JP2003242973A - Positive active material for battery - Google Patents

Positive active material for battery

Info

Publication number
JP2003242973A
JP2003242973A JP2002038051A JP2002038051A JP2003242973A JP 2003242973 A JP2003242973 A JP 2003242973A JP 2002038051 A JP2002038051 A JP 2002038051A JP 2002038051 A JP2002038051 A JP 2002038051A JP 2003242973 A JP2003242973 A JP 2003242973A
Authority
JP
Japan
Prior art keywords
active material
battery
electrode active
positive electrode
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002038051A
Other languages
Japanese (ja)
Other versions
JP4431736B2 (en
Inventor
Koji Tagami
幸治 田上
Yoshiyuki Masachi
吉行 正地
Yoshikazu Omoto
義和 尾本
Masayuki Nishina
正行 仁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2002038051A priority Critical patent/JP4431736B2/en
Publication of JP2003242973A publication Critical patent/JP2003242973A/en
Application granted granted Critical
Publication of JP4431736B2 publication Critical patent/JP4431736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve storage stability in powder state or in battery state of positive active material of Ag-Bi-(M)-O system (M is a transition metal). <P>SOLUTION: This is a positive active material for an alkaline battery that has a crystal of a compound made of Ag, Bi, and O (oxygen) or a crystal of a compound made of Ag, Bi, M (M expresses a transition metal), and O, and that is a powder made of particles in which Bi is dispersed in all areas inside the particles, and the content of NO<SB>3</SB>, alkali metal and alkaline earth metal, CO<SB>3</SB>or the like is controlled to a prescribed level or less. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,アルカリ電池用の
正極活物質に関する。
TECHNICAL FIELD The present invention relates to a positive electrode active material for alkaline batteries.

【0002】[0002]

【従来の技術】従来より,時計,計測機器,カメラ等に
装着されるアルカリ電池(通称ボタン電池)として酸化
銀電池が普及している。酸化銀電池は,正極活物質とし
て酸化銀(Ag2O),負極活物質として亜鉛末,電解
液としてアルカリ溶液例えばKOHやNaOHの水溶液
を用いて構成されるものが一般である。
2. Description of the Related Art Conventionally, silver oxide batteries have been widely used as alkaline batteries (commonly called button batteries) mounted on watches, measuring instruments, cameras and the like. A silver oxide battery is generally constructed by using silver oxide (Ag 2 O) as a positive electrode active material, zinc powder as a negative electrode active material, and an alkaline solution such as an aqueous solution of KOH or NaOH as an electrolytic solution.

【0003】酸化銀電池は小型でも高容量であり,ま
た,通常の使用環境において3年以上経過しても使用に
は何ら問題はない,といった信頼性を実現している。こ
のため,銀は高価な材料ではあるが,ボタン電池の殆ん
どは酸化銀電池であると言っても過言ではない。
The silver oxide battery has a small size and a high capacity, and has a reliability such that there is no problem in use even after 3 years have passed in a normal use environment. Therefore, silver is an expensive material, but it is no exaggeration to say that most of the button batteries are silver oxide batteries.

【0004】なお,正極活物質は正極作用物質または陽
極作用物質と呼ばれることもあり,同様に負極活物質は
負極作用物質または陰極作用物質と呼ばれることもあ
る。
The positive electrode active material may be called a positive electrode active material or an anode active material, and the negative electrode active material may also be called a negative electrode active material or a negative electrode active material.

【0005】前記のように銀は高価な物質である。この
ため,本発明者らは,酸化銀からなる電池用正極活物質
のコスト低減策として,特願2001−285788号
および特願2001−274194号において,要する
ところ,Ag,BiおよびO(酸素)からなる化合物の
結晶,またはAg,Bi,M(MはNi,CoまたはM
nなどの遷移金属を表す)およびOからなる化合物の結
晶を有し,且つ粒子内全域にBiが分散している粒子か
らなる電池用正極活物質の発明を提案した。この正極活
物質ではAgの含有量が低くても高い放電容量が得られ
るので経済的である。また特願2001−388900
号ではこの正極活物質の粉体特性を一層改善する発明を
提案した。
As mentioned above, silver is an expensive substance. Therefore, the inventors of the present invention, as a cost reduction measure of the positive electrode active material for a battery made of silver oxide, in Japanese Patent Application No. 2001-285788 and Japanese Patent Application No. 2001-274194 require Ag, Bi and O (oxygen). Or a crystal of a compound consisting of Ag, Bi, M (M is Ni, Co or M
The invention of a positive electrode active material for a battery, which is composed of particles having a crystal of a compound consisting of a transition metal such as n) and O and having Bi dispersed throughout the particle, was proposed. This positive electrode active material is economical because a high discharge capacity can be obtained even if the content of Ag is low. In addition, Japanese Patent Application No. 2001-388900
In the No. 1 issue, an invention was proposed to further improve the powder characteristics of the positive electrode active material.

【0006】[0006]

【発明が解決しようとする課題】特願2001−285
788号および特願2001−274194号で提案し
た正極活物質はAg量が少なく低コストであるが,その
後の調査により,この正極活物質は,ある場合には,電
池特性,特に貯蔵時の電池特性に変化が起きることがわ
かった。したがって本発明の課題はこの問題を究明し,
先の提案したAg−Bi−(M)−O系の正極活物質の
貯蔵安定性を改善することにある。
[Problems to be Solved by the Invention] Japanese Patent Application No. 2001-285
Although the positive electrode active material proposed in Japanese Patent Application No. 788 and Japanese Patent Application No. 2001-274194 has a small amount of Ag and is low in cost, it has been found from subsequent investigations that this positive electrode active material, in some cases, shows battery characteristics, especially in batteries during storage. It was found that the characteristics changed. Therefore, the object of the present invention is to solve this problem,
It is to improve the storage stability of the Ag-Bi- (M) -O-based positive electrode active material proposed above.

【0007】[0007]

【課題を解決するための手段】本発明によれば,前記の
課題を解決した正極活物質として,Ag,BiおよびO
(酸素)からなる化合物の結晶またはAg,Bi,M
(Mは遷移金属を表す)およびOからなる化合物の結晶
を有し且つ粒子内全域にBiが分散している粒子からな
る粉体であって,この粉体中のNO3含有量が0.1重量
%以下である電池用正極活物質,この粉体中のアルカリ
金属およびアルカリ土類金属の含有量の総量が2重量%
以下である電池用正極活物質,さらにはこの粉体中のC
3含有量が0.5重量%以下である電池用正極活物質を
提供する。
According to the present invention, Ag, Bi and O are used as a positive electrode active material for solving the above problems.
Crystal of compound consisting of (oxygen) or Ag, Bi, M
(M represents a transition metal) and O is a powder comprising particles of a compound having O and a Bi dispersed throughout the particle, and the NO 3 content in the powder is 0.1. The positive electrode active material for a battery is 1% by weight or less, and the total content of alkali metal and alkaline earth metal in this powder is 2% by weight.
The following positive electrode active materials for batteries, and further C in this powder
Provided is a positive electrode active material for a battery having an O 3 content of 0.5% by weight or less.

【0008】[0008]

【発明の実施の形態】特願2001−285788号お
よび特願2001−274194号などで提案したAg
−Bi−(M)−O系の正極活物質は,或るときに,貯
蔵中に電池特性に変化が生ずることを経験したが,これ
は,当該正極活物質中の不純物に起因することがわかっ
た。ここで「貯蔵」とは (1)正極活物質の貯蔵と (2)電
池の貯蔵がある。 (1)の場合は正極活物質の製造から電
池の製造までに至る時間に相当し, (2)の場合は電池製
造から実際に使用されるまでの時間を意味する。 (1)の
貯蔵で劣化が起きると放電容量の低下をもたらし, (2)
の貯蔵での劣化が起きると放電容量の低下はもとより,
最悪の場合には電池の保存中に破裂や液漏れといった事
態を招く。
BEST MODE FOR CARRYING OUT THE INVENTION Ag proposed in Japanese Patent Application Nos. 2001-285788 and 2001-274194
The -Bi- (M) -O-based positive electrode active material experienced a change in battery characteristics during storage at some time, which may be due to impurities in the positive electrode active material. all right. Here, “storage” includes (1) storage of positive electrode active material and (2) storage of battery. The case (1) corresponds to the time from the production of the positive electrode active material to the production of the battery, and the case (2) means the time from the production of the battery to the actual use. If deterioration occurs during storage in (1), the discharge capacity will decrease, and (2)
When deterioration occurs during storage, the discharge capacity not only decreases,
In the worst case, the battery may explode or leak during storage.

【0009】本発明者らの調査によれば,当該正極活物
質中の或る不純物と貯蔵特性には因果関係が存在するこ
とが明らかとなり,不純物に応じて一定の許容限界値を
設けると,貯蔵安定性が改善されることがわかった。
According to the investigation by the present inventors, it has been clarified that there is a causal relationship between certain impurities in the positive electrode active material and storage characteristics, and if a certain allowable limit value is set according to the impurities, It has been found that the storage stability is improved.

【0010】すなわち,当該正極活物質の製造工程のう
ち,中和工程に用いるNaOHやKOHなどの起因する
アルカリ金属塩や処理水や原料等から混入するアルカリ
土類金属塩などが所定量以上残留していると,この正極
活物質を高温高湿の状態で貯蔵した際に劣化し,放電容
量の低下を招くことがわかった。また,正極活物質中の
NO3が多いと,電池を高温で貯蔵した際に自己放電
し,電池の容量低下を招くことがわかった。NO3の存
在形態については必ずしも明らかではないが,AgN
3, Bi(NO3)3,Ni(NO3)2,NaNO3,KNO3
どの状態が考えられる。更にCO3の残留量が多いと,
開回路電圧が高くなることも明らかとなった。開回路電
圧は未使用の電池の信頼性を評価するのに重要な指標の
一つであり,負極にZnを用いた時の開回路電圧が1.
65Vを越えると,水系電解液の分解により酸素が発生
し,電池の膨張さらには破裂の危険性が生じる。また開
回路電圧が高いと電池部材のセパレーターの劣化を引き
起こし,自己放電の原因となる。CO3塩としてはAg2
CO3,Na2CO3,2CO3などが考えられるが,この
うち放電電位の高いAg2CO3となっている可能性が高
い。
That is, in the manufacturing process of the positive electrode active material, a predetermined amount or more of an alkali metal salt caused by NaOH or KOH used in the neutralization step or an alkaline earth metal salt mixed from treated water or raw materials remains. It was found that the positive electrode active material deteriorates when stored in a high temperature and high humidity state, resulting in a decrease in discharge capacity. It was also found that when the amount of NO 3 in the positive electrode active material is large, it self-discharges when the battery is stored at a high temperature, resulting in a decrease in battery capacity. Not always clear for existence form of NO 3 but, Ag-N
Conditions such as O 3 , Bi (NO 3 ) 3, Ni (NO 3 ) 2, NaNO 3, KNO 3 are considered. Furthermore, if the residual amount of CO 3 is large,
It was also revealed that the open circuit voltage becomes higher. The open circuit voltage is one of the important indexes for evaluating the reliability of an unused battery, and the open circuit voltage when Zn is used for the negative electrode is 1.
If the voltage exceeds 65 V, oxygen is generated due to the decomposition of the aqueous electrolytic solution, which may cause the battery to expand or even burst. In addition, high open circuit voltage causes deterioration of the battery member separator, which causes self-discharge. Ag 2 as a CO 3 salt
CO 3, Na 2 CO 3, but like K 2 CO 3 are considered, it is highly likely that a high Ag 2 CO 3 of these discharge potential.

【0011】このような貯蔵中の劣化を招く不純物は,
可能な限り低含量であることが望ましいが,当該正極活
物質の製造上不可避に含有されてくることもある。そこ
で本発明者らは貯蔵安定性との関連でこれら不純物ごと
の許容限界量を知るべく種々の試験を行ったが,NO3
含有量については0.1重量%以下であること,アルカ
リ金属およびアルカリ土類金属の含有量についてはその
総量が2重量%以下であること,CO3含有量について
は0.5重量%以下であることが必要であることがわか
った。これらの不純物質の総量では2重量%以下とする
ことも肝要である。また,上記のような不純物質の量を
低下させるに当たっては,Ag−Bi−(M)−O系の
化合物を合成し,これを濾過し,洗浄する際に洗浄濾液
の電気伝導度を管理し,この電気伝導度が所定の値以上
を示す場合には,該化合物を湿式で構成する場合に使用
するアルカリ中のCO3濃度を極力低下させることが有
効であることがわかった。
Impurities that cause such deterioration during storage are
It is desirable that the content be as low as possible, but it may be contained inevitably in the production of the positive electrode active material. Therefore although the present inventors have conducted various tests to determine the tolerable amount of each of these impurities in the context of storage stability, NO 3
The content should be 0.1 wt% or less, the total amount of alkali metal and alkaline earth metal should be 2 wt% or less, and the CO 3 content should be 0.5 wt% or less. I found it necessary to be. It is also important that the total amount of these impurities is 2% by weight or less. In order to reduce the amount of impurities as described above, an Ag-Bi- (M) -O-based compound is synthesized, and the electrical conductivity of the washing filtrate is controlled when the compound is filtered and washed. It has been found that, when the electric conductivity is a predetermined value or more, it is effective to reduce the concentration of CO 3 in the alkali used when the compound is formed by the wet method as much as possible.

【0012】以下に,当該正極活物質の製造法の特殊性
と,それに基づく不純物の同伴経路並びに当該不純物質
の低減手段について説明する。
The peculiarities of the manufacturing method of the positive electrode active material, the accompanying route of impurities and the means for reducing the impurity quality will be described below.

【0013】本発明に従うアルカリ電池用正極活物質用
の粉体は,基本的にはAg,Bi,(M)およびOから
なる粒子であり,この粒子内に化合物結晶を有しており
且つ粒子内全域にBiが分散しているという特徴があ
る。Mは遷移元素から選ばれる一つ以上の元素例えばN
i,Co,Mn等であり,電池特性である開回路電圧を
低く抑える目的で添加される。この正極活物質用粒子粉
体は,好ましくは,Ag/(Bi+M)のモル比が1以
上7以下で且つ酸素含有量が5重量%以上である組成を
有し,粉体粒子中のAg含有量は好ましくは75重量%
以下である。
The powder for the positive electrode active material for an alkaline battery according to the present invention is basically a particle composed of Ag, Bi, (M) and O, which has a compound crystal in the particle and is a particle. There is a feature that Bi is dispersed in the entire area. M is one or more elements selected from transition elements, for example N
i, Co, Mn, etc., which are added for the purpose of keeping the open circuit voltage, which is a battery characteristic, low. This positive electrode active material particle powder preferably has a composition in which the molar ratio Ag / (Bi + M) is 1 or more and 7 or less and the oxygen content is 5% by weight or more. The amount is preferably 75% by weight
It is the following.

【0014】本発明に従うAg−Bi−(M)−O系化
合物は次のような行程を順に経る湿式法によって得るこ
とができる。 (1) 銀,ビスマス,遷移金属の各塩とアルカリを水中で
反応させて中和澱物を得る工程(中和工程と言う),
(2) 得られた中和澱物の懸濁液に酸化剤を添加して該澱
物を酸化する工程(酸化工程),(3) 酸化澱物の懸濁液
を固液分離して澱物を回収する工程(分離工程),(4)
ろ別した澱物を水洗乾燥する工程,(5) 乾燥物を解砕し
て粉体にする工程。
The Ag-Bi- (M) -O type compound according to the present invention can be obtained by a wet method which sequentially undergoes the following steps. (1) A step of reacting each salt of silver, bismuth, and transition metal with an alkali in water to obtain a neutralized precipitate (referred to as a neutralization step),
(2) a step of adding an oxidizing agent to the obtained suspension of neutralized starch to oxidize the starch (oxidation step), (3) solid-liquid separation of the suspension of the oxidized starch, Process for collecting things (separation process), (4)
Washing and drying the filtered precipitate, (5) Crushing the dried product into powder.

【0015】(1) 中和工程について:銀,ビスマス,遷
移金属の塩として代表的には硝酸銀,硝酸ビスマスおよ
び硝酸ニッケルなどを使用することができる。また,ア
ルカリとしては強アルカリ(たとえば水酸化カリウムや
水酸化ナトリウムのほか水酸化リチウムなど)を使用す
るが,このとき,アルカリ塩中にCO3が存在すると炭
酸銀が生成し,その量が多くなると,最終製品の正極活
物質の開回路電圧が上昇してしまう。すなわち,使用す
るアルカリ塩のCO3含有量が正極活物質の貯蔵安定性
を悪い影響を与えることがわかった。
(1) Neutralization step: As salts of silver, bismuth and transition metals, silver nitrate, bismuth nitrate, nickel nitrate and the like can be typically used. As the alkali, a strong alkali (eg, potassium hydroxide, sodium hydroxide, lithium hydroxide, etc.) is used. At this time, if CO 3 is present in the alkali salt, silver carbonate is produced, and its amount is large. If this happens, the open circuit voltage of the positive electrode active material of the final product will rise. That is, it was found that the CO 3 content of the alkali salt used adversely affects the storage stability of the positive electrode active material.

【0016】アルカリ塩は大気中において,CO2を吸
収して炭酸塩を生成しやすいので,出来るだけ大気中と
接触しない状態で保管されたものを使用することが必要
である。また中和反応中においても大気中のCO2を巻
き込んでしまうので,反応槽内の雰囲気も脱炭酸空気か
窒素ガス雰囲気とするのが望ましい。
[0016] In the alkali salt in the air, so easy to produce a carbonate absorbs CO 2, it is necessary to use those stored in a state not in contact with the atmosphere as possible. Further, since CO 2 in the atmosphere is entrained during the neutralization reaction, it is desirable that the atmosphere in the reaction tank is also a decarbonated air or nitrogen gas atmosphere.

【0017】中和処理自体は,アルカリ水溶液に銀,ビ
スマス,遷移金属の塩の水溶液を添加する方法,アルカ
リ水溶液と銀,ビスマス,遷移金属の塩の水溶液を混合
する方法,銀,ビスマス,遷移金属の塩の水溶液にアル
カリ水溶液を添加する方法いずれの方法でもよいが,ア
ルカリ水溶液に銀,ビスマス,遷移金属の塩の水溶液を
添加する方法が特に有効である。また,アルカリ度は高
い方が反応が進み易い。反応温度は特に限定されない
が,室温から110℃までの範囲が望ましい。攪拌につ
いては,中和反応が均一に進行する程度の攪拌強度があ
ればよい。
The neutralization treatment itself is carried out by adding an aqueous solution of a salt of silver, bismuth or a transition metal to an alkaline aqueous solution, mixing an aqueous solution of an alkali with an aqueous solution of a salt of silver, bismuth or a transition metal, silver, bismuth or transition. A method of adding an alkaline aqueous solution to an aqueous solution of a metal salt may be used, but a method of adding an aqueous solution of a salt of silver, bismuth, or a transition metal to the alkaline aqueous solution is particularly effective. The higher the alkalinity, the easier the reaction proceeds. The reaction temperature is not particularly limited, but is preferably in the range of room temperature to 110 ° C. As for stirring, it is sufficient that the stirring strength is such that the neutralization reaction proceeds uniformly.

【0018】(2) 酸化工程について:酸化工程は中和工
程と同時に行うことができるが,中和工程と酸化工程を
分離して行った方が好ましい。また,これら工程の間に
昇温工程を挿入するのが好ましい。酸化剤としては,通
常の酸化剤(例えばKMnO4, NaOCl, H22,
228, Na228,オゾン等)を使用すること
ができる。酸化処理においては液温を50℃以上好まし
くは70℃以上として攪拌下において酸化剤を添加する
ことが望ましい。液温が高くなると酸化剤の分解が進む
ので液温は110℃以下とするのがよい。添加する酸化
剤の量は,銀,ビスマス,遷移金属が価数を上げるのに
十分な量があればよく,この価数変化の当量以上,好ま
しくは2倍当量程度がよい。
(2) Oxidation step: The oxidation step can be performed simultaneously with the neutralization step, but it is preferable to perform the neutralization step and the oxidation step separately. Further, it is preferable to insert a temperature raising step between these steps. As the oxidant, an ordinary oxidant (for example, KMnO 4 , NaOCl, H 2 O 2 ,
K 2 S 2 O 8, Na 2 S 2 O 8 , ozone, etc.) can be used. In the oxidation treatment, it is desirable that the liquid temperature is 50 ° C. or higher, preferably 70 ° C. or higher, and the oxidizing agent is added under stirring. The liquid temperature is preferably 110 ° C. or lower because the decomposition of the oxidant proceeds as the liquid temperature rises. The amount of the oxidizing agent added may be sufficient to increase the valence of silver, bismuth and transition metal, and is equal to or more than this valence change, preferably about twice the equivalent.

【0019】(3) 分離工程以降について:酸化澱物の懸
濁液を固液分離する前に酸化澱物を熟成する工程を挿入
するのが好ましい。この工程は,酸化処理後の懸濁液を
その温度で10分から120分程度保持する処理であ
り,酸化澱物の均一化を目的としたものである。
(3) After the separation step: It is preferable to insert a step of aging the oxidized starch before solid-liquid separation of the suspension of the oxidized starch. This step is a treatment for holding the suspension after the oxidation treatment for about 10 to 120 minutes at that temperature, and is intended to make the oxidized precipitate uniform.

【0020】酸化澱物を液からろ別した後は,これを洗
浄してAg−Bi−(M)−O系化合物のケーキを得
る。洗浄は純水で洗浄するのがよい。洗浄してもNO3
が残留するようなことがあると,電池貯蔵時に放電容量
の低下をもたらすことがわかった。これは,NO3の酸
化還元反応が電池内で起こり,正極の自己放電を加速さ
せるためであろうと考えられる。このため,洗浄後の化
合物中のNO3量が0.1%以下となるようにするのが望
ましい。
After the oxidized precipitate is filtered off from the liquid, it is washed to obtain a cake of Ag-Bi- (M) -O compound. It is preferable to wash with pure water. NO 3 after cleaning
It has been found that the residual capacity may cause a decrease in discharge capacity during battery storage. It is considered that this is because the redox reaction of NO 3 occurs in the battery and accelerates the self-discharge of the positive electrode. Therefore, it is desirable that the amount of NO 3 in the compound after washing be 0.1% or less.

【0021】洗浄後の残留NO3を低下させるには,先
ず希薄アルカリ水溶液で洗浄した後に純水で洗浄するの
が有利である。しかし,このときに純水での洗浄が不十
分であると,活物質中にアルカリ塩が残留するようにな
り,今度はアルカリ塩によって粉体貯蔵時の劣化をもた
らすことになる。このため,純水での洗浄を十分に行っ
てアルカリ金属の残留量を2%以下にするのがよい。ア
ルカリ塩が残留した場合に粉体貯蔵時の劣化がおきるの
は,表面に偏在するアルカリ塩が雰囲気中の水分によっ
て溶解して粉体の表面が高pHの状態となるからである
と考えられる。
In order to reduce the residual NO 3 after washing, it is advantageous to wash with a diluted alkaline aqueous solution and then with pure water. However, if the washing with pure water is insufficient at this time, the alkaline salt will remain in the active material, and this time the alkaline salt will cause deterioration during powder storage. For this reason, it is preferable to perform sufficient washing with pure water so that the residual amount of alkali metal is 2% or less. It is thought that the reason why deterioration occurs during powder storage when the alkaline salt remains is that the unevenly distributed alkaline salt is dissolved by the moisture in the atmosphere and the surface of the powder becomes in a high pH state. .

【0022】粉体表面が高pHとなるのはアルカリ金属
のみならず,アルカリ土類金属が残留していた場合にも
起こり得る。このため,本発明では粉体表面の高pHを
もたらすアルカリ金属とアルカリ土類金属の含有量を規
制するのがよく,これらの総量が2重量%以下とするの
がよい。アルカリ金属およびアルカリ土類金属の含有量
は,洗浄濾液の電気伝導度の測定によって知ることがで
きる。実際には,洗浄濾液の電気伝導度が20mS/m
以下,好ましくは1mS/m以下となるまで純水で洗浄
すれば,粉体中のアルカリ金属およびアルカリ土類金属
の含有量を2重量%以下,好ましくは0.1重量%以下
とすることができる。
The high pH on the powder surface may occur not only when the alkali metal but also when the alkaline earth metal remains. Therefore, in the present invention, it is preferable to regulate the content of the alkali metal and the alkaline earth metal that bring about a high pH on the powder surface, and the total amount of these is preferably 2% by weight or less. The content of alkali metal and alkaline earth metal can be known by measuring the electric conductivity of the washing filtrate. Actually, the electric conductivity of the washing filtrate is 20 mS / m
The content of the alkali metal and the alkaline earth metal in the powder can be reduced to 2% by weight or less, preferably 0.1% by weight or less, by washing with pure water until the amount becomes 1 mS / m or less. it can.

【0023】洗浄粉は次いで50〜250℃の温度で乾
燥する。200℃を超える温度で乾燥すると化合物が分
解するおそれがあるので,実際には50〜200℃の温
度で乾燥するのがよい。得られた乾燥品は,粉砕機によ
り解砕することによって流動性のある粉体とすることが
できる。
The cleaning powder is then dried at a temperature of 50 to 250 ° C. Since the compound may be decomposed when dried at a temperature exceeding 200 ° C, it is actually preferable to dry at a temperature of 50 to 200 ° C. The obtained dried product can be made into a fluid powder by crushing it with a crusher.

【0024】[0024]

【実施例】以下に,実施例により本発明をさらに説明す
る。各実施例において,正極活物質中の不純物量と電池
特性の関係については,次の試験法によって,電池貯蔵
性,粉体貯蔵性および開回路電圧を評価した。
EXAMPLES The present invention will be further described below with reference to examples. In each of the examples, with respect to the relationship between the amount of impurities in the positive electrode active material and the battery characteristics, battery storability, powder storability and open circuit voltage were evaluated by the following test methods.

【0025】〔電池貯蔵性〕:作成した電池を60℃の
温度で7日間貯蔵した後の放電容量を測定し,貯蔵前の
放電容量との百分比率から容量維持率(%)を求め,こ
れを指標とした。容量維持率が高いほど電池貯蔵性が良
好である意味する。
[Battery storability]: The prepared battery was stored at 60 ° C. for 7 days, the discharge capacity was measured, and the capacity retention rate (%) was calculated from the percentage of the discharge capacity before storage. Was used as an index. The higher the capacity retention rate, the better the battery storability.

【0026】〔粉体貯蔵性〕:粉体を温度60℃,湿度
80%の恒温恒湿器内に30日間放置した後の放電容量
と貯蔵前の放電容量との百分比率から容量維持率(%)
を求め,これを指標とした。容量維持率(%)高いほど
電粉体蔵性が良好である意味する。
[Powder storability]: Capacity retention rate (percentage of discharge capacity after storage for 30 days in a thermo-hygrostat having a temperature of 60 ° C. and a humidity of 80% and a discharge capacity before storage) ( %)
Was used as the index. The higher the capacity retention rate (%), the better the storage property of the electric powder.

【0027】〔開回路電圧〕:試験用電池はビーカータ
イプのものとした。正極の作成にあたっては,活物質と
PTFE(ポリテトラフルオロエチレン)とカーボンを
0.8:0.1:0.1 の比率で混合した混合物を圧延機に通
して 0.2mm厚のシート状とし,このシートから直径1
5mmの円板状のデスクを切り出し,これを2tの圧力
で集電体としてのNiメッシュに張り付け,これを正極
とした。正極中の活物質重量は 0.15 mgとなった。負
極はw×h×t=20mm×10mm×1mmのZn板
を使用し,参照極にはw×h×t=5mm×20mm×
1mmのZn板を使用した。また電解液としては40%
のKOH溶液を100cc使用した。開回路電圧の測定
は,上記の電池を作成した後,25℃の恒温器に1時間
放置した後の電圧を測定した。放電は0.05Cの放電レー
トで行い,1.4 V終止の放電容量を求めた。
[Open circuit voltage]: The test battery was a beaker type battery. When making the positive electrode, use an active material, PTFE (polytetrafluoroethylene), and carbon.
The mixture mixed at a ratio of 0.8: 0.1: 0.1 is passed through a rolling mill to form a sheet with a thickness of 0.2 mm.
A 5 mm disk-shaped desk was cut out and attached to a Ni mesh as a current collector with a pressure of 2 t, and this was used as a positive electrode. The weight of the active material in the positive electrode was 0.15 mg. The negative electrode uses a Zn plate of w × h × t = 20 mm × 10 mm × 1 mm, and the reference electrode is w × h × t = 5 mm × 20 mm ×
A 1 mm Zn plate was used. 40% as an electrolyte
100 cc of KOH solution was used. The open circuit voltage was measured by measuring the voltage after the above battery was prepared and left in an incubator at 25 ° C. for 1 hour. The discharge was performed at a discharge rate of 0.05 C, and the discharge capacity at the end of 1.4 V was obtained.

【0028】〔実施例1〕前述した中和工程において,
Ag/(Bi+Ni)のモル比が3,Bi/Niのモル
比が1となるように硝酸銀,硝酸ビスマスおよび硝酸ニ
ッケルを秤量して溶解した水溶液を,液温が50℃で
(Ag+Bi+Ni)に対してモル比で10倍の水酸化
ナトリウムを溶解した水溶液(1.5リットル)に攪拌
下で加えて中和殿物を得た。この中和殿物の懸濁液を9
0℃に昇温し,酸化剤としてペルオクソ二硫化ナトリウ
ム (Na2S2O8)を,液中の金属イオンをさらに酸化するに
要する理論的価数変化当量の2倍量で,該懸濁液に添加
して酸化処理した。酸化処理終了後,90℃の温度に3
0分間保持する熟成を行ったあと,澱物を濾別し,純水
で洗浄した。純水による洗浄は,洗浄濾液の電気伝導度
が0.4mS/mとなるまで行った。
Example 1 In the above-mentioned neutralization step,
An aqueous solution prepared by weighing and dissolving silver nitrate, bismuth nitrate and nickel nitrate so that the molar ratio of Ag / (Bi + Ni) was 3 and the molar ratio of Bi / Ni was 1 was obtained at a liquid temperature of 50 ° C. with respect to (Ag + Bi + Ni). Then, the mixture was added to an aqueous solution (1.5 liters) in which sodium hydroxide was dissolved at a molar ratio of 10 times under stirring to obtain a neutralized precipitate. 9 suspensions of this neutralizing substance
The temperature was raised to 0 ° C, and sodium peroxodisulfide (Na 2 S 2 O 8 ) was added as an oxidizer in an amount twice the theoretical valence change equivalent required to further oxidize metal ions in the liquid. The solution was added to the solution for oxidation treatment. After the oxidation process is completed, increase the temperature to 90 ° C for 3
After aging for 0 minute, the precipitate was filtered off and washed with pure water. The washing with pure water was carried out until the electric conductivity of the washing filtrate became 0.4 mS / m.

【0029】得られたケーキを100℃で12時間乾燥
したあと粉砕し,Ag−Bi−Ni−O系化合物からな
る粉体を得た。この粉体の不純物含有量の分析値を表1
に示した。また,この粉体を活物質して前記のように電
池を作成し,電池組み立て後から1時間後に放電を開始
し,その放電容量を求めた。さらに,電池貯蔵性を評価
するために,電池組み立て後に60℃の温度で7 日間貯
蔵したものについての放電容量を求め,両者の放電容量
から前述のようにして容量維持率(%)を算出したとこ
ろ,表1に示したように,容量維持率は91%であっ
た。
The cake thus obtained was dried at 100 ° C. for 12 hours and then pulverized to obtain a powder containing an Ag-Bi-Ni-O compound. The analysis value of the impurity content of this powder is shown in Table 1.
It was shown to. A battery was prepared by using this powder as an active material as described above, and discharge was started 1 hour after the battery was assembled, and the discharge capacity was determined. Furthermore, in order to evaluate the battery storability, the discharge capacity of the battery that was stored at a temperature of 60 ° C for 7 days after assembly was obtained, and the capacity retention rate (%) was calculated from the discharge capacity of both as described above. However, as shown in Table 1, the capacity retention rate was 91%.

【0030】〔実施例2〕洗浄濾液の電気伝導度が10
mS/mとなるまで洗浄を行った以外は,実施例1を繰
り返した。得られた粉体の不純物含有量と電池貯蔵性評
価の結果を表1に併記した。
Example 2 The electric conductivity of the washing filtrate is 10
Example 1 was repeated except that the washing was performed until the mS / m was reached. Table 1 also shows the content of impurities in the obtained powder and the result of the evaluation of the battery storability.

【0031】〔比較例1〕洗浄濾液の電気伝導度が90
0mS/mとなるまで洗浄を行った以外は,実施例1を
繰り返した。得られた粉体の不純物含有量と電池貯蔵性
評価の結果を表1に併記した。
[Comparative Example 1] The electric conductivity of the washing filtrate was 90.
Example 1 was repeated except that the washing was performed until it reached 0 mS / m. Table 1 also shows the content of impurities in the obtained powder and the result of the evaluation of the battery storability.

【0032】[0032]

【表1】 [Table 1]

【0033】表1の結果から,粉体中のNO3残留量が
多くなると電池貯蔵性が低下することがわかる。このた
め,粉体中のNO3量は少なくとも0.1重量%以下にす
る必要がある。
From the results shown in Table 1, it can be seen that when the residual amount of NO 3 in the powder is increased, the battery storability is deteriorated. Therefore, the amount of NO 3 in the powder needs to be at least 0.1% by weight or less.

【0034】〔実施例3〕酸化処理終了後,90℃の温
度に30分間保持する熟成を行なったところまでは実施
例1と同じ処理を行った。得られたスラリーを濾別し,
まずこのスラリー体積の4倍量のNaOH=5%の水溶
液で洗浄し,次いで,純水を用いて洗浄濾液の電気伝導
度が20mS/mとなるまで洗浄した。得られたケーキ
を100℃で12時間乾燥した後,粉砕し,Ag−Bi
−Ni−O系化合物からなる粉体を得た。
Example 3 The same process as in Example 1 was carried out until the aging was carried out by holding the temperature at 90 ° C. for 30 minutes after the completion of the oxidation process. The resulting slurry is filtered off,
First, washing was performed with an aqueous solution of NaOH = 5%, which was 4 times the volume of the slurry, and then with pure water until the electric conductivity of the washing filtrate became 20 mS / m. The obtained cake was dried at 100 ° C. for 12 hours and then crushed to obtain Ag-Bi.
A powder made of a -Ni-O compound was obtained.

【0035】この粉体の不純物含有量の分析値を表2に
示した。また,この粉体を活物質して前記のように電池
を作成し,電池組み立て後から1時間後に放電を開始
し,その放電容量を求めた。さらに,粉体貯蔵性を評価
するために,該粉体を温度60℃,湿度80%の恒温恒
湿器内に30日間放置したものについても,同様にして
放電容量を求め,両者の放電容量から前述のように容量
維持率(%)を算出したところ,表2に示したように,
粉体貯蔵性の指標である容量維持率は95%であった。
The analytical values of the impurity content of this powder are shown in Table 2. A battery was prepared by using this powder as an active material as described above, and discharge was started 1 hour after the battery was assembled, and the discharge capacity was determined. Furthermore, in order to evaluate the powder storability, the discharge capacity was similarly determined for the powder left in a thermo-hygrostat at a temperature of 60 ° C. and a humidity of 80% for 30 days. When the capacity retention ratio (%) was calculated from the above, as shown in Table 2,
The capacity retention rate, which is an index of powder storability, was 95%.

【0036】〔実施例4〕洗浄液として用いた5%Na
OH水溶液を,5%KOH水溶液に代えた以外は実施例
3を繰り返した。得られた粉体の不純物含有量と粉体貯
蔵性評価の結果を表2に併記した。
[Example 4] 5% Na used as a cleaning solution
Example 3 was repeated except that the aqueous OH solution was replaced with a 5% aqueous KOH solution. The impurity content of the obtained powder and the results of the powder storability evaluation are also shown in Table 2.

【0037】〔実施例5〕5%NaOH水溶液で洗浄し
たあと,純水を用いて洗浄するさいに,洗浄濾液の電気
伝導度が0.5mS/mとなるまで洗浄した以外は,実
施例3を繰り返した。得られた粉体の不純物含有量と粉
体貯蔵性評価の結果を表2に併記した。
Example 5 Example 3 was repeated except that the washing filtrate was washed with 5% NaOH aqueous solution and then with pure water until the electric conductivity of the washing filtrate became 0.5 mS / m. Was repeated. The impurity content of the obtained powder and the results of the powder storability evaluation are also shown in Table 2.

【0038】〔比較例2〕5%NaOH水溶液での洗浄
を実施し,純水による洗浄を省略した以外は,実施例3
を繰り返した。得られた粉体の不純物含有量と粉体貯蔵
性評価の結果を表2に併記した。
Comparative Example 2 Example 3 was repeated except that cleaning with a 5% NaOH aqueous solution was carried out and cleaning with pure water was omitted.
Was repeated. The impurity content of the obtained powder and the results of the powder storability evaluation are also shown in Table 2.

【0039】〔比較例3〕5%KOH水溶液での洗浄を
実施し,純水による洗浄を省略した以外は,実施例3を
繰り返した。得られた粉体の不純物含有量と粉体貯蔵性
評価の結果を表2に併記した。
Comparative Example 3 Example 3 was repeated except that cleaning with a 5% KOH aqueous solution was carried out and cleaning with pure water was omitted. The impurity content of the obtained powder and the results of the powder storability evaluation are also shown in Table 2.

【0040】[0040]

【表2】 [Table 2]

【0041】表2の結果から,NaやKなど強アルカリ
の不純物の残留量が多くなると,粉体貯蔵性が劣化する
ことがわかる。このため,これら強アルカリ金属の含有
量は総量で少なくとも2重量%以下とする必要がある。
From the results shown in Table 2, it can be seen that the powder storability deteriorates when the residual amount of the strong alkaline impurities such as Na and K increases. Therefore, the total content of these strong alkali metals must be at least 2% by weight or less.

【0042】〔実施例6〕中和工程で使用する水酸化ナ
トリウム水溶液として,炭酸ナトリウム濾別後の水酸化
ナトリウム水溶液を用いた以外は,実施例2を繰り返し
た。ここで,炭酸ナトリウム濾別後の水酸化ナトリウム
水溶液とは,水酸化ナトリウムの貯蔵中に大気中の炭酸
を吸収して生成した炭酸ナトリウムを,白色沈澱物とし
て濾別したあとの水酸化ナトリウム水溶液である。
Example 6 Example 2 was repeated except that the sodium hydroxide aqueous solution used in the neutralization step was the sodium hydroxide aqueous solution after filtering off sodium carbonate. Here, the sodium hydroxide aqueous solution after filtering the sodium carbonate means the sodium hydroxide aqueous solution after filtering the sodium carbonate produced by absorbing the carbonic acid in the atmosphere during the storage of sodium hydroxide as a white precipitate. Is.

【0043】得られた粉体中のCO3含有量を測定する
と共に,この粉体の用いて電池を作成し,電池組み立て
1時間後の開回路電圧を測定した。それらの結果を表3
に示した。
[0043] as well as measuring the CO 3 content in the obtained powder, the powder used for creating a cell, to measure the open circuit voltage of 1 hour after the battery assembly. The results are shown in Table 3.
It was shown to.

【0044】〔実施例7〕脱CO2空気雰囲気下で中和
工程および酸化工程を実施し且つ乾燥工程を真空中で実
施した以外は実施例6を繰り返した。得られた粉体中の
CO3含有量を測定すると共に,この粉体の用いて電池を
作成し,電池組み立て1時間後の開回路電圧を測定し
た。それらの結果を表3に示した。
Example 7 Example 6 was repeated except that the neutralization step and the oxidation step were carried out under a CO 2 -free air atmosphere and the drying step was carried out in vacuum. With measuring the CO 3 content in the obtained powder, to create a battery by using this powder was measured open circuit voltage of 1 hour after the battery assembly. The results are shown in Table 3.

【0045】〔比較例4 〕中和工程で使用するアルカリ
水溶液として,(Ag+Bi+Ni)に対してモル比で
9倍量の水酸化ナトリウムとモル比で1倍量の炭酸ナト
リウムを溶解した水溶液(1.5リットル)を使用した
以外は,実施例2を繰り返した。得られた粉体中のCO
3含有量を測定すると共に,この粉体の用いて電池を作成
し,電池組み立て1時間後の開回路電圧を測定した。そ
れらの結果を表3に示した。
[Comparative Example 4] As an alkaline aqueous solution used in the neutralization step, an aqueous solution in which 9 times the molar amount of sodium hydroxide and 1 times the molar amount of sodium carbonate were dissolved with respect to (Ag + Bi + Ni) (1 Example 2 was repeated except that 0.5 liter) was used. CO in the obtained powder
3 as well as determine the content, to create a battery by using this powder was measured open circuit voltage of 1 hour after the battery assembly. The results are shown in Table 3.

【0046】[0046]

【表3】 [Table 3]

【0047】表3の結果から,粉体中のCO3量が多く
なると電池の開回路電圧が高くなることがわかる。この
ため,粉体中のCO3量は0.5%重量%以下とする必要
がある。
From the results in Table 3, it can be seen that the open circuit voltage of the battery increases as the amount of CO 3 in the powder increases. Therefore, the amount of CO 3 in the powder needs to be 0.5% by weight or less.

【0048】[0048]

【発明の効果】以上説明したように,本発明によれば,
Ag量を低減しても酸化銀と同等の電池特性を有するA
g−Bi−(M)−O系の正極活物質であって,その粉
体貯蔵性および電池貯蔵性に優れた正極活物質が得られ
る。このため,安価で且つ電池特性の良好なアルカリ電
池用正極活物質を提供できる。
As described above, according to the present invention,
A that has the same battery characteristics as silver oxide even if the amount of Ag is reduced
A g-Bi- (M) -O-based positive electrode active material having excellent powder storability and battery storability can be obtained. Therefore, it is possible to provide a positive electrode active material for an alkaline battery that is inexpensive and has good battery characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾本 義和 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 仁科 正行 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 5H024 AA04 AA14 BB07 CC03 FF07 FF38 HH01 5H050 AA09 BA04 CA02 CB13 FA17 GA10 HA01 HA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshikazu Omoto             1-8-2 Marunouchi, Chiyoda-ku, Tokyo             Within Wa Mining Co., Ltd. (72) Inventor Masayuki Nishina             1-8-2 Marunouchi, Chiyoda-ku, Tokyo             Within Wa Mining Co., Ltd. F-term (reference) 5H024 AA04 AA14 BB07 CC03 FF07                       FF38 HH01                 5H050 AA09 BA04 CA02 CB13 FA17                       GA10 HA01 HA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Ag,BiおよびO(酸素)からなる化
合物の結晶,またはAg,Bi,M(Mは遷移金属を表
す)およびOからなる化合物の結晶を有し且つ粒子内全
域にBiが分散している粒子からなる粉体であって,こ
の粉体中のNO3含有量が0.1重量%以下である電池用
正極活物質。
1. A crystal of a compound consisting of Ag, Bi and O (oxygen), or a crystal of a compound consisting of Ag, Bi, M (M represents a transition metal) and O, and Bi is distributed throughout the particle. A positive electrode active material for a battery, which is a powder composed of dispersed particles and in which the NO 3 content is 0.1% by weight or less.
【請求項2】 Ag,BiおよびO(酸素)からなる化
合物の結晶,またはAg,Bi,M(Mは遷移金属を表
す)およびOからなる化合物の結晶を有し且つ粒子内全
域にBiが分散している粒子からなる粉体であって,こ
の粉体中のアルカリ金属およびアルカリ土類金属の含有
量の総量が2重量%以下である電池用正極活物質。
2. A crystal of a compound consisting of Ag, Bi and O (oxygen), or a crystal of a compound consisting of Ag, Bi, M (M represents a transition metal) and O, and Bi is distributed throughout the particle. A positive electrode active material for a battery, which is a powder composed of dispersed particles and in which the total content of alkali metals and alkaline earth metals is 2% by weight or less.
【請求項3】 Ag,BiおよびO(酸素)からなる化
合物の結晶,またはAg,Bi,M(Mは遷移金属を表
す)およびOからなる化合物の結晶を有し且つ粒子内全
域にBiが分散している粒子からなる粉体であって,こ
の粉体中のCO3含有量が0.5重量%以下である電池用
正極活物質。
3. A crystal of a compound consisting of Ag, Bi and O (oxygen), or a crystal of a compound consisting of Ag, Bi, M (M represents a transition metal) and O, and Bi is distributed throughout the particle. A positive electrode active material for a battery, which is a powder composed of dispersed particles and has a CO 3 content of 0.5% by weight or less.
【請求項4】 Ag,BiおよびO(酸素)からなる化
合物の結晶,またはAg,Bi,M(Mは遷移金属を表
す)およびOからなる化合物の結晶を有し且つ粒子内全
域にBiが分散している粒子からなる粉体であって,こ
の粉体中のNO3含有量,アルカリ金属およびアルカリ
土類金属の含有量,およびCO3含有量の総量が2重量
%以下である電池用正極活物質。
4. A crystal of a compound consisting of Ag, Bi and O (oxygen), or a crystal of a compound consisting of Ag, Bi, M (M represents a transition metal) and O, and Bi is distributed throughout the particle. For a battery consisting of dispersed particles, the total content of NO 3 content, alkali metal and alkaline earth metal content and CO 3 content of which is 2% by weight or less Positive electrode active material.
【請求項5】 粉体粒子は,Ag/(Bi+M)のモル
比が1以上7以下で且つ酸素含有量が5重量%以上の組
成を有する請求項1ないし4のいずれかに記載の電池用
正極活物質。
5. The battery according to claim 1, wherein the powder particles have a composition in which a molar ratio Ag / (Bi + M) is 1 or more and 7 or less and an oxygen content is 5% by weight or more. Positive electrode active material.
【請求項6】 粉体粒子中のAg含有量は75重量%以
下である請求項1ないし5のいずれかに記載の電池用正
極活物質。
6. The positive electrode active material for a battery according to claim 1, wherein the Ag content in the powder particles is 75% by weight or less.
【請求項7】 負極活物質,正極活物質および電解質か
らなるアルカリ電池において,正極活物質として請求項
1ないし6のいずれかに記載の正極活物質を用いたこと
を特徴とするアルカリ電池。
7. An alkaline battery comprising a negative electrode active material, a positive electrode active material and an electrolyte, wherein the positive electrode active material according to any one of claims 1 to 6 is used as the positive electrode active material.
JP2002038051A 2002-02-15 2002-02-15 Positive electrode active material for batteries Expired - Lifetime JP4431736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002038051A JP4431736B2 (en) 2002-02-15 2002-02-15 Positive electrode active material for batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002038051A JP4431736B2 (en) 2002-02-15 2002-02-15 Positive electrode active material for batteries

Publications (2)

Publication Number Publication Date
JP2003242973A true JP2003242973A (en) 2003-08-29
JP4431736B2 JP4431736B2 (en) 2010-03-17

Family

ID=27779462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002038051A Expired - Lifetime JP4431736B2 (en) 2002-02-15 2002-02-15 Positive electrode active material for batteries

Country Status (1)

Country Link
JP (1) JP4431736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185649A (en) * 2004-12-27 2006-07-13 Dowa Mining Co Ltd Battery positive electrode material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185649A (en) * 2004-12-27 2006-07-13 Dowa Mining Co Ltd Battery positive electrode material

Also Published As

Publication number Publication date
JP4431736B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
US7951354B2 (en) Ozonating manganese dioxide
CN101223657A (en) Alkaline dry battery
KR100356889B1 (en) Nickel hydroxide (II) powder doped with manganese (III)
US3414440A (en) Gamma manganese dioxide, method of preparing and dry cell type battery employing gamma type manganese dioxide
EP1675199A1 (en) Battery positive electrode material
US20100272631A1 (en) Silver oxide powder for alkaline battery and method of producing the same
RU2422948C1 (en) Alkaline primary cell
JPH05325954A (en) Manufacture of zinc alkaline battery
JP2008053222A (en) Nickel hydroxide powder, nickel oxyhydroxide powder, manufacturing method of these and alkaline dry battery
JPH05242881A (en) Manufacture of zinc alkaline battery
JPS6211460B2 (en)
US3288643A (en) Process for making charged cadmium electrodes
US4338385A (en) Divalent silver oxide cell containing cadmium and tellurium components
JP2003242973A (en) Positive active material for battery
JP4756189B2 (en) Silver oxide powder for alkaline batteries
KR100360630B1 (en) Manufacturing method of nickel hydroxide containing manganese (III)
JP3086029B2 (en) Alkaline electrolyte for batteries
US5071722A (en) Process for preparing cadmium hydroxide, and alkaline secondary battery and method for charging the same
EP2829515B1 (en) Manganomanganic oxide and process for producing same
US3966493A (en) Rechargeable mercury electrode
JP2007035506A (en) Alkaline battery
US20020039682A1 (en) Ni/metal hydride secondary element
JP2001035524A (en) Addition agent for alkaline battery and manufacture of the same, and electrolyte for alkaline battery
JP4328890B2 (en) Pellet for positive electrode of alkaline battery
JP2003249218A (en) Positive electrode active material for cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091126

R150 Certificate of patent or registration of utility model

Ref document number: 4431736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term