurium bismuthate mid-infrared 2.7 micron luminescent glass and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268217A (en) * 1975-12-04 1977-06-06 Sumita Optical Glass Optical phosphate glass
JPS6311544A (en) * 1986-07-02 1988-01-19 Hoya Corp Phosphoric acid optical glass
JPH02188442A (en) * 1989-01-17 1990-07-24 Nikon Corp Optical phosphate glass
JPH11199269A (en) * 1997-12-26 1999-07-27 Ohara Inc Optical glass having low photoelastic constant
JPH11335135A (en) * 1997-06-17 1999-12-07 Hoya Corp Optical polarized light control element
JP2000034132A (en) * 1998-05-15 2000-02-02 Hoya Corp Glass having low photoelastic coefficient and optical glass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268217A (en) * 1975-12-04 1977-06-06 Sumita Optical Glass Optical phosphate glass
JPS6311544A (en) * 1986-07-02 1988-01-19 Hoya Corp Phosphoric acid optical glass
JPH02188442A (en) * 1989-01-17 1990-07-24 Nikon Corp Optical phosphate glass
JPH11335135A (en) * 1997-06-17 1999-12-07 Hoya Corp Optical polarized light control element
JPH11199269A (en) * 1997-12-26 1999-07-27 Ohara Inc Optical glass having low photoelastic constant
JP2000034132A (en) * 1998-05-15 2000-02-02 Hoya Corp Glass having low photoelastic coefficient and optical glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092087A1 (en) * 2003-04-15 2004-10-28 Kabushiki Kaisha Ohara Glass having low photoelastic constant
JP2007051030A (en) * 2005-08-18 2007-03-01 Mitsumi Electric Co Ltd Glass, glass powder, optical fiber, optical fiber array, and optical waveguide
JP2007230860A (en) * 2006-03-02 2007-09-13 Heraeus Quarzglas Gmbh & Co Kg Method for manufacturing material of objective projection lens for liquid immersion lithography
CN112110649A (en) * 2020-09-23 2020-12-22 中国计量大学 Tellurium bismuthate mid-infrared 2.7 micron luminescent glass and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100383067B1 (en) Optically active glass-ceramic products and methods for their manufacture
KR100536561B1 (en) Optical glass for mold pressing and optical element
US7501369B2 (en) Optical glass and process for the production of optical products
EP0832046B1 (en) Boron-free glass fibers
US6995101B2 (en) Optical glass and optical product using the same
JP4938982B2 (en) Optical glass especially for precision pressed optical elements
JP2002362938A (en) Optical glass
US4038090A (en) Ion exchangeable glass having low thermal expansion
US20040157720A1 (en) Crystallized glass
JPH01133956A (en) Glass composition for distributed refractive index lens
US5148510A (en) Optical fiber made of galliobismuthate glasses and optical devices using same
JPS61286237A (en) Glass ceramic body suitable for ring laser gyroscope and manufacture
JP5457691B2 (en) Photoconductive fiber
JP2002087841A (en) Optical glass, precision press molding stock and optical part
JP2003246642A (en) Glass and optical fiber using the same
WO2002061475A1 (en) Optical waveguide element and method for preparation thereof
JP2005008518A (en) Low melting point optical glass
JP3608744B2 (en) Low melting point optical glass
JP4818538B2 (en) Optical glass for molding
US4110002A (en) Optical fibers formed of aluminum borophosphate glass compositions
JP3034427B2 (en) Low temperature softening optical glass for mold press
US5093287A (en) Galliobismuthate glasses
JP2000264675A (en) Glass for optical fiber
JP2018020917A (en) Method for manufacturing optical glass preform
JP4233832B2 (en) Optical glass for molding

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211