JP2003238102A - Apparatus for producing hydrogen storage body - Google Patents

Apparatus for producing hydrogen storage body

Info

Publication number
JP2003238102A
JP2003238102A JP2002032692A JP2002032692A JP2003238102A JP 2003238102 A JP2003238102 A JP 2003238102A JP 2002032692 A JP2002032692 A JP 2002032692A JP 2002032692 A JP2002032692 A JP 2002032692A JP 2003238102 A JP2003238102 A JP 2003238102A
Authority
JP
Japan
Prior art keywords
hydrogen
mill
mill container
container
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002032692A
Other languages
Japanese (ja)
Inventor
Tetsuya Ikeda
哲哉 池田
Toshiaki Katsura
敏明 桂
Hironobu Fujii
博信 藤井
Shinichi Orimo
慎一 折茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002032692A priority Critical patent/JP2003238102A/en
Publication of JP2003238102A publication Critical patent/JP2003238102A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a new and inexpensive hydrogen storage body having capability of occluding a large amount of hydrogen, light weight and of storing a large amount of hydrogen at ordinary temperature and a low pressure. <P>SOLUTION: A rocking mill 1 is equipped with a vibrating table 6 whose face is placed to a horizontal direction and a mill vessel 2 is fixed on the vibrating table 6. A transporting pipe 3 connected to a hydrogen bomb 5 for vacuum exhausting and hydrogen filling is attached to the mill vessel 2. Graphite and hydrogen whose pressure is 10 MPa (corresponding to about 100 atmospheric pressure) are filled in the mill vessel 1. A steel ball 12 is put in for milling and the milling of the graphite 13 is performed by a rocking mill motion which moves to a rotating direction 15 indicated in a drawing. Hydrogen can be filled externally in the mill vessel 2 during the milling. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、軽量で、常温、低
圧下で多量の水素を貯蔵することができる新規な水素貯
蔵体を高圧でミリングする水素貯蔵製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage production apparatus for milling at high pressure a novel hydrogen storage body which is lightweight and capable of storing a large amount of hydrogen at room temperature and low pressure.

【0002】[0002]

【従来の技術】近年の地球環境保全や化石燃料の枯渇の
問題から、化石燃料に代わる代替エネルギーとして燃料
電池が電力の供給源として有望視されている。燃料電池
は原料に水素と酸素を用い、その排ガスもクリーンであ
ることから注目されている。ところが、燃料を水素とす
る場合、メタノールや天然ガスの改質を利用する方法も
あるが、起動時に時間がかかることや急激な負荷変動に
対応しにくいという欠点がある。そこで、水素を貯蔵す
る必要があるが、従来の方法では、水素を圧縮した高圧
ボンベや低温にした液体水素にしなければならない。し
かし、圧縮水素とした場合、圧縮水素を高圧ボンベに貯
蔵するため、その高圧ボンベが重いという欠点がある。
また、液体水素の場合、水素を常時−252℃に冷却して
貯蔵しなければならず、貯蔵容器が大きくなる欠点があ
る。
2. Description of the Related Art Due to the problems of global environment protection and fossil fuel depletion in recent years, fuel cells are regarded as a promising source of electric power as an alternative energy to replace fossil fuels. Fuel cells are attracting attention because they use hydrogen and oxygen as raw materials and their exhaust gas is clean. However, when hydrogen is used as the fuel, there is also a method of utilizing reforming of methanol or natural gas, but it has a drawback that it takes time at startup and it is difficult to cope with a sudden load change. Therefore, it is necessary to store hydrogen, but in the conventional method, it is necessary to use a high-pressure cylinder in which hydrogen is compressed or liquid hydrogen at a low temperature. However, when the compressed hydrogen is used, the compressed hydrogen is stored in the high-pressure cylinder, so that the high-pressure cylinder has a disadvantage of being heavy.
Further, in the case of liquid hydrogen, there is a drawback that the storage container becomes large because hydrogen must be constantly cooled to −252 ° C. and stored.

【0003】最近、これらの問題を解決できる貯蔵容積
が小さくて軽量な水素貯蔵材料が求められている。現
在、最も実用化に近いものは水素吸蔵合金であり、これ
は水素を金属水素化物として貯蔵するものである。しか
し、水素吸蔵合金の単位重量当たりの水素吸蔵量が小さ
いために、多量の水素を必要とする車載用には未だ使用
できない。また、合金の場合、水素の吸蔵及び放出時に
は、合金を高圧、高温条件に曝す必要があるために、そ
の繰り返しによる水素吸蔵合金の劣化及び性能低下、ま
た構成元素が希少金属の場合には、資源枯渇等の問題が
ある。
Recently, there has been a demand for a lightweight hydrogen storage material having a small storage volume and capable of solving these problems. At present, the most practically applicable one is a hydrogen storage alloy, which stores hydrogen as a metal hydride. However, since the amount of hydrogen storage per unit weight of the hydrogen storage alloy is small, it cannot be used for automobiles that require a large amount of hydrogen. Further, in the case of an alloy, at the time of absorbing and desorbing hydrogen, since the alloy needs to be exposed to high pressure and high temperature conditions, deterioration and performance deterioration of the hydrogen absorbing alloy due to repetition thereof, and when the constituent element is a rare metal, There are problems such as resource depletion.

【0004】このような状況において、軽量で多量の水
素を吸蔵することができ、製造コストが安価な材料とし
て炭素材料が注目されている。炭素材料の中でも、多量
の水素吸蔵性能を示す材料として、活性炭、カーボンナ
ノチューブ、グラファイトナノファイバー、ナノグラフ
ァイトがある。カーボンナノチューブは、通常、希ガス
中でグラファイト電極間のアーク放電やメタンなどの炭
化水素をFeやNiの金属超微粒子雰囲気で熱分解すること
によって製造される。水素吸蔵性能については、Dillon
らの研究(Dillon et al., Nature, 386, 377-379 (199
7))で注目され、Liuらの研究では、単層カーボンナノチ
ューブの場合(直径1.6〜2nm、長さ数μm)、約100気
圧、室温で約4.2wt%の水素吸蔵量を示すことが知られて
いる(Liu et al., Science, 286 1127-1129 (1999))。
In such a situation, a carbon material has attracted attention as a material which is lightweight and capable of storing a large amount of hydrogen and which is inexpensive to manufacture. Among carbon materials, there are activated carbon, carbon nanotubes, graphite nanofibers, and nanographite as materials showing a large amount of hydrogen storage performance. Carbon nanotubes are usually produced by arc-discharging between graphite electrodes in a rare gas or by thermally decomposing hydrocarbons such as methane in an ultrafine particle atmosphere of Fe or Ni. For hydrogen storage performance, see Dillon
(Dillon et al., Nature, 386, 377-379 (199
7)), and in the research of Liu et al., It is known that the single-walled carbon nanotubes (diameter 1.6 to 2 nm, length several μm) show hydrogen storage capacity of about 4.2 wt% at about 100 atm and room temperature. (Liu et al., Science, 286 1127-1129 (1999)).

【0005】[0005]

【発明が解決しようとする課題】グラファイトナノファ
イバーは微細な繊維状の形態をした炭素だけからなる材
料(繊維径が10〜数100nm、長さが数μm)であり、エチ
レンなどを鉄やコバルト等の金属触媒の存在下で熱分解
することによって得られる。得られたグラファイトナノ
ファイバーの水素吸蔵量を測定したところ約100気圧室
温で多量の水素を吸蔵したという報告(Chambers et a
l., J. Phys. Chem. B, 102, 4253-4256 (1998))がある
が、再現性が得られないという欠点がある(Ahn et al.,
Appl. Phys.Lett., 73,3378-3380 (1998))。再現性の
ない理由の1つにグラファイトナノファイバーは金属触
媒の結晶面から成長する際に、水素吸着に不適なグラフ
ァイト層が成長しやすいという問題がある。その結果、
多くのグラファイトナノファイバーは通常のグラファイ
ト並みの水素吸着量しか示さない。
[Problems to be Solved by the Invention] Graphite nanofibers are materials made of only fine fibrous carbon (fiber diameter is 10 to several 100 nm, length is several μm). It is obtained by thermal decomposition in the presence of a metal catalyst such as. The hydrogen absorption amount of the obtained graphite nanofiber was measured, and it was reported that a large amount of hydrogen was absorbed at room temperature of about 100 atm (Chambers et a
l., J. Phys. Chem. B, 102, 4253-4256 (1998)), but has the drawback that reproducibility cannot be obtained (Ahn et al.,
Appl. Phys. Lett., 73, 3378-3380 (1998)). One of the reasons for non-reproducibility is that graphite nanofibers tend to grow a graphite layer unsuitable for hydrogen adsorption when growing from the crystal plane of the metal catalyst. as a result,
Many graphite nanofibers show the same amount of hydrogen adsorption as ordinary graphite.

【0006】ナノグラファイトについては、本出願の発
明者の折茂等により、図11及び図12に示すような遊
星ボールミルを使用している。図に示すように、図示し
ない駆動手段に連結した回転テーブル36は、回転中心
37を回転軸として水平方向に回転が可能である。回転
テーブル36上には、一対の遊星ミル容器35を載置
し、遊星ミル容器35は、図示しない駆動手段により容
器35の中心を回転軸として回転可能である。よって、
各々の遊星ミル容器35は、回転テーブル36の回転中
心37に対して公転し、遊星ミル容器35自身が自転す
る関係になる。このような、構造により、遊星ミル容器
35は、その内部にボール、グラファイトを収容し、水
素を充填することにより、遊星ミル容器35の回転運動
を行うようにした。このような装置では、通常は低い水
素吸蔵量しか示さないグラファイトを、水素雰囲気中で
機械的に粉砕(メカニカルミリングまたはメカニカルア
ロイング)処理することによって、グラファイト結晶面
にナノサイズ(3〜5nm)の大量の格子欠陥を生成させ、
約10気圧、室温で7.4wt%の水素を吸蔵するという報告が
ある(特願2000-121728, Orimo et al., Appl. Phys. L
ett., 75,3093-3095 (1999))。
For nanographite, a planetary ball mill as shown in FIGS. 11 and 12 is used by Orimo Shigeru of the inventor of the present application. As shown in the figure, the rotary table 36 connected to a driving means (not shown) can rotate in the horizontal direction with the rotation center 37 as the rotation axis. A pair of planetary mill containers 35 are placed on the rotary table 36, and the planetary mill containers 35 can be rotated about the center of the container 35 by a drive means (not shown). Therefore,
Each planet mill container 35 revolves around the rotation center 37 of the rotary table 36, and the planet mill container 35 itself has a relationship of rotation. With such a structure, the planetary mill container 35 accommodates balls and graphite therein, and is filled with hydrogen so that the planetary mill container 35 is rotated. In such a device, graphite, which normally has a low hydrogen storage capacity, is mechanically crushed in a hydrogen atmosphere (mechanical milling or mechanical alloying) to produce a nano-sized (3-5 nm) graphite crystal plane. Generate a large number of lattice defects of
It has been reported that it absorbs 7.4 wt% of hydrogen at room temperature at about 10 atm (Japanese Patent Application 2000-121728, Orimo et al., Appl. Phys. L).
ett., 75, 3093-3095 (1999)).

【0007】しかし、従来の遊星ボールミルを使用した
機械的粉砕装置では、粉体材料の微粒子化や混合が主た
る目的であったために、水素ガスを小さな約50cc程度の
ミル容器に充填せざるを得ず、高圧で充填することがで
きたとしても、その水素吸蔵量は微々たるものであっ
た。また、ミリングに振動型のロッキングミルを使用す
ることもあるが、遊星ボールミルと同様に、従来装置で
は粉体の微粒子化が主たる目的であったために、ミル容
器内への水素の追加、連続補給等については、試みられ
た例がなかった。
However, in the conventional mechanical pulverizer using the planetary ball mill, the main purpose is to make fine particles of the powder material and to mix the powder material, so that hydrogen gas must be filled in a small mill container of about 50 cc. However, even if it could be filled at a high pressure, its hydrogen storage capacity was insignificant. In addition, although a vibration type rocking mill may be used for milling, like the planetary ball mill, since the main purpose of the conventional device was to make fine particles of the powder, additional hydrogen was added to the mill container and continuous replenishment was performed. There was no attempted case.

【0008】本発明は、このような従来技術の有する問
題に鑑みてなされたものであり、その目的とするところ
は、ミリング中に水素ガスを補給したり、圧力を高めた
状態でグラファイトへの水素吸・脱着反応を促進させ、
多量の水素吸蔵性能を有する軽量で、常温、低圧下で多
量の水素を貯蔵することができる新規で安価な機械的粉
砕処理した水素貯蔵体製造装置を提供することを目的と
する。
The present invention has been made in view of the above problems of the prior art. The object of the present invention is to supply hydrogen gas to the graphite during milling or to increase the pressure in the graphite. Promotes hydrogen absorption / desorption reaction,
An object of the present invention is to provide a new, inexpensive, mechanically pulverized hydrogen storage device manufacturing apparatus capable of storing a large amount of hydrogen at room temperature and low pressure, which has a large amount of hydrogen storage performance.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の水素貯蔵体製造装置は、水素の吸蔵材料を
収容する容器と、該容器内の吸蔵材料を機械的に粉砕す
る粉砕機と、上記容器内に水素を供給する水素供給手段
とを備えてなり、上記吸蔵材料の水素吸収中に、容器の
外部から容器内へ水素を送りながら吸蔵材料に水素を吸
収させるようにした。また、上記目的を達成するため
に、本発明の他の水素貯蔵体製造装置は、水素の吸蔵材
料を収容するミル容器と、該ミル容器を振動させて吸蔵
材料を粉砕する振動テーブルと、上記ミル容器内に水素
を供給する水素ボンベとを備えてなり、上記吸蔵材料の
水素吸収中に、ミル容器の外部から水素を送りながら吸
蔵材料に水素を吸収させるようにした。これに加えて、
ミル容器に水素供給及び排気用の開口部及び管を設け、
ミル容器外部に設置した高圧水素ボンベと連結させた構
造とすることができる。
In order to achieve the above object, a hydrogen storage device manufacturing apparatus according to the present invention comprises a container for storing a hydrogen storage material, and a crushing for mechanically crushing the storage material in the container. And a hydrogen supply means for supplying hydrogen into the container, and while absorbing hydrogen into the storage material, the storage material absorbs hydrogen while sending hydrogen from outside the container into the container. . Further, in order to achieve the above object, another hydrogen storage device manufacturing apparatus of the present invention is a mill container for storing a hydrogen storage material, a vibration table for vibrating the mill container to crush the storage material, and A hydrogen cylinder for supplying hydrogen into the mill container was provided, and during absorption of hydrogen by the storage material, hydrogen was sent from the outside of the mill container to allow the storage material to absorb hydrogen. In addition to this,
The mill container is provided with openings and pipes for hydrogen supply and exhaust,
The structure can be connected to a high-pressure hydrogen cylinder installed outside the mill container.

【0010】さらに、上記目的を達成するために、本発
明の水素貯蔵体製造装置は、水素の吸蔵材料を収容する
ミル容器と、該ミル容器に水素を供給する水素ボンベ
と、ミル容器と水素ボンベとの間に設けられ、ミル容器
内の水素供給量を調整する流量制御弁と、これらミル容
器、水素ボンベ及び流量調節弁を配設した振動テーブル
とを備えてなり、振動テーブルの振動によりミル容器内
の吸蔵材料を粉砕し、上記吸蔵材料の水素吸収中に、ミ
ル容器の外部から容器内へ水素を送りながら吸蔵材料に
水素を吸収させるようにした。
Further, in order to achieve the above-mentioned object, the hydrogen storage device manufacturing apparatus of the present invention includes a mill container for storing a hydrogen storage material, a hydrogen cylinder for supplying hydrogen to the mill container, a mill container and hydrogen. It is equipped with a flow rate control valve that is provided between the cylinder and the tank to adjust the amount of hydrogen supply in the mill container, and a vibration table where these mill container, hydrogen cylinder and flow rate control valve are arranged. The occlusion material in the mill container was pulverized, and during the absorption of hydrogen by the occlusion material, the occlusion material was made to absorb hydrogen while sending hydrogen from the outside of the mill container into the container.

【0011】上記目的を達成するために、本発明の水素
貯蔵体製造装置は、水素の吸蔵材料を収容するミル容器
と、上記ミル容器を配設した振動テーブルと、振動テー
ブルの外に配設した上記ミル容器に水素を供給する水素
供給手段と、ミル容器と水素供給手段との間に設けら
れ、ミル容器内の水素供給量を調整する流量制御弁と、
ミル容器及び水素供給手段の間に上記振動テーブルの振
動を水素供給手段へ伝わるのを阻止する抑制手段とを備
えてなり、振動テーブルの振動によりミル容器内の吸蔵
材料を粉砕し、上記吸蔵材料の水素吸収中に、ミル容器
の外部から容器内へ水素を送りながら吸蔵材料に水素を
吸収させるようにした。上記水素供給手段は、ミル容器
内への水素圧力を加圧する加圧装置を設けることができ
る。
In order to achieve the above object, the hydrogen storage device manufacturing apparatus of the present invention is provided with a mill container for storing a hydrogen storage material, a vibration table in which the mill container is arranged, and a vibration table arranged outside the vibration table. Hydrogen supply means for supplying hydrogen to the mill container, and a flow control valve provided between the mill container and the hydrogen supply means for adjusting the hydrogen supply amount in the mill container,
A suppression means for preventing the vibration of the vibration table from being transmitted to the hydrogen supply means between the mill container and the hydrogen supply means, and the absorption material in the mill container is crushed by the vibration of the vibration table, During absorption of hydrogen, the storage material was made to absorb hydrogen while sending hydrogen from the outside of the mill container into the container. The hydrogen supply means may be provided with a pressurizing device for pressurizing hydrogen pressure into the mill container.

【0012】[0012]

【発明の実施の形態】本発明の第1の実施の形態の水素
貯蔵体製造装置について、図面を参照しながら説明す
る。図1は、本発明によるグラファイトの機械的粉砕処
理を行う水素貯蔵体製造装置の正面図を示す。水素貯蔵
体製造装置は、本実施の形態では機械的粉砕(ミリン
グ)に遥動式のロッキングミル1を使用した。すなわ
ち、ロッキングミル1は、テーブル面が水平方向に置か
れた振動テーブル6を設け、振動テーブル6はテーブル
の中心を回動軸として水平方向に所定角度の間を振動S
することができる。振動テーブル6は、振動中心に円柱
形のロッド7を立設し、外周側の面上には図2及び図3
に示すミル容器2を固定している。
BEST MODE FOR CARRYING OUT THE INVENTION A hydrogen storage device manufacturing apparatus according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a front view of a hydrogen storage device manufacturing apparatus for mechanically crushing graphite according to the present invention. In this embodiment, the hydrogen storage device uses the swinging rocking mill 1 for mechanical grinding (milling). That is, the rocking mill 1 is provided with a vibrating table 6 whose table surface is placed horizontally, and the vibrating table 6 vibrates in a horizontal direction at a predetermined angle with a center of the table as a rotation axis.
can do. The vibrating table 6 has a cylindrical rod 7 standing upright at the center of vibration, and the vibrating table 6 has the outer peripheral surface shown in FIGS.
The mill container 2 shown in is fixed.

【0013】ミル容器2は、内部を真空排気及び水素ガ
スが充填できるように移送管3を取り付けている。図2
に本実施の形態で使用したミル容器2の構成図を示す。
ミル容器2は、振動テーブル6の外周側に、振動テーブ
ル6の中心軸を挟んで設けられ、ミル容器2の上蓋11
には、真空排気及び水素供給用の移送管3を取り付け
た。移送管3の先端には、図1に示すように移送管3を
介して流量調整バルブ4を接続し、バルブ4には移送管
3を介して高圧水素ガスを供給する水素ボンベ5を取り
付けている。そして、バルブ4と水素ボンベ5との間に
は、圧力センサー9を配設している。2つ備えたミル容
器2の各々に独立してバルブ4、水素ボンベ5、及び圧
力センサー9が配設され、またこれらのバルブ4、水素
ボンベ5、及び圧力センサー9は、ロッド7に固定され
た取付金具を介して堅固に固定されている。ミル容器1
は、図4のミル容器の水平方向断面に示すように、内部
にはグラファイト13を充填し、10MPa(約100気圧相
当)の水素分子14を充填した。ミリングには鋼鉄製の
ボール12を入れ、ロッキングミルの運動によって図中
に示す回転方向15に動き、グラファイト13をミリン
グする。
The mill container 2 is equipped with a transfer pipe 3 so that the inside thereof can be evacuated and filled with hydrogen gas. Figure 2
The block diagram of the mill container 2 used by this Embodiment is shown in FIG.
The mill container 2 is provided on the outer peripheral side of the vibration table 6 with the central axis of the vibration table 6 interposed therebetween.
A transfer pipe 3 for evacuation and hydrogen supply was attached to. As shown in FIG. 1, a flow rate adjusting valve 4 is connected to the tip of the transfer pipe 3 via the transfer pipe 3, and a hydrogen cylinder 5 for supplying high-pressure hydrogen gas via the transfer pipe 3 is attached to the valve 4. There is. A pressure sensor 9 is arranged between the valve 4 and the hydrogen cylinder 5. A valve 4, a hydrogen cylinder 5, and a pressure sensor 9 are independently provided in each of the two mill containers 2, and the valve 4, the hydrogen cylinder 5, and the pressure sensor 9 are fixed to a rod 7. It is firmly fixed via a mounting bracket. Mill container 1
As shown in the horizontal cross section of the mill container in FIG. 4, graphite 13 was filled inside, and hydrogen molecules 14 at 10 MPa (corresponding to about 100 atm) were filled. A steel ball 12 is put in the milling, and the graphite 13 is milled by moving in the rotation direction 15 shown in the figure by the movement of the rocking mill.

【0014】本実施の形態では次に示す手順のとおり行
った。0.3gのグラファィト13をミル容器2に充填し、
容器内を真空排気しながら約150℃に加熱し、吸着水を
除去した。ミル容器2を室温まで冷却した後、水素を室
温でミル容器2及び水素ボンベ5に充填し、水素ボンベ
8に取り付けた圧力センサーで監視し、10MPaを示す圧
力に設定した。次に、ミル容器2をロッキングミル1の
振動テーブル6に固定し、圧力センサー9でリークがな
いことを確認した。ミル容器2は2個設置し、振動数50
Hzで行った。ミリングによるミル容器2の温度上昇を避
けるために、ロッキングミル1は1時間運転後、30分
休止を1サイクルとして連続的に実施した。図5に水素
ボンベに取り付けた圧力センサー9の値とミリング時間
の関係を示す。縦軸の左側は、圧力(atm)を示し、横
軸はミリング時間(h)を示し、縦軸右側は水素吸蔵量
(g)を示し、図中の実線は水素の圧力を示し、鎖線は
水素吸着量を示す。この図から、ミリングによってグラ
ファイトの水素吸着が進行すると同時に水素ボンベ5か
らの水素供給がうまく行われていることがわかる。ま
た、同図に得られた圧力変化から計算した吸着した水素
量を求めた結果を示す。ほぼ10wt%までの水素吸着量が
認められた。この結果からミリング時間80-100時間で飽
和に達することがわかる。
In this embodiment, the procedure is as follows. Fill the mill container 2 with 0.3 g of graphite 13,
While evacuating the inside of the container, the container was heated to about 150 ° C. to remove adsorbed water. After cooling the mill container 2 to room temperature, hydrogen was filled into the mill container 2 and the hydrogen cylinder 5 at room temperature, and the pressure was set to 10 MPa by monitoring with a pressure sensor attached to the hydrogen cylinder 8. Next, the mill container 2 was fixed to the vibration table 6 of the rocking mill 1, and it was confirmed by the pressure sensor 9 that there was no leak. Two mill containers 2 are installed and the vibration frequency is 50
Performed in Hz. In order to avoid the temperature increase of the mill container 2 due to milling, the rocking mill 1 was continuously operated for 1 hour and then a 30-minute rest period as one cycle. FIG. 5 shows the relationship between the value of the pressure sensor 9 attached to the hydrogen cylinder and the milling time. The left side of the vertical axis shows the pressure (atm), the horizontal axis shows the milling time (h), the right side of the vertical axis shows the hydrogen storage amount (g), the solid line in the figure shows the pressure of hydrogen, and the chain line shows The amount of hydrogen adsorbed is shown. From this figure, it can be seen that the hydrogen adsorption of graphite progresses by the milling and at the same time, the hydrogen supply from the hydrogen cylinder 5 is successfully performed. The figure also shows the results of determining the amount of adsorbed hydrogen calculated from the obtained pressure change. The amount of hydrogen adsorbed up to about 10 wt% was confirmed. From this result, it can be seen that the milling time reaches saturation in 80 to 100 hours.

【0015】従来、粉砕等を目的としていた密閉型のミ
ル容器に水素供給及び排気用の開口部及び移送管を設
け、ミル容器外部に設置した高圧水素ボンベと連結させ
ることによって、ミリング中に高圧水素を供給できる。
すなわち、容器内に常時水素を充填することができるよ
うになったので、グラファイトの水素吸収中に新たな水
素を供給することができるようになった。ミル容器と高
圧水素ボンベ間に取り付けたバルブにより、ミル容器内
の水素圧力及び供給量を制御できるために、試料への水
素吸着速度を制御できる。よって、グラファイトの水素
吸着量が飽和状態になるまでの時間を短縮することがで
きる。
Conventionally, a closed type mill container intended for crushing or the like is provided with hydrogen supply and exhaust openings and a transfer pipe, and is connected to a high-pressure hydrogen cylinder installed outside the mill container, so that high pressure during milling is achieved. Can supply hydrogen.
That is, since it has become possible to always fill the container with hydrogen, it has become possible to supply new hydrogen while the graphite is absorbing hydrogen. Since the valve installed between the mill container and the high-pressure hydrogen cylinder can control the hydrogen pressure and supply amount in the mill container, the rate of hydrogen adsorption to the sample can be controlled. Therefore, it is possible to shorten the time until the amount of hydrogen adsorbed by graphite becomes saturated.

【0016】本発明の第2の実施の形態について、図面
を参照しながら説明する。図6に本実施の形態によるグ
ラファイトの機械的粉砕処理を行う水素貯蔵体製造装置
の正面図を示す。本実施の形態では機械的粉砕(ミリン
グ)は、第1の実施の形態と同様にロッキングミル1を
使用した。ミル容器2は第1の実施の形態と同様に、ロ
ッキングミル上面に備え付けられた振動テーブル6に固
定し、ミル容器2の上蓋に真空排気及び水素供給用の移
送管3を取り付けた。本実施の形態では、図6に示すよ
うに各々のミル容器2に接続した移送管3の先には、バ
ルブ4を介して高圧水素ガスを供給する水素ボンベ8を
取り付け、さらに、一対の補充用水素ボンベ17を設置
した。そして、一対の補充用水素ボンベ17の一方に
は、圧力センサ9と取り付けている。補充用水素ボンベ
17はロッド7に固定されたロッキングミル1は、振動
テーブル6の中心にあるロッド7を振動中心として図中
に示す方向に振動Sを行う。2つ備えたミル容器2の各
々には、独立してバルブ4、水素ボンベ5、補充用水素
ボンベ17及び圧力センサー9を配設している。
A second embodiment of the present invention will be described with reference to the drawings. FIG. 6 shows a front view of a hydrogen storage device manufacturing apparatus for mechanically crushing graphite according to the present embodiment. In the present embodiment, the mechanical crushing (milling) uses the rocking mill 1 as in the first embodiment. As in the first embodiment, the mill container 2 was fixed to a vibration table 6 provided on the upper surface of the rocking mill, and a transfer pipe 3 for vacuum exhaust and hydrogen supply was attached to the upper lid of the mill container 2. In the present embodiment, as shown in FIG. 6, a hydrogen cylinder 8 that supplies high-pressure hydrogen gas via a valve 4 is attached to the tip of the transfer pipe 3 connected to each mill container 2, and a pair of replenishers is further added. A hydrogen cylinder 17 for use was installed. The pressure sensor 9 is attached to one of the pair of replenishing hydrogen cylinders 17. The refueling hydrogen cylinder 17 is fixed to the rod 7, and the rocking mill 1 vibrates S in the direction shown in the figure with the rod 7 at the center of the vibration table 6 as the vibration center. A valve 4, a hydrogen cylinder 5, a replenishment hydrogen cylinder 17 and a pressure sensor 9 are independently arranged in each of the two mill containers 2.

【0017】実施にあたっては、0.3gのグラファィトを
ミル容器2に充填し、ミル容器2を真空排気しながら約
150℃に加熱し、吸着水を除去した。ミル容器2を室温
まで冷却した後、水素ボンベ5及び補充用水素ボンベ1
7の水素をミル容器2に充填し、補充用水素ボンベ17
に取り付けた圧力センサー9で10MPaを示す圧力に設定
した。次に、ミル容器2をロッキングミル1の振動テー
ブル6に固定し、圧力センサー9でリークがないことを
確認した。ミル容器2は2個設置し、振動数50Hzで行っ
た。ミリングによる容器の温度上昇を避けるために、ミ
リング装置は1時間運転後、30分休止を1サイクルと
して連続的に実施した。
In practice, 0.3 g of graphite was filled in the mill container 2 and the mill container 2 was evacuated to about 3
The adsorbed water was removed by heating to 150 ° C. After cooling the mill container 2 to room temperature, a hydrogen cylinder 5 and a supplementary hydrogen cylinder 1
Fill the mill container 2 with hydrogen from No. 7, and fill the refueling hydrogen cylinder 17
The pressure sensor 9 attached to the was set to a pressure indicating 10 MPa. Next, the mill container 2 was fixed to the vibration table 6 of the rocking mill 1, and it was confirmed by the pressure sensor 9 that there was no leak. Two mill containers 2 were installed and the frequency was 50 Hz. In order to avoid the temperature rise of the container due to milling, the milling device was continuously operated for 1 hour and then a 30-minute rest period as one cycle.

【0018】図7に水素ボンベに取り付けた圧力センサ
ーの値とミリング時間の関係を示す。この図から、水素
ボンベ容量が増加した分だけ、水素ガスの圧力低下は抑
制され、水素圧力が高い条件を維持した状態のまま、ミ
リングによってグラファイトの水素吸着が進行すると同
時に水素ボンベからの水素供給がうまく行われているこ
とがわかる。また、同図に得られた圧力変化から計算し
た吸着した水素量を求めた結果を示す。ほぼ10wt%まで
の水素吸着量が認められた。この結果からミリング時間
約60時間で飽和に達することがわかる。この結果は第1
の実施の形態の結果よりも若干処理速度が向上している
ことを示す。
FIG. 7 shows the relationship between the value of the pressure sensor attached to the hydrogen cylinder and the milling time. From this figure, the pressure drop of hydrogen gas is suppressed by the increase of the hydrogen cylinder capacity, and while the condition of high hydrogen pressure is maintained, the hydrogen adsorption of graphite progresses by milling and the hydrogen supply from the hydrogen cylinder simultaneously. You can see that is done well. The figure also shows the results of determining the amount of adsorbed hydrogen calculated from the obtained pressure change. The amount of hydrogen adsorbed up to about 10 wt% was confirmed. From this result, it can be seen that the saturation is reached after about 60 hours of milling. This result is the first
It is shown that the processing speed is slightly higher than the result of the embodiment.

【0019】従来、粉砕等を目的としていた密閉型のミ
ル容器に水素供給及び排気用の開口部及び移送管を設
け、ミル容器外部に設置した高圧水素ボンベを複数個連
結させることによって、ミリング中に水素を高圧で維持
したまま、長時間枯渇させることなく供給できる。ミリ
ングにより露出した水素吸着サイトに対して水素分子の
密度が高い状態になるため、飽和状態になるまでの吸着
速度を高めることができるため、水素貯蔵体の製造時間
を大幅に短縮できる。
During the milling process, a closed type mill container, which has been conventionally used for crushing or the like, is provided with hydrogen supply and exhaust openings and transfer pipes, and a plurality of high-pressure hydrogen cylinders installed outside the mill container are connected. Moreover, hydrogen can be supplied for a long time without being depleted while maintaining high pressure. Since the density of hydrogen molecules becomes high with respect to the hydrogen adsorption sites exposed by milling, the adsorption rate until reaching a saturated state can be increased, so that the production time of the hydrogen storage body can be significantly shortened.

【0020】本発明の第3の実施の形態について、図面
を参照しながら説明する。図8に本実施の形態によるグ
ラファイトの機械的粉砕処理を行う水素貯蔵体製造装置
の正面図を示す。本実施の形態では、機械的粉砕(ミリ
ング)には第1の実施の形態と同様にロッキングミル1
を使用し、ミル容器2はロッキングミルの上面に備え付
けられた振動テーブル6に固定し、ミル容器2の上蓋に
真空排気及び水素供給用の移送管3を取り付けた。ロッ
キングミル1は振動テーブル6の中心を振動中心として
図中に示す振動Sを行う。
A third embodiment of the present invention will be described with reference to the drawings. FIG. 8 shows a front view of a hydrogen storage device manufacturing apparatus for mechanically crushing graphite according to the present embodiment. In the present embodiment, the rocking mill 1 is used for mechanical crushing (milling) as in the first embodiment.
The mill container 2 was fixed to a vibration table 6 provided on the upper surface of the rocking mill, and a transfer pipe 3 for evacuation and hydrogen supply was attached to the upper lid of the mill container 2. The rocking mill 1 performs the vibration S shown in the figure with the center of the vibration table 6 as the vibration center.

【0021】本実施の形態では、図8に示すように移送
管3の先には、バルブ4を介して高圧水素ガスを供給す
る水素ボンベ5を取り付け、さらに、振動を避けるため
にらせん管18を通して、図9に示す外部配管系の大容
量水素ボンベ20を設置した。図9に示すように、らせ
ん管19はバルブ32,29,30を介して大容量水素
ボンベ20に接続され、圧力センサー21がバルブ29
と30との間のラインに配設されている。大容量水素ボ
ンベ20の排気側には、排気系のバルブ31,25,2
6が備え、大容量水素ボンベ20への水素供給ライン側
には、バルブ28,22が設け、当該ラインにはアルゴ
ン供給バルブ23及び真空計24を接続している。
In the present embodiment, as shown in FIG. 8, a hydrogen cylinder 5 for supplying a high-pressure hydrogen gas via a valve 4 is attached to the tip of the transfer pipe 3, and a spiral pipe 18 is provided to avoid vibration. Through, the large-capacity hydrogen cylinder 20 of the external piping system shown in FIG. 9 was installed. As shown in FIG. 9, the spiral tube 19 is connected to the large-capacity hydrogen cylinder 20 via valves 32, 29, 30 and the pressure sensor 21 is connected to the valve 29.
It is arranged in the line between the and 30. On the exhaust side of the large capacity hydrogen cylinder 20, exhaust system valves 31, 25 and 2 are provided.
6, and valves 28 and 22 are provided on the hydrogen supply line side to the large-capacity hydrogen cylinder 20, and an argon supply valve 23 and a vacuum gauge 24 are connected to the line.

【0022】実施にあたっては、0.3gのグラファィトを
ミル容器2に充填し、容器を真空排気しながら約150℃
に加熱し、吸着水を除去した。ミル容器2を室温まで冷
却した後、ミル容器2をロッキングミル1の振動テーブ
ル6に固定し、圧力センサー9でリークがないことを確
認した。室温で水素ボンベ8及び大容量水素ボンベ20
からミル容器2に水素を充填し、外部配管系に取り付け
た圧力センサー21で10MPaを示す圧力に設定した。ミ
ル容器は2個設置し、振動数50Hzで行った。ミリングに
よる容器の温度上昇を避けるために、ミリング装置は1
時間運転後、30分休止を1サイクルとして連続的に実
施した。
In carrying out the method, 0.3 g of graphite was filled in the mill container 2 and the container was evacuated to about 150 ° C.
The adsorbed water was removed by heating. After cooling the mill container 2 to room temperature, the mill container 2 was fixed to the vibration table 6 of the rocking mill 1, and it was confirmed by the pressure sensor 9 that there was no leak. Hydrogen cylinder 8 and large capacity hydrogen cylinder 20 at room temperature
Then, the mill container 2 was filled with hydrogen and the pressure sensor 21 attached to the external piping system was set to a pressure of 10 MPa. Two mill containers were installed and the frequency was 50 Hz. In order to avoid the temperature rise of the container due to milling, the milling device
After running for an hour, one cycle of 30-minute rest was performed continuously.

【0023】図10に水素ボンベに取り付けた圧力セン
サーの値とミリング時間の関係を示す。この図から、大
容量水素ボンベの使用により水素ガスの圧力低下は抑制
され、水素圧力が高い条件を維持した状態のまま、ミリ
ングによってグラファイトの水素吸着が進行しているこ
とがわかる。また、同図に得られた圧力変化から計算し
た吸着した水素量を求めた結果を示す。ほぼ10wt%まで
の水素吸着量が認められた。この結果からミリング時間
約30時間で飽和に達することがわかる。この結果は第1
の実施の形態及び第2の実施の形態の結果よりもかなり
効果的に処理速度が向上していることを示す。本実施の
形態では、ミル容器に水素ボンベ9を接続したが、大容
量水素ボンベに余裕があれば水素ボンベ9はなくても、
大容量水素ボンベの充填圧力を上げる操作をすれば取り
除いても同様の結果が得られる。
FIG. 10 shows the relationship between the value of the pressure sensor attached to the hydrogen cylinder and the milling time. From this figure, it can be seen that the use of a large-capacity hydrogen cylinder suppresses the pressure drop of hydrogen gas, and the hydrogen adsorption of graphite is progressing by milling while maintaining the condition of high hydrogen pressure. The figure also shows the results of determining the amount of adsorbed hydrogen calculated from the obtained pressure change. The amount of hydrogen adsorbed up to about 10 wt% was confirmed. From this result, it can be seen that saturation is reached after about 30 hours of milling. This result is the first
It is shown that the processing speed is improved considerably more effectively than the results of the first embodiment and the second embodiment. In the present embodiment, the hydrogen cylinder 9 is connected to the mill container, but if the large-capacity hydrogen cylinder has a margin, the hydrogen cylinder 9 may be omitted.
The same result can be obtained by removing the large-capacity hydrogen cylinder by increasing the filling pressure.

【0024】従来、粉砕等を目的としていた密閉型のミ
ル容器に水素供給及び排気用の開口部及び移送管を設
け、ミル容器を搭載した振動テーブルの外部に設置した
大容量水素ボンベと連結させることによって、ミリング
中に水素を高圧で維持したまま、長時間枯渇させること
なく供給できる。ミリングにより露出した水素吸着サイ
トに対して水素分子の密度が高い状態となるため、吸着
速度を高めることができるため、水素貯蔵体の製造時間
を短縮できる。大容量水素ボンベ出口に設けた圧力セン
サーにしたがって、ミル容器に供給する圧力を一定値ま
たは連続的に制御できる。ミル容器内に供給する水素圧
力を監視しつつ大容量水素ボンベ出口のバルブ(弁)を
制御することによってミル容器に供給する水素圧力を制
御する(一定値、連続的など)ことができる。
Conventionally, a closed mill container intended for crushing or the like is provided with an opening for hydrogen supply and exhaust and a transfer pipe, and is connected to a large-capacity hydrogen cylinder installed outside a vibration table equipped with the mill container. As a result, hydrogen can be supplied while being maintained at a high pressure during milling without being depleted for a long time. Since the density of hydrogen molecules is high with respect to the hydrogen adsorption sites exposed by milling, the adsorption rate can be increased, and the manufacturing time of the hydrogen storage body can be shortened. According to the pressure sensor provided at the outlet of the large capacity hydrogen cylinder, the pressure supplied to the mill container can be controlled to a constant value or continuously. The hydrogen pressure supplied to the mill container can be controlled (constant value, continuous, etc.) by controlling the valve at the outlet of the large-capacity hydrogen cylinder while monitoring the hydrogen pressure supplied to the mill container.

【0025】以上、本発明の各実施の形態について説明
したが、本発明は、勿論本発明の技術的思想に基づき種
々の変形または変更が可能である。例えば、上記各実施
の形態では、振動テーブル6にミル容器2を2個配設し
たが、ミル容器2の数は特に限定されず、1個でも3個
以上のミル容器2を用いて作業が可能である。
Although the respective embodiments of the present invention have been described above, the present invention can of course be variously modified or changed based on the technical idea of the present invention. For example, in each of the above-described embodiments, two mill containers 2 are arranged on the vibration table 6, but the number of mill containers 2 is not particularly limited, and work can be performed using one or more mill containers 2. It is possible.

【0026】[0026]

【発明の効果】本発明の水素貯蔵体製造装置によれば、
水素の吸蔵材料を収容する容器と、該容器内の吸蔵材料
を粉砕する粉砕機と、上記容器内に水素を供給する水素
供給手段とを備え、上記吸蔵材料の水素吸収中に、容器
の外部から容器内へ水素圧力を加えながら吸蔵材料に水
素を吸収させるようにしたので、水素吸蔵材料に水素の
吸収量が飽和状態になるまで、短時間で水素を吸収させ
ることができる。上記水素ボンベを複数備えることによ
り、吸蔵材料に高圧状態を長く維持することができ、よ
り速く吸蔵材料に水素を吸収させることができる。水素
を上記ミル容器に供給する水素供給手段を振動テーブル
の外に設けたので、大容量の水素供給手段を設けること
ができ、水素の吸収作業中に水素を枯渇させることな
く、連続的に水素の吸収作業をすることができる。上記
水素供給手段に、ミル容器内への水素圧力を加圧する加
圧装置を設けることにより、高圧の水素をミル容器内へ
供給することができる。
According to the hydrogen storage device manufacturing apparatus of the present invention,
A container for accommodating the hydrogen storage material, a crusher for crushing the storage material in the container, and a hydrogen supply means for supplying hydrogen into the container, and the outside of the container during the hydrogen absorption of the storage material. Since the hydrogen storage material is made to absorb hydrogen while applying hydrogen pressure to the inside of the container, the hydrogen storage material can absorb hydrogen in a short time until the absorbed amount of hydrogen becomes saturated. By providing a plurality of the hydrogen cylinders, the storage material can be maintained in a high pressure state for a long time, and the storage material can absorb hydrogen more quickly. Since the hydrogen supply means for supplying hydrogen to the mill container is provided outside the vibrating table, a large capacity hydrogen supply means can be provided, and the hydrogen is continuously depleted during the hydrogen absorption work without continuously depleting the hydrogen. You can do absorption work. By providing the hydrogen supply means with a pressurizing device for pressurizing the hydrogen pressure in the mill container, high-pressure hydrogen can be supplied into the mill container.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第1の実施の形態の水素貯蔵体製
造装置の正面図である。
FIG. 1 is a front view of a hydrogen storage device manufacturing apparatus according to a first embodiment of the present invention.

【図2】図1の水素貯蔵体製造装置のミル容器の分解構
成図である。
FIG. 2 is an exploded configuration diagram of a mill container of the hydrogen storage device manufacturing apparatus of FIG.

【図3】図1の水素貯蔵体製造装置のミル容器の配置及
び内部の構造を示す平面図である。
3 is a plan view showing the arrangement and internal structure of a mill container of the hydrogen storage device manufacturing apparatus of FIG. 1. FIG.

【図4】図1の水素貯蔵体製造装置の高圧ミリングによ
るグラファイトへの水素吸着の概念図である。
FIG. 4 is a conceptual diagram of hydrogen adsorption on graphite by high pressure milling in the hydrogen storage device manufacturing apparatus of FIG. 1.

【図5】第1の実施の形態の高圧ミリング時間と水素圧
力及び吸着水素量の関係を示す線図である。
FIG. 5 is a diagram showing the relationship between the high pressure milling time, the hydrogen pressure and the amount of adsorbed hydrogen according to the first embodiment.

【図6】本発明による第2の実施の形態の水素貯蔵体製
造装置の正面図である。
FIG. 6 is a front view of the hydrogen storage device manufacturing apparatus according to the second embodiment of the present invention.

【図7】第2の実施の形態の高圧ミリング時間と水素圧
力及び吸着水素量の関係を示す線図である。
FIG. 7 is a diagram showing the relationship between the high-pressure milling time, the hydrogen pressure, and the amount of adsorbed hydrogen according to the second embodiment.

【図8】本発明による第3の実施の形態の水素貯蔵体製
造装置の正面図である。
FIG. 8 is a front view of a hydrogen storage device manufacturing apparatus according to a third embodiment of the present invention.

【図9】図8の水素貯蔵体製造装置の大容量水素ボンベ
部の配管図である。
FIG. 9 is a piping diagram of a large-capacity hydrogen cylinder part of the hydrogen storage device manufacturing apparatus of FIG.

【図10】第3の実施の形態の高圧ミリング時間と水素
圧力及び吸着水素量の関係を示す線図である。
FIG. 10 is a diagram showing the relationship among high pressure milling time, hydrogen pressure and adsorbed hydrogen amount according to the third embodiment.

【図11】従来の遊星ボールミル装置の側面図である。FIG. 11 is a side view of a conventional planetary ball mill device.

【図12】図11の遊星ボールミル装置の平面図であ
る。
12 is a plan view of the planetary ball mill device of FIG. 11. FIG.

【符号の説明】[Explanation of symbols]

1 ロッキングミル 2 ミル容器 3 管 4,22,23,25〜32 バルブ 5 水素ボンベ 6 振動テーブル 7 ロッド 9,21 圧力センサー 11 上蓋 12 ボール 13 グラファイト 14 水素分子 17 補充用水素ボンベ 18 らせん管 20 大容量水素ボンベ 24 真空計 1 rocking mill 2 mil container 3 tubes 4,22,23,25-32 valves 5 hydrogen cylinder 6 vibration table 7 rod 9,21 Pressure sensor 11 Top lid 12 balls 13 Graphite 14 hydrogen molecules 17 Refilling hydrogen cylinder 18 spiral tube 20 large capacity hydrogen cylinder 24 vacuum gauge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 博信 広島県東広島市高屋高美が丘5丁目2−2 −606 (72)発明者 折茂 慎一 広島県東広島市鏡山2丁目360−2−306 Fターム(参考) 3E072 EA10 GA30 4G040 AA01 AA11 AA24 5H027 BA13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hironobu Fujii             5-2-2 Takamiyagaoka, Takaya, Higashihiroshima City, Hiroshima Prefecture             −606 (72) Inventor Shinichi Orishige             2-360-2-306 Kagamiyama, Higashihiroshima City, Hiroshima Prefecture F-term (reference) 3E072 EA10 GA30                 4G040 AA01 AA11 AA24                 5H027 BA13

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水素の吸蔵材料を収容する容器と、該容
器内の吸蔵材料を機械的に粉砕する粉砕機と、上記容器
内に水素を供給する水素供給手段とを備え、上記吸蔵材
料の水素吸収中に、水素供給手段から容器内へ水素を送
りながら吸蔵材料に水素を吸収させるようにしたことを
特徴とする水素貯蔵体製造装置。
1. A container comprising a hydrogen storage material, a crusher for mechanically crushing the storage material in the container, and a hydrogen supply means for supplying hydrogen into the container, the storage device comprising: A hydrogen storage device manufacturing apparatus characterized in that during absorption of hydrogen, the storage material absorbs hydrogen while sending hydrogen from the hydrogen supply means into the container.
【請求項2】 水素の吸蔵材料を収容するミル容器と、
該ミル容器を振動させて吸蔵材料を粉砕する振動テーブ
ルと、上記ミル容器内に水素を供給する水素ボンベとを
備え、上記吸蔵材料の水素吸収中に、水素ボンベからミ
ル容器内へ水素を送りながら吸蔵材料に水素を吸収させ
るようにしたことを特徴とする水素貯蔵体製造装置。
2. A mill container containing a hydrogen storage material,
A vibration table for vibrating the mill container to crush the occlusion material and a hydrogen cylinder for supplying hydrogen into the mill container are provided, and hydrogen is sent from the hydrogen cylinder into the mill container during the absorption of hydrogen by the occlusion material. However, the hydrogen storage device manufacturing apparatus is characterized in that the storage material is made to absorb hydrogen.
【請求項3】 水素の吸蔵材料を収容するミル容器と、
該ミル容器に水素を供給する水素ボンベと、ミル容器と
水素ボンベとの間に設けられ、ミル容器内の水素供給量
を調整する流量制御弁と、これらミル容器、水素ボンベ
及び流量調節弁を配設した振動テーブルとを備え、振動
テーブルの振動によりミル容器内の吸蔵材料を粉砕し、
上記吸蔵材料の水素吸収中に、水素ボンベからミル容器
内へ水素を送りながら吸蔵材料に水素を吸収させるよう
にしたことを特徴とする水素貯蔵体製造装置。
3. A mill container containing a hydrogen storage material,
A hydrogen cylinder for supplying hydrogen to the mill container, a flow control valve provided between the mill container and the hydrogen cylinder for adjusting the hydrogen supply amount in the mill container, the mill container, the hydrogen cylinder and the flow rate control valve. With the vibration table provided, the occlusion material in the mill container is crushed by the vibration of the vibration table,
A hydrogen storage device manufacturing apparatus characterized in that, during the absorption of hydrogen by the storage material, the storage material absorbs hydrogen while sending hydrogen from the hydrogen cylinder into the mill container.
【請求項4】 上記水素ボンベを複数備えたことを特徴
とする請求項3に記載の水素貯蔵体製造装置。
4. The hydrogen storage device manufacturing apparatus according to claim 3, further comprising a plurality of the hydrogen cylinders.
【請求項5】 水素の吸蔵材料を収容するミル容器と、
上記ミル容器を配設した振動テーブルと、振動テーブル
の外に配設した上記ミル容器に水素を供給する水素供給
手段と、ミル容器と水素貯蔵手段との間に設けられ、ミ
ル容器内の水素供給量を調整する流量制御弁と、ミル容
器及び水素供給手段の間に上記振動テーブルの振動を水
素貯蔵手段へ伝わるのを阻止する振動抑制手段とを備
え、振動テーブルの振動によりミル容器内の吸蔵材料を
粉砕し、上記吸蔵材料の水素吸収中に、水素貯蔵手段か
らミル容器内へ水素を送りながら吸蔵材料に水素を吸収
させるようにしたことを特徴とする水素貯蔵体製造装
置。
5. A mill container containing a hydrogen storage material,
A vibration table provided with the mill container, a hydrogen supply means for supplying hydrogen to the mill container provided outside the vibration table, a hydrogen supply means provided between the mill container and the hydrogen storage means, A flow control valve for adjusting the supply amount and a vibration suppressing means for preventing the vibration of the vibration table from being transmitted to the hydrogen storage means are provided between the mill container and the hydrogen supply means, and the vibration of the vibration table causes the vibration in the mill container to be reduced. An apparatus for producing a hydrogen storage body, characterized in that the storage material is crushed, and while the storage material is absorbing hydrogen, the storage material absorbs hydrogen while sending hydrogen from the hydrogen storage means into the mill container.
【請求項6】 上記水素貯蔵手段に、ミル容器内への水
素圧力を加圧する加圧装置を設けてなる請求項5に記載
の水素貯蔵体製造装置。
6. The hydrogen storage device manufacturing apparatus according to claim 5, wherein the hydrogen storage means is provided with a pressurizing device for pressurizing the hydrogen pressure in the mill container.
JP2002032692A 2002-02-08 2002-02-08 Apparatus for producing hydrogen storage body Withdrawn JP2003238102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002032692A JP2003238102A (en) 2002-02-08 2002-02-08 Apparatus for producing hydrogen storage body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002032692A JP2003238102A (en) 2002-02-08 2002-02-08 Apparatus for producing hydrogen storage body

Publications (1)

Publication Number Publication Date
JP2003238102A true JP2003238102A (en) 2003-08-27

Family

ID=27775733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002032692A Withdrawn JP2003238102A (en) 2002-02-08 2002-02-08 Apparatus for producing hydrogen storage body

Country Status (1)

Country Link
JP (1) JP2003238102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179468A (en) * 2015-03-09 2016-10-13 リン, シン−ユンLin, Hsin−Yung Hydrogen-rich water generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179468A (en) * 2015-03-09 2016-10-13 リン, シン−ユンLin, Hsin−Yung Hydrogen-rich water generator

Similar Documents

Publication Publication Date Title
CN102563339B (en) A kind of metal hydride hydrogen storage unit
US7721601B2 (en) Hydrogen storage tank and method of using
US7094276B2 (en) Hydrogen storage material and hydrogen storage apparatus
RU2228485C2 (en) Method and plant for accumulation of gas and agent absorbing gas and method of production of such agent
Bosu et al. Recent advancements in hydrogen storage-Comparative review on methods, operating conditions and challenges
JP5690718B2 (en) Method for producing hydrogen tank using metal hydride
CN109931494A (en) Hydrogen-storing device for hydrogen storage
JP2005219950A (en) Carbon material, method of manufacturing carbon material, gas adsorption apparatus and composite material
JP2006035174A (en) Hydrogen occlusion material and manufacture and utilization of the same
JP5703164B2 (en) Composite container for hydrogen storage and hydrogen filling method
JP2003238102A (en) Apparatus for producing hydrogen storage body
JP2007069184A (en) Hydrogen adsorbing material for adsorbing/desorbing hydrogen at low temperature and low-temperature hydrogen storage vessel
JP2005113361A (en) Fluorinated amorphous nano carbon fiber and process for producing the same, hydrogen storing material comprising fluorinated amorphous nano carbon fiber, and hydrogen storing apparatus and fuel cell system
WO2001068525A1 (en) Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
JP2004261739A (en) Hydrogen occlusion composite material
JP2001220101A (en) Hydrogen storage method and hydrogen storage device
WO2009057127A1 (en) A system for effective storing and fuelling of hydrogen
US20050118091A1 (en) Hydrogen storage utilizing carbon nanotube materials
JP2003238101A (en) Hydrogen storage body and its producing method
JP2003230845A (en) Device for manufacturing hydrogen storage body and its manufacturing method
Mukherjee Carbon nanofiber for hydrogen storage
KR101400228B1 (en) Nano porous material, method for preparing the nano porous material and hydrogen strorage device employing the same
JP2007218317A (en) Cryogenic liquid/gas hydrogen storage tank
JP2008239367A (en) Method for producing hydrogen storage material
JP2007270263A (en) Hydrogen storage body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510