JP2003240675A - Method of examining defect of lens - Google Patents

Method of examining defect of lens

Info

Publication number
JP2003240675A
JP2003240675A JP2002038611A JP2002038611A JP2003240675A JP 2003240675 A JP2003240675 A JP 2003240675A JP 2002038611 A JP2002038611 A JP 2002038611A JP 2002038611 A JP2002038611 A JP 2002038611A JP 2003240675 A JP2003240675 A JP 2003240675A
Authority
JP
Japan
Prior art keywords
scanning
lens
light receiving
defect
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002038611A
Other languages
Japanese (ja)
Inventor
Makoto Yuzawa
真 湯澤
Koji Haruyama
弘司 春山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002038611A priority Critical patent/JP2003240675A/en
Publication of JP2003240675A publication Critical patent/JP2003240675A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of examining the defect of a lens capable of easily examining the defects which causes the deterioration of intrinsic performance as the lens. <P>SOLUTION: This method of examining the defect of lens used in a scanning optical system, applies a light scanning means for making the scanning light irradiate an examined lens, a scanning light receiving means for receiving the scanning light having passed through the examined lens while partially shielding and limiting the scanning light, a moving means for moving the scanning light receiving part in the scanning direction, and a defect detecting means for extracting and detecting the defect on the basis of the waveform of a light receiving signal from the scanning light receiving means, and the defects of the examined lens is detected in a state of moving the scanning light receiving means by the moving means. The scanning light receiving means is provided with a defect detection light receiving means for detecting the defect, and two scanning light detecting means mounted at both sides in the light scanning direction of the defect detection light receiving means, and they are integrally moved by the moving means. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レーザプリンタ等
の走査光学系のレンズの欠陥を検査する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a lens defect of a scanning optical system such as a laser printer.

【0002】[0002]

【従来の技術】これまでレンズ等の欠陥検査を含む走査
光学系の評価において、走査光の走査範囲全幅に亘る検
出を行うために、例えば特開平05−346317号公
報では、1つのスリット形成板に走査光検出用のピンホ
ールの他に走査位置検出用のスリットを配することで、
スリットからの透過光信号より走査光の強度波形と、走
査位置検出パルスを同時に得ている。
2. Description of the Related Art Conventionally, in the evaluation of a scanning optical system including a defect inspection of a lens or the like, one slit forming plate is disclosed in Japanese Patent Laid-Open No. 05-346317 in order to detect the scanning light over the entire scanning range. By arranging a slit for scanning position detection in addition to a pinhole for scanning light detection,
The intensity waveform of the scanning light and the scanning position detection pulse are simultaneously obtained from the transmitted light signal from the slit.

【0003】又、特開平11−72383号公報では、
同期信号用センサでの信号検出を基準にして測定を行う
走査光検出用受光素子が配置された像高位置に応じて、
走査速度から予め計算された時間の後に1ドット分の走
査光を得る方法が知られている。又、fθレンズを含む
走査光学系の評価方法として、特開2000−3105
60号公報のように、得られた走査光の強度から走査光
の走査領域の全幅に亘る強度の分布を得る手法が知られ
ている。
Further, in Japanese Patent Laid-Open No. 11-72383,
Depending on the image height position where the light receiving element for scanning light detection that performs measurement based on the signal detection by the sensor for synchronization signals is arranged,
A method of obtaining scanning light for one dot after a time calculated in advance from the scanning speed is known. Further, as an evaluation method of a scanning optical system including an fθ lens, Japanese Patent Laid-Open No. 2000-3105
As disclosed in Japanese Patent No. 60, a method is known in which the intensity distribution of the scanning light obtained over the entire width of the scanning region is obtained from the obtained intensity of the scanning light.

【0004】又、従来、レンズ等の欠陥検査は工場等で
作業者による直接目視で行われるか、機械的には走査光
を被検査レンズに照射し、その通過光を受光手段で受
光、波形信号をなるべく高精度にサンプリングすべくビ
ームに比べて充分狭い開口で入力することにより、波形
そのものを入力処理し欠陥を判別していた。
Further, conventionally, a defect inspection of a lens or the like is carried out by a worker in a factory or the like by direct visual inspection, or mechanically, a lens to be inspected is irradiated with a scanning light, and the light passing therethrough is received by a light receiving means to be waveformd. In order to sample the signal as accurately as possible, the input was made with a sufficiently narrow aperture compared to the beam, and the waveform itself was input and processed to identify defects.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、走査光
の走査範囲全幅に亘る検出を行うために、特開平05−
3463号公報の場合、スリット形成板からの透過光信
号に走査光の強度波形と、走査位置検出パルスが同時に
含まれており、両者の波形の形状が近い場合に走査光の
強度波形と走査位置検出パルスの分離が困難であるこ
と、又、特開平11−72383号公報では、走査速度
等の変動によって走査範囲において、受光素子がある位
置と走査光の点灯位置がずれることによって受光素子に
走査光が入射しない場合があり、安定した走査光の検出
ができなかった。
However, in order to detect the scanning light over the entire width of the scanning range, Japanese Patent Application Laid-Open No. 05-
In the case of Japanese Patent No. 3463, the transmitted light signal from the slit forming plate includes a scanning light intensity waveform and a scanning position detection pulse at the same time, and when the two waveforms have similar shapes, the scanning light intensity waveform and scanning position are similar. It is difficult to separate the detection pulse, and according to Japanese Patent Laid-Open No. 11-72383, the light receiving element is scanned due to the deviation of the position where the light receiving element is located from the lighting position of the scanning light in the scanning range due to fluctuations in the scanning speed and the like. There was a case where light did not enter, and stable scanning light could not be detected.

【0006】又、特開2000−310560号公報で
は、走査光の強度分布にレーザ光源の出力変動や、AD
変換機の量子化誤差等によるノイズ成分含まれるため、
その評価結果の信頼性に問題があった。
Further, in Japanese Unexamined Patent Publication No. 2000-310560, the output fluctuation of the laser light source and the AD
Since noise components due to the quantization error of the converter are included,
There was a problem in the reliability of the evaluation result.

【0007】更に、従来の方法で、目視作業による検査
では、欠陥の被検査レンズの性能そのものと検査結果の
対応が付けにくく、又、作業者間のばらつきや疲労によ
る見落とし等があり問題がある。又、従来の高分解能で
のサンプリングによるビームの入力処理では、センサ感
度が非常に高いものが必要になり、高価な装置となるこ
とと、入力波形の処理のためのデータが多く処理が複雑
になり、これも実現された装置では高価な装置となり、
例えば生産現場での全数検査等ではその導入が難しい。
Furthermore, in the conventional visual inspection, it is difficult to associate the inspection result with the performance itself of the lens to be inspected for defects, and there are problems such as oversight due to variations among operators and fatigue. . Further, in the conventional beam input processing by high resolution sampling, an extremely high sensor sensitivity is required, resulting in an expensive device and a lot of data for processing the input waveform, which makes the processing complicated. In the device that realized this, it becomes an expensive device,
For example, it is difficult to introduce it in 100% inspection at the production site.

【0008】本発明は上記問題に鑑みてなされたもの
で、その目的とする処は、本来レンズとしての性能を劣
化させる欠陥の検査を容易に行うことができるレンズ欠
陥検査方法を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a lens defect inspection method capable of easily inspecting a defect that originally deteriorates the performance of a lens. is there.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、走査光学系に使用されるレンズの欠陥検
査において、被検査レンズに走査光を照射する光走査手
段と、被検査レンズを通過した走査光の一部を遮光制限
し受光する走査光受光手段と、走査光受光部を走査方向
に移動させる移動手段と、前記走査光受光手段からの受
光信号の波形から抽出検出する欠陥検出手段とを有し、
前記移動手段により走査光受光手段を移動させながら被
検査レンズの欠陥を検出することを特徴とする。
In order to achieve the above object, the present invention provides an optical scanning means for irradiating a lens to be inspected with scanning light in defect inspection of a lens used in a scanning optical system, and an inspected lens. Scanning light receiving means for blocking and limiting a part of the scanning light passing through the light receiving means, moving means for moving the scanning light receiving portion in the scanning direction, and a defect extracted and detected from the waveform of the light receiving signal from the scanning light receiving means. And a detection means,
A defect of the lens to be inspected is detected while moving the scanning light receiving unit by the moving unit.

【0010】[0010]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0011】図1は被検査レンズ100の欠陥検査する
装置例を示す図である。ここで、101は走査光学系の
光源で、レーザ光源等が使用される。
FIG. 1 is a diagram showing an example of an apparatus for inspecting a defect of a lens 100 to be inspected. Here, 101 is a light source of a scanning optical system, for which a laser light source or the like is used.

【0012】102は偏向走査する回転ミラーであり、
105方向に回転することにより被検査レンズ100に
対して106方向に偏向走査する。このとき、106方
向の位置を像高とも呼ぶ。104は被検査レンズ100
を通過し、偏向されたビームを受光する受光ユニットで
あり、1回の走査毎に同期信号検出センサより同期信号
が出力される。
Reference numeral 102 denotes a rotating mirror for deflecting and scanning,
By rotating in the 105 direction, the lens 100 to be inspected is deflected and scanned in the 106 direction. At this time, the position in the 106 direction is also called the image height. 104 is the lens 100 to be inspected
The light receiving unit receives the deflected beam that has passed through and the synchronization signal is output from the synchronization signal detection sensor for each scanning.

【0013】各偏向光変更位置でのビームを受光させる
ために、受光ユニット104を走査方向に移動させるス
テージ103が設けられており、一般にステージ103
の移動速度は、ビームの偏向走査に比べて充分遅い速度
に設定される。
A stage 103 for moving the light receiving unit 104 in the scanning direction is provided in order to receive the beam at each deflected light changing position, and generally, the stage 103 is provided.
Is set to a speed sufficiently slower than the beam deflection scanning.

【0014】受光ユニット104は図2に示すもので、
ビームの走査方向にビーム検出用受光素子204、測定
開始トリガ検出用受光素子301、測定終了トリガ検出
用受光素子302がビーム走査方向に平行に並べて置か
れている。このとき、ビームAは測定開始トリガ検出用
受光素子301、ビーム検出用受光素子204、測定終
了トリガ検出用受光素子302の順番に入射し、AD変
換部109は、測定開始トリガ検出用受光素子301へ
のビーム入射を測定開始トリガPS、測定終了トリガ検
出用受光素子302へのビーム入射を測定終了トリガP
Eとしてビーム検出用受光素子204からの出力信号を
AD変換を行い、バッファメモリ110に取り込むこと
で図3に示すようなビーム検出信号B得ることができ
る。このときの同期信号と測定開始トリガPS及び測定
終了トリガPEのタイミングは図4の状態Xのようにな
る。
The light receiving unit 104 is shown in FIG.
A beam detection light-receiving element 204, a measurement start trigger detection light-receiving element 301, and a measurement end trigger detection light-receiving element 302 are arranged in parallel in the beam scanning direction in the beam scanning direction. At this time, the beam A is incident on the light receiving element 301 for measurement start trigger detection, the light receiving element 204 for beam detection, and the light receiving element 302 for measurement end trigger detection in this order, and the AD conversion unit 109 causes the light receiving element 301 for measurement start trigger detection. Beam injection into the measurement start trigger PS and measurement end trigger detection beam reception into the light receiving element 302 for measurement end trigger P
As E, the output signal from the beam detecting light-receiving element 204 is AD-converted and taken into the buffer memory 110, so that the beam detection signal B as shown in FIG. 3 can be obtained. The timing of the synchronization signal and the measurement start trigger PS and the measurement end trigger PE at this time are as shown in state X of FIG.

【0015】このとき、任意の像高位置における検出信
号を得るために必要となるバッファメモリ110の容量
P[Byte]は、測定開始トリガPS検出から測定終了トリ
ガPE検出までの時間ΔT[sec] と、AD変換部109
のサンプリング周期R[Sample/sec]及びサンプリングの
分解能Q[bit] から P=R・ΔT・Q/8 にて求めることができる。時間ΔTは、同期信号の周期
THよりも十分に短いため、ポリゴンミラーの回転数の
変動等によって変動する同期信号の周期THに影響され
ることなく、常に安定したタイミングでビーム検出を行
うことができる。
At this time, the capacity P [Byte] of the buffer memory 110 required to obtain the detection signal at an arbitrary image height position is the time ΔT [sec] from the measurement start trigger PS detection to the measurement end trigger PE detection. And the AD conversion unit 109
Can be obtained from P = R · ΔT · Q / 8 from the sampling cycle R [Sample / sec] and the sampling resolution Q [bit]. Since the time ΔT is sufficiently shorter than the cycle TH of the synchronization signal, the beam detection can always be performed at a stable timing without being affected by the cycle TH of the synchronization signal that fluctuates due to fluctuations in the rotation speed of the polygon mirror. it can.

【0016】しかしながら、測定対象であるfθレンズ
100の有効範囲の両端では、測定開始トリガ検出用受
光素子301又は測定終了トリガ検出用受光素子302
のどちらか片方にビームが入射しなくなり、測定に必要
なトリガ信号を得ることができない。そのためにfθレ
ンズ100の有効範囲の両端も測定可能となるように、
得られなかった片方のトリガ信号を擬似的に得るための
方法を、図5を用いて説明する。
However, at both ends of the effective range of the fθ lens 100 to be measured, the measurement start trigger detecting light receiving element 301 or the measurement end trigger detecting light receiving element 302.
The beam is not incident on either one of them, and the trigger signal required for measurement cannot be obtained. Therefore, both ends of the effective range of the fθ lens 100 can be measured,
A method for quasi-obtaining one trigger signal that cannot be obtained will be described with reference to FIG.

【0017】図4の状態Yは、fθレンズ100の片端
において、測定開始トリガPSが得られない状態を示し
ている。このとき、トリガ生成部112では測定終了ト
リガ検出用受光素子302より得られた測定終了トリガ
PEから擬似測定開始タイマ値TS経過した時間後に、
擬似的に擬似測定開始トリガDSを生成する。AD変換
部109では擬似測定開始トリガDSと、擬似測定開始
トリガDSの直後の測定終了トリガPEによって、ビー
ム検出用受光素子204からの検出信号のAD変換を行
う。この擬似測定開始タイマ値TSは、水平同期信号の
周期THと、図4の状態Xにおける測定開始トリガPS
から測定終了トリガPEまでの時間ΔTを用いて TS=TH−ΔT から求める値であり、予め測定した数値をトリガ生成部
112又はコントローラ113等に検査パラメータとし
て設定する。
State Y in FIG. 4 shows a state in which the measurement start trigger PS cannot be obtained at one end of the fθ lens 100. At this time, in the trigger generation unit 112, after a lapse of the pseudo measurement start timer value TS from the measurement end trigger PE obtained from the measurement end trigger detection light receiving element 302,
A pseudo measurement start trigger DS is generated in a pseudo manner. The AD conversion unit 109 performs AD conversion of the detection signal from the beam detection light receiving element 204 by the pseudo measurement start trigger DS and the measurement end trigger PE immediately after the pseudo measurement start trigger DS. This pseudo measurement start timer value TS is equal to the period TH of the horizontal synchronizing signal and the measurement start trigger PS in the state X of FIG.
Is a value obtained from TS = TH-ΔT using the time ΔT from the measurement end trigger PE to the measurement end trigger PE, and a numerical value measured in advance is set as an inspection parameter in the trigger generation unit 112, the controller 113, or the like.

【0018】又、図4の状態Zでは、fθレンズ100
のもう一方の端において、測定終了トリガPEが得られ
ない状態を示している。このとき、トリガ生成部112
では、測定開始トリガ検出用受光素子301より得られ
た測定開始トリガPSから擬似測定終了タイマ値TE経
過した時間後に、擬似的に擬似測定終了トリガDEを生
成する。
In the state Z of FIG. 4, the fθ lens 100
At the other end of, the measurement end trigger PE is not obtained. At this time, the trigger generation unit 112
Then, a pseudo measurement end trigger DE is pseudo-generated after a lapse of the pseudo measurement end timer value TE from the measurement start trigger PS obtained from the measurement start trigger detection light receiving element 301.

【0019】AD変換部109では測定開始トリガPS
と擬似測定終了トリガDEによって、ビーム検出用受光
素子204からの検出信号のAD変換を行う。この擬似
測定終了タイマ値TEは、図5の状態Xにおける測定開
始トリガPSから測定終了トリガPEまでの時間ΔTに
等しく、予め測定した数値をトリガ生成部112又はコ
ントローラ113等に検査パラメータとして設定する。
In the AD converter 109, the measurement start trigger PS
And a detection signal from the beam detection light receiving element 204 is AD-converted by the pseudo measurement end trigger DE. This pseudo measurement end timer value TE is equal to the time ΔT from the measurement start trigger PS to the measurement end trigger PE in the state X of FIG. 5, and a previously measured numerical value is set in the trigger generation unit 112 or the controller 113 as an inspection parameter. .

【0020】AD変換部109でAD変換された検出信
号Bは、バッファメモリ110を介して信号処理部11
1に送られる。
The detection signal B AD-converted by the AD converter 109 is passed through the buffer memory 110 to the signal processor 11
Sent to 1.

【0021】信号処理部111では、図7に示すフロー
チャートに従ってビーム測定を行う。先ず、ステップS
1において検出信号Bの平均化処理を行う。このステッ
プS1は、ポリゴンミラー102における各面の反射率
の差異によって発生する検出信号の変動を補正するため
に行うもので、この処理の様子を図8に示す。
The signal processing section 111 performs beam measurement according to the flow chart shown in FIG. First, step S
In 1, the detection signal B is averaged. This step S1 is performed to correct the fluctuation of the detection signal caused by the difference in the reflectance of each surface of the polygon mirror 102, and the state of this processing is shown in FIG.

【0022】図8は例えばポリゴンミラーが4面の場合
のときであり、ポリゴンミラーの各面に対応して、4つ
の連続した出力信号BA,BB,BC,BDが得られた
とする。このとき、出力信号BA,BB,BC,BDの
それぞれのピーク値の位置CEA,CEB,CEC,C
EDが一致するように位相を揃え、平均化することによ
って平均化波形Gを得ることができる。図8では4回分
の出力波形、即ちポリゴンミラー1周分の出力波形の平
均化処理を行っているが、ポリゴンミラー2周以上の出
力波形の平均化処理を行うこともできる。このとき、平
均化処理を行う検出波形Bの数は、ポリゴンミラー10
2の面数の整数倍となる。
FIG. 8 shows a case where the polygon mirror has four surfaces, for example, and it is assumed that four continuous output signals BA, BB, BC and BD are obtained corresponding to each surface of the polygon mirror. At this time, the positions CEA, CEB, CEC, C of the respective peak values of the output signals BA, BB, BC, BD
The averaged waveform G can be obtained by aligning the phases so that the EDs match and averaging the phases. In FIG. 8, the output waveform for four times, that is, the output waveform for one round of the polygon mirror is averaged, but the output waveform for two or more rounds of the polygon mirror can be averaged. At this time, the number of detected waveforms B to be averaged is determined by the number of polygon mirrors 10.
It is an integral multiple of the number of faces.

【0023】次に、各像高位置ごとに平均化された平均
化波形Gからピーク検出(ステップS2)及びビーム幅
測定(ステップS3)によってピーク値P及びビーム幅
Wを検出する。このとき、ステップS2においては、図
9に示すように平均化された平均化波形Gにおいて、そ
の最大値MAXに対して0.5%の範囲ΔPの平均値を
ピーク値Pとして検出している。
Next, the peak value P and the beam width W are detected from the averaged waveform G averaged at each image height position by peak detection (step S2) and beam width measurement (step S3). At this time, in step S2, in the averaged waveform G averaged as shown in FIG. 9, the average value of the range ΔP of 0.5% with respect to the maximum value MAX is detected as the peak value P. .

【0024】ステップS2及びステップS3によって得
られる検出結果は、ピークについては図6、ビーム幅は
図6に示すようなもので、各像高に対応した検出結果を
得ることができる。これらの検出結果から、欠陥検出
(ステップS4)によって、fθレンズの規格に応じ
て、例えば図5のように、ピーク値Pの局所的な変動C
や像高の広い範囲に亘る変動D、又は図6のように、ビ
ーム幅Wの局所的な変動仮Eや像高の広い範囲に亘る変
動Fを検知することによってfθレンズ100の欠陥を
検出する。
The detection results obtained in steps S2 and S3 are as shown in FIG. 6 for the peak and the beam width is shown in FIG. 6, and the detection results corresponding to each image height can be obtained. From these detection results, the defect variation (step S4) is followed by the local variation C of the peak value P according to the standard of the fθ lens, for example, as shown in FIG.
And a variation D over a wide range of image heights, or a local variation temporary E of the beam width W and a variation F over a wide range of image heights as shown in FIG. To do.

【0025】次に、スリット開口幅の設定方法について
説明する。
Next, a method of setting the slit opening width will be described.

【0026】図10は図1の受光センサ104をビーム
の入射側から見た図である。装置全体のタイミングの説
明は前述の通りであるため、ここでは、タイミング検知
のためのセンサは省略してある。
FIG. 10 is a view of the light receiving sensor 104 of FIG. 1 viewed from the beam incident side. Since the description of the timing of the entire apparatus is as described above, the sensor for timing detection is omitted here.

【0027】ここで、201は偏向により走査されるビ
ームで、202方向に走査移動する。203はビームの
一部を遮光するためのスリット開口、204はビーム方
向に対してスリット開口203の後方に配置される受光
センサで、光電変換により電気信号に変換する。205
はビームが偏向走査され、スリット開口203を通過し
受光センサ203に投光されたビームに応答した信号波
形である。
Here, 201 is a beam which is scanned by deflection, and scans and moves in the 202 direction. Reference numeral 203 denotes a slit opening for blocking a part of the beam, and 204 denotes a light receiving sensor arranged behind the slit opening 203 with respect to the beam direction, which is converted into an electric signal by photoelectric conversion. 205
Is a signal waveform in response to the beam that is deflected and scanned by the beam, passes through the slit opening 203, and is projected onto the light receiving sensor 203.

【0028】一般に受光センサ位置の光軸方向位置は走
査光学系として使用されるレーザプリンタ等での感光ド
ラム相当位置に配置される。このとき、レーザビーム径
が一番小さいビームウェストになるようにされていて、
そのレーザビームはガウス分布をしている。又、本実施
の形態では、ビーム径、光束幅は静止時でのビームプロ
ファイルピーク値の1/e (eは自然対数の底)で
ある約13.5%のレベル光量以上の幅を指すこととす
る。
Generally, the position of the light receiving sensor in the optical axis direction is arranged at a position corresponding to a photosensitive drum in a laser printer or the like used as a scanning optical system. At this time, the laser beam diameter is set to be the smallest beam waist,
The laser beam has a Gaussian distribution. Further, in the present embodiment, the beam diameter and the beam width refer to a width equal to or larger than a level light amount of about 13.5% which is 1 / e 2 (e is the base of natural logarithm) of the beam profile peak value at rest. I will.

【0029】レンズ欠陥検査では、レーザ光源101か
らの光を、ポリゴンミラー102を105方向に回転さ
せて被検査レンズ100に偏向走査する。このとき、光
は106方向に走査されることになり、受光ユニット1
04を高速で通過する。ステージ103上にある受光ユ
ニット104は、所定の速度で被検査レンズ100の走
査方向106で検査したい領域に渡り移動させる。移動
中に偏向走査光が受光ユニットを過ぎたとき、その偏向
ビームの波形を順次処理してゆく。
In the lens defect inspection, the light from the laser light source 101 is deflected and scanned on the lens 100 to be inspected by rotating the polygon mirror 102 in the direction of 105. At this time, the light is scanned in the 106 direction, and the light receiving unit 1
Pass 04 at high speed. The light receiving unit 104 on the stage 103 is moved at a predetermined speed in the scanning direction 106 of the lens 100 to be inspected over an area to be inspected. When the deflection scanning light passes through the light receiving unit during movement, the waveform of the deflection beam is sequentially processed.

【0030】図12は像高方向に移動させながらビーム
が受光センサを過ぎたときの波形で、レンズの欠陥等に
より走査光が受ける影響を模式的に表した図で、(a)
は被検査レンズ100の屈折率異常等により本来のレー
ザビームは径が広がったりすることを示した図、(b)
はやはり被検査レンズ100の欠陥により透過率が変化
したことを示した図である。
FIG. 12 is a waveform when the beam passes the light receiving sensor while moving in the image height direction, and is a diagram schematically showing the influence of scanning light due to a defect of the lens, etc. (a)
Is a diagram showing that the diameter of the original laser beam expands due to the refractive index abnormality of the lens 100 to be inspected, etc., (b).
FIG. 4 is a diagram showing that the transmittance has changed due to a defect in the lens 100 to be inspected.

【0031】波形の処理は各受光時の波形の最大値等よ
り、被検査レンズ100の像高方向に所定間隔で検知し
た値の変化等により欠陥を判別する。図6は被検査レン
ズ100の像高方向に渡りピーク値の変化がどのように
変化するかを模式的に表した図で、例えば欠陥がある場
合(c)部のように急峻にピーク値が変化し、欠陥があ
ると判別する。
In the processing of the waveform, the defect is discriminated from the maximum value of the waveform at the time of receiving each light and the like by the change of the value detected at a predetermined interval in the image height direction of the lens 100 to be inspected. FIG. 6 is a diagram schematically showing how the peak value changes in the image height direction of the lens 100 to be inspected. For example, when there is a defect, the peak value sharply changes as in the part (c). Change and determine that there is a defect.

【0032】ここで、受光ユニット104に設けられた
スリット幅を変化させたときの受光ユニット104での
入力がどのように変化するかを説明したのが図11であ
る。ここで、上のグラフは横軸が走査方向、像高方向の
位置(走査状態では時間)で、縦軸はスリットを通過し
たガウス分布をしたビームの全ビーム光量に対する比率
を示している。下図(a)〜(c)はビームに対するス
リット幅を変化させたときの様子を模式的に表した図、
(a)はビーム201に対してスリット203の幅を広
くした場合、(b)はビーム201に対してその50%
のスリット幅にした場合、(c)はビーム201に対し
て充分狭いスリット幅にした場合、それぞれの場合で図
10での受光部204の受光波形を上の図のグラフで示
したものになる。
FIG. 11 illustrates how the input in the light receiving unit 104 changes when the slit width provided in the light receiving unit 104 is changed. Here, in the above graph, the horizontal axis represents the position in the scanning direction and the image height direction (time in the scanning state), and the vertical axis represents the ratio of the beam having the Gaussian distribution that has passed through the slit to the total light amount. The following figures (a) to (c) are diagrams schematically showing the state when the slit width for the beam is changed,
(A) shows a case where the width of the slit 203 is wider than the beam 201, and (b) shows 50% of the beam 201.
When the slit width is set to (c) and the slit width is set to be sufficiently narrower than the beam 201, the light receiving waveform of the light receiving unit 204 in FIG. .

【0033】ビーム201に対して充分広いスリット幅
である(a)の場合のグラフは1203になり、波形の
ピーク値は、ほぼ全ビーム量の積分した値となる。
(c)はスリット幅が充分狭い場合で、グラフは120
1のようになり受光量ピーク値は低くなるが、ビームの
プロファイルは本来のビームが持つ形状に近いものが得
られる。ビームに対して50%のスリット幅にしたとき
(b)の波形は1202のようなグラフになり、その波
形ピーク値は全ビームの70%程度の光量を受光するこ
とになる。
In the case of (a) where the slit width is sufficiently wide with respect to the beam 201, the graph is 1203, and the peak value of the waveform is a value obtained by integrating almost the entire beam amount.
(C) is the case where the slit width is sufficiently narrow, and the graph shows 120
Although the peak value of the amount of received light is low, the beam profile is close to the original shape of the beam. When the slit width is 50% with respect to the beam, the waveform of (b) becomes a graph like 1202, and the peak value of the waveform receives about 70% of the light amount of the entire beam.

【0034】被検査レンズ100を通過し、受光ユニッ
ト104に受光されるビームの幅が欠陥等の影響により
変化するとき、スリット幅によりどのような変化を示し
たのが図12である。グラフは横軸400がスリット
幅、縦軸401がビーム径変化に対するピーク値変化の
比率を示したものが402である。横軸のスリット幅は
ビーム幅を1としたときのスリット幅を相対値で示した
ものである。これからビーム幅1のビームの幅変化を一
番敏感に反応させるために最適なスリット幅はビーム幅
に対して50%であることが分かる。
FIG. 12 shows how the slit width changes when the width of the beam that passes through the lens 100 to be inspected and is received by the light receiving unit 104 changes due to the influence of a defect or the like. In the graph, the horizontal axis 400 indicates the slit width, and the vertical axis 401 indicates the ratio of the peak value change to the beam diameter change, which is 402. The slit width on the horizontal axis is a relative value indicating the slit width when the beam width is 1. From this, it can be seen that the optimum slit width is 50% of the beam width in order to most sensitively respond to the change in the beam width of beam width 1.

【0035】又、図13のように(a)でのスリット部
501はビーム幅50%の開口となっているが、(b)
のようにスリット部503を遮光とし、ビーム幅の50
%とすることでも同様の感度が得られるので、スリット
部は開口としても遮光としても良い。
Further, as shown in FIG. 13, the slit portion 501 in FIG. 13A has an opening with a beam width of 50%, but FIG.
As shown in FIG.
Since the same sensitivity can be obtained by setting the ratio to%, the slit portion may be an opening or a light shield.

【0036】上記では拘束の幅変化の例を挙げたが、レ
ンズ透過により光量そのものが変化した場合は勿論、そ
の透過率に従ったピーク値を持つ波形が得られることは
容易に推測される。
Although an example of changing the width of the constraint has been given above, it is easily presumed that a waveform having a peak value according to the transmittance can be obtained as a matter of course when the light amount itself changes due to lens transmission.

【0037】これにより被検査レンズ100の欠陥を検
査する際に、所定のビーム幅例えば100umのビーム
幅の系では50umの開口を持つスリットを受光ユニッ
ト104に配し、所定のピッチで被検査レンズの全像高
に亘り、各点でのビームから得られる波形のピーク値、
又はその変化量等を処理し判断することにより、局所的
な屈折率異常等によるビーム幅変化と、異物等によるビ
ーム光量変化を検出することができる。
Thus, when inspecting a defect of the lens 100 to be inspected, a slit having an opening of 50 um is arranged in the light receiving unit 104 in a system having a beam width of 100 um, and the lens to be inspected at a predetermined pitch. The peak value of the waveform obtained from the beam at each point over the entire image height of
Alternatively, by processing and determining the amount of change and the like, it is possible to detect a change in beam width due to a local anomaly in the refractive index and a change in beam light amount due to a foreign substance or the like.

【0038】又、別の実施形態として、fθレンズ10
0の欠陥検査だけでなく、ポリゴンミラー102の欠陥
検査やレーザ走査光学装置の特性評価にも同様の手法で
適用することもできる。
As another embodiment, the fθ lens 10
Not only the defect inspection of 0 but also the defect inspection of the polygon mirror 102 and the characteristic evaluation of the laser scanning optical device can be applied by the same method.

【0039】[0039]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、走査光学系に使用されるレンズの欠陥検査にお
いて、被検査レンズに走査光を照射する光走査手段と、
被検査レンズを通過した走査光の一部を遮光制限し受光
する走査光受光手段と、走査光受光部を走査方向に移動
させる移動手段と、前記走査光受光手段からの受光信号
の波形から抽出検出する欠陥検出手段とを有し、前記移
動手段により走査光受光手段を移動させながら被検査レ
ンズの欠陥を検出するようにしたため、本来レンズとし
ての性能を劣化させる欠陥の検査を容易に行うことがで
きるという効果が得られる。
As is apparent from the above description, according to the present invention, in the defect inspection of the lens used in the scanning optical system, the optical scanning means for irradiating the inspected lens with the scanning light,
Scanning light receiving means for blocking and limiting a part of the scanning light that has passed through the lens to be inspected and receiving light, moving means for moving the scanning light receiving portion in the scanning direction, and extraction from the waveform of the received light signal from the scanning light receiving means Since it has a defect detecting means for detecting and detects the defect of the lens to be inspected while moving the scanning light receiving means by the moving means, it is possible to easily inspect the defect that deteriorates the performance as the original lens. The effect of being able to do is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例となるレーザ走査光学系検査装
置のブロック図である。
FIG. 1 is a block diagram of a laser scanning optical system inspection device according to an embodiment of the present invention.

【図2】受光ユニットの構成を示す図である。FIG. 2 is a diagram showing a configuration of a light receiving unit.

【図3】ビーム検出用受光素子から得られる出力信号を
示す図である。
FIG. 3 is a diagram showing an output signal obtained from a light receiving element for beam detection.

【図4】測定開始及び測定終了トリガの補間の方法を示
す図である。
FIG. 4 is a diagram showing a method of interpolating a measurement start and measurement end trigger.

【図5】像高位置に対するビーム強度の変動を表す図で
ある。
FIG. 5 is a diagram showing a change in beam intensity with respect to an image height position.

【図6】像高位置に対するビーム幅の変動を表す図であ
る。
FIG. 6 is a diagram showing a change in beam width with respect to an image height position.

【図7】平均化波形Gから欠陥検出を行う際のフローチ
ャートを表す図である。
FIG. 7 is a diagram showing a flowchart for detecting a defect from an averaged waveform G.

【図8】検出波形Bから平均化波形Gを得るための処理
を説明するための図である。
FIG. 8 is a diagram for explaining a process for obtaining an averaged waveform G from a detected waveform B.

【図9】平均化波形Gからピーク値Pを得るための処理
を表す図である。
FIG. 9 is a diagram showing a process for obtaining a peak value P from an averaged waveform G.

【図10】受光ユニットの一部構成を説明した図であ
る。
FIG. 10 is a diagram illustrating a partial configuration of a light receiving unit.

【図11】スリット幅を変えた時の受光量を説明した図
である。
FIG. 11 is a diagram illustrating the amount of received light when the slit width is changed.

【図12】ビーム幅変化、ビーム光量変化を示した図で
ある。
FIG. 12 is a diagram showing a change in beam width and a change in beam light amount.

【図13】スリット開口、遮光を説明する図である。FIG. 13 is a diagram illustrating slit openings and light blocking.

【符号の説明】[Explanation of symbols]

100 fθレンズ 101 レーザ光源 102 ポリゴンミラー 103 ステージ 104 受光ユニット 107 水平同期信号検知センサ 108 ステージ制御部 109 AD変換部 110 バッファメモリ 111 信号処理部 112 トリガ生成部 113 コントローラ 199 レーザ走査部 204 ビーム検出用受光素子 301 測定開始トリガ検出用受光素子 100 fθ lens 101 laser light source 102 polygon mirror 103 stage 104 Light receiving unit 107 Horizontal sync signal detection sensor 108 Stage control unit 109 AD converter 110 buffer memory 111 Signal processing unit 112 Trigger generator 113 controller 199 Laser scanning unit 204 Photodetector for beam detection 301 Photodetector for detecting measurement start trigger

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA49 BB05 CC22 FF02 GG04 HH15 JJ02 JJ05 LL13 LL28 LL62 MM16 MM28 PP02 QQ03 QQ23 QQ29 QQ42 2G051 AA90 AB02 BA10 BB07 BC06 CB02 CC07 CD04 CD06 EA02 EA11 EC03 2G086 FF05 2H045 CA63 CA97 DA00    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2F065 AA49 BB05 CC22 FF02 GG04                       HH15 JJ02 JJ05 LL13 LL28                       LL62 MM16 MM28 PP02 QQ03                       QQ23 QQ29 QQ42                 2G051 AA90 AB02 BA10 BB07 BC06                       CB02 CC07 CD04 CD06 EA02                       EA11 EC03                 2G086 FF05                 2H045 CA63 CA97 DA00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 走査光学系に使用されるレンズの欠陥検
査において、被検査レンズに走査光を照射する光走査手
段と、被検査レンズを通過した走査光の一部を遮光制限
し受光する走査光受光手段と、走査光受光部を走査方向
に移動させる移動手段と、前記走査光受光手段からの受
光信号の波形から抽出検出する欠陥検出手段とを有し、
前記移動手段により走査光受光手段を移動させながら被
検査レンズの欠陥を検出することを特徴とするレンズ欠
陥検査方法。
1. In a defect inspection of a lens used in a scanning optical system, an optical scanning means for irradiating a lens to be inspected with scanning light, and a scanning for limiting a part of the scanning light passing through the lens to be inspected and receiving light. A light receiving unit, a moving unit for moving the scanning light receiving unit in the scanning direction, and a defect detecting unit for extracting and detecting from the waveform of the light receiving signal from the scanning light receiving unit,
A method of inspecting a lens defect, wherein a defect of a lens to be inspected is detected while moving the scanning light receiving unit by the moving unit.
【請求項2】 前記走査光受光手段は、欠陥検出のため
の欠陥検出受光手段と、前記欠陥検出受光手段の光走査
方向両側に2つの走査光検知手段が配置され、前記移動
手段により一体となって移動させることを特徴とする請
求項1記載のレンズ欠陥検査方法。
2. The scanning light receiving means is provided with a defect detecting light receiving means for detecting a defect and two scanning light detecting means on both sides of the defect detecting light receiving means in the optical scanning direction, and is integrated by the moving means. The lens defect inspection method according to claim 1, wherein the lens defect inspection method comprises moving the lens defect.
【請求項3】 前記走査光検知手段は、2つの検知手段
のどちらかのみで走査光を検知した場合、光走査時間間
隔に見合った擬似タイミング信号を発生することを特徴
とする請求項2記載のレンズ欠陥検査方法。
3. The scanning light detecting means generates a pseudo timing signal corresponding to an optical scanning time interval when the scanning light is detected by only one of the two detecting means. Lens defect inspection method.
【請求項4】 得られたサンプリング信号のピーク値よ
り0.5パーセントの範囲におけるサンプリング点の平
均値を強度形状のピーク値とすることを特徴とする請求
項1記載のレンズ欠陥検査方法。
4. The lens defect inspection method according to claim 1, wherein an average value of sampling points in a range of 0.5% from the obtained peak value of the sampling signal is used as the peak value of the intensity shape.
【請求項5】 前記走査光受光手段において、欠陥検出
受光手段は、走査方向に走査ビーム幅のおよそ50%の
開口幅を持つスリット状開口によりビームを制限して通
過した部分の光を受光することを特徴とする請求項1記
載のレンズ欠陥検査方法。
5. In the scanning light receiving means, the defect detection light receiving means receives the light of a portion which passes the beam by limiting the beam with a slit-shaped opening having an opening width of about 50% of the scanning beam width in the scanning direction. The lens defect inspection method according to claim 1, wherein
JP2002038611A 2002-02-15 2002-02-15 Method of examining defect of lens Withdrawn JP2003240675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002038611A JP2003240675A (en) 2002-02-15 2002-02-15 Method of examining defect of lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002038611A JP2003240675A (en) 2002-02-15 2002-02-15 Method of examining defect of lens

Publications (1)

Publication Number Publication Date
JP2003240675A true JP2003240675A (en) 2003-08-27

Family

ID=27779884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002038611A Withdrawn JP2003240675A (en) 2002-02-15 2002-02-15 Method of examining defect of lens

Country Status (1)

Country Link
JP (1) JP2003240675A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115819A (en) * 2009-01-30 2009-05-28 Seiko Epson Corp Method and device for measuring scanning light beam spot
CN104034508A (en) * 2013-03-08 2014-09-10 佳能株式会社 Optical Inspection Apparatus And Optical Inspection System
US9420119B2 (en) 2011-09-16 2016-08-16 Canon Kabushiki Kaisha Method and apparatus for inspecting scanning beam of scanning optical system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115819A (en) * 2009-01-30 2009-05-28 Seiko Epson Corp Method and device for measuring scanning light beam spot
US9420119B2 (en) 2011-09-16 2016-08-16 Canon Kabushiki Kaisha Method and apparatus for inspecting scanning beam of scanning optical system
CN104034508A (en) * 2013-03-08 2014-09-10 佳能株式会社 Optical Inspection Apparatus And Optical Inspection System
JP2014197185A (en) * 2013-03-08 2014-10-16 キヤノン株式会社 Optical inspection apparatus and optical inspection system
CN104034508B (en) * 2013-03-08 2017-01-11 佳能株式会社 Optical inspection apparatus and optical inspection system

Similar Documents

Publication Publication Date Title
US6087673A (en) Method of inspecting pattern and apparatus thereof
US7098448B2 (en) Method and apparatus for measuring beam spot of scanning light
JP3105702B2 (en) Optical defect inspection equipment
EP3465125B1 (en) Otdr with increased precision and reduced dead zone using superposition of pulses with varying clock signal delay
US20020176071A1 (en) Streak camera system for measuring fiber bandwidth and differential mode delay
JP2003240675A (en) Method of examining defect of lens
CN110174067B (en) Method and system for checking center offset of code disc of biochemical analyzer
CA2282015C (en) Light-scanning device
US5166535A (en) Surface inspecting apparatus with surface inspection width adjustment
JP2005106831A (en) Light beam diagnostic device and method therefor
JP4726063B2 (en) Edge detection method and edge detection apparatus
JP4366254B2 (en) Scanning optical system inspection apparatus and method
JP3650945B2 (en) Outside diameter measuring device
JP4812568B2 (en) Optical measurement apparatus, optical measurement method, and optical measurement processing program
JP4176320B2 (en) Scanning optical system beam measuring apparatus and method
JP3208273B2 (en) Surface profile measuring device
JPH05164702A (en) Surface inspecting device
JPH11173918A (en) Temperature distribution measuring instrument for inside of combustor
EP1260801A1 (en) System and method for measuring the quality of an illumination field from a laser line illumination system
KR840001118B1 (en) Scanning electronic microscope
JP2001194230A (en) Method and device for inspecting scanning optical unit
US6426510B1 (en) Device and method for inspecting pattern shapes
US6154304A (en) Monitoring distortion of a spinning mirror
JP2011257639A (en) Method for measuring scan optical system light quantity, method for inspecting scan optical system, and optical system inspection device
JPS62298705A (en) Linear sensor light source controlling system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041222

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510