JP2003240709A - Concentration measuring method for specified component and contact for concentration measurement used in the method - Google Patents
Concentration measuring method for specified component and contact for concentration measurement used in the methodInfo
- Publication number
- JP2003240709A JP2003240709A JP2002044634A JP2002044634A JP2003240709A JP 2003240709 A JP2003240709 A JP 2003240709A JP 2002044634 A JP2002044634 A JP 2002044634A JP 2002044634 A JP2002044634 A JP 2002044634A JP 2003240709 A JP2003240709 A JP 2003240709A
- Authority
- JP
- Japan
- Prior art keywords
- light
- contact
- concentration
- contact portion
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 36
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 16
- 239000008103 glucose Substances 0.000 claims description 16
- 230000000903 blocking effect Effects 0.000 claims description 14
- 230000001678 irradiating effect Effects 0.000 claims description 8
- 230000004907 flux Effects 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000006096 absorbing agent Substances 0.000 claims description 6
- 230000001902 propagating effect Effects 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 230000000644 propagated effect Effects 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 abstract description 8
- 238000010521 absorption reaction Methods 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 210000001124 body fluid Anatomy 0.000 description 4
- 239000010839 body fluid Substances 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 210000004877 mucosa Anatomy 0.000 description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 101000777301 Homo sapiens Uteroglobin Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 102100031083 Uteroglobin Human genes 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005102 attenuated total reflection Methods 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3577—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、グルコ−ス、コレ
ステロ−ル、エタノ−ル等の濃度を測定する、特定成分
の濃度測定方法及びそれに用いる濃度測定用接触子に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the concentration of a specific component for measuring the concentration of glucose, cholesterol, ethanol and the like, and a contact for measuring concentration used therein.
【0002】[0002]
【従来の技術】従来、減衰全反射(以降ATRと記述す
る)測定装置を用いて被検体、とりわけ生体や溶液の特
定成分を測定する方法が種々提案されている。2. Description of the Related Art Conventionally, various methods have been proposed for measuring a specific component of an object, particularly a living body or a solution, using an attenuated total reflection (hereinafter referred to as ATR) measuring device.
【0003】例えば、特開平9−113439号公報に
は、図4に示すように、平行に向かい合った一対の反射
面を備えた透明なATR素子41に上下の口唇42を密
着させて血糖値を測定する方法が提案されている。この
方法によると、ATR素子41を口にくわえて上下から
押さえつけた後、ATR素子41に光を入射させ、図4
の破線で示すようにATR素子41の反射面と口唇42
の境界で全反射を繰り返してATR素子41の外部にし
み出した光を分析する。For example, in Japanese Unexamined Patent Publication No. 9-113439, as shown in FIG. 4, the upper and lower lips 42 are brought into close contact with a transparent ATR element 41 having a pair of reflecting surfaces facing each other in parallel to adjust the blood glucose level. A method of measuring has been proposed. According to this method, after the ATR element 41 is held in the mouth and pressed from above and below, the light is incident on the ATR element 41, and
As shown by the broken line in FIG.
The light leaked out of the ATR element 41 by repeating the total reflection at the boundary of is analyzed.
【0004】また、BME、Vol.5、No.8(日
本エムイー学会、1991)には、ZnSe光学結晶等
からなるATR素子を口唇の粘膜に密着させたのち、こ
のATR素子に波長9〜11ミクロンのレ−ザ光を進入
させてATR素子の内部で多重的に反射させ、その吸収
光、散乱反射光を分析することにより血糖値や血中エタ
ノ−ル濃度を測定する方法が提案されている。この方法
によると、リアルタイムに、かつ非侵襲的にグルコ−ス
濃度やエタノ−ル濃度、コレステロ−ル濃度等の特定成
分の濃度を測定することができる。この方法は、エバネ
ッセント光(いわゆる浸みだし光)を定量分析に応用し
たものである。ATR素子を進行する光はわずかに口唇
に浸入し、そこに存在する体液中の各成分の影響を受け
る。例えば、グルコ−スには光の波数が1080cm-1
において光吸収ピ−クが存在するため、この波数の光を
生体に照射した場合、生体中のグルコ−ス濃度の変化に
応じて、吸収量が異なってくる。従って、この光の生体
からの帰還光を測定することにより、体液の各種成分の
濃度変化にともなう吸収量の変化を検出することがで
き、すなわち、各成分の濃度を得ることが可能になる。In addition, BME, Vol. 5, No. No. 8 (Japan Society for ME, 1991), an ATR element made of ZnSe optical crystal or the like was brought into close contact with the mucous membrane of the lips, and then laser light having a wavelength of 9 to 11 microns was made to enter this ATR element. There has been proposed a method of measuring a blood glucose level and a blood ethanol concentration by internally reflecting the light multiple times and analyzing the absorbed light and the scattered reflected light. According to this method, the concentrations of specific components such as glucose concentration, ethanol concentration, and cholesterol concentration can be measured in real time and non-invasively. This method applies evanescent light (so-called seeping light) to quantitative analysis. The light traveling through the ATR element slightly penetrates into the lips and is affected by each component in the body fluid existing there. For example, glucose has a light wave number of 1080 cm -1.
Since there is a light absorption peak in the above, when the living body is irradiated with light of this wave number, the amount of absorption varies depending on the change in glucose concentration in the living body. Therefore, by measuring the return light of this light from the living body, it is possible to detect the change in the amount of absorption due to the change in the concentration of various components of the body fluid, that is, it is possible to obtain the concentration of each component.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記の
ような従来のATR測定装置は、以下のような問題点を
有していた。However, the conventional ATR measuring device as described above has the following problems.
【0006】一般に、ATR測定装置は物質の表面分析
に用いられることが多く、入射角度も45度がほとんど
であった。そのため、エバネッセント波の浸入する深さ
は、波長オ−ダであり、僅かな距離しか光が生体中を通
過しない。したがって、体液中を通過する光の光路長が
非常に短いために、体液によって吸収される光の吸収量
が非常に小さいので、1回の全反射では十分な信号強度
を得ることができなかった。Generally, the ATR measuring device is often used for surface analysis of a substance, and the incident angle is almost 45 degrees. Therefore, the depth of penetration of the evanescent wave is in the order of wavelength, and light passes through the living body only for a short distance. Therefore, since the optical path length of the light passing through the body fluid is very short, the amount of light absorbed by the body fluid is very small, so that it is not possible to obtain sufficient signal intensity by one total reflection. .
【0007】そこで、繰り返し全反射をさせて信号強度
を増加させることも試みられているが、何回も反射させ
るために素子が大型化し、光学素子のコストが高くなる
という問題点があった。また、素子が大きくなった結
果、測定範囲も広範囲にわたってしまい、測定したい場
所からの信号を得ることができなかった。Therefore, it has been attempted to increase the signal intensity by repeatedly performing total reflection, but there is a problem that the size of the element becomes large and the cost of the optical element becomes high because it is reflected many times. Further, as a result of the large size of the element, the measurement range also spreads over a wide range, and it was not possible to obtain a signal from a place to be measured.
【0008】本発明は、上記の問題点に鑑み、小型の光
学素子で大きな計測信号を得ることができる、特定成分
の濃度測定方法及びそれに用いる濃度測定用接触子を提
供することを目的とする。In view of the above problems, it is an object of the present invention to provide a method for measuring the concentration of a specific component and a contact for concentration measurement used in the method, which can obtain a large measurement signal with a small optical element. .
【0009】[0009]
【課題を解決するための手段】上記従来の課題を解決す
るために、本発明の濃度測定方法は、屈折率がncの測
定対象物に、屈折率がnfの物質からなる接触部を密着
させる工程A、前記接触部に入射角度θで光を入射させ
る工程B、前記接触部より前記測定対象物内にしみ出
し、前記測定対象物内を伝播した後前記接触部に帰還し
た前記光の強度を計測する工程C、前記工程Cにおいて
計測された前記光の強度に基づいて、前記測定対象物に
含まれる特定成分の濃度を算出する工程Dを含む特定成
分の濃度測定方法であって、前記工程Bにおいて、下記
式(数2)により算出した、前記接触部から前記測定対
象物内への前記光のしみ出し深さzが10ミクロン以上
となるように前記入射角度θを設定することを特徴とす
る。In order to solve the above-mentioned conventional problems, in the concentration measuring method of the present invention, a contact portion made of a substance having a refractive index of nf is brought into close contact with an object to be measured having a refractive index of nc. Step A, Step B of causing light to be incident on the contact portion at an incident angle θ, Intensity of the light that exudes from the contact portion into the measurement object, propagates through the measurement object, and then returns to the contact portion. A method for measuring a concentration of a specific component, the method comprising: a step C of measuring the concentration of the specific component contained in the measurement object based on the intensity of the light measured in the step C; In step B, the incident angle θ is set so that the seeping depth z of the light from the contact portion into the measurement object is 10 μm or more, which is calculated by the following formula (Equation 2). Characterize.
【0010】[0010]
【数2】 [Equation 2]
【0011】ただし、zは前記しみ出し深さ(単位ミク
ロン)、λは前記接触部に入射する光の波長(単位ミク
ロン)、nfは前記接触部の屈折率、θは前記接触部に
入射する光の入射角度、ncは前記測定対象物の屈折率
をあらわす。Where z is the exudation depth (unit: micron), λ is the wavelength of light incident on the contact (unit: micron), nf is the refractive index of the contact, and θ is incident on the contact. The incident angle of light, nc, represents the refractive index of the measurement object.
【0012】また、本発明の濃度測定用接触子は、測定
対象物に密着させる接触部と、前記接触部に照射する光
を入射するための光入力部と、前記光入力部より前記接
触部に照射され、前記接触部よりしみ出して前記測定対
象物内を伝播した後前記接触部に帰還した光を出射する
ための光出力部とを備えた濃度測定用接触子であって、
前記測定対象物内を伝播した後前記接触部に帰還した光
が、再び前記接触部に照射することなく前記光出力部よ
り出射することを特徴とする。Further, the concentration measuring contact of the present invention comprises a contact portion which is brought into close contact with an object to be measured, a light input portion for allowing the light for irradiating the contact portion to enter, and the contact portion from the light input portion. A concentration measuring contactor having a light output part for radiating light, which is exuded from the contact part and propagated in the measurement object and then returned to the contact part.
The light returning to the contact portion after propagating in the measurement object is emitted from the light output portion without irradiating the contact portion again.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.
【0014】本発明の濃度測定方法は、屈折率がncの
測定対象物に、屈折率がnfの物質からなる接触部を密
着させる工程A、前記接触部に入射角度θで光を入射さ
せる工程B、前記接触部より前記測定対象物内にしみ出
し、前記測定対象物内を伝播した後前記接触部に帰還し
た前記光の強度を計測する工程C、前記工程Cにおいて
計測された前記光の強度に基づいて、前記測定対象物に
含まれる特定成分の濃度を算出する工程Dを含む特定成
分の濃度測定方法であって、前記工程Bにおいて、上記
式(数2)により算出した、前記接触部から前記測定対
象物内への前記光のしみ出し深さzが10ミクロン以上
となるように前記入射角度θを設定することを特徴とす
る。The concentration measuring method of the present invention comprises a step A of bringing a contact portion made of a substance having a refractive index of nf into close contact with an object to be measured having a refractive index of nc, and a step of causing light to enter the contact portion at an incident angle θ. B, Step C of measuring the intensity of the light exuded from the contact portion into the measurement object, propagating in the measurement object, and then returned to the contact portion, of the light measured in step C A method for measuring the concentration of a specific component, the method comprising the step D of calculating the concentration of the specific component contained in the measurement object based on the intensity, wherein the contact calculated in the step B by the above formula (Equation 2) The incident angle θ is set so that the exudation depth z of the light from the part into the measurement object is 10 μm or more.
【0015】ただし、zは前記しみ出し深さ(単位ミク
ロン)、λは前記接触部に入射する光の波長(単位ミク
ロン)、nfは前記接触部の屈折率、θは前記接触部に
入射する光の入射角度、ncは前記測定対象物の屈折率
をあらわす。Here, z is the exudation depth (unit: micron), λ is the wavelength of light incident on the contact (unit: micron), nf is the refractive index of the contact, and θ is incident on the contact. The incident angle of light, nc, represents the refractive index of the measurement object.
【0016】ここで、測定対象物が生体組織であり、特
定成分がグルコースであることが好ましい。また、接触
部に入射する光の波長λが1.1ミクロン〜10ミクロ
ンであることが好ましい。Here, it is preferable that the object to be measured is a living tissue and the specific component is glucose. Further, it is preferable that the wavelength λ of the light incident on the contact portion is 1.1 μm to 10 μm.
【0017】また、工程Cにおいて、測定対象物内を伝
播した後接触部に帰還した光を、再び前記接触部に照射
することなく、前記光の強度を計測することが好まし
い。Further, in step C, it is preferable to measure the intensity of the light that has propagated through the object to be measured and then returned to the contact portion without irradiating the contact portion again.
【0018】また、本発明の濃度測定用接触子は、測定
対象物に密着させる接触部と、前記接触部に照射する光
を入射するための光入力部と、前記光入力部より前記接
触部に照射され、前記接触部よりしみ出して前記測定対
象物内を伝播した後前記接触部に帰還した光を出射する
ための光出力部とを備えた濃度測定用接触子であって、
前記測定対象物内を伝播した後前記接触部に帰還した光
が、再び前記接触部に照射することなく前記光出力部よ
り出射することを特徴とする。Further, the concentration measuring contact of the present invention comprises a contact part which is brought into close contact with the object to be measured, a light input part for allowing the light for irradiating the contact part to enter, and the contact part from the light input part. A concentration measuring contactor having a light output part for radiating light, which is exuded from the contact part and propagated in the measurement object and then returned to the contact part.
The light returning to the contact portion after propagating in the measurement object is emitted from the light output portion without irradiating the contact portion again.
【0019】ここで、接触部に入射する光の入射角度を
所定範囲に制限する光束遮断手段をさらに備えることが
好ましい。光束遮断手段としては、切り欠き部、光遮断
膜等が挙げられる。また、光束遮断手段がさらに光吸収
体を備えることが好ましい。Here, it is preferable to further include a light flux blocking means for limiting the incident angle of the light incident on the contact portion within a predetermined range. Examples of the light flux blocking means include a cutout portion and a light blocking film. Further, it is preferable that the light flux blocking means further includes a light absorber.
【0020】以下、本発明の実施の形態について、図面
を用いてさらに詳しく説明する。Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
【0021】(実施の形態1)本発明の実施の形態1に
ついて図1を用いて説明する。図1は本発明の実施の形
態1における特定成分の濃度測定方法及び濃度測定用接
触子を示す概略図である。(Embodiment 1) Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing a concentration measuring method of a specific component and a concentration measuring contact according to the first embodiment of the present invention.
【0022】本実施の形態では、一例として、測定対象
物である生体組織に濃度測定用接触子を接触させて、特
定成分であるグルコースの濃度を計測する例について説
明する。In the present embodiment, as an example, an example will be described in which a concentration measuring contactor is brought into contact with a living tissue which is an object to be measured to measure the concentration of glucose which is a specific component.
【0023】光源1には、例えば中赤外光を発生する光
源を用いる。例えばタングステンやSiC光源が好まし
い。特に、グルコ−スのような吸収波数が約1080c
m-1や1033cm-1にあるような物質の濃度を測定す
るような場合、これらの光源を用いることが好ましい。As the light source 1, for example, a light source that emits mid-infrared light is used. For example, a tungsten or SiC light source is preferable. Especially, the absorption wave number like glucose is about 1080c.
When measuring the concentration of a substance such as m −1 or 1033 cm −1 , it is preferable to use these light sources.
【0024】濃度測定用接触子2の材料としては、中赤
外光を透過し、化学的に安定で、機械的強度に優れてい
るものが好ましく、例えば、ゲルマニウムやシリコンを
用いる。As the material of the contact 2 for measuring concentration, a material that transmits mid-infrared light, is chemically stable, and has excellent mechanical strength is preferable. For example, germanium or silicon is used.
【0025】濃度測定用接触子2の材料としてシリコン
を用いる場合には、例えば、波長1.1〜10ミクロン
で透明なシリコン単結晶基板を用いる。特にホウ素やリ
ン等の不純物含有量が小さく、抵抗率も100Ωcm以
上のものが好ましい。さらには、抵抗率が1500Ωc
m以上のものが好ましい。これら高抵抗率のシリコン
は、約9〜10ミクロンの赤外波長で透過率が高く、こ
れらの波長帯に吸収領域を有するグルコ−ス等の物質を
測定する場合に好ましい。When silicon is used as the material for the concentration measuring contact 2, for example, a transparent silicon single crystal substrate with a wavelength of 1.1 to 10 microns is used. Particularly, it is preferable that the content of impurities such as boron and phosphorus is small and the resistivity is 100 Ωcm or more. Furthermore, the resistivity is 1500 Ωc
It is preferably m or more. These high-resistivity silicons have high transmittance at infrared wavelengths of about 9 to 10 microns and are preferable when measuring substances such as glucose having an absorption region in these wavelength bands.
【0026】光入力部3の表面には反射防止膜を設ける
ことが好ましい。反射防止膜の材料としては、例えばダ
イヤモンドライクカーボン(DLC)やZnSeを用い
る。膜厚としては約1.1から1.3ミクロンが好まし
く、更には1.2ミクロン程度が好ましい。An antireflection film is preferably provided on the surface of the light input section 3. As a material of the antireflection film, for example, diamond-like carbon (DLC) or ZnSe is used. The film thickness is preferably about 1.1 to 1.3 microns, more preferably about 1.2 microns.
【0027】生体と密着させる接触部4は、例えば、そ
の生体と密着する部分の面積が2cm2以下であること
が好ましい。面積を2cm2以下にすることにより、生
体への食い込みが大きくなり、密着性がよくなって安定
に計測することができる。The contact portion 4 that comes into close contact with the living body preferably has an area of the portion that comes into close contact with the living body of 2 cm 2 or less. By setting the area to 2 cm 2 or less, the bite into the living body is increased, the adhesion is improved, and stable measurement can be performed.
【0028】接触部4の形状は特に限定するものではな
いが、略円形状であると、測定対象物が生体の場合は、
測定時の痛みが少ないため好ましい。更に外周部に面取
り部分、もしくは丸み部分を設けることにより、更に痛
みが低減化できるため好ましい。The shape of the contact portion 4 is not particularly limited, but if the contact portion 4 is of a substantially circular shape and the measurement object is a living body,
It is preferable because it causes less pain during measurement. Further, it is preferable to provide a chamfered portion or a rounded portion on the outer peripheral portion because the pain can be further reduced.
【0029】光出力部5には、光入力部3と同様に反射
防止膜を設けることが好ましい。The light output section 5 is preferably provided with an antireflection film as in the case of the light input section 3.
【0030】このように本実施の形態の濃度測定用接触
子2は、光入力部3と接触部4と光出力部5とが一体化
されており、接触部4から帰還した光が再度接触部4に
照射されることなく直接、光出力部5より出射する構造
を有している。As described above, in the concentration measuring contactor 2 of the present embodiment, the light input section 3, the contact section 4 and the light output section 5 are integrated, and the light returned from the contact section 4 contacts again. It has a structure in which the light is directly emitted from the light output portion 5 without being irradiated to the portion 4.
【0031】次に、接触部4に入射させる光の入射角度
θについて説明する。入射角度θは上記式(数2)より
求める。ただし、zは前記しみ出し深さ(単位ミクロ
ン)、λは前記接触部に入射する光の波長(単位ミクロ
ン)、nfは前記接触部の屈折率、θは前記接触部に入
射する光の入射角度、ncは前記測定対象物の屈折率を
あらわす。Next, the incident angle θ of the light incident on the contact portion 4 will be described. The incident angle θ is obtained from the above equation (Equation 2). Here, z is the exudation depth (unit: micron), λ is the wavelength of light incident on the contact portion (unit: micron), nf is the refractive index of the contact portion, and θ is incident light incident on the contact portion. The angle and nc represent the refractive index of the measurement object.
【0032】例えば、測定対象物として生体を用いる場
合、生体の屈折率をnc=1.3とし、接触部に屈折率
がnf=4のゲルマニウムを用い、しみ出し深さz=1
0ミクロン、グルコースの吸収波長を約9.6ミクロン
とした場合、上記式(数2)より、入射角度θは約21
度となる。For example, when a living body is used as the object to be measured, the refractive index of the living body is nc = 1.3, germanium having a refractive index of nf = 4 is used for the contact portion, and the exudation depth z = 1.
When the absorption wavelength of glucose is 0 μm and the absorption wavelength of glucose is about 9.6 μm, the incident angle θ is about 21 from the above formula (Equation 2).
It becomes degree.
【0033】そこで、入射角度を21度、20度、また
は19度に設定して、口唇粘膜に本実施の形態の濃度測
定用接触子2を接触させて、分光スペクトルを計測した
結果を図2に示す。図からわかるように、入射角度が2
1度の場合、グルコースの吸収波長で吸収ピークが観察
された。入射角度が20度の場合も、1080cm-1に
吸収ピークがあらわれ、入射角度が21度の場合よりも
S/Nが改善された。さらに入射角度が19度の場合
は、入射角度が20度の場合よりも飛躍的に吸光度が大
きく観察されていることがわかる。これは上記式(数
2)からわかるように、しみ出し深さzが約78ミクロ
ンに増大した結果、吸光度が増大したものである。した
がって、入射角度を約21度以下、すなわちしみ出し深
さを10ミクロン以上になるように設定することで、良
好なグルコース濃度の計測をすることができた。Therefore, the incident angle is set to 21 °, 20 °, or 19 °, the concentration measuring contactor 2 of the present embodiment is brought into contact with the lip mucosa, and the measurement result of the spectrum is shown in FIG. Shown in. As you can see, the incident angle is 2
In the case of 1 degree, an absorption peak was observed at the absorption wavelength of glucose. Even when the incident angle was 20 degrees, an absorption peak appeared at 1080 cm −1, and the S / N ratio was improved as compared with the case where the incident angle was 21 degrees. Further, it can be seen that when the incident angle is 19 degrees, the absorbance is remarkably larger than that when the incident angle is 20 degrees. As can be seen from the above formula (Equation 2), this is because the exudation depth z is increased to about 78 microns, and as a result, the absorbance is increased. Therefore, a good glucose concentration could be measured by setting the incident angle to about 21 degrees or less, that is, to set the exudation depth to 10 microns or more.
【0034】(実施の形態2)本発明の実施の形態2に
ついて図3を用いて説明する。図3は、本実施の形態の
濃度測定用接触子の概略断面図である。(Second Embodiment) A second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a schematic sectional view of the contact for concentration measurement according to the present embodiment.
【0035】光源31から出射した光32は全方位に放
射されるが、これらの光を曲面ミラーやレンズ(図示し
ない)を用いてできるだけ集光させるとともに、平行光
線にして濃度測定用接触子33の光入力部40に入射さ
せることが好ましい。The light 32 emitted from the light source 31 is emitted in all directions, and these lights are condensed as much as possible by using a curved mirror or a lens (not shown), and are converted into parallel light rays, and the contact 33 for concentration measurement is used. It is preferable that the light is incident on the light input section 40 of.
【0036】しかし、光源31が点光源でないことか
ら、光32を完全な平行光にすることは困難なため、接
触部34に入射する光の入射角度θは一定とならない。
そのため、図に示したような入射角度がθ1となる光が
存在し、この光が光出力部35を介して、光検出器36
に入射することにより計測値に大きな影響を与える。こ
れは、接触部34に入射する光の入射角度が変われば、
生体内部を伝播する光の経路が変化するからである。However, since the light source 31 is not a point light source, it is difficult to make the light 32 a perfectly parallel light, so that the incident angle θ of the light incident on the contact portion 34 is not constant.
Therefore, there is light having an incident angle of θ1 as shown in the figure, and this light passes through the light output unit 35 and the photodetector 36.
When it is incident on, the measured value is greatly affected. This is because if the incident angle of light incident on the contact portion 34 changes,
This is because the path of light propagating inside the living body changes.
【0037】従って、入射角度をある特定の角度に限定
することが好ましく、そのため濃度測定用接触子33の
一部を切り欠き、第1の切り欠き部37及び第2の切り
欠き部38を形成する。これにより、特定の角度以外の
不要光線を多く遮断することができ、不要光線が光検出
器36に到達しなくなるため有用である。本実施の形態
のように、2ヶ所以上に切り欠き部を設けることで、光
検出器36に到達する光を、更に限定でき、接触部34
に入射する光の特定入射角度成分を多く検出できるので
特に好ましい。また、第1の切り欠き部37または/及
び第2の切り欠き部38に光吸収体を設けることが好ま
しい。Therefore, it is preferable to limit the incident angle to a specific angle. Therefore, a part of the concentration measuring contact 33 is cut out to form the first cutout portion 37 and the second cutout portion 38. To do. This is useful because many unnecessary light rays other than the specific angle can be blocked and the unnecessary light rays do not reach the photodetector 36. By providing the cutout portions at two or more places as in the present embodiment, the light reaching the photodetector 36 can be further limited and the contact portion 34
This is particularly preferable because a large number of specific incident angle components of light incident on can be detected. Further, it is preferable to provide a light absorber in the first cutout portion 37 and / or the second cutout portion 38.
【0038】また、光入力部40または光出力部35に
光遮断膜39を設け、不要光が光検出器36に入射しな
いようにすることが好ましい。光遮断膜39の材料とし
ては、光を遮断するものであればよく、アルミニウム、
銀、金、タングステン、タングステンシリサイド等が挙
げられる。更には、光遮断膜39として光吸収体を用い
れば、光遮断膜39から反射して、濃度測定用接触子3
3の内部を繰り返し反射して、再び光検出器36に入射
する光の量を低減することができるので好ましい。Further, it is preferable to provide a light blocking film 39 on the light input section 40 or the light output section 35 so that unnecessary light does not enter the photodetector 36. The light blocking film 39 may be made of any material that blocks light, such as aluminum,
Examples thereof include silver, gold, tungsten and tungsten silicide. Furthermore, if a light absorber is used as the light blocking film 39, the light is reflected from the light blocking film 39 and the contact 3 for concentration measurement is used.
This is preferable because the amount of light that is reflected on the inside of 3 again and re-enters the photodetector 36 can be reduced.
【0039】光吸収体の材料としては、2酸化チタン、
2酸化ケイ素、酸化タンタル、酸化ジルコニウムが、特
にグルコースの吸収波長の光を多く吸収することができ
るため好ましい。この中でも、2酸化ケイ素は、吸収も
大きくコストも安いため特に好ましい。As the material of the light absorber, titanium dioxide,
Silicon dioxide, tantalum oxide, and zirconium oxide are particularly preferable because they can absorb a large amount of light having an absorption wavelength of glucose. Of these, silicon dioxide is particularly preferable because it has high absorption and is inexpensive.
【0040】光検出器36は、特に限定するものではな
いが、例えば焦電センサやMCT検出器を用いる。The photodetector 36 is not particularly limited, but for example, a pyroelectric sensor or an MCT detector is used.
【0041】また、図示しないが、例えば光源31と濃
度測定用接触子33との間に分光手段を設けると、特定
成分の波長分光特性が計測できるので、種々の波長での
吸収特性を得ることができるため好ましい。特に干渉計
を用いた分光法FT−IR法は高感度な計測ができるた
め好ましい。Although not shown in the figure, for example, if a spectroscopic means is provided between the light source 31 and the concentration measuring contact 33, the wavelength spectral characteristic of the specific component can be measured, so that absorption characteristics at various wavelengths can be obtained. It is preferable because it can In particular, the spectroscopic FT-IR method using an interferometer is preferable because it enables highly sensitive measurement.
【0042】[0042]
【発明の効果】本発明によれば、小型の光学素子で大き
な計測信号を得ることができる、特定成分の濃度測定方
法及びそれに用いる濃度測定用接触子を提供することが
できる。According to the present invention, it is possible to provide a method for measuring the concentration of a specific component and a contact for measuring concentration used for the method, which can obtain a large measurement signal with a small optical element.
【図1】本発明の一実施の形態における特定成分の濃度
測定方法及び濃度測定用接触子を示す概略図FIG. 1 is a schematic diagram showing a method for measuring the concentration of a specific component and a contact for concentration measurement according to an embodiment of the present invention.
【図2】同実施の形態における濃度測定用接触子を用い
て口唇粘膜の吸光度を測定した結果を示す特性図FIG. 2 is a characteristic diagram showing the results of measuring the absorbance of the lip mucosa using the contact for concentration measurement according to the same embodiment.
【図3】本発明の他の実施の形態における濃度測定用接
触子を示す概略断面図FIG. 3 is a schematic cross-sectional view showing a concentration measuring contact according to another embodiment of the present invention.
【図4】従来のATR素子を用いた濃度測定方法を示す
概略図FIG. 4 is a schematic diagram showing a concentration measuring method using a conventional ATR element.
1,31 光源 2,33 濃度測定用接触子 3,40 光入力部 4,34 接触部 5,35 光出力部 6,36 光検出器 32 光 37 第1の切り欠き部 38 第2の切り欠き部 39 光遮断膜 41 ATR素子 42 口唇 1,31 light source 2,33 Contactor for concentration measurement 3,40 Optical input section 4,34 contact part 5,35 Optical output section 6,36 photo detector 32 light 37 First Notch 38 Second notch 39 Light blocking film 41 ATR element 42 Lips
───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩井 正彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G059 AA01 BB04 BB12 CC16 EE02 EE10 EE12 GG10 HH01 HH06 JJ01 JJ11 JJ14 KK01 4C038 KK10 KL05 KL07 KM00 KX02 KY03 KY04 KY11 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Masahiko Shioi 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Sangyo Co., Ltd. F term (reference) 2G059 AA01 BB04 BB12 CC16 EE02 EE10 EE12 GG10 HH01 HH06 JJ01 JJ11 JJ14 KK01 4C038 KK10 KL05 KL07 KM00 KX02 KY03 KY04 KY11
Claims (16)
nfの物質からなる接触部を密着させる工程A、前記接
触部に入射角度θで光を入射させる工程B、前記接触部
より前記測定対象物内にしみ出し、前記測定対象物内を
伝播した後前記接触部に帰還した前記光の強度を計測す
る工程C、前記工程Cにおいて計測された前記光の強度
に基づいて、前記測定対象物に含まれる特定成分の濃度
を算出する工程Dを含む特定成分の濃度測定方法であっ
て、前記工程Bにおいて、下記式(数1)により算出し
た、前記接触部から前記測定対象物内への前記光のしみ
出し深さzが10ミクロン以上となるように前記入射角
度θを設定することを特徴とする特定成分の濃度測定方
法。 【数1】 ただし、zは前記しみ出し深さ(単位ミクロン)、λは
前記接触部に入射する光の波長(単位ミクロン)、nf
は前記接触部の屈折率、θは前記接触部に入射する光の
入射角度、ncは前記測定対象物の屈折率をあらわす。1. A step of adhering a contact portion made of a substance having a refractive index of nf to a measurement object having a refractive index of nc, a step B of causing light to be incident on the contact portion at an incident angle θ, and the contact portion. Based on the intensity of the light measured in step C, which measures the intensity of the light that has exuded into the measurement target and propagated in the measurement target and then returned to the contact portion, A method for measuring the concentration of a specific component, which comprises a step D of calculating the concentration of a specific component contained in the measurement object, wherein in step B, the measurement object is calculated from the contact portion by the following formula (Equation 1). The method for measuring the concentration of a specific component, characterized in that the incident angle θ is set so that a depth z of the seeped-out light is 10 μm or more. [Equation 1] Here, z is the exudation depth (unit: micron), λ is the wavelength of light incident on the contact portion (unit: micron), nf
Is the refractive index of the contact portion, θ is the incident angle of light incident on the contact portion, and nc is the refractive index of the measurement object.
がグルコースであることを特徴とする、請求項1記載の
特定成分の濃度測定方法。2. The method for measuring the concentration of a specific component according to claim 1, wherein the measurement target is a biological tissue and the specific component is glucose.
クロン〜10ミクロンであることを特徴とする、請求項
2記載の特定成分の濃度測定方法。3. The method for measuring the concentration of a specific component according to claim 2, wherein the wavelength λ of light incident on the contact portion is 1.1 μm to 10 μm.
た後接触部に帰還した光を、再び前記接触部に照射する
ことなく、前記光の強度を計測することを特徴とする、
請求項1記載の特定成分の濃度測定方法。4. In step C, the intensity of the light is measured without irradiating the contact portion with the light that has propagated through the object to be measured and then returned to the contact portion.
The method for measuring the concentration of a specific component according to claim 1.
接触部に照射する光を入射するための光入力部と、前記
光入力部より前記接触部に照射され、前記接触部よりし
み出して前記測定対象物内を伝播した後前記接触部に帰
還した光を出射するための光出力部とを備えた濃度測定
用接触子であって、前記測定対象物内を伝播した後前記
接触部に帰還した光が、再び前記接触部に照射すること
なく前記光出力部より出射することを特徴とする濃度測
定用接触子。5. A contact portion that is brought into close contact with an object to be measured, a light input portion for entering light for irradiating the contact portion, and the contact portion is irradiated with light from the light input portion and exudes from the contact portion. A contact for concentration measurement, comprising a light output part for emitting light returned to the contact part after propagating in the measurement object, and the contact part after propagating in the measurement object. The concentration measuring contactor, wherein the light returned to the step (1) is emitted from the light output part without irradiating the contact part again.
あることを特徴とする、請求項5記載の濃度測定用接触
子。6. The contact for concentration measurement according to claim 5, wherein the contact portion is germanium or silicon.
積が2cm2以下であることを特徴とする、請求項5記
載の濃度測定用接触子。7. The contact for concentration measurement according to claim 5, wherein the area of the portion of the contact portion that is in close contact with the measurement object is 2 cm 2 or less.
を特徴とする、請求項5記載の濃度測定用接触子。8. The contact for concentration measurement according to claim 5, wherein the outer peripheral shape of the contact portion is substantially circular.
を設けたことを特徴とする、請求項5記載の濃度測定用
接触子。9. The contact for concentration measurement according to claim 5, wherein a chamfer or a rounded portion is provided on the outer peripheral portion of the contact portion.
範囲に制限する光束遮断手段をさらに備えたことを特徴
とする、請求項5記載の濃度測定用接触子。10. The contact for concentration measurement according to claim 5, further comprising a light flux blocking means for limiting an incident angle of light incident on the contact portion within a predetermined range.
を特徴とする、請求項10記載の濃度測定用接触子。11. The contact for concentration measurement according to claim 10, wherein the light flux blocking means is a cutout portion.
間に設けた第1の切り欠き部と、前記接触部と光出力部
との間に設けた第2の切り欠き部とからなることを特徴
とする、請求項11記載の濃度測定用接触子。12. The cutout portion includes a first cutout portion provided between the light input portion and the contact portion, and a second cutout portion provided between the contact portion and the light output portion. The contact for concentration measurement according to claim 11, characterized in that
または光出力部に設けた光遮断膜であることを特徴とす
る、請求項10記載の濃度測定用接触子。13. The contact for concentration measurement according to claim 10, wherein the light flux blocking means is a light blocking film provided at least in the light input section or the light output section.
たことを特徴とする、請求項10記載の濃度測定用接触
子。14. The contact for concentration measurement according to claim 10, wherein the light flux blocking means further comprises a light absorber.
する、請求項14記載の濃度測定用接触子。15. The contact for concentration measurement according to claim 14, wherein the light absorber is an oxide.
徴とする、請求項15記載の濃度測定用接触子。16. The contact for concentration measurement according to claim 15, wherein the oxide is silicon dioxide.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002044634A JP2003240709A (en) | 2002-02-21 | 2002-02-21 | Concentration measuring method for specified component and contact for concentration measurement used in the method |
CNB038013983A CN1300569C (en) | 2002-02-21 | 2003-02-17 | Apparatus for measuring biological information and method for measuring biological information |
EP03705252A EP1429136A1 (en) | 2002-02-21 | 2003-02-17 | Apparatus for measuring biological information and method for measuring biological information |
PCT/JP2003/001677 WO2003071254A1 (en) | 2002-02-21 | 2003-02-17 | Apparatus for measuring biological information and method for measuring biological information |
US10/489,175 US7262836B2 (en) | 2002-02-21 | 2003-02-17 | Apparatus for measuring biological information and method for measuring biological information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002044634A JP2003240709A (en) | 2002-02-21 | 2002-02-21 | Concentration measuring method for specified component and contact for concentration measurement used in the method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003240709A true JP2003240709A (en) | 2003-08-27 |
JP2003240709A5 JP2003240709A5 (en) | 2005-08-04 |
Family
ID=27783936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002044634A Withdrawn JP2003240709A (en) | 2002-02-21 | 2002-02-21 | Concentration measuring method for specified component and contact for concentration measurement used in the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003240709A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005323799A (en) * | 2004-05-14 | 2005-11-24 | Jasco Corp | Blood sugar level measuring device |
WO2005115244A1 (en) * | 2004-05-26 | 2005-12-08 | Matsushita Electric Industrial Co., Ltd. | Optical element for measuring bioinformation and bioinformation measuring device |
JP2015200656A (en) * | 2014-04-09 | 2015-11-12 | アントン パール ゲゼルシャフト ミット ベシュレンクテル ハフツングAnton Paar GmbH | Polarization prism and measuring device |
-
2002
- 2002-02-21 JP JP2002044634A patent/JP2003240709A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005323799A (en) * | 2004-05-14 | 2005-11-24 | Jasco Corp | Blood sugar level measuring device |
JP4563075B2 (en) * | 2004-05-14 | 2010-10-13 | 日本分光株式会社 | Blood glucose level measuring device |
WO2005115244A1 (en) * | 2004-05-26 | 2005-12-08 | Matsushita Electric Industrial Co., Ltd. | Optical element for measuring bioinformation and bioinformation measuring device |
JP2015200656A (en) * | 2014-04-09 | 2015-11-12 | アントン パール ゲゼルシャフト ミット ベシュレンクテル ハフツングAnton Paar GmbH | Polarization prism and measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4047903B2 (en) | Biological information measuring optical element and biological information measuring apparatus using the same | |
US7110112B2 (en) | Concentration measuring instrument, concentration measuring contact apparatus, concentration measuring calculating apparatus, and concentration measuring method | |
EP1627596B1 (en) | Optical member for biological information measurement, biological information calculation apparatus, biological information calculation method, program, and recording medium | |
EP0850011B1 (en) | Method for non-invasive blood analyte measurement with improved optical interface | |
EP1254631B1 (en) | Biological information measuring instrument comprising a biological information collecting probe | |
JP4481501B2 (en) | Non-invasive measurement method of blood specimens with improved optical interface | |
JP3770707B2 (en) | Attenuated total reflection measuring apparatus and method for measuring specific components using the same | |
KR20040086806A (en) | Method and device for measuring concentration of specific component | |
WO2003078981A1 (en) | Concentration measuring instrument | |
JP4047907B2 (en) | Biological information measuring optical element and biological information measuring apparatus using the same | |
JP4216272B2 (en) | Biological information measuring optical member and biological information calculating apparatus | |
US7262836B2 (en) | Apparatus for measuring biological information and method for measuring biological information | |
JP2003240709A (en) | Concentration measuring method for specified component and contact for concentration measurement used in the method | |
JP4047904B2 (en) | Biological information measuring optical element and biological information measuring apparatus using the same | |
US20040121358A1 (en) | Information measuring apparatus | |
JP7447433B2 (en) | Optical members, biological information measuring devices, and measuring devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050112 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050112 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060912 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20061004 |