JP2003238253A - Method of producing ceramic sintered compact - Google Patents

Method of producing ceramic sintered compact

Info

Publication number
JP2003238253A
JP2003238253A JP2002037180A JP2002037180A JP2003238253A JP 2003238253 A JP2003238253 A JP 2003238253A JP 2002037180 A JP2002037180 A JP 2002037180A JP 2002037180 A JP2002037180 A JP 2002037180A JP 2003238253 A JP2003238253 A JP 2003238253A
Authority
JP
Japan
Prior art keywords
sintered body
drying
water content
warpage
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002037180A
Other languages
Japanese (ja)
Inventor
Yojiro Kon
洋次郎 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002037180A priority Critical patent/JP2003238253A/en
Publication of JP2003238253A publication Critical patent/JP2003238253A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the occurrence of a warp in a tubular ceramic sintered compact. <P>SOLUTION: A raw material to be molded, obtained by mixing a starting material with a sintering aid or the like and adding a binder to the resulting mixture, is molded into a tubular form, and then the formed body having the tubular form is sintered after being dried until the content of water becomes ≤1.5 wt.% in a drying process. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、精密な寸法精度を
要求される管状や棒状のセラミックス焼結体の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a tubular or rod-shaped ceramic sintered body which requires precise dimensional accuracy.

【0002】[0002]

【従来の技術】近年、セラミックス焼結体は、高強度、
耐磨耗性、高剛性、低熱膨張性、耐熱性、高硬度などの
特性を利用して、機械材料として工作機械部品、測定装
置、エンジン、送風機、軸受け、工具、潤滑剤、もしく
は光通信用部品等に用いられてきている。また化学的な
安定性を利用して化学装置や断熱性あるいは伝熱性を利
用した機器への応用も図られてきている。
2. Description of the Related Art In recent years, ceramics sintered bodies have high strength,
Utilizing properties such as wear resistance, high rigidity, low thermal expansion, heat resistance, and high hardness, it is used as a machine material for machine tool parts, measuring devices, engines, blowers, bearings, tools, lubricants, or optical communication. It has been used for parts and the like. In addition, it has been attempted to be applied to a chemical device utilizing chemical stability and a device utilizing heat insulating property or heat transfer property.

【0003】この中で、精密機械や精密測定器のよう
に、常温環境下で使用される精密機器の重要要素部品に
セラミックス焼結体が採用されるようになってきた。そ
の背景には、半導体に代表される電子部品の超精密化、
微細化が急速に進み、それらを製造する加工機や測定器
にサブミクロンもしくはそれ以下の精度が要求されるよ
うになってきたからである。これら精密機器の構造用部
材として従来は、ステンレス、アルミ系合金、防錆処理
した鉄系材料及び石材が使われてきた。
Among these, ceramics sintered bodies have come to be used for important element parts of precision instruments such as precision instruments and precision measuring instruments used in a normal temperature environment. In the background, ultra-precision electronic parts represented by semiconductors,
This is because miniaturization has progressed rapidly, and processing machines and measuring instruments for manufacturing them are required to have accuracy of submicron or less. Conventionally, stainless steel, aluminum-based alloys, rust-prevented iron-based materials and stone materials have been used as structural members for these precision instruments.

【0004】しかし、加工精度がミクロン以下を要求す
る超精密や超微細加工分野においては、構造体の自重に
よる変形や温度、湿度変化による微小な変形も問題にな
るほど要求仕様が厳しく、しかも能率化のために機械の
高速化、軽量化の要求も強い。このような、高性能の品
質要求にたいし、従来の材料では様々な問題点が指摘さ
れ、セラミックス焼結体が使われ始めている。
However, in the field of ultra-precision and ultra-fine processing, where the processing accuracy is required to be less than micron, the required specifications are so strict that the deformation due to the self-weight of the structure and the minute deformation due to temperature and humidity changes are strict and more efficient. Therefore, there is a strong demand for faster and lighter machines. In order to meet such high performance quality requirements, various problems have been pointed out in conventional materials, and ceramics sintered bodies have begun to be used.

【0005】また、近年通信における情報量の増大に伴
い、光ファイバを用いた光通信が使用されている。この
光通信において、光ファイバ同士の接続、あるいは光フ
ァイバと各種光素子との接続には光コネクタが用いられ
ている。
Further, in recent years, with the increase in the amount of information in communication, optical communication using an optical fiber is used. In this optical communication, an optical connector is used for connecting optical fibers to each other or connecting optical fibers to various optical elements.

【0006】例えば、光ファイバ同士を接続するコネク
タの場合、図5及び図6に示すフェルール1に形成され
た貫通孔1aに光ファイバ3の端部を保持し、一対のフ
ェルール1をスリーブ4の両端から挿入して、内部で凸
球面状に加工した先端面1d同士を当接させるようにし
た構造となっている。
For example, in the case of a connector for connecting optical fibers to each other, an end portion of the optical fiber 3 is held in a through hole 1a formed in the ferrule 1 shown in FIGS. The structure is such that the tip surfaces 1d, which are inserted from both ends and processed into a convex spherical shape inside, are brought into contact with each other.

【0007】上記フェルール1の材質としてはセラミッ
クス焼結体、金属、プラスチック、ガラス等、さまざま
なものが試作されてきたが、現在は大半がセラミックス
製となっている。その理由は、セラミックスは加工精度
を高く加工することが出来るため、内径、外径の公差を
1μm以下と高精度にすることができ、またセラミック
ス焼結体は摩擦係数が低いため光ファイバの挿入性に優
れ、剛性が高く熱膨張係数が低いことから外部応力や温
度変化に対して安定であり、耐食性にも優れているため
である。
Various materials such as ceramics sintered bodies, metals, plastics, and glasses have been experimentally produced as materials for the ferrule 1, but most of them are currently made of ceramics. The reason for this is that ceramics can be processed with high accuracy, so the tolerance of the inner and outer diameters can be as high as 1 μm or less, and because ceramics sintered bodies have a low coefficient of friction, they can be inserted into optical fibers. This is because it has excellent properties, has high rigidity, and has a low coefficient of thermal expansion, so that it is stable against external stress and temperature changes, and has excellent corrosion resistance.

【0008】さらに、上記フェルール1のセラミックス
焼結体としては、近年、アルミナからジルコニアに大半
が置き代わりつつある。このジルコニア焼結体は、ヤン
グ率がアルミナの約半分と低いため、2個のフェルール
の先端面同士を当接する際に、小さな応力で密着性を高
めることができ、また強度、靱性が高いことから信頼性
を向上できる(特公平8−30775号公報参照)。
Further, in recent years, as the ceramic sintered body of the ferrule 1, most of alumina has been replaced by zirconia. Since this zirconia sintered body has a Young's modulus as low as about half that of alumina, it is possible to enhance the adhesion with a small stress when the tip faces of two ferrules are brought into contact with each other, and have high strength and toughness. Therefore, the reliability can be improved (see Japanese Patent Publication No. 8-30775).

【0009】上記セラミックス焼結体の製造方法は、図
1に示すように、出発原料の不純物を除去して焼結助剤
等を混合して、バインダーを添加した成形前原料を、セ
ラミックス焼結体の特定個所が所望の寸法になるように
成形金型を選定して、成形、乾燥、焼成をおこない、必
要ある部分を研削や研磨等の機械仕上げ加工を行って製
品化していた。なお、セラミックス成形体の乾燥後の一
般的な水分含有率は2〜18%程度である(特開200
0−264716号公報参照)。
As shown in FIG. 1, the above-mentioned method for producing a ceramics sintered body is performed by removing impurities from a starting material, mixing a sintering aid and the like, and adding a binder to the raw material before molding to obtain a ceramics sintered body. A molding die was selected so that a specific part of the body had a desired size, molding, drying and firing were performed, and a necessary portion was subjected to mechanical finishing such as grinding and polishing to commercialize it. The general moisture content of the ceramic molded body after drying is about 2 to 18% (JP-A-200)
0-264716).

【0010】[0010]

【発明が解決しようとする課題】ところが、上記の従来
の製造方法においては、管状や棒状など、外形に対する
長さの比である細長比の大きな成形体では乾燥及び焼成
段階でそりが生じるために、成形、焼成されたセラミッ
クス焼結体の特定個所が、円筒度も含めてミクロン以下
の所望の寸法公差の範囲内に入らないという問題を生じ
ていた。
However, in the above-mentioned conventional manufacturing method, a warp occurs in the drying and firing stages in a molded body having a large slenderness ratio, which is a ratio of the length to the outer shape, such as a tubular shape or a rod shape. However, there has been a problem that a specific portion of the molded and fired ceramics sintered body does not fall within a desired dimensional tolerance of micron or less including cylindricity.

【0011】そのセラミックス焼結体が所望の寸法に対
して、削り代があれば、研磨等で所望の寸法に仕上げな
ければならず、そのために多大な作業時間を要し、製造
コストを増大させる要因となっていた。
If the ceramic sintered body has a cutting allowance with respect to a desired size, it must be finished to a desired size by polishing or the like, which requires a great amount of work time and increases the manufacturing cost. It was a factor.

【0012】また、そのセラミックス焼結体が所望寸法
に対して、削り代のない場合は使用できなくなるので廃
棄処分をしなければならず、廃棄処分をしたくないため
に大半の製造ロットで削り代が残るように上記平均的な
収縮率を削り代の多い側へシフトして製造していた。
Further, the ceramic sintered body cannot be used unless it has a cutting allowance for a desired size, and therefore it must be discarded. The average shrinkage ratio was shifted to the side having a large cutting allowance so that the allowance remains.

【0013】そのために、更に削り代が多くなり、研削
や研磨等で所望の寸法に仕上げなければならず、更に多
大な作業時間を要し、製造コストを増大させる要因とな
っていた。
For this reason, the machining allowance is further increased, and it is necessary to finish the product to a desired size by grinding or polishing, which requires a much longer working time and is a factor of increasing the manufacturing cost.

【0014】[0014]

【課題を解決するための手段】上記問題点に鑑みて本発
明は、出発原料に焼結助剤等を混合しバインダーを添加
した成形前原料を細長比が10以上の管状または棒状に
成形し、乾燥工程にて水分含有率が1.5重量%以下に
なるまで乾燥を行った後、焼成することを特徴とする。
In view of the above-mentioned problems, the present invention forms a pre-forming raw material obtained by mixing a starting material with a sintering aid or the like and adding a binder into a tubular or rod-like shape having an elongated ratio of 10 or more. In the drying step, drying is performed until the water content becomes 1.5% by weight or less, and then firing is performed.

【0015】また、上記セラミックス焼結体が光通信用
コネクタ部材に使用されることを特徴とする。
Further, the above-mentioned ceramics sintered body is used for a connector member for optical communication.

【0016】即ち、本発明によれば、セラミックス成形
体を乾燥する際に残留水分率を制御することにより、セ
ラミックス焼結体のそりを実質上無くすことが可能とな
った。
That is, according to the present invention, it is possible to substantially eliminate the warpage of the ceramic sintered body by controlling the residual water content when the ceramic molded body is dried.

【0017】[0017]

【発明の実施の形態】以下本発明の実施形態を説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0018】図1は本発明の管状セラミックス焼結体の
製造方法を示す流れ図である。
FIG. 1 is a flow chart showing a method for manufacturing a tubular ceramics sintered body of the present invention.

【0019】上記セラミックス焼結体において、成形前
原料を外形に対する長さの比である細長比が10以上の
管状または棒状に成形し、乾燥工程にて水分含有率が
1.5重量%以下になるまで乾燥を行った後、焼成し、
その後必要部分を研削もしくは研磨等の機械仕上げ加工
を行い製品化する。
In the above ceramic sintered body, the raw material before forming is formed into a tubular or rod shape having a slenderness ratio of 10 or more, which is the ratio of the length to the outer shape, and the water content is reduced to 1.5% by weight or less in the drying step. After drying until it becomes calcined,
After that, necessary parts are subjected to mechanical finishing such as grinding or polishing to commercialize.

【0020】この時、そり等の変形は乾燥後の水分含有
率に大きく影響されるので、乾燥後の水分含有量が1.
5重量%を超えているとそり等の変形は大きくなるが、
水分含有率が1.5重量%以下になるまで乾燥すると、
焼成後のそり等の変形が著しく減少し安定する。また、
細長比が10未満であっても乾燥後の水分含有率が1.
5重量%以下であれば、そり等の変形に対して効果はあ
るが、細長比が10以上好ましくは30以上の場合にそ
の差が顕著となる。
At this time, since the deformation of the sled or the like is greatly affected by the water content after drying, the water content after drying is 1.
If it exceeds 5% by weight, the deformation such as sled becomes large,
When dried until the water content is less than 1.5% by weight,
Deformation such as warpage after firing is significantly reduced and stable. Also,
Even if the slenderness ratio is less than 10, the water content after drying is 1.
If it is 5% by weight or less, it is effective against deformation such as warpage, but if the slenderness ratio is 10 or more, preferably 30 or more, the difference becomes remarkable.

【0021】ここで、図2(a)、(b)に成形工程及
び乾燥工程について説明する。
The molding step and the drying step will be described with reference to FIGS. 2 (a) and 2 (b).

【0022】まず成形工程であるが、一例として押し出
し成形の概念を図2(a)に示すが、成形機13の投入
口14に成形前原料15を投入して、数段にわたるスク
リュー16により混合され、金型17を通過して細長比
10以上の管状のセラミックス成形体11を得る。
First, regarding the molding step, as an example, the concept of extrusion molding is shown in FIG. 2 (a). The raw material 15 before molding is charged into the charging port 14 of the molding machine 13 and mixed by the screw 16 over several stages. Then, it is passed through the mold 17 to obtain a tubular ceramics molded body 11 having an elongated ratio of 10 or more.

【0023】次に、乾燥工程であるが、図2(b)に示
す様に、乾燥炉20に乾燥治具12に整列したセラミッ
クス成形体11を投入し、水分含有率が1.5重量%以
下になるまで乾燥を行う。
Next, in the drying step, as shown in FIG. 2 (b), the ceramic molded body 11 aligned in the drying jig 12 is put into the drying furnace 20, and the moisture content is 1.5% by weight. Dry until:

【0024】本発明は、セラミックス焼結体のなかで
も、外形寸法に対して全長が長い、所謂細長比の大きな
管状のセラミックス焼結体に関するものである。
The present invention relates to, among the ceramics sintered bodies, a tubular ceramics sintered body having a long overall length with respect to the outer dimensions and a large so-called slenderness ratio.

【0025】本発明の管状セラミックス焼結体の具体例
として、光コネクタ用のフェルールを用いて説明する。
A specific example of the tubular ceramics sintered body of the present invention will be described using a ferrule for an optical connector.

【0026】図5に示すように、光コネクタ用のフェル
ール1は、中央に光ファイバを挿入する貫通孔1aを有
し、該貫通孔1aの後端側には光ファイバの挿入を容易
にするために円錐部1bを備え、先端外周にはスリーブ
挿入時にガイド面となるC面部1cを備えている。
As shown in FIG. 5, the ferrule 1 for an optical connector has a through hole 1a for inserting an optical fiber in the center, and facilitates the insertion of the optical fiber at the rear end side of the through hole 1a. Therefore, a conical portion 1b is provided, and a C surface portion 1c which serves as a guide surface when the sleeve is inserted is provided on the outer circumference of the tip.

【0027】上記フェルール1は、詳細を後述するジル
コニア焼結体で形成され、図6に示すように、その後方
を金属製の支持体2に接合し、上記貫通孔1aに光ファ
イバ3を挿入して接合した後、先端面1dを曲率半径1
0〜25mm程度の凸球面状に研摩する。このような一
対のフェルール1をスリーブ4の両端から挿入し、バネ
等で押圧して先端面1d同士を当接させることによっ
て、光ファイバ3同士の接続を行うことができる。
The ferrule 1 is formed of a zirconia sintered body, the details of which will be described later. As shown in FIG. 6, the rear side of the ferrule 1 is joined to a metallic support 2 and the optical fiber 3 is inserted into the through hole 1a. Then, the tip surface 1d is bent to a radius of curvature of 1
Polish to a convex spherical shape of about 0 to 25 mm. The optical fibers 3 can be connected to each other by inserting the pair of ferrules 1 from both ends of the sleeve 4 and pressing them with a spring or the like to bring the tip surfaces 1d into contact with each other.

【0028】上記フェルール1を成すジルコニア焼結体
は、ZrO2を主成分とし、安定化剤としてY23
含有し、正方晶の結晶相を主体とし、平均結晶粒径を
0.3〜0.5μm、ビッカース硬度を1240〜13
00としており、このようにすることによって、フェル
ール1の先端面1dの研磨性を良好にしている。
The zirconia sintered body forming the ferrule 1 contains ZrO 2 as a main component, Y 2 O 3 as a stabilizer, a tetragonal crystal phase as a main component, and an average crystal grain size of 0.3. ~ 0.5 μm, Vickers hardness 1240-13
00, and by doing so, the polishability of the tip surface 1d of the ferrule 1 is improved.

【0029】本発明のジルコニア焼結体は、正方晶相を
主体とすることによって、応力を受けた際に、この正方
晶結晶が単斜晶結晶に変態して体積膨張し、クラックの
進展を防止するという応力誘起変態のメカニズムによっ
て、焼結体の強度、靱性を向上でき、部分安定化ジルコ
ニアと呼ばれている。
The zirconia sintered body of the present invention is mainly composed of a tetragonal phase, so that when the stress is applied, the tetragonal crystal transforms into a monoclinic crystal and expands in volume, and cracks develop. The strength and toughness of the sintered body can be improved by the mechanism of stress-induced transformation to prevent it, and it is called partially stabilized zirconia.

【0030】また、本発明のジルコニア焼結体は、単斜
晶相を含まず、主体をなす正方晶相の他に相変態に対し
て安定な立方晶を含むことで、前記応力誘起変態のメカ
ニズムをほとんど損なわずに高温水中での相変態特性を
大きく向上させることができる。
Further, the zirconia sintered body of the present invention does not contain a monoclinic phase, but contains a cubic crystal stable to a phase transformation in addition to a tetragonal phase as a main component, so that the stress-induced transformation The phase transformation characteristics in high temperature water can be greatly improved without impairing the mechanism.

【0031】次に、上記フェルール1の製造方法につい
て説明する。
Next, a method for manufacturing the ferrule 1 will be described.

【0032】まず、出発原料のZrO2 には不純物とし
てAl23 やSiO2 、TiO2、あるいはCaO、
Na2 O、Fe23 等が含まれているが、この原料を
酸やアルカリ等の薬品で処理したり、あるいは比重差を
利用した重力選鉱等の手法にて精製し純度を高める。そ
して、ZrO2 にY23 を3〜5モル%添加混合し、
中和共沈または加水分解等の方法により反応・固溶させ
る。
First, ZrO 2 as a starting material contains Al 2 O 3 , SiO 2 , TiO 2 , or CaO as impurities.
Although Na 2 O, Fe 2 O 3 and the like are contained, the raw material is treated with a chemical such as acid or alkali, or purified by a method such as gravity separation utilizing the difference in specific gravity to increase the purity. Then, 3 to 5 mol% of Y 2 O 3 is added to ZrO 2 and mixed,
Reaction and solid solution are carried out by a method such as neutralization coprecipitation or hydrolysis.

【0033】次に、得られた原料に、成形しやすくする
ために水系、樹脂系、もしくはエマルジョン系等のバイ
ンダーを混合し、成形前原料を作成し、所定の金型を用
いて細長比10以上の管状に成形する。
Next, a binder such as an aqueous system, a resin system, or an emulsion system is mixed with the obtained raw material to facilitate molding, to prepare a raw material before molding, and a slenderness ratio of 10 is used by using a predetermined die. The above tubular shape is formed.

【0034】次に、乾燥工程にて水分含有率が1.5重
量%以下になるまで乾燥を行った後、焼成し、その後必
要部分を研削もしくは研磨等の機械仕上げ加工を行い製
品化する。なお、ここで言う乾燥とは、50℃以下でセ
ラミックス成形体の含有水分を減らす工程を指し、焼成
とは50℃以上でセラミックス成形体の含有水分及びバ
インダーを取り除き更に焼結させる工程を指す。
Next, after drying in a drying process until the water content becomes 1.5% by weight or less, firing is performed, and then a necessary portion is subjected to mechanical finishing such as grinding or polishing to obtain a product. The drying here means a step of reducing the water content of the ceramic molded body at 50 ° C or lower, and the firing means a step of removing the water content and the binder of the ceramic molded body at 50 ° C or higher and further sintering.

【0035】乾燥方法は、特に限定されるものではなく
熱風乾燥、赤外線等を利用した輻射熱による乾燥、マイ
クロ波乾燥等が挙げられる。乾燥条件も特に限定される
ものではなく最終的に水分含有率1.5重量%以下を達
成すれば良いが、一例を挙げると、セラミックス成形体
の割れを防ぐために成形直後は常温高湿の状態、例えば
20℃、80%で5時間程度保持する段階から乾燥を開
始し、最終的には温度20〜50℃、湿度5〜30%で
5時間以上放置しセラミックス成形体の水分含有率を
1.5重量%以下にする。
The drying method is not particularly limited, and examples thereof include hot air drying, drying by radiant heat utilizing infrared rays, microwave drying and the like. The drying conditions are not particularly limited, and it is sufficient to finally achieve a water content of 1.5% by weight or less. As an example, in order to prevent cracking of the ceramic molded body, a state of normal temperature and high humidity immediately after molding is used. For example, the drying is started from the stage of holding at 20 ° C. and 80% for about 5 hours, and finally left at a temperature of 20 to 50 ° C. and a humidity of 5 to 30% for 5 hours or more to make the water content of the ceramic molded body 1 0.5% by weight or less.

【0036】なお、ここで言う水分含有率とは、 水分含有率=(A−B)/A×100 で定義され、Aは乾燥後のセラミックス成形体の重量、
Bは乾燥後のセラミックス成形体を更に100℃常圧下
で20時間保持した後の重量を表している 前述した様に、本発明の乾燥温度は20〜50℃の範囲
内とすることが望ましい。20℃未満であれば、乾燥の
進行が遅くなり、水分含有率を1.5重量%以下にする
には時間がかかり過ぎ生産性が低くなる。また、水分含
有率が1.5重量%以下になる前に50℃を超えると乾
燥工程でそりが大きくなる等の変形が生じるために20
〜50℃が望ましい。
The moisture content referred to here is defined by the moisture content = (A−B) / A × 100, where A is the weight of the dried ceramic compact,
B represents the weight after the dried ceramics compact is further kept at 100 ° C. under normal pressure for 20 hours. As described above, the drying temperature of the present invention is preferably in the range of 20 to 50 ° C. If the temperature is lower than 20 ° C., the progress of drying will be slow, and it will take too much time to reduce the water content to 1.5% by weight or less, resulting in low productivity. Further, if the temperature exceeds 50 ° C. before the water content falls below 1.5% by weight, deformation such as large warpage occurs in the drying process.
A temperature of ~ 50 ° C is desirable.

【0037】また、本発明の乾燥湿度は5〜30%の範
囲内とすることが望ましい。30%を超えると乾燥の進
行が遅くなり、水分含有率を1.5重量%以下にするに
は時間がかかり過ぎ生産性が低くなる。また、水分含有
率が1.5重量%以下になる前に湿度5%未満の環境に
置くと乾燥工程でそりが大きくなる等の変形が生じるた
めに5〜30%が望ましい。
The dry humidity of the present invention is preferably within the range of 5 to 30%. If it exceeds 30%, the progress of drying becomes slow, and it takes too much time to reduce the water content to 1.5% by weight or less, resulting in low productivity. Further, if the substrate is placed in an environment with a humidity of less than 5% before the water content becomes 1.5% by weight or less, deformation such as large warpage occurs in the drying step, so 5-30% is desirable.

【0038】また、本発明の乾燥時間は特に限定される
ものではないが、2〜48時間の範囲が望ましい。2時
間以内で水分含有率を1.5重量%以下にすると、乾燥
工程でそりが大きくなる等の変形が生じ易くなる。ま
た、48時間以上時間をかけても特にメリットはなく生
産性が低くなるだけなので、2〜48時間が望ましい。
The drying time of the present invention is not particularly limited, but is preferably in the range of 2 to 48 hours. If the water content is 1.5% by weight or less within 2 hours, deformation such as warpage becomes large during the drying process. Further, it takes 2 hours to 48 hours, since there is no particular advantage even if it takes more than 48 hours and productivity is lowered.

【0039】以上より、本発明では、セラミックス焼結
体の乾燥工程において、水分含有率を1.5重量%以下
にすることによりそりの発生を抑えることができる。
As described above, in the present invention, the generation of warpage can be suppressed by setting the water content to 1.5% by weight or less in the step of drying the ceramic sintered body.

【0040】ここで、本発明のセラミックス成形体を乾
燥する際に、図4(a)に示す様に管状のセラミックス
成形体11をV溝12aを有した乾燥治具12に外周面
11aが接触するように載置して、乾燥炉に投入する方
法があり、特に外形寸法が5mm以下のものではこれで
十分である。
Here, when the ceramic molded body of the present invention is dried, the outer peripheral surface 11a of the tubular ceramic molded body 11 is brought into contact with the drying jig 12 having the V groove 12a as shown in FIG. 4 (a). There is a method of placing it in such a manner that it is put into a drying furnace, and this is sufficient if the external dimension is 5 mm or less.

【0041】しかし、外形寸法が大きいものもしくは外
形寸法が小さくともより高精度な寸法精度が要求される
場合には、図4(b)に示す様に、管状のセラミックス
成形体11を2本の棒材22にセラミックス成形体11
の外周面11aが保持されるように載置して、上方及び
下方の2方向から水分の蒸発を促す方法がある。
However, if higher dimensional accuracy is required even if the external dimensions are large or the external dimensions are small, as shown in FIG. 4B, two tubular ceramic molded bodies 11 are provided. Ceramic molded body 11 on rod 22
There is a method of mounting the outer peripheral surface 11a so that the outer peripheral surface 11a is held, and promoting evaporation of water from two directions, an upper direction and a lower direction.

【0042】また、図4(c)に示す様に、2本の回転
ローラ23にセラミックス成形体11の外周面11aが
保持されるように載置して、2本の回転ローラ23を回
転させることにより方向性を無くす方法でも、図4
(b)と同一の効果を奏することが出来る。
Further, as shown in FIG. 4 (c), the two rotating rollers 23 are placed so that the outer peripheral surface 11a of the ceramic molded body 11 is held, and the two rotating rollers 23 are rotated. Even if the direction is eliminated by doing so,
The same effect as that of (b) can be obtained.

【0043】本発明の製造方法によれば、焼成方法とし
て、バッチ炉、連続炉等様々な焼成方法を用いても、同
一の効果を得ることが出来る。
According to the manufacturing method of the present invention, the same effect can be obtained even if various firing methods such as a batch furnace and a continuous furnace are used as the firing method.

【0044】なお、図6では光ファイバ3同士を接続す
るための光コネクタを示したが、上記フェルール1は、
レーザダイオードやフォトダイオード等の光素子と光フ
ァイバを接続する光モジュールに用いることもできる。
Although FIG. 6 shows an optical connector for connecting the optical fibers 3 to each other, the ferrule 1 has
It can also be used in an optical module for connecting an optical fiber to an optical element such as a laser diode or a photodiode.

【0045】また、本発明におけるジルコニア焼結体
は、上述した光ファイバ同士、又は光ファイバと各種光
素子との接続に用いるさまざまな部材に適用することが
でき、上述したフェルール1に限らない。例えば、光フ
ァイバ同士を完全に接続するために用いるスプライサ
や、光モジュールに用いるダミーフェルール等にも適用
することができる。
The zirconia sintered body according to the present invention can be applied to various members used for connecting the above-mentioned optical fibers or connecting the optical fibers to various optical elements, and is not limited to the above-mentioned ferrule 1. For example, it can be applied to a splicer used for completely connecting optical fibers, a dummy ferrule used for an optical module, and the like.

【0046】また、本発明におけるセラミックス焼結体
は、光通信用コネクタ部材に限らず、精密な寸法精度を
要求されながら、従来特にそり等の変形の抑制が困難で
あった管状のセラミックス焼結体を用いるガスタービン
部材、流体用ノズル等の精密機械や精密測定器等に適用
することができる。
Further, the ceramic sintered body according to the present invention is not limited to the optical communication connector member, but a tubular ceramic sintered body which has been difficult to suppress the deformation such as a warp in the past while requiring precise dimensional accuracy. It can be applied to a precision machine such as a gas turbine member using a body, a nozzle for fluid, a precision measuring instrument, and the like.

【0047】[0047]

【実施例】以下本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0048】原料はZrO2 へY23 を添加した部分
安定化ジルコニアを用い、それぞれ、焼結後の外径の寸
法がφ2.500mm、長さが640mmのフェルール
用焼結体となるようにし、図1に示す製造方法にてサン
プルを作製した。
A partially stabilized zirconia obtained by adding Y 2 O 3 to ZrO 2 was used as a raw material, and each was made into a ferrule sintered body having an outer diameter of φ2.500 mm and a length of 640 mm after sintering. Then, a sample was prepared by the manufacturing method shown in FIG.

【0049】平均的な収縮率77.8%をもとに外径φ
3.2134mmの成形金型を用いて成形し、乾燥工程
での温度、湿度、時間を調整し水分含有率が1.5重量
%以下となるサンプルを7種類作製し、焼成後、サンプ
ルNo毎にそれぞれ20個の焼結体のそりを測定した。
一例として、サンプルNo.1は、20℃、80%で5
時間保持した後、30℃、10%で7時間乾燥し、水分
含有率を0.6%にした後焼成しそりを測定したとこ
ろ、そりの大きさは0.03mmであった。
Outer diameter φ based on average shrinkage of 77.8%
3.2 Mold using a molding die of 134 mm, and adjust the temperature, humidity, and time in the drying step to prepare seven types of samples having a water content of 1.5 wt% or less, and after firing, sample No. The warpage of each of 20 sintered bodies was measured.
As an example, the sample No. 1 is 5 at 20 ° C and 80%
After holding for a period of time, it was dried at 30 ° C. and 10% for 7 hours, the moisture content was adjusted to 0.6%, and then the calcination warpage was measured. As a result, the size of the warpage was 0.03 mm.

【0050】比較例として、乾燥後の水分含有率が1.
5重量%を超えていること以外は、実施例と全て同じ条
件でサンプルを7種類作製し、焼成後、サンプルNo毎
にそれぞれ20個の焼結体のそりを測定した。
As a comparative example, the water content after drying was 1.
Seven kinds of samples were prepared under the same conditions as those in the examples except that the content was more than 5% by weight, and after firing, the warpage of 20 sintered bodies was measured for each sample No.

【0051】なお、そりの測定は、図7に示す様に定盤
31とセラミックス焼結体32との隙間が最大となる向
きで、定盤31上にセラミックス焼結体32を置き、そ
の時の隙間高さ30をそりの測定値とした。各サンプル
の水分含有量およびそりの大きさの平均値を表1に、水
分含有率とそりの大きさの平均値との関係を示すグラフ
を図3に示す。
The warpage was measured by placing the ceramic sintered body 32 on the surface plate 31 in such a direction that the gap between the surface plate 31 and the ceramic sintered body 32 was maximized as shown in FIG. The gap height 30 was used as the measured value of the sled. The average value of the water content and the size of the warpage of each sample is shown in Table 1, and a graph showing the relationship between the water content and the average value of the size of the warpage is shown in FIG.

【0052】[0052]

【表1】 [Table 1]

【0053】以上より、従来の製造方法で作製したサン
プルでは、そりの範囲が0.09〜0.70mm、各値
の最大値と最小値の差であるばらつきが0.17mmと
大きいのにたいし、本発明の製造方法では、そりの平均
値が0.029mm、ばらつきが0.008mmとほと
んどそりが無い状態の焼結体を得ることが出来た。
As described above, in the sample manufactured by the conventional manufacturing method, the range of warpage is 0.09 to 0.70 mm, and the variation which is the difference between the maximum value and the minimum value of each value is as large as 0.17 mm. However, according to the manufacturing method of the present invention, it was possible to obtain a sintered body in which warpage was 0.029 mm and variation was 0.008 mm, and there was almost no warpage.

【0054】[0054]

【発明の効果】以上のように本発明によれば、出発原料
に焼結助剤等を混合しバインダーを添加した成形前原料
を細長比が10以上の管状または棒状に成形し、乾燥工
程にて水分含有率が1.5重量%以下になるまで乾燥を
行った後、焼成することにより、実質上そりの発生を無
くすことができた。
As described above, according to the present invention, a pre-molding raw material obtained by mixing a sintering aid or the like with a starting raw material and adding a binder is molded into a tubular or rod shape having an elongated ratio of 10 or more, and is subjected to a drying step. Then, the product was dried until the water content became 1.5% by weight or less, and then fired, whereby generation of warpage could be substantially eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセラミックス焼結体の製造方法を示す
流れ図である。
FIG. 1 is a flow chart showing a method for producing a ceramics sintered body of the present invention.

【図2】(a)、(b)は本発明のセラミックス焼結体
の製造方法における成形工程及び乾燥工程を示す概略図
である。
2 (a) and 2 (b) are schematic views showing a forming step and a drying step in the method for producing a ceramics sintered body of the present invention.

【図3】本発明の管状セラミックス成形体の水分含有率
とそりの大きさとの関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the water content of the tubular ceramics molded body of the present invention and the size of warpage.

【図4】(a)〜(c)は本発明のセラミックス焼結体
の製造方法における乾燥方法を示す概略図である。
4 (a) to 4 (c) are schematic views showing a drying method in the method for producing a ceramics sintered body of the present invention.

【図5】本発明のセラミックス焼結体を用いた光コネク
タ用部材を示す図である。
FIG. 5 is a view showing an optical connector member using the ceramic sintered body of the present invention.

【図6】本発明のセラミックス焼結体からなる光コネク
タ用部材を用いた光コネクタを示す断面図である。
FIG. 6 is a sectional view showing an optical connector using an optical connector member made of the ceramic sintered body of the present invention.

【図7】そりの測定方法を示す概略図である。FIG. 7 is a schematic diagram showing a method of measuring warpage.

【符号の説明】[Explanation of symbols]

1:フェルール 1a:貫通孔 1b:円錐部 1c:C面部 1d:先端面 2:支持体 3:光ファイバ 4:スリーブ 11:セラミックス成形体 11a:外周面 12:乾燥治具 12a:V溝 13:成形機 14:投入口 15:成形前原料 16:スクリュー 17:金型 20:乾燥炉 21:赤外線発生装置 22:棒材 23:回転ローラ 30:隙間高さ 31:定盤 32:セラミックス焼結体 1: Ferrule 1a: Through hole 1b: conical part 1c: C surface part 1d: Tip surface 2: Support 3: Optical fiber 4: Sleeve 11: Ceramic molded body 11a: outer peripheral surface 12: Drying jig 12a: V groove 13: Molding machine 14: Input port 15: Raw material before molding 16: Screw 17: Mold 20: Drying oven 21: Infrared generator 22: Bar material 23: rotating roller 30: Gap height 31: surface plate 32: Ceramics sintered body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】出発原料に焼結助剤等を混合しバインダー
を添加した成形前原料を細長比が10以上の管状または
棒状に成形し、乾燥工程にて水分含有率が1.5重量%
以下になるまで乾燥を行った後、焼成することを特徴と
するセラミックス焼結体の製造方法。
1. A raw material, which is obtained by mixing a starting material with a sintering aid or the like and adding a binder, is formed into a tubular or rod shape having an elongated ratio of 10 or more, and has a water content of 1.5% by weight in a drying step.
A method for producing a ceramics sintered body, which is characterized by performing drying until the following, and then firing.
【請求項2】上記セラミックス焼結体が光通信用コネク
タ部材に使用されることを特徴とする請求項1記載のセ
ラミックス焼結体の製造方法。
2. The method for producing a ceramics sintered body according to claim 1, wherein the ceramics sintered body is used for an optical communication connector member.
JP2002037180A 2002-02-14 2002-02-14 Method of producing ceramic sintered compact Pending JP2003238253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002037180A JP2003238253A (en) 2002-02-14 2002-02-14 Method of producing ceramic sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002037180A JP2003238253A (en) 2002-02-14 2002-02-14 Method of producing ceramic sintered compact

Publications (1)

Publication Number Publication Date
JP2003238253A true JP2003238253A (en) 2003-08-27

Family

ID=27778867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002037180A Pending JP2003238253A (en) 2002-02-14 2002-02-14 Method of producing ceramic sintered compact

Country Status (1)

Country Link
JP (1) JP2003238253A (en)

Similar Documents

Publication Publication Date Title
JP2003104776A (en) Production method for ceramic sintered compact
JP2003238253A (en) Method of producing ceramic sintered compact
JP2003221275A (en) Method for manufacturing sintered body of ceramics
JP2005179156A (en) Method for manufacturing sintered ceramic compact and connector for optical communication
JP2003073164A (en) Method of manufacturing ceramic sintered compact
JP2003137662A (en) Method of manufacturing sintered ceramic compact
JP2003137651A (en) Method of producing ceramic sintered compact
JP2005131833A (en) Manufacturing method of ceramic sintered body and optical communication connector
JP4618992B2 (en) Molding method of ceramic powder
JP5240722B2 (en) Ceramic ferrule and its manufacturing method
JP2005281014A (en) Method for producing sintered ceramic compact and optical communication connector using sintered ceramic compact produced thereby
JP3195858B2 (en) Optical fiber connector parts made of zirconia
JP2005122085A (en) Method for manufacturing precision sleeve
JP2003307647A (en) Optical fiber ferrule, its machining method and pigtail for optical module using the same
JP4535539B2 (en) Zirconia sintered body for optical connector and manufacturing method thereof
JP2004292229A (en) Method of manufacturing ceramic sintered compact
JP2004115307A (en) Method for manufacturing ceramic sintered compact
JP2001240468A (en) Sintered body of zirconia for light connector and process for producing the same
JP2006327901A (en) Method of manufacturing ceramic sintered body and ceramic firing tool
JP2003252683A (en) Method for producing ceramic sintered compact
JP2006116933A (en) Extrusion molding machine, extrusion molding method using the same and ferrule for optical communication obtained by the same
JP2004083358A (en) Process for manufacturing ceramic components for optical communication
JP2004175625A (en) Member for optical connector, and its manufacturing method
JP2004256312A (en) Method for manufacturing zirconia sintered body
JP2004318039A (en) Manufacturing method of split sleeve