JP2003244545A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JP2003244545A
JP2003244545A JP2002358135A JP2002358135A JP2003244545A JP 2003244545 A JP2003244545 A JP 2003244545A JP 2002358135 A JP2002358135 A JP 2002358135A JP 2002358135 A JP2002358135 A JP 2002358135A JP 2003244545 A JP2003244545 A JP 2003244545A
Authority
JP
Japan
Prior art keywords
light
light receiving
pixels
side direction
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002358135A
Other languages
Japanese (ja)
Other versions
JP4356311B2 (en
Inventor
Takeshi Utagawa
健 歌川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2002358135A priority Critical patent/JP4356311B2/en
Publication of JP2003244545A publication Critical patent/JP2003244545A/en
Application granted granted Critical
Publication of JP4356311B2 publication Critical patent/JP4356311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a suitable structure for improving light receiving characteristics of rectangular pixels in a solid-state image pickup device, such as the pixels aspect ratio being about '2:1'. <P>SOLUTION: The solid-state image pickup device individually has a rectangular light-receiving region of the pixel aspect ratio which is about '2:1', and provides plural pixels arranged in 2 dimension being offset in 1/2 pixel pitch in the long side direction of the light-receiving region with respect to the short side direction of the light-receiving region, a scanner device which is installed on a light-receiving plane of the plural pixels, scans signal charge and reads out, and an optical instrument which shades light inputted to the light-receiving plane as the pixel pitch in the short-side direction. The plural pixels are separated in each pixel group arranged in a direction of the light-receiving plane and the signal charge are transferred in the order in a direction of the light-receiving plane, a scanning measure drives the plural pixels for each pixel group arranged orthogonally with respect to the direction of the light-receiving plane, and scans the signal charge in a frame transfer system. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、受光面に入射した
光に応じて信号電荷を生成する受光領域を有する複数の
画素が2次元に配置された固体撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device in which a plurality of pixels each having a light receiving region for generating a signal charge according to light incident on a light receiving surface are two-dimensionally arranged.

【0002】[0002]

【従来の技術】従来より、複数の画素が2次元に配置さ
れた固体撮像装置は、様々な用途に使用されている。こ
のような固体撮像装置には、ナイキスト周波数の折り返
しによって発生するエイリアシングや複数のカラーフィ
ルタを持つ撮像素子の場合に目立つ偽色を低減するた
め、所定の空間周波数成分を除去するOLPF(Optica
l Low Pass Filter:光学ローパスフィルタ)を設けた
ものがある。
2. Description of the Related Art Conventionally, solid-state image pickup devices having a plurality of pixels arranged two-dimensionally have been used for various purposes. In such a solid-state image pickup device, in order to reduce aliasing caused by aliasing of the Nyquist frequency and false colors that are noticeable in the case of an image pickup device having a plurality of color filters, an OLPF (Optica) that removes a predetermined spatial frequency component is used.
l Low Pass Filter: Some have an optical low pass filter.

【0003】さらに、矩形状の画素を有する固体撮像装
置として、本発明者が発明した特許文献1が知られてい
る。
Further, as a solid-state image pickup device having a rectangular pixel, Japanese Patent Application Laid-Open No. 2004-187242 is known.

【特許文献1】特開2000−23171号公報[Patent Document 1] Japanese Patent Laid-Open No. 2000-23171

【0004】[0004]

【発明が解決しようとする課題】しかし、OLPFを設
けた従来の固体撮像装置では、OLPFを設けていない
固体撮像装置と比べ、鮮鋭度が著しく低下してしまうと
いう問題が発生していた。
However, the conventional solid-state image pickup device provided with the OLPF has a problem that the sharpness is remarkably lowered as compared with the solid-state image pickup device not provided with the OLPF.

【0005】また、電子カメラなど画像処理を伴う装置
に使用される固体撮像装置では、複数の画素が2次元状
に配置されており、入射光を複数方向に対して均等にぼ
かすには、複数枚のOLPFを設ける必要がある。例え
ば、入射光を縦方向と横方向とに対して均等にぼかして
正方形状のアパーチャを実現するには、入射光を縦方向
にぼかすOLPFと、入射光を横方向にぼかすOLPF
とが必要となる。
Further, in a solid-state image pickup device used in a device involving image processing such as an electronic camera, a plurality of pixels are arranged two-dimensionally, and in order to uniformly blur incident light in a plurality of directions, a plurality of pixels are arranged. It is necessary to provide a sheet of OLPF. For example, to realize a square aperture by uniformly blurring the incident light in the vertical direction and the horizontal direction, an OLPF that blurs the incident light in the vertical direction and an OLPF that blurs the incident light in the horizontal direction.
And are required.

【0006】そのため、従来の固体撮像装置では、複数
枚のOLPFを設けることによって、コストアップが生
じたり、光路中の界面が増えてフレアが増加したり、O
LPF全体の厚みが増して光学系の収差特性が劣化した
り、スペースが増加するなどの問題が発生していた。
Therefore, in the conventional solid-state image pickup device, by providing a plurality of OLPFs, the cost is increased, the number of interfaces in the optical path is increased, and flare is increased.
There have been problems such that the thickness of the entire LPF is increased, the aberration characteristics of the optical system are deteriorated, and the space is increased.

【0007】そこで、本発明では、偽色の低減と鮮鋭度
の低下防止とをバランス良く行うことができ、かつ、入
射光をぼかす(多重化も含む)光学部材の数を最小限に
抑えることができる固体撮像装置を提供することを目的
とする。
Therefore, in the present invention, reduction of false color and prevention of deterioration of sharpness can be carried out in a well-balanced manner, and the number of optical members for blurring incident light (including multiplexing) should be minimized. It is an object of the present invention to provide a solid-state imaging device capable of performing

【0008】また、本発明の別の目的は、上記固体撮像
装置(具体的には、画素アスペクト比「2:1」程度の
極端な矩形状をなす画素を備えた固体撮像装置)におい
て、各画素の受光特性を高めるための技術を提供するこ
とである。
Another object of the present invention is to provide each of the above solid-state image pickup devices (specifically, a solid-state image pickup device having pixels having an extremely rectangular shape with a pixel aspect ratio of about "2: 1"). It is an object of the present invention to provide a technique for improving the light receiving characteristic of a pixel.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の固体撮
像装置は、受光面に入射した光に応じて信号電荷を生成
する矩形の受光領域を個別に有し、該受光領域の短辺方
向に対しては該受光領域の長辺方向の画素ピッチの1/
2ずつオフセットされて2次元に配置された複数の画素
と、信号電荷を走査して外部に読み出す走査手段と、複
数の画素の受光面側に設けられ、該受光面に入射される
光を短辺方向に画素ピッチ分ぼかす光学部材とを備え
る。これらの受光領域は、アスペクト比が「2:1」に
近似される矩形である。また、複数の画素は、受光面の
1つの方向に配置される画素群毎に分離され、信号電荷
を受光面の1つの方向に順次転送し、走査手段は、複数
の画素を受光面の1つの方向に直交する方向に配置され
る画素群毎に駆動し、フレーム転送方式で信号電荷を走
査することを特徴とする。
A solid-state image pickup device according to claim 1 has a rectangular light-receiving region for individually generating a signal charge according to light incident on a light-receiving surface, and a short side of the light-receiving region. 1 / the pixel pitch in the long side direction of the light receiving region
A plurality of pixels which are offset by two and are arranged two-dimensionally, a scanning means which scans the signal charges to be read out to the outside, and a plurality of pixels which are provided on the light-receiving surface side of the pixels and which shorten the light incident on the light-receiving surface. And an optical member for blurring the pixel pitch in the side direction. These light receiving regions are rectangles whose aspect ratio is approximated to "2: 1". Further, the plurality of pixels are separated for each pixel group arranged in one direction of the light receiving surface, the signal charges are sequentially transferred in one direction of the light receiving surface, and the scanning unit transfers the plurality of pixels to one of the light receiving surface. It is characterized in that each pixel group arranged in a direction orthogonal to one direction is driven and the signal charges are scanned by a frame transfer method.

【0010】請求項2に記載の固体撮像装置は、受光面
に入射した光に応じて信号電荷を生成する矩形の受光領
域を個別に有し、該受光領域の短辺方向に対しては該受
光領域の長辺方向の画素ピッチの1/2ずつオフセット
されて2次元に配置された複数の画素と、信号電荷を走
査して外部に読み出す走査手段と、複数の画素の受光面
側に設けられ、該受光面に入射する光を短辺方向に画素
ピッチ分ぼかす光学部材と、受光領域ごとに長辺方向に
2つ並べて配置することにより、受光領域のアスペクト
比を「2:1」に近似するマイクロレンズと、受光領域
の2つのマイクロレンズに入射する光によって生成され
る信号電荷を受光領域ごとにまとめて蓄積する蓄積部と
を備えたことを特徴とする。
According to another aspect of the solid-state image pickup device of the present invention, each of the solid-state image pickup devices individually has a rectangular light-receiving region for generating a signal charge according to the light incident on the light-receiving surface, and the rectangular light-receiving region is arranged in the short side direction of the light-receiving region. A plurality of pixels that are two-dimensionally arranged by being offset by ½ of the pixel pitch in the direction of the long side of the light receiving region, a scanning unit that scans the signal charges and reads the signals to the outside, and a scanning unit that is provided on the light receiving surface side of the plurality of pixels. The aspect ratio of the light receiving area is set to "2: 1" by arranging two optical members for blurring the light incident on the light receiving surface in the short side direction by the pixel pitch and two in the long side direction for each light receiving area. It is characterized in that it is provided with a similar microlens and an accumulating portion for accumulating signal charges generated by the light incident on the two microlenses in the light-receiving area, collectively for each light-receiving area.

【0011】請求項3に記載の固体撮像装置は、請求項
2に記載の固体撮像装置において、受光領域に配置され
る2つのマイクロレンズの境界領域を遮光する遮光部を
備えたことを特徴とする。
A solid-state image pickup device according to a third aspect of the present invention is the solid-state image pickup device according to the second aspect, further comprising a light-shielding portion that shields a boundary region between two microlenses arranged in the light-receiving region. To do.

【0012】[0012]

【発明の実施の形態】以下、図面に基づいて、本発明の
実施形態について詳細を説明する。ただし、以下では、
本発明の固体撮像装置の一例として、フレーム転送形の
モノクロの固体撮像装置を用いて説明を行う。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. However, in the following,
As an example of the solid-state imaging device of the present invention, a frame transfer type monochrome solid-state imaging device will be described.

【0013】《第1の実施形態の説明》図1は、第1の
実施形態に対応する固体撮像装置の概略構成を示す図で
ある。図1において、固体撮像装置1は、開口部がガラ
ス基板11によって塞がれた筐体12と、ガラス基板1
1に積層されたOLPF13と、受光面がガラス基板1
1に対向されるように筐体12に内設された撮像チップ
14とから構成される。
<< Description of First Embodiment >> FIG. 1 is a diagram showing a schematic configuration of a solid-state imaging device corresponding to the first embodiment. In FIG. 1, a solid-state imaging device 1 includes a housing 12 whose opening is closed by a glass substrate 11 and a glass substrate 1.
And the light receiving surface is the glass substrate 1
1 and an image pickup chip 14 provided inside the housing 12 so as to face it.

【0014】また、図1において、撮像チップ14に
は、複数の画素141が2次元に配置されている。各々
の画素141は、長辺方向と短辺方向との長さの比が
「2:1」に近似される矩形であり、短辺方向に対して
は、長辺方向の画素ピッチの1/2ずつオフセットされ
てジグザグに配置され、長辺方向に対しては、ほぼ一直
線上に配置されている。
Further, in FIG. 1, a plurality of pixels 141 are two-dimensionally arranged on the image pickup chip 14. Each pixel 141 is a rectangle whose length ratio in the long side direction and the length in the short side direction is approximated to “2: 1”, and is 1/1 of the pixel pitch in the long side direction with respect to the short side direction. They are offset by two and are arranged in a zigzag manner, and are arranged substantially in a straight line in the long side direction.

【0015】OLPF13は、画素141の短辺方向に
対し、入射光を短辺方向の画素ピッチ分ぼかす。その結
果、各々の画素141の等価なアパーチャは、図2に示
すように、画素141の短辺方向に拡大して正方形状と
なり、短辺方向に隣接する画素141間では相互に重な
ることになる。ただし、図2では、短辺方向を基準と
し、奇数番目に配置されている画素141のアパーチャ
を実線で示し、偶数番目に配置されている画素141の
アパーチャを点線で示している。
The OLPF 13 blurs the incident light with respect to the short side direction of the pixel 141 by the pixel pitch in the short side direction. As a result, the equivalent aperture of each pixel 141 expands in the short side direction of the pixel 141 to form a square shape as shown in FIG. 2, and the pixels 141 adjacent in the short side direction overlap each other. . However, in FIG. 2, the apertures of the pixels 141 arranged in odd-numbered positions are indicated by solid lines and the apertures of the pixels 141 arranged in even-numbered positions are indicated by dotted lines with the short-side direction as a reference.

【0016】また、各々の画素141に対するサンプル
点は、図3のようになる。ところで、固体撮像装置1が
フレーム転送形の固体撮像装置の場合は、各々の画素1
41の大部分を、受光領域(入射光に応じた信号電荷を
生成する領域)が占めることになる。
The sampling points for each pixel 141 are as shown in FIG. By the way, when the solid-state imaging device 1 is a frame transfer type solid-state imaging device, each pixel 1
Most of 41 is occupied by a light receiving region (a region for generating signal charges according to incident light).

【0017】図4は、第1の実施形態における受光領域
の構成を示す図である。図4において、各々の受光領域
142(点線で囲んで示した)は、図1に示した画素1
41と同様に、長辺方向と短辺方向との長さの比が
「2:1」に近似される矩形(厳密には短辺方向の長さ
はチャンネルストップ中央から隣のチャンネルストップ
中央までの長さ)であり、短辺方向に対しては、長辺方
向の画素ピッチの1/2ずつオフセットされてジグザグ
に配置され、長辺方向に対しては、ほぼ一直線上に配置
されている。
FIG. 4 is a diagram showing the structure of the light receiving region in the first embodiment. In FIG. 4, each light receiving region 142 (enclosed by a dotted line) corresponds to the pixel 1 shown in FIG.
Similar to 41, a rectangle in which the length ratio between the long side direction and the short side direction is approximated to “2: 1” (strictly, the length in the short side direction is from the center of a channel stop to the center of an adjacent channel stop). Of the pixel pitch in the short side direction, offset by ½ of the pixel pitch in the long side direction, and arranged in zigzag, and arranged in a straight line in the long side direction. .

【0018】また、図4では、受光面の垂直転送方向
(受光領域の長辺方向に相当する)に配置された受光領
域142の列(画素群)毎にチャンネルストップ143
が設けられ、受光面の水平転送方向(受光領域の短辺方
向に相当する)に沿ってジグザグに配置された受光領域
142(画素群)毎に2相の透明電極144が設けられ
ている。このような透明電極144には、信号電荷の転
送用のパルス信号φ1A,φ2Aが供給される。
Further, in FIG. 4, a channel stop 143 is provided for each column (pixel group) of the light receiving regions 142 arranged in the vertical transfer direction of the light receiving surface (corresponding to the long side direction of the light receiving region).
And a two-phase transparent electrode 144 is provided for each light receiving region 142 (pixel group) arranged in a zigzag pattern along the horizontal transfer direction of the light receiving surface (corresponding to the short side direction of the light receiving region). To such a transparent electrode 144, pulse signals φ1A and φ2A for transferring signal charges are supplied.

【0019】図4のような構成によれば、チャンネルス
トップ143によって複数の受光領域142が受光面の
垂直転送方向に配列される列毎に分離され、共通の透明
電極144が設けられた受光領域142で生成される信
号電荷を受光面の垂直転送方向に同時に転送することが
できる。したがって、既存のフレーム転送形の固体撮像
装置と同様に、不図示の蓄積部および水平読み出し部を
介して、フレーム転送方式による信号電荷の走査が可能
である。
According to the structure shown in FIG. 4, the plurality of light receiving regions 142 are separated by the channel stop 143 for each column arranged in the vertical transfer direction of the light receiving surface, and the common transparent electrode 144 is provided. The signal charges generated at 142 can be simultaneously transferred in the vertical transfer direction of the light receiving surface. Therefore, similarly to the existing frame transfer type solid-state imaging device, it is possible to scan the signal charges by the frame transfer method via the storage unit and the horizontal reading unit (not shown).

【0020】以上説明したように、第1の実施形態で
は、受光領域142(画素141とほぼ一致)の短辺方
向に対し、入射光を短辺方向の画素ピッチ分ぼかす単一
のOLPF13を備えるだけで、図2に示すような等価
なアパーチャが得られる。したがって、鮮鋭度の低下を
最小限に抑えつつ、ナイキスト周波数の折り返しによる
偽色を低減することができると共に、入射光をぼかす光
学部材を複数設けることによって発生していた従来の問
題(コストアップ、フレアの増加、光学系の収差特性の
劣化、スペースの増加など)を回避することができる。
As described above, in the first embodiment, the single OLPF 13 that blurs the incident light by the pixel pitch in the short side direction with respect to the short side direction of the light receiving region 142 (substantially coincident with the pixel 141) is provided. By itself, an equivalent aperture as shown in FIG. 2 is obtained. Therefore, it is possible to reduce the false color due to the aliasing of the Nyquist frequency while suppressing the decrease in the sharpness to a minimum, and to provide the conventional problem that occurs by providing a plurality of optical members that blur the incident light (cost increase, It is possible to avoid an increase in flare, deterioration of aberration characteristics of the optical system, an increase in space, etc.).

【0021】また、第1の実施形態では、透明電極14
4の形状を図4のようにジグザグにすることによって、
図1の画素配置(交互列で1/2オフセット)を実現し
ている。
Further, in the first embodiment, the transparent electrode 14
By making the shape of 4 into a zigzag shape as shown in FIG. 4,
The pixel arrangement of FIG. 1 (1/2 offset in alternate columns) is realized.

【0022】なお、第1の実施形態では、図4に示すよ
うに、各々の受光領域142の長辺方向が受光面の垂直
転送方向に一致するように、受光領域142(第1の実
施形態では画素141とほぼ一致)を配置した例を示し
たが、図5のように、長辺方向が受光面の水平転送方向
に一致するように、受光領域142が配置されても良
い。
In the first embodiment, as shown in FIG. 4, the light receiving regions 142 (first embodiment) are arranged so that the long side direction of each light receiving region 142 coincides with the vertical transfer direction of the light receiving surface. However, the light receiving region 142 may be arranged so that the long side direction coincides with the horizontal transfer direction of the light receiving surface as shown in FIG.

【0023】ただし、受光領域142を図5のように配
置する場合、フレーム転送方式による信号電荷の走査を
実現するためには、チャンネルストップ143を、受光
面の垂直転送方向(受光領域の短辺方向に相当する)に
沿ってジグザグに配置された受光領域142の列毎に設
け、透明電極144を、受光面の水平転送方向(受光領
域の長辺方向に相当する)に配置された受光領域142
(点線で囲んだ領域)毎に共通に設ける必要がある。2
相で転送する場合は、各受光領域毎に2相の電極が割り
当てられる。
However, when the light receiving area 142 is arranged as shown in FIG. 5, in order to realize the scanning of the signal charges by the frame transfer method, the channel stop 143 is provided in the vertical transfer direction of the light receiving surface (the short side of the light receiving area). (Corresponding to the direction) is provided for each column of the light receiving regions 142 arranged in a zigzag pattern, and the transparent electrodes 144 are arranged in the horizontal transfer direction of the light receiving surface (corresponding to the long side direction of the light receiving region). 142
It is necessary to commonly provide each (area surrounded by a dotted line). Two
When transferring in phases, two-phase electrodes are assigned to each light receiving region.

【0024】また、受光領域142を図5のように配置
する場合、画素141の短辺方向が受光面の垂直転送方
向と一致することになるので、入射光を画素141の短
辺方向に対してぼかすためには、OLPF13による入
射光のぼかし方向を受光面の垂直転送方向に変更する必
要がある。
Further, when the light receiving region 142 is arranged as shown in FIG. 5, the short side direction of the pixel 141 coincides with the vertical transfer direction of the light receiving surface, so that the incident light is directed to the short side direction of the pixel 141. In order to blur, it is necessary to change the blurring direction of the incident light by the OLPF 13 to the vertical transfer direction of the light receiving surface.

【0025】《第2の実施形態の説明》図6は、第2の
実施形態に対応する固体撮像装置の概略構成を示す図で
ある。図6において、固体撮像装置2は、図1に示した
第1の実施形態に対応する固体撮像装置1と同様に、開
口部がガラス基板21によって塞がれた筐体22と、ガ
ラス基板21に積層されたOLPF23と、受光面がガ
ラス基板21に対向されるように筐体22に内設された
撮像チップ24とから構成される。
<< Explanation of Second Embodiment >> FIG. 6 is a view showing the schematic arrangement of a solid-state imaging device corresponding to the second embodiment. 6, the solid-state imaging device 2 includes a housing 22 whose opening is closed by a glass substrate 21 and a glass substrate 21 as in the solid-state imaging device 1 corresponding to the first embodiment shown in FIG. And an image pickup chip 24 provided inside the housing 22 so that the light receiving surface faces the glass substrate 21.

【0026】また、図6において、撮像チップ24に
は、複数の画素241が2次元に配置されている。各々
の画素241は、長辺方向と短辺方向との長さの比が
「2:1」に近似される矩形であり、短辺方向に対して
は、長辺方向の画素ピッチの1/2ずつオフセットされ
てジグザグに配置され、長辺方向に対しては、ほぼ一直
線上に配置されている。
Further, in FIG. 6, a plurality of pixels 241 are two-dimensionally arranged on the image pickup chip 24. Each pixel 241 is a rectangle whose length ratio in the long side direction and the short side direction is approximated to “2: 1”, and is 1/1 of the pixel pitch in the long side direction with respect to the short side direction. They are offset by two and are arranged in a zigzag manner, and are arranged substantially in a straight line in the long side direction.

【0027】ただし、図6では、図1と異なり、各々の
画素241は、受光面の水平転送方向および垂直転送方
向に対して45度傾いている。OLPF23は、画素2
41の短辺方向に対し、入射光を短辺方向の画素ピッチ
分ぼかす。その結果、各々の画素241のアパーチャ
は、図7に示すように、画素241の短辺方向に拡大し
て正方形状となり、短辺方向に隣接する画素241間で
は相互に重なることになる。
However, in FIG. 6, unlike FIG. 1, each pixel 241 is inclined by 45 degrees with respect to the horizontal transfer direction and the vertical transfer direction of the light receiving surface. The OLPF 23 is the pixel 2
With respect to the short side direction of 41, the incident light is blurred by the pixel pitch in the short side direction. As a result, as shown in FIG. 7, the aperture of each pixel 241 expands in the short side direction of the pixel 241 to form a square shape, and the pixels 241 adjacent in the short side direction overlap with each other.

【0028】また、各々の画素241に対するサンプル
点は、図8のようになる。図9は、第2の実施形態にお
ける受光領域の構成を示す図である。図9において、各
々の受光領域242(点線で囲まれた領域)は、図6に
示した画素241と同様に、長辺方向と短辺方向との長
さの比が「2:1」に近似される矩形であり、短辺方向
に対しては、長辺方向の画素ピッチの1/2ずつオフセ
ットされてジグザグに配置され、長辺方向に対しては、
ほぼ一直線上に配置されている。
The sampling points for each pixel 241 are as shown in FIG. FIG. 9 is a diagram showing the configuration of the light receiving region in the second embodiment. In FIG. 9, each light receiving area 242 (area surrounded by a dotted line) has a length ratio in the long side direction and the short side direction of “2: 1” as in the pixel 241 shown in FIG. It is a rectangle that is approximated and is arranged in a zigzag manner by offsetting each half of the pixel pitch in the long side direction in the short side direction, and in the long side direction,
They are arranged almost on a straight line.

【0029】ただし、図9では、受光面の垂直転送方向
に沿ってジグザグに配置された受光領域242の列(画
素群)毎にチャンネルストップ243が設けられ、2相
駆動の場合は受光面の水平転送方向に沿ってジグザグに
配置された受光領域242(画素群)毎に2相の透明電
極244が設けられている。このような透明電極244
には、信号電荷の転送用のパルス信号φ1A,φ2Aが
供給される。
However, in FIG. 9, a channel stop 243 is provided for each column (pixel group) of the light receiving regions 242 arranged in a zigzag pattern along the vertical transfer direction of the light receiving surface, and in the case of two-phase driving, the light receiving surface of the light receiving surface is changed. A two-phase transparent electrode 244 is provided for each of the light receiving regions 242 (pixel groups) arranged in zigzag along the horizontal transfer direction. Such a transparent electrode 244
Are supplied with pulse signals φ1A and φ2A for transferring signal charges.

【0030】図9のような構成によれば、チャンネルス
トップ243によって複数の受光領域242が受光面の
垂直転送方向に沿ってジグザグに配列される列毎に分離
され、共通の透明電極244が設けられた受光領域24
2(受光面の水平転送方向に沿ってジグザグに配列され
ている受光領域242に相当する)で生成される信号電
荷を受光面の垂直転送方向に同時に転送することができ
る。したがって、既存のフレーム転送形の固体撮像装置
と同様に、不図示の蓄積部および水平読み出し部を介し
て、フレーム転送方式による信号電荷の走査が可能であ
る。
According to the structure shown in FIG. 9, the plurality of light receiving regions 242 are separated by the channel stop 243 into columns arranged in zigzag along the vertical transfer direction of the light receiving surface, and the common transparent electrode 244 is provided. Light-receiving area 24
2 (corresponding to the light receiving regions 242 arranged in zigzag along the horizontal transfer direction of the light receiving surface) can be simultaneously transferred in the vertical transfer direction of the light receiving surface. Therefore, similarly to the existing frame transfer type solid-state imaging device, it is possible to scan the signal charges by the frame transfer method via the storage unit and the horizontal reading unit (not shown).

【0031】以上説明したように、第2実施形態では、
受光領域242の短辺方向に対し、入射光を短辺方向の
画素ピッチ分ぼかす単一のOLPF23を備えるだけ
で、図7に示すようなアパーチャが得られる。したがっ
て、第1の実施形態と同様に、鮮鋭度の低下を最小限に
抑えつつ、ナイキスト周波数の折り返しによるエイリア
シングを低減することができると共に、入射光をぼかす
光学部材を複数設けることによって発生していた従来の
問題を回避することができる。
As described above, in the second embodiment,
An aperture as shown in FIG. 7 can be obtained only by providing a single OLPF 23 for blurring the incident light by the pixel pitch in the short side direction with respect to the short side direction of the light receiving region 242. Therefore, similarly to the first embodiment, it is possible to reduce aliasing due to aliasing of the Nyquist frequency while minimizing a decrease in sharpness, and it is caused by providing a plurality of optical members that blur incident light. It is possible to avoid the conventional problems.

【0032】また、第2の実施形態では、各々の受光領
域242の形状や配置が既存のフレーム転送形の固体撮
像装置と異なっていても、チャンネルストップ243や
透明電極244の形状を図9のようにジグザグにするこ
とによって、フレーム転送方式による信号電荷の走査を
容易に実現することができる。さらに、第2の実施形態
では、各々の画素241に対するサンプル点は、図8に
示すように、正方格子状のサンプル点となる。
In the second embodiment, the shape of the channel stop 243 and the transparent electrode 244 are different from those of the existing frame transfer type solid-state image pickup device shown in FIG. By using zigzag as described above, scanning of signal charges by a frame transfer method can be easily realized. Furthermore, in the second embodiment, the sample points for each pixel 241 are square grid sample points, as shown in FIG.

【0033】また、上述した各実施形態では、本発明の
固体撮像装置の一例としてフレーム転送形の固体撮像装
置について説明した。このようなフレーム転送方式の採
用により、画素アスペクト比が「2:1」程度の極端な
矩形画素でありながらも、その矩形画素の殆どを有効受
光領域として使用することが可能になる。その結果、画
素アスペクト比の極端な矩形形状の画素を採用しながら
も、受光効率に優れた固体撮像装置を実現できる。
In each of the above-described embodiments, a frame transfer type solid-state image pickup device has been described as an example of the solid-state image pickup device of the present invention. By adopting such a frame transfer method, it is possible to use most of the rectangular pixels as an effective light receiving area even though the pixel aspect ratio is an extreme rectangular pixel of about “2: 1”. As a result, it is possible to realize a solid-state imaging device having excellent light receiving efficiency while adopting a rectangular pixel having an extremely high pixel aspect ratio.

【0034】なお、本発明は、このようなフレーム転送
方式に限定されるものではない。例えば、インタライン
転送方式を採用することも可能である。ただし、上記構
成をインタライン転送形式で実現する場合、受光領域の
画素アスペクト比が極端な値であるため、開口率の低下
による感度劣化などの問題が生じやすい。従来、このイ
ンタライン転送方式の受光効率を高める場合、画素単位
にマイクロレンズを設けることがよく行われる。しかし
ながら、本発明の固体撮像装置は、画素アスペクト比が
「2:1」と極端であるため、適切なマイクロレンズの
設計が非常に難しい。
The present invention is not limited to such a frame transfer system. For example, the interline transfer method can be adopted. However, when the above configuration is realized by the interline transfer method, since the pixel aspect ratio of the light receiving region has an extreme value, problems such as sensitivity deterioration due to a decrease in the aperture ratio are likely to occur. Conventionally, in order to improve the light receiving efficiency of this interline transfer method, it is often practiced to provide a microlens for each pixel. However, in the solid-state imaging device of the present invention, the pixel aspect ratio is as extreme as “2: 1”, and it is very difficult to design an appropriate microlens.

【0035】例えば、辺の長さが「2:1」程度の画素
形状に合わせてマイクロレンズを形成する場合、図10
(1)に示すような楕円形のマイクロレンズが考えられ
る。しかしながら、長方形の受光部の上に楕円形のレン
ズをマイクロレンズとして用いると、集光特性が長辺方
向と短辺方向とで異なってしまい、ぼけが丸くならない
などの問題が生じる。
For example, in the case of forming a microlens in accordance with a pixel shape having a side length of "2: 1", FIG.
An elliptical microlens as shown in (1) can be considered. However, when an elliptical lens is used as a microlens on a rectangular light receiving portion, the light-condensing characteristics are different in the long-side direction and the short-side direction, which causes a problem that the blur does not become round.

【0036】このような問題を回避するため、図10
(2)に示すように、マイクロレンズを画素(受光領
域)の長辺方向に2つ配置することが好ましい。このよ
うに矩形状の受光領域に対して複眼式のマイクロレンズ
を設けることにより、画素アスペクト比の極端な矩形形
状の画素でありながらも、各画素の集光特性はほぼ等方
的になる。
In order to avoid such a problem, FIG.
As shown in (2), it is preferable to dispose two microlenses in the long side direction of the pixel (light receiving region). By providing the compound-eye type microlens for the rectangular light-receiving region in this manner, the condensing characteristics of each pixel are substantially isotropic even though the pixel has a rectangular shape with an extreme pixel aspect ratio.

【0037】さらに、複数のマイクロレンズの境界領域
に遮光部を設けることにより、いびつな方向からの光を
遮ることが可能になり、矩形画素の集光特性の等方性を
一段と高めることが可能になる。
Furthermore, by providing a light-shielding portion in the boundary area of a plurality of microlenses, it is possible to block light from distorted directions, and it is possible to further enhance the isotropy of the light-collecting characteristics of rectangular pixels. become.

【0038】さらに、図10(2)では、複眼式のマイ
クロレンズの下に共通の蓄積部を設ける。そのため、複
眼式のマイクロレンズの入射光によって生成される信号
電荷を、矩形画素の単位にまとめて蓄積して加算するこ
とができる。その結果、画素加算のためのシーケンス動
作を省いて、固体撮像装置の転送シーケンスを単純化す
ることが容易になる。
Further, in FIG. 10 (2), a common storage section is provided under the compound-eye type microlens. Therefore, the signal charges generated by the incident light of the compound-eye type microlens can be collectively accumulated and added in units of rectangular pixels. As a result, it becomes easy to omit the sequence operation for pixel addition and simplify the transfer sequence of the solid-state imaging device.

【0039】また、上述した各実施形態に対応する固体
撮像装置1,2では、OLPF13,23が設けられて
いるが、OLPFとしては、例えば、回折格子のよう
に、受光面に入射される光を受光領域の短辺方向にぼか
すことができる光学部材であれば、如何なる光学部材を
設けても良い。
Further, in the solid-state image pickup devices 1 and 2 corresponding to the above-mentioned respective embodiments, the OLPFs 13 and 23 are provided. As the OLPF, for example, light incident on the light receiving surface like a diffraction grating is used. Any optical member may be provided as long as it can blur the light in the short side direction of the light receiving region.

【0040】さらに、上述した各実施形態に対応する固
体撮像装置1,2では、ガラス基板11,21によって
筐体12,22の開口部を塞いでいるが、ガラス基板1
1,21を設けずに、OLPF13,23によって筐体
12,22の開口部を塞ぐ構成にしても良い。
Further, in the solid-state image pickup devices 1 and 2 corresponding to the above-described respective embodiments, the glass substrates 11 and 21 close the openings of the housings 12 and 22.
It is also possible to provide a configuration in which the openings of the housings 12 and 22 are closed by the OLPFs 13 and 23 without providing the elements 1 and 21.

【0041】また、上述した各実施形態では、カラーフ
ィルタを設けていないモノクロの固体撮像装置について
説明したが、本発明は、複数のカラーフィルタを有する
カラーの固体撮像装置にも同様に適用することができ、
エイリアシングによって発生する偽色を低減することが
できる。例えば、第1の実施形態に対応する固体撮像装
置1において、R,G,Bの3色のカラーフィルタを、図
11(1)のような配列(Gのカラーフィルタが配され
た列とR,Bのカラーフィルタが交互に配された列とが
ストライプを成す配列)で各々の画素141に対応付け
ると、アパーチャは、図11(2)のようになる。
Further, in each of the above-described embodiments, the monochrome solid-state image pickup device without the color filter has been described, but the present invention can be similarly applied to a color solid-state image pickup device having a plurality of color filters. Can
False colors caused by aliasing can be reduced. For example, in the solid-state imaging device 1 corresponding to the first embodiment, the color filters of three colors of R, G, and B are arranged in an array as shown in FIG. 11 (2), the apertures are as shown in FIG. 11 (2) by associating each pixel 141 with a column in which the columns in which the B and B color filters are alternately arranged form a stripe).

【0042】このようなアパーチャは、二板式の固体撮
像装置(Gのカラーフィルタのみが設けられた撮像素子
と、R,Bのカラーフィルタが市松模様状に設けられた
撮像素子とを有する固体撮像装置)において、2枚の撮
像素子を1/2画素ピッチずらした場合のアパーチャと
等価であり、カラーの固体撮像装置に有効である。
Such an aperture is a solid-state image pickup device having a two-plate type solid-state image pickup device (an image pickup device provided with only a G color filter and an image pickup device provided with R and B color filters in a checkered pattern). Device), which is equivalent to an aperture when two image pickup elements are shifted by a 1/2 pixel pitch, and is effective for a color solid-state image pickup device.

【0043】なお、各々の画素に設けるカラーフィルタ
は、R,G,Bの3色に限らず、Ye,Mg,Cy,Gの4
色など如何なる色種であっても良く、カラーフィルタの
配列は、図11(1)のような配列に限られるものでは
ない。
The color filters provided in each pixel are not limited to the three colors of R, G and B, but the four color filters of Ye, Mg, Cy and G.
Any color type such as color may be used, and the arrangement of the color filters is not limited to the arrangement shown in FIG. 11 (1).

【0044】[0044]

【発明の効果】以上説明したように、本発明の固体撮像
装置によれば、入射光をぼかす(多重化する場合も含
む)光学部材の数を1つにしても、ナイキスト周波数の
折り返しによって発生するエイリアシングによる欠陥を
適当に抑圧し、かつ、鮮鋭度の低下を最小限に抑えるこ
とができる。カラー撮像素子の場合では、偽色の低減と
鮮鋭度の低下防止とをバランス良く行うことができる。
また、入射光をぼかす光学部材を複数設けることによっ
て発生していた従来の問題(コストアップ、フレアの増
加、光学系の収差特性の劣化、スペースの増加など)を
回避することができる。
As described above, according to the solid-state image pickup device of the present invention, even if the number of optical members that obscure the incident light (including the case of multiplexing) is one, it is caused by the folding of the Nyquist frequency. It is possible to appropriately suppress the defects due to the aliasing, and to suppress the deterioration of the sharpness to the minimum. In the case of a color image pickup element, reduction of false color and prevention of reduction in sharpness can be performed in a well-balanced manner.
Further, it is possible to avoid the conventional problems (cost increase, flare increase, deterioration of aberration characteristics of the optical system, increase of space, etc.) that have been caused by providing a plurality of optical members for blurring incident light.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施形態に対応する固体撮像装置の概略
構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a solid-state imaging device corresponding to a first embodiment.

【図2】第1の実施形態におけるアパーチャの状態を示
す図である。
FIG. 2 is a diagram showing a state of an aperture in the first embodiment.

【図3】第1の実施形態におけるサンプル点を示す図で
ある。
FIG. 3 is a diagram showing sample points in the first embodiment.

【図4】第1の実施形態における受光領域の構成を示す
図である。
FIG. 4 is a diagram showing a configuration of a light receiving region in the first embodiment.

【図5】第1の実施形態における受光領域の他の構成を
示す図である。
FIG. 5 is a diagram showing another configuration of the light receiving region in the first embodiment.

【図6】第2の実施形態に対応する固体撮像装置の概略
構成を示す図である。
FIG. 6 is a diagram showing a schematic configuration of a solid-state imaging device corresponding to the second embodiment.

【図7】第2の実施形態におけるアパーチャを示す図で
ある。
FIG. 7 is a diagram showing an aperture according to a second embodiment.

【図8】第2の実施形態におけるサンプル点を示す図で
ある。
FIG. 8 is a diagram showing sample points in the second embodiment.

【図9】第2の実施形態における受光領域の構成を示す
図である。
FIG. 9 is a diagram showing a configuration of a light receiving region in the second embodiment.

【図10】マイクロレンズを設けた場合の画素の構成例
を示す図である。
FIG. 10 is a diagram showing a configuration example of a pixel when a microlens is provided.

【図11】カラーフィルタを設けた場合のアパーチャの
状態を示す図である。
FIG. 11 is a diagram showing a state of an aperture when a color filter is provided.

【符号の説明】[Explanation of symbols]

1、2 固体撮像装置 11、21 ガラス基板 12、22 筐体 13、23 OLPF 14、24 撮像チップ 141、241 画素 142、242 受光領域 143、243 チャンネルストップ 144、244 透明電極 1, 2 Solid-state imaging device 11, 21 glass substrate 12, 22 housing 13, 23 OLPF 14, 24 Imaging chip 141, 241 pixels 142, 242 light receiving area 143,243 channel stop 144,244 transparent electrodes

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04N 9/07 H01L 27/14 D Fターム(参考) 4M118 AA05 AA10 AB01 BA12 BA13 CA08 DA12 DA20 FA07 FA26 GC08 GC09 GC20 GD02 GD04 GD07 HA02 HA23 5C024 CX01 CX11 CX14 CY33 DX01 EX43 EX52 GY03 GZ36 5C065 BB09 BB10 BB13 BB22 CC01 DD06 EE03 EE11 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H04N 9/07 H01L 27/14 DF term (reference) 4M118 AA05 AA10 AB01 BA12 BA13 CA08 DA12 DA20 FA07 FA26 GC08 GC09 GC20 GD02 GD04 GD07 HA02 HA23 5C024 CX01 CX11 CX14 CY33 DX01 EX43 EX52 GY03 GZ36 5C065 BB09 BB10 BB13 BB22 CC01 DD06 EE03 EE11

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 受光面に入射した光に応じて信号電荷を
生成する矩形の受光領域を個別に有し、該受光領域の短
辺方向に対しては該受光領域の長辺方向の画素ピッチの
1/2ずつオフセットされて2次元に配置された複数の
画素と、 前記信号電荷を走査して外部に読み出す走査手段と、 前記複数の画素の前記受光面側に設けられ、該受光面に
入射される光を前記短辺方向に画素ピッチ分ぼかす光学
部材とを備え、 前記受光領域は、アスペクト比が「2:1」に近似され
る矩形であり、 前記複数の画素は、前記受光面の1つの方向に配置され
る画素群毎に分離され、前記信号電荷を該受光面の1つ
の方向に順次転送し、 前記走査手段は、前記複数の画素を、前記受光面の1つ
の方向に直交する方向に配置される画素群毎に駆動し、
フレーム転送方式で前記信号電荷を走査することを特徴
とする固体撮像装置。
1. A pixel pitch in the long side direction of the light receiving area with respect to the short side direction of the light receiving area, each having a rectangular light receiving area for generating a signal charge according to light incident on the light receiving surface. A plurality of pixels which are offset by ½ each of which are arranged two-dimensionally, a scanning unit which scans the signal charge and reads the signal charges to the outside, and a plurality of pixels which are provided on the light receiving surface side of the plurality of pixels and are provided on the light receiving surface. An optical member that blurs incident light in the short side direction by a pixel pitch, the light receiving region is a rectangle whose aspect ratio is approximated to “2: 1”, and the plurality of pixels are the light receiving surface. Is separated for each pixel group arranged in one direction, and the signal charges are sequentially transferred in one direction of the light receiving surface, and the scanning unit causes the plurality of pixels to move in one direction of the light receiving surface. Drive for each pixel group arranged in the orthogonal direction,
A solid-state imaging device, characterized in that the signal charges are scanned by a frame transfer method.
【請求項2】 受光面に入射した光に応じて信号電荷を
生成する矩形の受光領域を個別に有し、該受光領域の短
辺方向に対しては該受光領域の長辺方向の画素ピッチの
1/2ずつオフセットされて2次元に配置された複数の
画素と、 前記信号電荷を走査して外部に読み出す走査手段と、 前記複数の画素の前記受光面側に設けられ、該受光面に
入射する光を前記短辺方向に画素ピッチ分ぼかす光学部
材と、 前記受光領域ごとに前記長辺方向に2つ並べて配置する
ことにより、前記受光領域のアスペクト比を「2:1」
に近似するマイクロレンズと、 前記受光領域の2つのマイクロレンズに入射する光によ
って生成される前記信号電荷を前記受光領域ごとにまと
めて蓄積する蓄積部とを備えたことを特徴とする固体撮
像装置。
2. A pixel pitch in the long side direction of the light receiving area with respect to the short side direction of the light receiving area, each having a rectangular light receiving area for generating a signal charge according to light incident on the light receiving surface. A plurality of pixels which are offset by ½ each of which are arranged two-dimensionally, a scanning unit which scans the signal charge and reads the signal charges to the outside, and a plurality of pixels which are provided on the light receiving surface side of the plurality of pixels and are provided on the light receiving surface. The aspect ratio of the light receiving area is set to "2: 1" by arranging two optical members for blurring the incident light in the short side direction by the pixel pitch and two light receiving areas arranged side by side in the long side direction.
And a storage unit that stores the signal charges generated by the light incident on the two microlenses in the light-receiving region collectively for each of the light-receiving regions. .
【請求項3】 請求項2に記載の固体撮像装置におい
て、 前記受光領域に配置される2つのマイクロレンズの境界
領域を遮光する遮光部を備えたことを特徴とする固体撮
像装置。
3. The solid-state imaging device according to claim 2, further comprising a light-shielding portion that shields a boundary region between two microlenses arranged in the light-receiving region.
JP2002358135A 2001-12-12 2002-12-10 Solid-state imaging device Expired - Fee Related JP4356311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002358135A JP4356311B2 (en) 2001-12-12 2002-12-10 Solid-state imaging device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001378270 2001-12-12
JP2001-378270 2001-12-12
JP2002358135A JP4356311B2 (en) 2001-12-12 2002-12-10 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2003244545A true JP2003244545A (en) 2003-08-29
JP4356311B2 JP4356311B2 (en) 2009-11-04

Family

ID=27790727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002358135A Expired - Fee Related JP4356311B2 (en) 2001-12-12 2002-12-10 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4356311B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860689A (en) * 2008-04-07 2010-10-13 索尼公司 Solid-state imaging device, signal processing method for the same and electronic device
JP2013223020A (en) * 2012-04-13 2013-10-28 Nippon Hoso Kyokai <Nhk> Single-plate color image pickup device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860689A (en) * 2008-04-07 2010-10-13 索尼公司 Solid-state imaging device, signal processing method for the same and electronic device
JP2013223020A (en) * 2012-04-13 2013-10-28 Nippon Hoso Kyokai <Nhk> Single-plate color image pickup device

Also Published As

Publication number Publication date
JP4356311B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP3617887B2 (en) Imaging device
US7847849B2 (en) Solid-state imaging device, driving method thereof, and camera
JP4027113B2 (en) Imaging apparatus and system
JP5232118B2 (en) Imaging device and electronic camera
US8120690B2 (en) Imaging device
EP2690874A1 (en) Color image sensor, imaging device, and control program for imaging device
WO1997017811A1 (en) Method and device for picking up color still image
JP4041695B2 (en) Image apparatus comprising a plurality of linear photosensor arrays having different spatial resolutions
JP4448889B2 (en) Imaging device and imaging apparatus
KR20060074866A (en) Drive method for solid-state imaging device, solid-state imaging device, and imaging apparatus
EP2685725B1 (en) Imaging device and imaging program
JP3970185B2 (en) Solid-state image sensor and digital camera
KR100841895B1 (en) Camera with color filter
JPS6359587B2 (en)
US20090096915A1 (en) Anti-aliasing spatial filter system
EP2690872A1 (en) Color image capturing element, image capturing device, and image capturing program
US8964087B2 (en) Imaging device, method for controlling imaging device, and storage medium storing a control program
JP2009005390A (en) Solid-state image sensor
JP2005110104A (en) Solid-state imaging apparatus
JP2000106678A (en) Image pickup device
JP5411390B2 (en) Color image sensor
JP2003244545A (en) Solid-state image pickup device
JP2003052048A (en) Imaging element, imaging apparatus and imaging method
US20060016961A1 (en) Imaging apparatus and solid-state imaging device
JP6687276B1 (en) Two-plate type image pickup device, image processing method of two-plate type image pickup device, and positioning method of solid-state image pickup device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4356311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150814

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150814

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150814

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees