JP2003243678A - Solar cell module and its manufacturing method - Google Patents

Solar cell module and its manufacturing method

Info

Publication number
JP2003243678A
JP2003243678A JP2002039292A JP2002039292A JP2003243678A JP 2003243678 A JP2003243678 A JP 2003243678A JP 2002039292 A JP2002039292 A JP 2002039292A JP 2002039292 A JP2002039292 A JP 2002039292A JP 2003243678 A JP2003243678 A JP 2003243678A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
adhesive resin
resin material
crystalline semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002039292A
Other languages
Japanese (ja)
Inventor
Naoki Ishikawa
直揮 石川
Makiko Emoto
真樹子 江本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002039292A priority Critical patent/JP2003243678A/en
Priority to PCT/JP2003/001492 priority patent/WO2003069682A2/en
Priority to AU2003208006A priority patent/AU2003208006A1/en
Publication of JP2003243678A publication Critical patent/JP2003243678A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell module, which is adaptive to a curved-surface structure and can obtain high conversion efficiency of electric power, and its manufacturing method. <P>SOLUTION: Provided is a solar cell 11 comprising a metal thin plate 12 and a crystalline semiconductor substrate of ≤200 μm in thickness which is fixed on the thin plate 12 by using an adhesive. A transparent weatherproof film 13 is stuck on the top surface side of the solar cell 11 and an insulating sheet 14 is arranged between the reverse surface of the solar cell 11 and an insulating film 14. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池モジュール
及びその製造方法に係り、特に薄い半導体結晶基板から
なる太陽電池を備えた曲面構造の太陽電池モジュール、
及びそのモジュールの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell module and a method of manufacturing the same, and more particularly to a curved surface solar cell module including a solar cell made of a thin semiconductor crystal substrate,
And a method for manufacturing the module.

【0002】[0002]

【従来の技術】太陽電池は、太陽光を受けて発電電力を
発生するものであるので、例えば曲面を有する屋根や円
柱状の構造物等の上に設置できることが好ましい。従来
から、曲面構造を有する面に太陽電池を配置し、太陽光
より発電電力を取り出す要望が存在した。このような、
曲面構造を有する場所に設置が可能な太陽電池は、例え
ばアモルファス太陽電池を曲面構造を有するシートに蒸
着することにより製造することが可能である。しかしな
がら、アモルファス太陽電池は、太陽光の発電電力への
変換効率が低く、比較的狭い面積で大きな発電電力を得
ようとするには問題があった。
2. Description of the Related Art Since a solar cell receives sunlight to generate electric power, it is preferable that it can be installed on, for example, a roof having a curved surface or a columnar structure. Conventionally, there has been a demand for arranging a solar cell on a surface having a curved structure and extracting generated power from sunlight. like this,
A solar cell that can be installed in a place having a curved structure can be manufactured by, for example, depositing an amorphous solar cell on a sheet having a curved structure. However, the amorphous solar cell has a low conversion efficiency of sunlight into generated power, and has a problem in obtaining large generated power in a relatively small area.

【0003】一方で、単結晶・多結晶シリコン基板を用
いた太陽電池は、良好な発電電力の変換効率が得られ
る。ところが、これらの太陽電池は一般にその厚さが厚
いため、曲げることが難しく、平板状の結晶性半導体基
板を用いた太陽電池モジュールが市場に供給されてい
る。しかしながら、このような変換効率の高い太陽電池
モジュールは平板状ではなく、曲面構造にも対応可能で
あると、その設置可能な領域が格段に増加する。
On the other hand, a solar cell using a monocrystalline / polycrystalline silicon substrate can obtain good conversion efficiency of generated electric power. However, since these solar cells are generally thick, it is difficult to bend them, and solar cell modules using a flat crystalline semiconductor substrate have been supplied to the market. However, if such a solar cell module having high conversion efficiency is not flat and can be applied to a curved structure, the area where it can be installed is significantly increased.

【0004】[0004]

【発明が解決しようとする課題】本発明は上述した事情
に鑑みて為されたもので、曲面構造に対応が可能で、高
い電力の変換効率が得られる太陽電池モジュール及びそ
の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a solar cell module capable of supporting a curved surface structure and capable of obtaining high power conversion efficiency, and a method of manufacturing the same. The purpose is to

【0005】[0005]

【課題を解決するための手段】本発明の太陽電池モジュ
ールは、薄板状の半導体結晶基板を用い、該半導体結晶
基板を曲面構造を有する支持材に変形した状態で固定し
たことを特徴とする。即ち、金属薄板と、該薄板上に接
着剤を用いて固定された厚さが200μm以下の結晶性
半導体基板からなる太陽電池を備えたことを特徴とす
る。
The solar cell module of the present invention is characterized in that a thin plate-like semiconductor crystal substrate is used and the semiconductor crystal substrate is fixed to a supporting material having a curved structure in a deformed state. That is, it is characterized by including a thin metal plate and a solar cell composed of a crystalline semiconductor substrate having a thickness of 200 μm or less fixed on the thin plate with an adhesive.

【0006】ここで、前記太陽電池の表面側には、透明
耐候性フィルムが貼着され、前記太陽電池の裏面側に
は、絶縁シートが前記金属薄板との間に配置されている
ことが好ましい。
Here, it is preferable that a transparent weather-resistant film is attached to the front surface side of the solar cell, and an insulating sheet is arranged between the thin metal plate and the back surface side of the solar cell. .

【0007】また、本発明の太陽電池モジュールの製造
方法は、透明なフィルム状の表面保護材と、接着用樹脂
材と、結晶性半導体基板からなる太陽電池と、フィルム
状の裏面絶縁シートと、接着用樹脂材と、金属薄板とを
サンドイッチ状に重ねて、加温圧着して積層した後に、
前記接着用樹脂材が軟化している状態で所要の曲面形状
となるように成形加工して、前記接着用樹脂材を硬化さ
せることにより、曲面構造を形成することを特徴とす
る。
Further, the method for manufacturing a solar cell module of the present invention comprises a transparent film-shaped surface protective material, an adhesive resin material, a solar cell composed of a crystalline semiconductor substrate, and a film-shaped back insulating sheet. After stacking the adhesive resin material and the thin metal plate in a sandwich, and heating and pressure bonding to stack them,
It is characterized in that a curved surface structure is formed by molding and processing the adhesive resin material so as to have a required curved surface shape in a softened state and curing the adhesive resin material.

【0008】上述した本発明によれば、太陽電池を構成
する半導体結晶基板が薄板状であっても、その厚みが例
えば200μm以下と極めて薄いので、金属薄板の曲面
構造に合わせて変形して固定することが可能である。こ
れにより、太陽光の変換効率の高い半導体結晶基板を用
いて、曲面構造を有する太陽電池モジュールを形成する
ことができる。そして、太陽電池を構成する半導体結晶
基板を金属薄板に密着した状態で固定することで、電気
的特性に影響を及ぼすことなく上記曲面構造を安定に形
成することができる。
According to the present invention described above, even if the semiconductor crystal substrate constituting the solar cell is a thin plate, its thickness is extremely thin, for example, 200 μm or less, so that it is deformed and fixed according to the curved structure of the metal thin plate. It is possible to This makes it possible to form a solar cell module having a curved structure by using a semiconductor crystal substrate having a high conversion efficiency of sunlight. Then, by fixing the semiconductor crystal substrate constituting the solar cell in a state in which the semiconductor crystal substrate is in close contact with the metal thin plate, the curved surface structure can be stably formed without affecting the electrical characteristics.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態につい
て添付図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0010】図1は、本発明の実施形態の太陽電池モジ
ュールを示す。この太陽電池モジュール10は、結晶性
半導体基板を用いた太陽電池11が金属薄板12上に密
着して固定され、全体として図示する曲面構造を有して
いる。太陽電池11の表面側には、透明耐候性フィルム
からなる表面保護材13が配置され、太陽電池11の裏
面側の金属薄板12との間には絶縁性樹脂シート14が
配置されている。ここで、太陽電池11は、厚さが20
0μm以下のシリコン単結晶基板または多結晶基板が用
いられている。
FIG. 1 shows a solar cell module according to an embodiment of the present invention. In this solar cell module 10, a solar cell 11 using a crystalline semiconductor substrate is adhered and fixed on a thin metal plate 12, and has a curved structure as a whole. A surface protective material 13 made of a transparent weather resistant film is arranged on the front surface side of the solar cell 11, and an insulating resin sheet 14 is arranged between the solar cell 11 and the thin metal plate 12 on the rear surface side. Here, the solar cell 11 has a thickness of 20.
A silicon single crystal substrate or a polycrystalline substrate of 0 μm or less is used.

【0011】この結晶性半導体基板には、その内部にp
n接合が設けられ、光を照射することでpn接合に発電
電力が生じ、この出力が図示しない配線を介して取り出
される。この太陽電池11は、結晶性半導体基板に設け
られたpn接合により発電電力を出力するので、高い光
電変換効率が得られる。そして、厚さが200μm以下
の比較的薄い結晶性半導体基板を用いることで、この基
板が変形性を有するので、図示するような例えば半円等
の円弧状の曲面構造を形成することが可能である。
In this crystalline semiconductor substrate, p
An n-junction is provided, and by irradiating light, generated power is generated in the pn-junction, and this output is taken out via a wiring (not shown). Since the solar cell 11 outputs the generated power by the pn junction provided on the crystalline semiconductor substrate, high photoelectric conversion efficiency can be obtained. By using a relatively thin crystalline semiconductor substrate having a thickness of 200 μm or less, this substrate has deformability, and thus it is possible to form an arc-shaped curved surface structure such as a semicircle as shown in the drawing. is there.

【0012】なお、このような比較的薄い結晶性半導体
基板を用いた太陽電池は、本出願人による特願平11−
125064号、または特願2000−275315号
特許出願にて開示された方法及び装置で作ることができ
る。また、図示の例では、単一の結晶性半導体基板を用
いているが、複数の結晶性半導体基板を用いて、これら
を配線により接続するようにしても勿論よい。
A solar cell using such a relatively thin crystalline semiconductor substrate is disclosed in Japanese Patent Application No. 11-
No. 125064, or Japanese Patent Application No. 2000-275315. Further, although a single crystalline semiconductor substrate is used in the illustrated example, it is of course possible to use a plurality of crystalline semiconductor substrates and connect them by wiring.

【0013】太陽電池11を支持する金属薄板12は、
例えば厚さが0.1−0.5mm程度のステンレス材か
らなる板体を用いることが好ましい。この金属薄板は、
形状に可塑性を有するものであり、前記金属薄板を所望
の形状にすることができる。太陽電池11の表面を保護
する表面保護材13は、厚さが50−200μm程度の
透明な耐候性フィルムを用いて形成されている。これに
より、太陽電池モジュールが風雨等にさらされても、こ
れを保護することができる。また、太陽電池11の裏面
側の金属薄板12との間には、同様に50−200μm
程度の厚さの絶縁性樹脂シートが配置され、これにより
太陽電池11と金属薄板12との間の電気的な絶縁が図
られている。
The thin metal plate 12 supporting the solar cell 11 is
For example, it is preferable to use a plate body made of a stainless material having a thickness of about 0.1 to 0.5 mm. This sheet metal is
Since it has plasticity in shape, the thin metal plate can be formed into a desired shape. The surface protective material 13 that protects the surface of the solar cell 11 is formed using a transparent weather-resistant film having a thickness of about 50 to 200 μm. As a result, even if the solar cell module is exposed to wind and rain, it can be protected. Further, between the thin metal plate 12 on the back surface side of the solar cell 11 is 50-200 μm in the same manner.
An insulative resin sheet having a certain thickness is arranged to electrically insulate the solar cell 11 and the metal thin plate 12 from each other.

【0014】表面保護材13と、太陽電池11と、絶縁
シート14と、金属薄板12との間は、熱硬化性の接着
用樹脂材を用いて固定され、全体として強固な太陽電池
モジュールが形成されている。金属薄板12を太陽電池
11と密着して用いることで、プレス等により成形加工
することで、太陽電池11と共に塑性変形して安定した
曲面構造が得られる。そして、このような曲面対応に変
形加工を施しても、太陽電池の電気的特性に影響を及ぼ
さない。
The surface protective material 13, the solar cell 11, the insulating sheet 14, and the thin metal plate 12 are fixed by using a thermosetting adhesive resin material to form a strong solar cell module as a whole. Has been done. When the thin metal plate 12 is used in close contact with the solar cell 11, it is plastically deformed together with the solar cell 11 by a molding process such as pressing, so that a stable curved surface structure is obtained. Further, even if the deformation processing is performed for such a curved surface, it does not affect the electrical characteristics of the solar cell.

【0015】上述したように、この太陽電池モジュール
は、曲率半径が50mm程度迄の曲面構造が得られる。
従って、例えば風車発電装置のポールや電柱などに配置
することが可能である。そして、このような場所に配置
することで、それらの建築物としての美観を損ねること
なく、高い発電効率で太陽光発電を行うことができる。
なお、この実施形態においては、半円形の太陽電池モジ
ュールの例について説明したが、上述したように曲率半
径が50mm程度以上であれば、任意の曲面構造を形成
できるので、例えば屋根瓦等の形状に加工することが可
能である。即ち、設置場所に対応した任意の形状に加工
できる。
As described above, this solar cell module can have a curved surface structure with a radius of curvature up to about 50 mm.
Therefore, for example, it can be arranged on a pole or a utility pole of the wind turbine generator. By arranging in such a place, it is possible to perform solar power generation with high power generation efficiency without impairing the aesthetics of those buildings.
In addition, in this embodiment, an example of a semi-circular solar cell module has been described. However, as described above, if the radius of curvature is about 50 mm or more, an arbitrary curved surface structure can be formed. It can be processed into That is, it can be processed into an arbitrary shape corresponding to the installation place.

【0016】次に、この太陽電池モジュール10の製造
方法について説明する。まず、図2(a)に示すよう
に、太陽電池モジュールを構成する材料の積層体を形成
する。最下層に、厚さが例えば0.1mm程度のステン
レス材のシート12を配置する。そして、その上に例え
ばEVA(エチレンビニルアセテート)のようなシート状
の接着用樹脂材16aを配置する。そして、その上に厚
さが50−200μm程度のフッ素系材料により形成さ
れた絶縁樹脂シート14を配置する。
Next, a method of manufacturing the solar cell module 10 will be described. First, as shown in FIG. 2A, a laminated body of the materials forming the solar cell module is formed. The stainless steel sheet 12 having a thickness of, for example, about 0.1 mm is arranged as the lowermost layer. Then, a sheet-shaped adhesive resin material 16a such as EVA (ethylene vinyl acetate) is arranged thereon. Then, the insulating resin sheet 14 made of a fluorine-based material having a thickness of about 50 to 200 μm is arranged thereon.

【0017】その上に、再び接着用樹脂材16bを配置
し、その上に結晶性半導体基板からなる太陽電池11を
配置する。更に、その上に再び接着用樹脂材16cを配
置し、その上に厚さ50−200μm程度のフッ素系の
樹脂シートである表面耐候性シート13を配置する。こ
こで、太陽電池11の表面側に配置する耐候性フィルム
13及び接着用樹脂材16cは透明な材料が用いられ、
太陽電池への太陽光の入射を妨げないようにしている。
The adhesive resin material 16b is again placed on the solar cell 11, and the solar cell 11 made of a crystalline semiconductor substrate is placed thereon. Further, the adhesive resin material 16c is again arranged thereon, and the surface weather-resistant sheet 13 which is a fluorine resin sheet having a thickness of about 50 to 200 μm is arranged thereon. Here, a transparent material is used for the weather resistant film 13 and the adhesive resin material 16c arranged on the front surface side of the solar cell 11,
It does not prevent the sunlight from entering the solar cell.

【0018】次に、図2(b)に示すように、太陽電池
を構成する各材料の積層体を加温圧着して太陽電池モジ
ュールの積層体を形成する。この加温圧着は、真空雰囲
気下で80〜200℃程度に加熱した金属板20a,2
0bで、上下から或いは一方から挟み込むことにより行
う。この真空加温圧着により、接着用樹脂材16a,1
6b,16cが軟化して、表面保護シート13と太陽電
池11と裏面絶縁シート14と金属薄板12とをそれぞ
れ相互に接着する。そして、真空雰囲気下でこの加温圧
着を行うため、各材料(シート)間に含まれている気泡
が脱気され、各材料(シート)間が密着する。
Next, as shown in FIG. 2B, a laminated body of each material constituting the solar cell is heated and pressure bonded to form a laminated body of the solar cell module. This heating and pressure bonding is performed by heating the metal plates 20a, 2a heated to about 80 to 200 ° C. in a vacuum atmosphere.
With 0b, it is performed by sandwiching from above or below or from one side. By this vacuum heating and pressure bonding, the adhesive resin materials 16a, 1
6b and 16c are softened, and the surface protection sheet 13, the solar cell 11, the back surface insulating sheet 14, and the metal thin plate 12 are bonded to each other. Then, since this heating and pressure bonding is performed in a vacuum atmosphere, the air bubbles contained between the respective materials (sheets) are degassed and the respective materials (sheets) are brought into close contact with each other.

【0019】次に、図2(c)に示すように、所要の曲
面形状を有する2枚の型21a,21b間にこの積層体
を挟み込む。そして、型21a,21bを押圧すること
で、積層体は型の有する曲面形状にしたがって変形す
る。この型21a,21bを用いた成形加工は、図2
(b)に示す加温圧着工程で樹脂が軟化した状態で、硬
化する前に行うことが好ましい。この図2(c)に示す
型21a,21bを用いた成形加工は、それぞれの型を
事前に50〜150℃程度に暖めておき、接着用樹脂材
が軟化した状態において曲面形状への成形加工を行う。
その後、徐冷(自然冷却)、或いは水冷、空冷による強
制冷却により接着用樹脂材を硬化させることにより、金
属薄板12および太陽電池11が塑性変形すると共に、
接着用樹脂材の硬化と併せて、強固な曲面構造を有する
成形体が出来上がる。
Next, as shown in FIG. 2 (c), this laminated body is sandwiched between two molds 21a and 21b having a required curved surface shape. Then, by pressing the molds 21a and 21b, the laminated body is deformed according to the curved shape of the mold. The molding process using these molds 21a and 21b is as shown in FIG.
It is preferable that the resin is softened in the heating and pressure bonding step shown in (b) before being hardened. In the molding process using the molds 21a and 21b shown in FIG. 2C, each mold is warmed to about 50 to 150 ° C. in advance, and a molding process to a curved shape is performed in a state where the adhesive resin material is softened. I do.
After that, the metal thin plate 12 and the solar cell 11 are plastically deformed by hardening the adhesive resin material by gradual cooling (natural cooling), or forced cooling by water cooling or air cooling.
Along with the curing of the adhesive resin material, a molded body having a strong curved surface structure is completed.

【0020】なお、図2(b)に示す加温圧着工程で接
着用樹脂材が硬化しても、図2(c)に示す成形工程で
再加熱することで、接着用樹脂材を軟化させることがで
きる。従って、再軟化後に、図2(c)に示す成形工程
を行うようにしてもよい。
Even if the adhesive resin material is hardened in the heating and pressure bonding step shown in FIG. 2B, it is reheated in the molding step shown in FIG. 2C to soften the adhesive resin material. be able to. Therefore, the molding step shown in FIG. 2C may be performed after the re-softening.

【0021】このようにして形成された太陽電池モジュ
ールは、上述したように曲率半径が50mm程度までの
曲面加工が可能であり、予め型を準備しておくことで、
所要の曲面形状を備えた太陽電池モジュールが得られ
る。そして、この太陽電池モジュールは、結晶性半導体
基板を用いた太陽電池を備えているので、高い発電効率
が得られ、ポールや電柱等の曲面形状を有する部分に設
置することが可能であることは、上述した通りである。
The solar cell module thus formed can be processed into a curved surface with a radius of curvature of up to about 50 mm as described above. By preparing a mold in advance,
A solar cell module having a required curved surface shape can be obtained. Since this solar cell module includes a solar cell using a crystalline semiconductor substrate, high power generation efficiency can be obtained, and it can be installed in a portion having a curved shape such as a pole or a power pole. , As described above.

【0022】表面に使用する透明耐候性フィルムは熱膨
張が大きく、熱膨張収縮を繰り返すことにより、内部の
太陽電池素子へ大きなダメージを与える可能性もある
が、金属を裏面に置くことにより、このダメージを抑制
する働きがある。また、金属を裏面に置くことにより、
モジュール形成時にモジュールに「しわ」が出来にくく
なる効果もある。
The transparent weather-resistant film used on the surface has a large thermal expansion, and repeated thermal expansion and contraction may cause great damage to the internal solar cell element. However, by placing a metal on the back surface, Has a function of suppressing damage. Also, by placing the metal on the back,
It also has the effect of making it difficult for wrinkles to form on the module when it is formed.

【0023】この図2に示す太陽電池モジュールの製造
方法においては、太陽電池モジュールを構成する材料の
平板状の積層体を形成し、次に平板状に加温圧着し、更
に次に曲面形状に成形加工する例について説明したが、
図2(b)に示す平板状に加工する加温圧着工程を省略
して、図2(a)に示す状態から直接に、型21a,2
1bを用いて所要の曲面形状に加温圧着・成形するよう
にしてもよい。また、表面保護層13と太陽電池11と
裏面絶縁層14とを予め加温圧着し、次に予め曲面形状
に加工した金属薄板12に接着用樹脂材(シート)を用
いて金属薄板12の形状に沿って太陽電池11を変形さ
せてこれに接着するようにしてもよい。
In the method for manufacturing a solar cell module shown in FIG. 2, a flat plate-shaped laminate of the materials that make up the solar cell module is formed, then heat-pressed into a flat plate shape, and then into a curved surface shape. I explained the example of molding,
By omitting the heating and pressure bonding step of processing the flat plate shape shown in FIG. 2B, the molds 21a, 2 are directly formed from the state shown in FIG.
1b may be used to perform warm pressure bonding and molding into a desired curved surface shape. Further, the surface protection layer 13, the solar cell 11, and the back surface insulating layer 14 are heated and pressure-bonded in advance, and then the metal thin plate 12 processed in advance into a curved shape is bonded with a resin material (sheet) to form the shape of the metal thin plate 12. You may make it deform | transform the solar cell 11 along with and adhere | attach it.

【0024】また、上述した実施形態では、太陽電池1
1として、シリコン単結晶又は多結晶基板を用いる例に
ついて説明したが、シリコンに限らず例えば化合物半導
体等の結晶基板を用いるようにしてもよい。また、金属
薄板として、0.1−0.5mm程度のステンレス材の
薄板を用いる例について説明したが、その厚さは0.0
1−0.5mm程度の厚さでもよく、太陽電池を構成す
る結晶性半導体基板を所要の曲面形状に加工すると共
に、安定にその形状を保持できるものであればよい。
Further, in the above-described embodiment, the solar cell 1
Although the example in which the silicon single crystal or polycrystalline substrate is used has been described as No. 1, it is not limited to silicon, and a crystal substrate such as a compound semiconductor may be used. Further, an example in which a thin stainless steel plate having a thickness of about 0.1 to 0.5 mm is used as the metal thin plate has been described, but the thickness thereof is 0.0
The thickness may be about 1-0.5 mm as long as the crystalline semiconductor substrate forming the solar cell can be processed into a desired curved surface shape and the shape can be stably maintained.

【0025】また、材質もステンレス材に限らず、鉄、
アルミニウム、又はガルバニウムの様な合金材でも構わ
ない。更にそれらの金属薄板にフッ素樹脂等を塗装した
ものでもよい。また、ここでは可塑性を有する金属薄板
を実施例として挙げたが、可塑性があり本加工温度であ
る150℃程度で加熱分解が生じない材料であれば金属
薄板の代替品となり得ることは勿論である。代替品とし
ては、熱可塑性樹脂、熱可塑性エラストマー等が挙げら
れる。
The material is not limited to stainless steel, but iron,
An alloy material such as aluminum or galvanium may be used. Further, those thin metal plates coated with fluororesin or the like may be used. Although a metal thin plate having plasticity is given as an example here, it is a matter of course that it can be a substitute for the metal thin plate as long as it is plastic and does not cause thermal decomposition at the main processing temperature of about 150 ° C. . Examples of substitutes include thermoplastic resins and thermoplastic elastomers.

【0026】熱可塑性樹脂には、汎用プラスチックとし
て知られるポリ塩化ビニル(PVC)、ポリエチレン
(PC)、ポリプロピレン(PP)、ポリスチレン(P
S)、アクリロニトリルブタジエンスチレン(AB
S)、ブタジエンスチレン、ポリブタジエン、又はアク
リルゴム系MBS樹脂(メチルメタクリレートブタジエ
ンスチレン(MBS))、スチレンモノマーとアクリロ
ニトリルの共重合樹脂(AS)、ポリメチルメタアクリ
ル(PMMA)、メタクリル酸メチルとスチレンの共重
合体(MS)、ポリビニールアルコール(PVA)、ポ
リ塩化ビニリデン(PVDC)、ポリエチレンテレフタ
レート(PET)、エンジニアリングプラスチックとし
て知られるポリアミド(PA)、ポリアセタール(PO
M)、ポリカーボネート(PC)、ポリフェニレンエー
テル(PPE(変性PPO))、ポリブチレンテレフタ
レート(PBT)、超高分子量ポリエチレン(UHMW
−PE)、ポリ弗化ビニリデン(PVDF)、スーパー
エンジニアリングプラスチックとして知られているポリ
サルボン(PSF)、ポリエーテルサルボン(PE
S)、ポリフェニレンサルファイド(PPS)、ポリア
リレート(PAR)、ポリアミドイミド(PAI)、ポ
リエーテルイミド(PEI)、ポリエーテルエーテルケ
トン(PEEK)、ポリイミド(PI)、液晶ポリマー
(LCP)、ポリテトラフロロエチレン(PTFE)等
がある。
The thermoplastic resin includes polyvinyl chloride (PVC), polyethylene (PC), polypropylene (PP), polystyrene (P), which are known as general-purpose plastics.
S), acrylonitrile butadiene styrene (AB
S), butadiene styrene, polybutadiene, or acrylic rubber-based MBS resin (methyl methacrylate butadiene styrene (MBS)), copolymer resin (AS) of styrene monomer and acrylonitrile, polymethylmethacrylic (PMMA), methyl methacrylate and styrene Copolymer (MS), polyvinyl alcohol (PVA), polyvinylidene chloride (PVDC), polyethylene terephthalate (PET), polyamide (PA) known as engineering plastic, polyacetal (PO)
M), polycarbonate (PC), polyphenylene ether (PPE (modified PPO)), polybutylene terephthalate (PBT), ultra high molecular weight polyethylene (UHMW)
-PE), polyvinylidene fluoride (PVDF), polysarubone (PSF), which is known as super engineering plastic, and polyethersarubone (PE)
S), polyphenylene sulfide (PPS), polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI), polyetheretherketone (PEEK), polyimide (PI), liquid crystal polymer (LCP), polytetrafluoro There are ethylene (PTFE) and the like.

【0027】なお、上記実施の形態は、本発明の好まし
い一実施例を示したが、本発明の趣旨を逸脱することな
く種々の変形実施例が可能なことは勿論である。
Although the above embodiment has shown a preferred embodiment of the present invention, it goes without saying that various modifications can be made without departing from the spirit of the present invention.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば、発
電効率が高く、且つ曲面形状の構造物に密着して使用す
ることができる太陽電池モジュールを提供することがで
きる。
As described above, according to the present invention, it is possible to provide a solar cell module which has high power generation efficiency and which can be used in close contact with a curved structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態の太陽電池モジュールの断面
図である。
FIG. 1 is a cross-sectional view of a solar cell module according to an embodiment of the present invention.

【図2】本発明の実施形態の太陽電池モジュールの製造
方法を示す図であり、(a)は太陽電池モジュールを構
成する材料の間に接着用樹脂シートを挿入した状態を示
し、(b)は上記積層体を加温圧着して太陽電池モジュ
ールの積層体を形成した状態を示し、(c)は曲面形状
を有する型を用いて曲面形状に上記積層圧着体を成形加
工した状態を示す図である。
FIG. 2 is a diagram showing a method for manufacturing a solar cell module according to an embodiment of the present invention, in which (a) shows a state in which an adhesive resin sheet is inserted between materials constituting the solar cell module, and (b). Shows a state in which the laminated body is heated and pressure-bonded to form a laminated body of a solar cell module, and (c) shows a state in which the laminated pressure-bonded body is formed into a curved shape by using a mold having a curved shape. Is.

【符号の説明】[Explanation of symbols]

11 結晶性半導体基板からなる太陽電池 12 金属薄板 13 表面保護材(シート) 14 絶縁シート 16 接着用樹脂材 11 Solar cell consisting of crystalline semiconductor substrate 12 Metal sheet 13 Surface protection material (sheet) 14 Insulation sheet 16 Adhesive resin material

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2E108 AA05 KK00 NN07 5F051 AA02 AA03 BA03 BA15 EA18 GA05    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2E108 AA05 KK00 NN07                 5F051 AA02 AA03 BA03 BA15 EA18                       GA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属薄板と、該薄板上に接着剤を用いて
固定された厚さが200μm以下の結晶性半導体基板と
からなる太陽電池を備えたことを特徴とする太陽電池モ
ジュール。
1. A solar cell module comprising a thin metal plate and a solar cell comprising a crystalline semiconductor substrate having a thickness of 200 μm or less fixed on the thin plate with an adhesive.
【請求項2】 前記太陽電池の表面側には、透明耐候性
フィルムが貼着され、前記太陽電池の裏面側には、絶縁
シートが前記金属薄板との間に配置されていることを特
徴とする請求項1記載の太陽電池モジュール。
2. A transparent weather resistant film is attached to the front surface side of the solar cell, and an insulating sheet is arranged between the thin metal plate and the back surface side of the solar cell. The solar cell module according to claim 1.
【請求項3】 透明なフィルム状の表面保護材と、接着
用樹脂材と、結晶性半導体基板からなる太陽電池と、フ
ィルム状の裏面絶縁シートと、接着用樹脂材と、金属薄
板とをサンドイッチ状に重ねて、加温圧着して積層した
後に、前記接着用樹脂材が軟化している状態で所要の曲
面形状となるように成形加工して、前記接着用樹脂材を
硬化させることにより、曲面構造を形成することを特徴
とする太陽電池モジュールの製造方法。
3. A sandwich comprising a transparent film-shaped surface protective material, an adhesive resin material, a solar cell made of a crystalline semiconductor substrate, a film-shaped back insulating sheet, an adhesive resin material, and a thin metal plate. After being laminated by heating and pressure bonding, the adhesive resin material is molded so as to have a required curved surface shape in a softened state, and the adhesive resin material is cured, A method of manufacturing a solar cell module, which comprises forming a curved structure.
【請求項4】 熱可塑性を有する薄板と、該薄板状に接
着剤を用いて固定された厚さが200μm以下の結晶性
半導体基板とからなる太陽電池を備えたことを特徴とす
る太陽電池モジュール。
4. A solar cell module comprising a solar cell composed of a thermoplastic thin plate and a crystalline semiconductor substrate having a thickness of 200 μm or less fixed to the thin plate with an adhesive. .
JP2002039292A 2002-02-15 2002-02-15 Solar cell module and its manufacturing method Pending JP2003243678A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002039292A JP2003243678A (en) 2002-02-15 2002-02-15 Solar cell module and its manufacturing method
PCT/JP2003/001492 WO2003069682A2 (en) 2002-02-15 2003-02-13 Solar cell module and method of manufacturing the same
AU2003208006A AU2003208006A1 (en) 2002-02-15 2003-02-13 Solar cell module and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002039292A JP2003243678A (en) 2002-02-15 2002-02-15 Solar cell module and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003243678A true JP2003243678A (en) 2003-08-29

Family

ID=27678240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002039292A Pending JP2003243678A (en) 2002-02-15 2002-02-15 Solar cell module and its manufacturing method

Country Status (3)

Country Link
JP (1) JP2003243678A (en)
AU (1) AU2003208006A1 (en)
WO (1) WO2003069682A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537985A (en) * 2006-05-19 2009-10-29 ソルインドラ,インコーポレーテッド Hermetic non-planar solar cell
JP2011146671A (en) * 2009-12-15 2011-07-28 Mitsubishi Plastics Inc Sheet for solar cell, and solar cell module

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004003328B4 (en) * 2004-01-22 2006-11-09 Webasto Ag Method for producing a curved body element with solar cells
AT506129B1 (en) 2007-12-11 2009-10-15 Heic Hornbachner En Innovation Curved photovoltaic modules and methods of making same
GB2460762B (en) * 2008-06-11 2013-01-02 Kingspan Res & Dev Ltd Composite insulating panel with solar collector
DE102008046765A1 (en) 2008-09-11 2010-03-18 Bayerische Motoren Werke Aktiengesellschaft Method for producing a component, in particular an outer skin part for vehicles
WO2011151430A2 (en) * 2010-06-02 2011-12-08 Kuka Systems Gmbh Production device and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287382A (en) * 1980-05-09 1981-09-01 Exxon Research & Engineering Co. Solar cell assembly and fabrication of solar cell panels utilizing same
DE3538986C3 (en) * 1985-11-02 1994-11-24 Deutsche Aerospace Method of manufacturing a solar generator
DE4415132C2 (en) * 1994-04-29 1997-03-20 Siemens Ag Process for shaping thin wafers and solar cells from crystalline silicon
JP3397637B2 (en) * 1997-06-11 2003-04-21 キヤノン株式会社 Solar cell integrated roofing sheet, method for manufacturing the same, and method for constructing the same
US6414236B1 (en) * 1999-06-30 2002-07-02 Canon Kabushiki Kaisha Solar cell module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537985A (en) * 2006-05-19 2009-10-29 ソルインドラ,インコーポレーテッド Hermetic non-planar solar cell
JP2013243403A (en) * 2006-05-19 2013-12-05 Solyndra Inc Hermetically sealed nonplanar solar cell
JP2011146671A (en) * 2009-12-15 2011-07-28 Mitsubishi Plastics Inc Sheet for solar cell, and solar cell module

Also Published As

Publication number Publication date
AU2003208006A1 (en) 2003-09-04
WO2003069682A3 (en) 2004-05-21
WO2003069682A2 (en) 2003-08-21

Similar Documents

Publication Publication Date Title
US20030005954A1 (en) Solar cell module and method of manufacturing the same
JP4667406B2 (en) Solar cell module and manufacturing method thereof
CN1082727C (en) Group of cell elements, and solar cell module and production method thereof
US20090272436A1 (en) Non-glass photovoltaic module and methods for manufacture
KR101245458B1 (en) Solar battery module
JP2007529889A (en) Electrical energy generation module having a two-dimensional profile and method of making the same
CN105322039A (en) Ultra-light flexible crystalline silicon solar cell module and preparation method thereof
US11424714B2 (en) Angled polymer solar modules
TWI640425B (en) Manufacturing method of glass substrate laminated body, manufacturing method of optical element, optical element and light-concentrating solar power generation device
CN103560164A (en) Fluorine-containing radiating type solar cell backboard
JP2003243678A (en) Solar cell module and its manufacturing method
WO2012129862A1 (en) Large area flexible thin-film solar cell and manufacturing method thereof
JPH09148606A (en) Foldable film-shaped solar cell
JP4066271B2 (en) Thin film solar cell module manufacturing method and manufacturing apparatus thereof
CN101783370B (en) Solar cell module
JP2010040769A (en) Method of manufacturing solar-battery module
JP2006295145A (en) Manufacturing method of solar cell module
KR101076787B1 (en) Preparation Method of Backside Protective Sheet for Solar Cell Module
CN201222504Y (en) Solar photoelectric curtain wall plastic-aluminum plate
JP2001358354A (en) Method and system for manufacturing thin film solar cell module
JP4009891B2 (en) Method for manufacturing thin film solar cell module
JP2008204997A (en) Rear surface protective sheet for solar cell
JP2003264308A (en) Thin film solar cell module and its manufacturing method
JP2004179397A (en) Method for manufacturing solar cell module
JP2017022204A (en) Method of manufacturing solar battery module