JP2003244943A - Booster for power unit - Google Patents

Booster for power unit

Info

Publication number
JP2003244943A
JP2003244943A JP2002035992A JP2002035992A JP2003244943A JP 2003244943 A JP2003244943 A JP 2003244943A JP 2002035992 A JP2002035992 A JP 2002035992A JP 2002035992 A JP2002035992 A JP 2002035992A JP 2003244943 A JP2003244943 A JP 2003244943A
Authority
JP
Japan
Prior art keywords
fet
drive signal
booster
turned
switch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002035992A
Other languages
Japanese (ja)
Inventor
Satoshi Shimada
敏 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002035992A priority Critical patent/JP2003244943A/en
Publication of JP2003244943A publication Critical patent/JP2003244943A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a booster for a power unit, which is fit for the supply of power to an electric power steering device or the like of a passenger car and lessens power consumption at a one-way current pass circuit which lets a current flow, based on a high voltage generated by boosting action, and reduces heat generation. <P>SOLUTION: This booster is equipped with an FET 12 which is turned on or turned off by a drive signal S, a coil 1 which accumulates energy when the FET is on and releases the energy the instant it is turned off, an FET 13 which is connected downstream of the coil and lets a current supplied from the coil flow, being turned on by a drive signal S' when the FET is off, a capacitor 15 which is connected downstream of the FET, and a drive control means 14 which supplies the drive signal S and the drive signal S'. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電源装置の昇圧装置
に関し、特に、乗用自動車の電動パワーステアリング装
置等に電力を供給する電源装置の昇圧装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a booster device for a power supply device, and more particularly to a booster device for a power supply device that supplies electric power to an electric power steering device of a passenger car.

【0002】[0002]

【従来の技術】昇圧装置の電気回路部分(以下「昇圧回
路」という)は、通常、インダクタンス回路要素として
のコイルと、スイッチ要素としてのFET(Field-effe
ct Transistor)と、ダイオードと、蓄電要素としての
コンデンサから構成される。昇圧装置は、入力端子に印
加される所定の電圧を昇圧し、出力端子に高圧電圧を生
じさせる装置で、例えば電動パワーステアリング装置の
電源装置に含まれる。図6は、従来の周知の昇圧回路の
回路構成図である。この昇圧回路101は、例えば特公
平8−539号公報や特開平8−127351号公報に
開示されている。昇圧回路101で、ダイオード102
のアノード側にコイル103とFET104が接続さ
れ、ダイオード102のカソード側には、コンデンサ1
05が接続されている。昇圧回路101の出力端子V
out側には、さらに、電池、負荷等が接続される。
2. Description of the Related Art An electric circuit portion of a booster (hereinafter referred to as a "boost circuit") usually includes a coil as an inductance circuit element and a field effect transistor (FET) as a switch element.
ct Transistor), a diode, and a capacitor as a storage element. The booster is a device that boosts a predetermined voltage applied to an input terminal to generate a high voltage at an output terminal, and is included in, for example, a power supply device of an electric power steering device. FIG. 6 is a circuit configuration diagram of a conventional well-known booster circuit. The booster circuit 101 is disclosed in, for example, Japanese Patent Publication No. 8-539 and Japanese Patent Laid-Open No. 8-127351. In the booster circuit 101, the diode 102
The coil 103 and the FET 104 are connected to the anode side of, and the capacitor 1 is connected to the cathode side of the diode 102.
05 is connected. Output terminal V of booster circuit 101
A battery and a load are further connected to the out side.

【0003】所定の電圧が入力端子Vinに印加されて
いる場合に、FET104がオンで通電状態となってい
れば、コイル103はエネルギを電流として蓄える。F
ET104がオフで非通電状態となった時には、コイル
103に蓄えられたエネルギが放出される。このとき電
流はFET104には流れず、ダイオード102へと流
れる。昇圧作用による高電圧は、コンデンサ105によ
って平滑化され、出力端子Voutへ与えられる。以上
のようにして、入力端子Vinに与えられた相対的に低
い電圧が昇圧され、高い電圧としてダイオード102の
カソード側の出力端子Voutに生じる。
When a predetermined voltage is applied to the input terminal V in and the FET 104 is on and in the energized state, the coil 103 stores energy as a current. F
When the ET 104 is off and in a non-energized state, the energy stored in the coil 103 is released. At this time, the current does not flow to the FET 104 but to the diode 102. The high voltage due to the boosting action is smoothed by the capacitor 105 and is given to the output terminal V out . As described above, a relatively low voltage applied to the input terminal V in is boosted, at the output terminal V out of the cathode side of the diode 102 as a high voltage.

【0004】ダイオード102は出力端子Vout側か
ら電流が流れ込まないようにするために設けられてい
る。これは、昇圧回路101では出力端子Vout側の
昇圧された電圧が入力側の電圧より高くなり、逆流する
可能性があるので、それを防止するためである。ここに
は通常、順方向電圧の小さいショットキーダイオードが
使用される。このダイオード102での消費電力は、ダ
イオード102の順方向電圧をVfとし、電流をI
outとし、FET104のオフデューティをFET
offdutyとすると、次の式で計算される。
The diode 102 has an output terminal VoutSide
It is provided to prevent current from flowing in from
It This is the output terminal V in the booster circuit 101.outOn the side
The boosted voltage becomes higher than the input voltage and flows backward.
This is because there is a possibility to prevent it. here
Is usually a Schottky diode with a low forward voltage
used. The power consumption of this diode 102 is
The forward voltage of the ion 102 is Vf, and the current is I
outAnd the off duty of FET 104 is FET
offdutyThen, it is calculated by the following formula.

【0005】 Vf×Iout×FEToffduty・・・・(1)Vf × I out × FET offduty ... (1)

【0006】上記(1)式による消費電力は、FET1
04がオフのとき、つまりダイオード102に順方向電
圧がかかっているときの消費電力となっている。この消
費電力は出力端子Voutから負荷等へ供給される電流
が大きくなると、大きくなり、これによって発熱量も大
きくなる。
The power consumption by the above equation (1) is FET1
The power consumption is when 04 is off, that is, when the forward voltage is applied to the diode 102. This power consumption increases as the current supplied from the output terminal V out to the load or the like increases, and thus the amount of heat generation also increases.

【0007】次に、昇圧装置を含む電源装置の例として
電動パワーステアリング装置において使用される電源装
置について説明する。電動パワーステアリング装置は、
自動車の運転中、運転者がステアリングホイール(操舵
ハンドル)を操作するとき、モータを連動させて操舵力
を補助する支援装置である。電動パワーステアリング装
置では、運転者のハンドル操舵によりステアリング軸に
生じる操舵トルクを検出する操舵トルク検出部からの操
舵トルク信号、および、車速を検出する車速検出部から
の車速信号等を利用し、モータ制御部の制御動作に基づ
いて、補助操舵力を出力する支援用のモータを駆動制御
し、運転者の操舵力を軽減している。操舵ハンドルの据
えきり時などでは、瞬時に大きな補助操舵力を必要とす
るため、モータへ大電流を供給する必要がある。
Next, a power supply device used in an electric power steering device will be described as an example of a power supply device including a booster device. The electric power steering device is
When the driver operates a steering wheel (steering wheel) while the vehicle is driving, the motor is interlocked to assist the steering force. The electric power steering apparatus uses a steering torque signal from a steering torque detection unit that detects a steering torque generated on a steering shaft by a driver's steering of a steering wheel, a vehicle speed signal from a vehicle speed detection unit that detects a vehicle speed, and the like. Based on the control operation of the control unit, the assisting motor that outputs the auxiliary steering force is drive-controlled to reduce the steering force of the driver. For example, when the steering wheel is stationary, a large amount of auxiliary steering force is required instantaneously, so it is necessary to supply a large current to the motor.

【0008】従来、モータへの大電流の供給は、電池か
ら直接供給していた。このため、電池の電圧変動があっ
た。そこで、例えば特公平8−539号公報の電動パワ
ーステアリング電源装置では、低電圧を昇圧する昇圧回
路の容量を昇圧回路の出力側に接続された電池で使用す
る平均電力よりも大きくかつ、使用する最大電力よりも
小さくすることによって、入力側の電池の電圧変動が小
さい状態で、操舵ハンドルの据えきり時に必要となる大
電流を供給している。
Conventionally, a large current has been supplied to a motor directly from a battery. Therefore, the voltage of the battery fluctuated. Therefore, for example, in the electric power steering power supply device of Japanese Patent Publication No. 8-539, the capacity of the booster circuit for boosting the low voltage is larger than the average power used by the battery connected to the output side of the booster circuit and used. By making the electric power smaller than the maximum electric power, a large current required when the steering wheel is installed is supplied while the voltage fluctuation of the battery on the input side is small.

【0009】[0009]

【発明が解決しようとする課題】上記の公報で開示され
る昇圧回路には、昇圧作用による高電圧に基づき電流を
流す一方向通電回路部にダイオードが使用されている。
かかる昇圧回路において順方向電圧の小さいショットキ
ーダイオードを使用したとしても、(1)式で算出され
る電力が消費される。この結果、ダイオードによって電
力が消費され、ダイオードは発熱する。据えきり時など
ごく短期間に比較的大きな電流を必要とする電動パワー
ステアリングなどの車両装置では、特に上記のような消
費電力を少なくし、発熱を低減することが望まれる。
In the step-up circuit disclosed in the above publication, a diode is used in a one-way energizing circuit section that causes a current to flow based on a high voltage due to the step-up action.
Even if a Schottky diode having a low forward voltage is used in such a booster circuit, the power calculated by the equation (1) is consumed. As a result, power is consumed by the diode and the diode heats up. In a vehicle device such as an electric power steering device that requires a relatively large current in a very short period of time such as when stationary, it is particularly desirable to reduce the power consumption and heat generation as described above.

【0010】本発明の目的は、上記の問題を解決するこ
とにあり、昇圧作用による高電圧に基づき電流を流す一
方向通電回路部での消費電力を少なくし、発熱を低減し
た電源装置の昇圧装置を提供することにある。
An object of the present invention is to solve the above problems, and to reduce the power consumption in the one-way energizing circuit section for flowing a current based on the high voltage due to the boosting action and to reduce the heat generation. To provide a device.

【0011】[0011]

【課題を解決するための手段および作用】本発明に係る
電源装置の昇圧装置は、上記目的を達成するため、次の
ように構成される。
In order to achieve the above object, a booster device for a power supply device according to the present invention is constructed as follows.

【0012】第1の電源装置の昇圧装置(請求項1に対
応)は、第1駆動信号によってオン・オフされる第1ス
イッチ要素(FET12)と、第1スイッチ要素のオン
のときにエネルギを蓄え、オフした瞬間にエネルギを解
放するインダクタンス回路要素(コイル)と、インダク
タンス回路要素の下流側に接続され、第1スイッチ要素
がオフのときに第2駆動信号によってオンになってイン
ダクタンス回路要素から供給される電流を流す第2スイ
ッチ要素(FET13)と、第2スイッチ要素の下流側
に接続されるコンデンサ等の蓄電要素と、第1駆動信号
と第2駆動信号を供給する駆動制御部とを備えて成るこ
とを特徴とする。
The step-up device (corresponding to claim 1) of the first power supply device outputs energy when the first switch element (FET 12) is turned on / off by the first drive signal and the first switch element is on. The inductance circuit element (coil) that stores and releases energy at the moment of turning off and the inductance circuit element connected to the downstream side of the inductance circuit element and turned on by the second drive signal when the first switch element is off A second switch element (FET 13) for supplying the supplied current, a storage element such as a capacitor connected to the downstream side of the second switch element, and a drive control section for supplying the first drive signal and the second drive signal are provided. It is characterized by comprising.

【0013】上記構成によれば、第1スイッチ要素がオ
ンのときにインダクタンス回路要素に蓄えられたエネル
ギが、第1スイッチ要素をオフにした瞬間に、昇圧作用
による高電圧に基づき電流を流す一方向通電回路部を通
じて出力側へ解放される。この一方向通電回路部には、
前述の(1)式で算出される電力を消費するダイオード
ではなく、所定条件を満たすFETによる第2スイッチ
要素が備えられているため、消費電力を抑えることが可
能であり、これによって発熱の低減を図ることが可能と
なる。これは以下の理由によるものである。
According to the above structure, the energy stored in the inductance circuit element when the first switch element is on causes a current to flow based on the high voltage due to the boosting action at the moment when the first switch element is turned off. It is released to the output side through the directional energizing circuit section. In this one-way energizing circuit section,
Since the second switch element, which is an FET that satisfies a predetermined condition, is provided instead of the diode that consumes the power calculated by the above formula (1), it is possible to suppress the power consumption and thereby reduce heat generation. Can be achieved. This is due to the following reasons.

【0014】例えば、第1スイッチ要素、第2スイッチ
要素として第1と第2のFETを使用した場合、駆動制
御部はそれぞれに、所定のオフデューティを有する駆動
信号を供給する。昇圧された高電圧に基づき流れる電流
をIoutとし、第2FETの抵抗をRonとし、第1
FETのオフデューティをFEToffdutyとする
と、次式で第2FETでの消費電力を計算することがで
きる。
For example, when the first and second FETs are used as the first switch element and the second switch element, the drive control section supplies a drive signal having a predetermined off duty to each. The current flowing based on the boosted high voltage is I out, and the resistance of the second FET is R on .
If the off duty of the FET is FET offduty , the power consumption of the second FET can be calculated by the following equation.

【0015】 Iout ×Ron×FEToffduty・・・・(2)I out 2 × R on × FET offduty ... (2)

【0016】ここで、第2FETはオン時の抵抗が小さ
いものを選択することでダイオードに比べて、オン時電
圧を小さくすることが可能であることから、以下の
(3)式の条件に基づき、昇圧回路の一方向通電回路部
で消費される電力を従来のダイオードを使用した昇圧装
置での消費電力よりも少なくすることが可能である。な
お、(1)式と(2)式においてIoutとFET
offdutyはそれぞれ同じである。
Since it is possible to make the on-state voltage smaller than that of the diode by selecting the second FET having a small on-state resistance, based on the condition of the following equation (3). It is possible to reduce the power consumed in the one-way energization circuit section of the booster circuit to be smaller than the power consumption in the booster device using the conventional diode. Note that I out and FET in the equations (1) and (2)
The offduty is the same.

【0017】 Vf>Iout×Ron・・・・(3)Vf> I out × R on (3)

【0018】(3)式を満たす第2FETを使用するこ
とによって、消費電力を少なくし、発熱を低減した電源
装置の昇圧装置が可能となる。
By using the second FET satisfying the expression (3), it is possible to reduce the power consumption and the heat generation of the power supply device.

【0019】第2の電源装置の昇圧装置(請求項2に対
応)は、上記の第1の装置構成において、好ましくは、
第1駆動信号で第1スイッチ要素をオフにし、その後同
時オン状態が生じないように第2駆動信号で第2スイッ
チ要素をオンすることを特徴とする。上記構成によれ
ば、第1スイッチ要素をオフにした後、同時オン状態が
生じないように第2スイッチ要素をオンするので、第1
スイッチ要素のオンからオフへの過渡状態と第2スイッ
チ要素のオフからオンへの過渡状態が重なることなく、
昇圧回路の出力側から入力側へ電流が流れるのを防ぐこ
とが可能である。
The step-up device (corresponding to claim 2) of the second power supply device preferably has the above-mentioned first device configuration.
It is characterized in that the first switch element is turned off by the first drive signal, and then the second switch element is turned on by the second drive signal so that the simultaneous on state does not occur. According to the above configuration, after the first switch element is turned off, the second switch element is turned on so that the simultaneous on state does not occur.
Without overlapping the transition state of the switch element from ON to OFF and the transition state of the second switch element from OFF to ON,
It is possible to prevent current from flowing from the output side to the input side of the booster circuit.

【0020】第3の電源装置の昇圧装置(請求項3に対
応)は、上記の第2の装置構成において、好ましくは、
第2スイッチ要素はFETであり、このFETのソース
がインダクタンス回路要素に接続されていることを特徴
とする。
The step-up device (corresponding to claim 3) of the third power supply device is preferably the one having the above-mentioned second device configuration.
The second switch element is a FET, and the source of the FET is connected to the inductance circuit element.

【0021】上記構成によれば、第2スイッチ要素は通
常のFET電流が流れる方向と逆向きに接続されている
ことも特徴となる。第1スイッチ要素をオフにした後、
同時オン状態が生じないように第2スイッチ要素をオン
するので、第1スイッチ要素および第2スイッチ要素が
共にオフとなるタイミングがあるが、第2スイッチ要素
の寄生ダイオードが従来の昇圧回路のダイオードと同様
に機能するため、エネルギを蓄積したコイルによるサー
ジ電圧も発生せず、昇圧回路の出力側から入力側へ電流
が流れることもない。
According to the above construction, the second switch element is also connected in the direction opposite to the direction in which the normal FET current flows. After turning off the first switch element,
Since the second switch element is turned on so that the simultaneous on state does not occur, there is a timing when both the first switch element and the second switch element are turned off, but the parasitic diode of the second switch element is the diode of the conventional booster circuit. Since it functions in the same manner as above, no surge voltage is generated by the coil storing energy, and no current flows from the output side to the input side of the booster circuit.

【0022】[0022]

【発明の実施の形態】以下に、本発明の好適な実施形態
を添付図面に基づいて説明する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0023】図1は本発明に係る電源装置の昇圧装置の
代表的実施形態を示す。電気回路部分は昇圧回路であ
る。昇圧装置10は、コイル11と、第1スイッチ要素
である第1のFET12と、第2スイッチ要素である第
2のFET13と、FET12,FET13へ駆動信号
S,S’をそれぞれ供給する駆動制御部14と、コンデ
ンサ15とから構成される。図1でFET13はスイッ
チ通電部13aとダイオード13bの2つの素子から構
成されるものとして描かれている。このダイオード13
bはFET13の寄生ダイオードである。コンデンサ1
5は蓄電機能と平滑機能を有する。なお、コンデンサ1
5に代えてバッテリ(充電池)を用いることもできる。
FIG. 1 shows a typical embodiment of a booster device for a power supply device according to the present invention. The electric circuit portion is a booster circuit. The booster 10 includes a coil 11, a first FET 12 that is a first switch element, a second FET 13 that is a second switch element, and a drive controller that supplies drive signals S and S ′ to the FET 12 and FET 13, respectively. 14 and a capacitor 15. In FIG. 1, the FET 13 is depicted as being composed of two elements, a switch energizing portion 13a and a diode 13b. This diode 13
b is a parasitic diode of the FET 13. Capacitor 1
5 has a power storage function and a smoothing function. In addition, capacitor 1
A battery (rechargeable battery) may be used in place of 5.

【0024】コイル11の上流側(図中左端)は入力端
子Vinとなっており、下流側(図中右端)はFET1
2のドレインおよびFET13のソースに接続されてい
る。FET12のドレインはコイル11の下流側と接続
され、ソースは接地されている。FET12のゲートに
は駆動制御部14からの駆動信号Sが入力される。FE
T13は寄生ダイオード13bを含んで構成され、ソー
スをコイル11の下流側に接続し、ドレインを出力端子
outに接続している。FET13のゲートには駆動
制御部14からの駆動信号S’が入力される。FET1
2とFET13へ駆動信号S,S’を供給する駆動制御
部14は、昇圧駆動用の回路や専用ICで構成される。
The upstream side of the coil 11 (left end in the drawing) is a input terminal V in, the downstream side (right end in the drawing) is FET1
2 is connected to the drain and the source of the FET 13. The drain of the FET 12 is connected to the downstream side of the coil 11, and the source is grounded. The drive signal S from the drive control unit 14 is input to the gate of the FET 12. FE
T13 is configured to include the parasitic diode 13b, the source is connected to the downstream side of the coil 11, and the drain is connected to the output terminal V out . The drive signal S ′ from the drive control unit 14 is input to the gate of the FET 13. FET1
The drive control unit 14 that supplies the drive signals S and S ′ to the FET 2 and the FET 13 is composed of a circuit for boosting drive and a dedicated IC.

【0025】FET12がオンのときには、コイル11
に電流が流れ、そのインダクタンス作用に基づきエネル
ギが蓄えられる。このとき、FET13はオフとなって
おり、出力端子Vout側へ電流は流れていない。次に
駆動信号SによりFET12がオンからオフになる時、
コイル11に流れる電流が遮断される。この遮断による
磁束の変化を妨げるようにコイル11で起電力が生じ
る。この結果、コイル11の両端間に電圧が発生する。
このとき、駆動信号S’によってFET13がオンにな
ると、コイル11側から電流がFET13のスイッチ通
電部13aを経由して出力端子Voutへ供給される。
コイル11の下流側に生じる電圧は、入力端子Vin
印加されている電圧とコイル11の両端間に発生した電
圧の和となっている。駆動信号S’によってFET13
がオンになる直前はFET13の寄生ダイオード13b
を経由して出力端子Vout側へ電流が流れ、出力端子
utへ電圧が供給される。
When the FET 12 is on, the coil 11
A current flows through the device, and energy is stored due to its inductance effect. At this time, the FET 13 is off, and no current flows to the output terminal V out side. Next, when the FET 12 is turned on by the drive signal S,
The current flowing through the coil 11 is cut off. An electromotive force is generated in the coil 11 so as to prevent the change in the magnetic flux due to this interruption. As a result, a voltage is generated across the coil 11.
At this time, when the FET 13 is turned on by the drive signal S ′, a current is supplied from the coil 11 side to the output terminal V out via the switch energization portion 13a of the FET 13.
Voltage generated in the downstream side of the coil 11 has a sum of voltage generated across the voltage and the coil 11 which is applied to the input terminal V in. FET13 by the drive signal S '
Immediately before turning on, the parasitic diode 13b of the FET 13
Via the current flows to the output terminal V out side, a voltage is supplied to the output terminal V o ut.

【0026】以上のように、出力端子VoutへFET
13のスイッチ通電部13aおよび寄生ダイオード13
bを介して、昇圧作用で生じた高電圧が与えられる。コ
ンデンサ15は、印加された高電圧によって蓄電を行う
と共に、FET12およびFET13のオン・オフの繰
り返しによって発生する高電圧の変動を平滑化する。な
お、コンデンサ15に代えてバッテリを用いた場合に
も、FET12とFET13のオン・オフ動作の繰り返
しによって発生する高電圧に基づく蓄電を行う。
As described above, the FET is connected to the output terminal V out .
13 switch energizing portion 13a and parasitic diode 13
The high voltage generated by the boosting action is applied via b. The capacitor 15 stores electricity by the applied high voltage and smoothes fluctuations of the high voltage generated by repeating ON / OFF of the FET 12 and the FET 13. Even when a battery is used instead of the capacitor 15, electricity is stored based on the high voltage generated by repeating the on / off operation of the FET 12 and the FET 13.

【0027】図2は、FET12およびFET13の各
ゲートへ与えられる駆動信号S,S’の入力状態を示
す。駆動信号SでFET12をオフにし、その後同時オ
ン状態が生じないように駆動信号S’でFET13をオ
ンするようにするため、FET12のゲートへの駆動信
号Sのオン状態の時間をFET13のゲートへの駆動信
号S’のオフ状態の時間よりも短くしている。図2にお
いて、駆動信号S,S’を別々に入力しているが、駆動
信号S,S’は同一の駆動制御部14から供給される。
FIG. 2 shows the input state of the drive signals S and S'applied to the gates of the FET 12 and the FET 13. In order to turn off the FET 12 by the drive signal S and then turn on the FET 13 by the drive signal S ′ so that the simultaneous on state does not occur, the time of the on state of the drive signal S to the gate of the FET 12 is set to the gate of the FET 13. The drive signal S ′ is set to be shorter than the off-state time. In FIG. 2, the drive signals S and S ′ are separately input, but the drive signals S and S ′ are supplied from the same drive control unit 14.

【0028】図3は、上記駆動信号S,S’の波形と、
FET12およびFET13の動作状態を示す。Sdは
FET12の動作状態、S’dはFET13の動作状態
を示している。駆動信号SでFET12をオフにし、そ
の後同時オン状態が生じないように駆動信号S’でFE
T13をオンするようにするため、FET12のゲート
への駆動信号Sのオン状態の時間がFET13のゲート
への駆動信号S’のオフ状態の時間よりも短くしてい
る。ここで、FET12がオンからオフに切り替わる時
の時刻T1とFET13がオフからオンに切り替わる時
の時刻T2の差はデッドタイムDTである。このデッド
タイムDTで、2つの駆動信号の間において同時オフの
状態を作る。
FIG. 3 shows the waveforms of the drive signals S and S ',
The operation states of the FET 12 and the FET 13 are shown. Sd represents the operating state of the FET 12, and S′d represents the operating state of the FET 13. The FET 12 is turned off by the drive signal S, and then the FE is turned by the drive signal S ′ so that the simultaneous ON state does not occur.
In order to turn on T13, the ON time of the drive signal S to the gate of the FET 12 is set shorter than the OFF time of the drive signal S ′ to the gate of the FET 13. Here, the difference between the time T1 when the FET 12 switches from on to off and the time T2 when the FET 13 switches from off to on is the dead time DT. With this dead time DT, a simultaneous off state is created between two drive signals.

【0029】この同時オフ状態であるデッドタイムDT
を有する駆動信号S,S’をそれぞれFET12,13
へ入力すると、動作状態においてもFET12がオンか
らオフおよびオフからオンに切り替わるときに、FET
12とFET13が同時オフ状態となる同時オフ区間W
が生じる。このため、FET12およびFET13の各
動作の過渡状態においても、2つのFETのオン状態が
重複することがなく、出力側の高電圧に基づく電流が逆
流することはない。
Dead time DT in this simultaneous off state
Drive signals S and S ′ having
When the FET 12 switches from on to off and from off to on even in the operating state,
Simultaneous off section W in which 12 and FET 13 are simultaneously off
Occurs. Therefore, even in the transient state of each operation of the FET 12 and the FET 13, the ON states of the two FETs do not overlap, and the current based on the high voltage on the output side does not flow backward.

【0030】上述したような構成の昇圧回路において、
同時オフ状態となるようにデッドタイムDTを有する駆
動信号S,S’をそれぞれFET12とFET13へ入
力した場合、FET13での消費電力は前述の(2)式
で算出される。(2)式において、IoutはFET1
3を流れる電流、RonはFETのオン抵抗、FET
offdutyはFET12のオフデューティである。
ここで、前述の(1)式で算出される従来のダイオード
を使用した場合の消費電力よりも少ない消費電力である
ためには、前述の(3)式の条件を満たす必要がある。
In the booster circuit having the above structure,
Driving with dead time DT so that they are simultaneously turned off
Input motion signals S and S'to FET12 and FET13, respectively.
When the power is applied, the power consumption of the FET 13 is calculated by the equation (2).
It is calculated by. In equation (2), IoutIs FET1
Current flowing through 3, RonIs the on-resistance of the FET, the FET
offdutyIs the off duty of the FET 12.
Here, the conventional diode calculated by the above equation (1)
Power consumption is less than that when using
In order to do so, it is necessary to satisfy the condition of the above expression (3).

【0031】(3)式を満たすようなFET13を使用
すれば、従来のごときダイオードを使用した場合より
も、消費電力が少なくでき、これによって発熱量を低減
できる。また、電流の逆流防止には寄生ダイオード13
bが機能するため、電流の逆流を完全に防ぐことができ
る。
If the FET 13 satisfying the expression (3) is used, the power consumption can be reduced as compared with the case where the diode as in the conventional case is used, and thereby the heat generation amount can be reduced. In addition, the parasitic diode 13 is used to prevent the backflow of the current.
Since b works, it is possible to completely prevent backflow of current.

【0032】図4は本発明に係る電源装置の昇圧装置を
適用した第1の適用例を示す。図4において上記実施形
態で説明した要素と実質的に同一の要素には同一の符号
を付している。図4で15は上記コンデンサ、16は車
載バッテリ、17はモータユニットである。モータユニ
ット17は電動パワーステアリング装置で補助操舵力を
供給するのに使用される駆動源である。駆動制御部14
は、FET12とFET13のそれぞれへ駆動信号S,
S’を供給し、FET12,13のオン・オフ動作を制
御する。FET12がオンのとき、車載バッテリ16に
よる所定の低電圧の印加によって、コイル11にエネル
ギが蓄えられる。FET12がオフになり、FET13
がオンとなったときに、コイル11に蓄えられたエネル
ギが解放され、オン状態になったFET13を介して下
流側へ電流が流れる。コンデンサ15は、蓄電を行いか
つ電流を平滑し、モータ17ユニットに高電圧による大
電流を供給する。前述したように据え切り時に大電流が
必要となる電動パワーステアリング装置において、適切
な電流が上記昇圧装置によって供給される。この場合に
おいてFET13での消費電力は少なく、発熱が低減さ
れる。
FIG. 4 shows a first application example to which the booster device of the power supply device according to the present invention is applied. In FIG. 4, elements that are substantially the same as the elements described in the above embodiment are assigned the same reference numerals. In FIG. 4, reference numeral 15 is the capacitor, 16 is a vehicle battery, and 17 is a motor unit. The motor unit 17 is a drive source used for supplying an auxiliary steering force in the electric power steering device. Drive control unit 14
Drive signal S, to FET 12 and FET 13, respectively.
S'is supplied to control the on / off operation of the FETs 12 and 13. When the FET 12 is on, energy is stored in the coil 11 by application of a predetermined low voltage by the vehicle-mounted battery 16. FET12 is turned off, FET13
When is turned on, the energy stored in the coil 11 is released, and a current flows to the downstream side through the FET 13 that is turned on. The capacitor 15 stores electricity, smoothes current, and supplies a large current of high voltage to the motor 17 unit. As described above, in the electric power steering device that requires a large current when stationary, an appropriate current is supplied by the booster device. In this case, the power consumption of the FET 13 is small and heat generation is reduced.

【0033】図5は本発明に係る電源装置の昇圧装置を
適用した第2の適用例を示す図である。図5において上
記実施形態で説明した要素と実質的に同一の要素には同
一の符号を付している。18は電圧の低い給電用バッテ
リ、19は充電用バッテリである。バッテリ18による
低電圧の印加によって、FET12がオンのとき、コイ
ル11に蓄えられたエネルギが、FET12がオフにな
り、FET13がオンとなったときに、解放される。コ
イル11に発生した逆起電力による電圧とバッテリ18
の電圧による昇圧された電圧がバッテリ19に印加さ
れ、蓄電される。従来のダイオードを使用していた部位
にFET13を用いているため、消費電力が少なく、バ
ッテリ18から印加された電圧を昇圧し効率よくバッテ
リ19を充電することができる。
FIG. 5 is a diagram showing a second application example to which the booster device of the power supply device according to the present invention is applied. In FIG. 5, elements that are substantially the same as the elements described in the above embodiment are assigned the same reference numerals. Reference numeral 18 is a low-voltage power supply battery, and 19 is a charging battery. The low voltage applied by the battery 18 releases the energy stored in the coil 11 when the FET 12 is turned on and when the FET 12 is turned off and the FET 13 is turned on. The voltage due to the back electromotive force generated in the coil 11 and the battery 18
The voltage boosted by the voltage is applied to the battery 19 and stored. Since the FET 13 is used in the portion where the conventional diode is used, the power consumption is low, and the voltage applied from the battery 18 can be boosted to efficiently charge the battery 19.

【0034】[0034]

【発明の効果】以上の説明で明らかなように本発明によ
れば、次の効果を奏する。
As is apparent from the above description, the present invention has the following effects.

【0035】請求項1に係る本発明によれば、ダイオー
ドに代えて、例えばFETのようなスイッチ要素を使用
したので、消費電力を抑えることができ、発熱低減効果
のある電源装置の昇圧装置を実現することができる。
According to the first aspect of the present invention, a switch element such as an FET is used in place of the diode, so that the power consumption can be suppressed and a booster device of a power supply device having a heat generation reducing effect can be provided. Can be realized.

【0036】請求項2に係る本発明によれば、上記の効
果に加えて、同時オフ状態を有する駆動信号を入力する
ようにしたので、電流の逆流を防ぐことができる。
According to the second aspect of the present invention, in addition to the above effects, since the drive signal having the simultaneous OFF state is input, it is possible to prevent the backflow of the current.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電源装置の昇圧装置の代表的実施
形態を示す回路図である。
FIG. 1 is a circuit diagram showing a typical embodiment of a booster device of a power supply device according to the present invention.

【図2】2つのFETの各ゲートへの駆動信号の入力状
態を示す図である。
FIG. 2 is a diagram showing an input state of a drive signal to each gate of two FETs.

【図3】2つのFETの各ゲートへ入力される駆動信号
の波形と、2つのFETの各動作状態を示す図である。
FIG. 3 is a diagram showing waveforms of drive signals input to respective gates of two FETs and respective operating states of the two FETs.

【図4】本発明に係る電源装置の昇圧装置を適用した第
1適用例を示す回路図である。
FIG. 4 is a circuit diagram showing a first application example to which the booster device of the power supply device according to the present invention is applied.

【図5】本発明に係る電源装置の昇圧装置を適用した第
2適用例を示す回路図である。
FIG. 5 is a circuit diagram showing a second application example to which the booster device of the power supply device according to the present invention is applied.

【図6】従来の昇圧回路の回路構成図である。FIG. 6 is a circuit configuration diagram of a conventional booster circuit.

【符号の説明】[Explanation of symbols]

10 昇圧装置 11 コイル 12 FET 13 FET 13a スイッチ通電部 13b ダイオード 14 駆動制御部 15 コンデンサ 16 車載バッテリ 17 モータユニット 18 給電用バッテリ 19 充電用バッテリ DT デッドタイム S,S’ 駆動信号 W 同時オフ区間 10 Booster 11 coils 12 FET 13 FET 13a Switch energizing part 13b diode 14 Drive controller 15 capacitors 16 Car battery 17 Motor unit 18 Battery for power supply 19 Charging battery DT dead time S, S'drive signal W simultaneous off section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1駆動信号によってオン・オフされる
第1スイッチ要素と、 前記第1スイッチ要素のオンのときにエネルギを蓄え、
オフした瞬間に前記エネルギを解放するインダクタンス
回路要素と、 前記インダクタンス回路要素の下流側に接続され、前記
第1スイッチ要素がオフのときに第2駆動信号によって
オンになって前記インダクタンス回路要素から供給され
る電流を流す第2スイッチ要素と、 前記第2スイッチ要素の下流側に接続される蓄電要素
と、 前記第1駆動信号と前記第2駆動信号を供給する駆動制
御手段と、 を備えて成ることを特徴とする電源装置の昇圧装置。
1. A first switch element that is turned on / off by a first drive signal, and stores energy when the first switch element is on,
An inductance circuit element that releases the energy at the moment of turning off, and an inductance circuit element that is connected downstream of the inductance circuit element and that is turned on by a second drive signal when the first switch element is off and is supplied from the inductance circuit element. A second switch element that allows a current to flow therethrough, a power storage element that is connected to the downstream side of the second switch element, and drive control means that supplies the first drive signal and the second drive signal. A booster for a power supply device characterized by the above.
【請求項2】 前記第1駆動信号で前記第1スイッチ要
素をオフにし、その後同時オン状態が生じないように前
記第2駆動信号で前記第2スイッチ要素をオンすること
を特徴とする請求項1記載の電源装置の昇圧装置。
2. The first drive signal turns off the first switch element, and then the second drive signal turns on the second switch element so that a simultaneous on-state does not occur. 1. A booster device for the power supply device according to 1.
【請求項3】 前記第2スイッチ要素はFETであり、
このFETのソースが前記インダクタンス回路要素に接
続されていることを特徴とする請求項2記載の電源装置
の昇圧装置。
3. The second switch element is a FET,
3. The booster device for a power supply device according to claim 2, wherein the source of the FET is connected to the inductance circuit element.
JP2002035992A 2002-02-13 2002-02-13 Booster for power unit Pending JP2003244943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002035992A JP2003244943A (en) 2002-02-13 2002-02-13 Booster for power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002035992A JP2003244943A (en) 2002-02-13 2002-02-13 Booster for power unit

Publications (1)

Publication Number Publication Date
JP2003244943A true JP2003244943A (en) 2003-08-29

Family

ID=27778022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002035992A Pending JP2003244943A (en) 2002-02-13 2002-02-13 Booster for power unit

Country Status (1)

Country Link
JP (1) JP2003244943A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069328A (en) * 2004-09-01 2006-03-16 Favess Co Ltd Electric power steering device
WO2009084342A1 (en) * 2007-12-27 2009-07-09 Jtekt Corporation Electrically driven power steering device
WO2009084341A1 (en) * 2007-12-27 2009-07-09 Jtekt Corporation Electrically driven power steering device
WO2010039463A2 (en) * 2008-09-23 2010-04-08 Transphorm Inc. Inductive load power switching circuits
WO2010109677A1 (en) * 2009-03-25 2010-09-30 トヨタ自動車株式会社 Electric power steering device
US8138529B2 (en) 2009-11-02 2012-03-20 Transphorm Inc. Package configurations for low EMI circuits
US8193562B2 (en) 2007-09-17 2012-06-05 Tansphorm Inc. Enhancement mode gallium nitride power devices
US8237198B2 (en) 2008-12-10 2012-08-07 Transphorm Inc. Semiconductor heterostructure diodes
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
US8508281B2 (en) 2008-02-12 2013-08-13 Transphorm Inc. Bridge circuits and their components
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
US8624662B2 (en) 2010-02-05 2014-01-07 Transphorm Inc. Semiconductor electronic components and circuits
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8786327B2 (en) 2011-02-28 2014-07-22 Transphorm Inc. Electronic components with reactive filters
US8803246B2 (en) 2012-07-16 2014-08-12 Transphorm Inc. Semiconductor electronic components with integrated current limiters
US8816497B2 (en) 2010-01-08 2014-08-26 Transphorm Inc. Electronic devices and components for high efficiency power circuits
US8952750B2 (en) 2012-02-24 2015-02-10 Transphorm Inc. Semiconductor power modules and devices
US9059076B2 (en) 2013-04-01 2015-06-16 Transphorm Inc. Gate drivers for circuits based on semiconductor devices
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9093366B2 (en) 2012-04-09 2015-07-28 Transphorm Inc. N-polar III-nitride transistors
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
US9171730B2 (en) 2013-02-15 2015-10-27 Transphorm Inc. Electrodes for semiconductor devices and methods of forming the same
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
US9209176B2 (en) 2011-12-07 2015-12-08 Transphorm Inc. Semiconductor modules and methods of forming the same
US9245993B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9443938B2 (en) 2013-07-19 2016-09-13 Transphorm Inc. III-nitride transistor including a p-type depleting layer
US9537425B2 (en) 2013-07-09 2017-01-03 Transphorm Inc. Multilevel inverters and their components
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US9543940B2 (en) 2014-07-03 2017-01-10 Transphorm Inc. Switching circuits having ferrite beads
US9590494B1 (en) 2014-07-17 2017-03-07 Transphorm Inc. Bridgeless power factor correction circuits
US10200030B2 (en) 2015-03-13 2019-02-05 Transphorm Inc. Paralleling of switching devices for high power circuits
US10224401B2 (en) 2016-05-31 2019-03-05 Transphorm Inc. III-nitride devices including a graded depleting layer
US10319648B2 (en) 2017-04-17 2019-06-11 Transphorm Inc. Conditions for burn-in of high power semiconductors
US11322599B2 (en) 2016-01-15 2022-05-03 Transphorm Technology, Inc. Enhancement mode III-nitride devices having an Al1-xSixO gate insulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242772A (en) * 1987-03-31 1988-10-07 Hitachi Ltd Motor-operated power steering source device
JPH0688194U (en) * 1993-05-21 1994-12-22 東光株式会社 Synchronous rectifier circuit
JPH0898523A (en) * 1994-09-20 1996-04-12 Nippon Telegr & Teleph Corp <Ntt> Dc-dc converter
JPH1169802A (en) * 1997-08-06 1999-03-09 Fujitsu Denso Ltd Synchronous rectification circuit
JP2001197728A (en) * 1999-10-25 2001-07-19 Seiko Instruments Inc Switching regulator circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242772A (en) * 1987-03-31 1988-10-07 Hitachi Ltd Motor-operated power steering source device
JPH0688194U (en) * 1993-05-21 1994-12-22 東光株式会社 Synchronous rectifier circuit
JPH0898523A (en) * 1994-09-20 1996-04-12 Nippon Telegr & Teleph Corp <Ntt> Dc-dc converter
JPH1169802A (en) * 1997-08-06 1999-03-09 Fujitsu Denso Ltd Synchronous rectification circuit
JP2001197728A (en) * 1999-10-25 2001-07-19 Seiko Instruments Inc Switching regulator circuit

Cited By (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501599B2 (en) * 2004-09-01 2010-07-14 株式会社ジェイテクト Electric power steering device
JP2006069328A (en) * 2004-09-01 2006-03-16 Favess Co Ltd Electric power steering device
US9343560B2 (en) 2007-09-17 2016-05-17 Transphorm Inc. Gallium nitride power devices
US8633518B2 (en) 2007-09-17 2014-01-21 Transphorm Inc. Gallium nitride power devices
US8193562B2 (en) 2007-09-17 2012-06-05 Tansphorm Inc. Enhancement mode gallium nitride power devices
US8344424B2 (en) 2007-09-17 2013-01-01 Transphorm Inc. Enhancement mode gallium nitride power devices
JP2009154802A (en) * 2007-12-27 2009-07-16 Jtekt Corp Electric power steering device
WO2009084341A1 (en) * 2007-12-27 2009-07-09 Jtekt Corporation Electrically driven power steering device
CN101883707B (en) * 2007-12-27 2012-11-28 株式会社捷太格特 Electrically driven power steering device
US8169168B2 (en) 2007-12-27 2012-05-01 Jtekt Corporation Electric power steering apparatus
WO2009084342A1 (en) * 2007-12-27 2009-07-09 Jtekt Corporation Electrically driven power steering device
US8240425B2 (en) 2007-12-27 2012-08-14 Jtekt Corporation Electric power steering apparatus
US8508281B2 (en) 2008-02-12 2013-08-13 Transphorm Inc. Bridge circuits and their components
US9899998B2 (en) 2008-02-12 2018-02-20 Transphorm Inc. Bridge circuits and their components
US8912839B2 (en) 2008-02-12 2014-12-16 Transphorm Inc. Bridge circuits and their components
US8841702B2 (en) 2008-04-23 2014-09-23 Transphorm Inc. Enhancement mode III-N HEMTs
US9437708B2 (en) 2008-04-23 2016-09-06 Transphorm Inc. Enhancement mode III-N HEMTs
US9196716B2 (en) 2008-04-23 2015-11-24 Transphorm Inc. Enhancement mode III-N HEMTs
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US9941399B2 (en) 2008-04-23 2018-04-10 Transphorm Inc. Enhancement mode III-N HEMTs
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
US9690314B2 (en) 2008-09-23 2017-06-27 Transphorm Inc. Inductive load power switching circuits
CN102165694A (en) * 2008-09-23 2011-08-24 特兰斯夫公司 Inductive load power switching circuits
WO2010039463A3 (en) * 2008-09-23 2010-07-08 Transphorm Inc. Inductive load power switching circuits
US8493129B2 (en) 2008-09-23 2013-07-23 Transphorm Inc. Inductive load power switching circuits
WO2010039463A2 (en) * 2008-09-23 2010-04-08 Transphorm Inc. Inductive load power switching circuits
US8531232B2 (en) 2008-09-23 2013-09-10 Transphorm Inc. Inductive load power switching circuits
US8816751B2 (en) 2008-09-23 2014-08-26 Transphorm Inc. Inductive load power switching circuits
US9041065B2 (en) 2008-12-10 2015-05-26 Transphorm Inc. Semiconductor heterostructure diodes
US8237198B2 (en) 2008-12-10 2012-08-07 Transphorm Inc. Semiconductor heterostructure diodes
US8541818B2 (en) 2008-12-10 2013-09-24 Transphorm Inc. Semiconductor heterostructure diodes
WO2010109677A1 (en) * 2009-03-25 2010-09-30 トヨタ自動車株式会社 Electric power steering device
US8381869B2 (en) 2009-03-25 2013-02-26 Toyota Jidosha Kabushiki Kaisha Electric power steering device
JP5212464B2 (en) * 2009-03-25 2013-06-19 トヨタ自動車株式会社 Electric power steering device
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US9293561B2 (en) 2009-05-14 2016-03-22 Transphorm Inc. High voltage III-nitride semiconductor devices
US9831315B2 (en) 2009-08-28 2017-11-28 Transphorm Inc. Semiconductor devices with field plates
US9373699B2 (en) 2009-08-28 2016-06-21 Transphorm Inc. Semiconductor devices with field plates
US8692294B2 (en) 2009-08-28 2014-04-08 Transphorm Inc. Semiconductor devices with field plates
US9111961B2 (en) 2009-08-28 2015-08-18 Transphorm Inc. Semiconductor devices with field plates
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
US8592974B2 (en) 2009-11-02 2013-11-26 Transphorm Inc. Package configurations for low EMI circuits
US9190295B2 (en) 2009-11-02 2015-11-17 Transphorm Inc. Package configurations for low EMI circuits
US8138529B2 (en) 2009-11-02 2012-03-20 Transphorm Inc. Package configurations for low EMI circuits
US8455931B2 (en) 2009-11-02 2013-06-04 Transphorm Inc. Package configurations for low EMI circuits
US8890314B2 (en) 2009-11-02 2014-11-18 Transphorm, Inc. Package configurations for low EMI circuits
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
US9496137B2 (en) 2009-12-10 2016-11-15 Transphorm Inc. Methods of forming reverse side engineered III-nitride devices
US10199217B2 (en) 2009-12-10 2019-02-05 Transphorm Inc. Methods of forming reverse side engineered III-nitride devices
US8816497B2 (en) 2010-01-08 2014-08-26 Transphorm Inc. Electronic devices and components for high efficiency power circuits
US9401341B2 (en) 2010-01-08 2016-07-26 Transphorm Inc. Electronic devices and components for high efficiency power circuits
US8624662B2 (en) 2010-02-05 2014-01-07 Transphorm Inc. Semiconductor electronic components and circuits
US9293458B2 (en) 2010-02-05 2016-03-22 Transphorm Inc. Semiconductor electronic components and circuits
US9437707B2 (en) 2010-12-15 2016-09-06 Transphorm Inc. Transistors with isolation regions
US9147760B2 (en) 2010-12-15 2015-09-29 Transphorm Inc. Transistors with isolation regions
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US9224671B2 (en) 2011-02-02 2015-12-29 Transphorm Inc. III-N device structures and methods
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
US8895421B2 (en) 2011-02-02 2014-11-25 Transphorm Inc. III-N device structures and methods
US9041435B2 (en) 2011-02-28 2015-05-26 Transphorm Inc. Method of forming electronic components with reactive filters
US8786327B2 (en) 2011-02-28 2014-07-22 Transphorm Inc. Electronic components with reactive filters
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
US9142659B2 (en) 2011-03-04 2015-09-22 Transphorm Inc. Electrode configurations for semiconductor devices
US9171836B2 (en) 2011-10-07 2015-10-27 Transphorm Inc. Method of forming electronic components with increased reliability
US8860495B2 (en) 2011-10-07 2014-10-14 Transphorm Inc. Method of forming electronic components with increased reliability
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
US9818686B2 (en) 2011-12-07 2017-11-14 Transphorm Inc. Semiconductor modules and methods of forming the same
US9209176B2 (en) 2011-12-07 2015-12-08 Transphorm Inc. Semiconductor modules and methods of forming the same
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
US9685323B2 (en) 2012-02-03 2017-06-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
US8952750B2 (en) 2012-02-24 2015-02-10 Transphorm Inc. Semiconductor power modules and devices
US9224721B2 (en) 2012-02-24 2015-12-29 Transphorm Inc. Semiconductor power modules and devices
US9741702B2 (en) 2012-02-24 2017-08-22 Transphorm Inc. Semiconductor power modules and devices
US9490324B2 (en) 2012-04-09 2016-11-08 Transphorm Inc. N-polar III-nitride transistors
US9093366B2 (en) 2012-04-09 2015-07-28 Transphorm Inc. N-polar III-nitride transistors
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
US9634100B2 (en) 2012-06-27 2017-04-25 Transphorm Inc. Semiconductor devices with integrated hole collectors
US8803246B2 (en) 2012-07-16 2014-08-12 Transphorm Inc. Semiconductor electronic components with integrated current limiters
US9443849B2 (en) 2012-07-16 2016-09-13 Transphorm Inc. Semiconductor electronic components with integrated current limiters
US9171910B2 (en) 2012-07-16 2015-10-27 Transphorm Inc. Semiconductor electronic components with integrated current limiters
US9520491B2 (en) 2013-02-15 2016-12-13 Transphorm Inc. Electrodes for semiconductor devices and methods of forming the same
US9171730B2 (en) 2013-02-15 2015-10-27 Transphorm Inc. Electrodes for semiconductor devices and methods of forming the same
US10535763B2 (en) 2013-03-13 2020-01-14 Transphorm Inc. Enhancement-mode III-nitride devices
US10043898B2 (en) 2013-03-13 2018-08-07 Transphorm Inc. Enhancement-mode III-nitride devices
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9590060B2 (en) 2013-03-13 2017-03-07 Transphorm Inc. Enhancement-mode III-nitride devices
US9865719B2 (en) 2013-03-15 2018-01-09 Transphorm Inc. Carbon doping semiconductor devices
US9245993B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
US9245992B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
US9362903B2 (en) 2013-04-01 2016-06-07 Transphorm Inc. Gate drivers for circuits based on semiconductor devices
US9059076B2 (en) 2013-04-01 2015-06-16 Transphorm Inc. Gate drivers for circuits based on semiconductor devices
US9537425B2 (en) 2013-07-09 2017-01-03 Transphorm Inc. Multilevel inverters and their components
US9443938B2 (en) 2013-07-19 2016-09-13 Transphorm Inc. III-nitride transistor including a p-type depleting layer
US9842922B2 (en) 2013-07-19 2017-12-12 Transphorm Inc. III-nitride transistor including a p-type depleting layer
US10043896B2 (en) 2013-07-19 2018-08-07 Transphorm Inc. III-Nitride transistor including a III-N depleting layer
US9543940B2 (en) 2014-07-03 2017-01-10 Transphorm Inc. Switching circuits having ferrite beads
US9660640B2 (en) 2014-07-03 2017-05-23 Transphorm Inc. Switching circuits having ferrite beads
US9991884B2 (en) 2014-07-03 2018-06-05 Transphorm Inc. Switching circuits having ferrite beads
US9590494B1 (en) 2014-07-17 2017-03-07 Transphorm Inc. Bridgeless power factor correction circuits
US10063138B1 (en) 2014-07-17 2018-08-28 Transphorm Inc. Bridgeless power factor correction circuits
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9935190B2 (en) 2014-07-21 2018-04-03 Transphorm Inc. Forming enhancement mode III-nitride devices
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US10200030B2 (en) 2015-03-13 2019-02-05 Transphorm Inc. Paralleling of switching devices for high power circuits
US11322599B2 (en) 2016-01-15 2022-05-03 Transphorm Technology, Inc. Enhancement mode III-nitride devices having an Al1-xSixO gate insulator
US10224401B2 (en) 2016-05-31 2019-03-05 Transphorm Inc. III-nitride devices including a graded depleting layer
US10629681B2 (en) 2016-05-31 2020-04-21 Transphorm Technology, Inc. III-nitride devices including a graded depleting layer
US11121216B2 (en) 2016-05-31 2021-09-14 Transphorm Technology, Inc. III-nitride devices including a graded depleting layer
US10319648B2 (en) 2017-04-17 2019-06-11 Transphorm Inc. Conditions for burn-in of high power semiconductors

Similar Documents

Publication Publication Date Title
JP2003244943A (en) Booster for power unit
JP6665821B2 (en) Bidirectional DC-DC converter
JP6536466B2 (en) Power supply
EP1289106B1 (en) DC-DC converter
JP2008199771A (en) Boosting circuit control device and boosting circuit
EP1964753B1 (en) Motor controller of electric power steering device
CN109428389B (en) Power supply system for vehicle
JP2006327568A (en) Electric power system for vehicle and boosting power source
JP5309535B2 (en) Electric power steering device
JP2010051111A (en) Motor diving device
JP2002320302A (en) Power unit
JP2011162113A (en) Electric power steering device
JP2002305875A (en) Voltage changer
JPH0776280A (en) Motor-driven power steering device equipped with power source voltage controller
JP5135971B2 (en) Motor control device for electric power steering device
WO2018135330A1 (en) In-vehicle power supply device
JP2007306681A (en) Voltage boosting circuit and motor-driven power steering apparatus
JP4894565B2 (en) Power supply control device and power supply control method
JP7276064B2 (en) DC DC converter
CN112074430B (en) Vehicle-mounted power supply device
JP5163240B2 (en) Vehicle power supply system
JP4072681B2 (en) Electric power steering device
JP2004282963A (en) Electric power steering device
JP2007020327A (en) Control unit for dc-dc converters
JP2004135378A (en) Method and apparatus for inductive load drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070717