JP2003236831A - Twin-screw kneading extruder - Google Patents

Twin-screw kneading extruder

Info

Publication number
JP2003236831A
JP2003236831A JP2002040033A JP2002040033A JP2003236831A JP 2003236831 A JP2003236831 A JP 2003236831A JP 2002040033 A JP2002040033 A JP 2002040033A JP 2002040033 A JP2002040033 A JP 2002040033A JP 2003236831 A JP2003236831 A JP 2003236831A
Authority
JP
Japan
Prior art keywords
section
cylinder
kneading
inner hole
twin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002040033A
Other languages
Japanese (ja)
Inventor
Kiyoshi Handa
清 半田
Atsushi Kakizaki
淳 柿崎
Hiroaki Shintani
浩昭 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2002040033A priority Critical patent/JP2003236831A/en
Publication of JP2003236831A publication Critical patent/JP2003236831A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/685Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads
    • B29C48/686Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads having grooves or cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/682Barrels or cylinders for twin screws

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure relieving of a resin and prevent a temperature from rising by removing the tip of a joint part formed by an arc-like inner hole of a cylinder bore and thereby, forming a notched part. <P>SOLUTION: This twin-screw kneading extruder structurally has a notched part (50) formed in a direction at right angle to the axis by removing the tip of the joint part (2M) formed by two arc-like inner holes (2H) in a section at right angle to each of the axes of the cylinder bores (2N) of a conveyance part (2b1 and 2b2) and a kneading part (2c). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二軸混練押出機に
関し、特に、シリンダのシリンダ内孔の上部と下部に形
成される接合部の先端部の一方又は両方を除去して切欠
部を形成し、この切欠部によって樹脂の逃げ場所を確保
して消費エネルギーの低下、樹脂温度の上昇を押さえた
製品化を可能とするための新規な改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a twin-screw kneading extruder, and more particularly, a notch is formed by removing one or both of the tips of a joint formed in the upper and lower portions of a cylinder inner hole of a cylinder. However, the present invention relates to a new improvement for securing a resin escape place by the cutout portion and enabling commercialization while suppressing a decrease in energy consumption and a rise in resin temperature.

【0002】[0002]

【従来の技術】従来、用いられていたこの種の二軸混練
押出機としては、図2から図11で示される特許第32
24931号公報の構成を挙げることができる。すなわ
ち、図2において、符号1で示されるものは二軸混練押
出機であり、この二軸混練押出機1のシリンダ2の内孔
2Hには、互いに噛み合う2本のスクリュ3a、3bが
回転可能に挿入され内蔵されている。この二軸混練押出
機1のシリンダ2は、混練材料Pが供給される上流端2
Aから下流端2Bへ順次材料供給部A、輸送部B1、B
2、混練部C、脱気部D及び吐出部Eで構成されてい
る。
2. Description of the Related Art As a twin-screw kneading extruder of this type which has been conventionally used, Patent No. 32 shown in FIGS.
The configuration of Japanese Patent No. 24931 can be mentioned. That is, in FIG. 2, what is indicated by reference numeral 1 is a twin-screw kneading extruder, and in the inner hole 2H of the cylinder 2 of this two-screw kneading extruder 1, two screws 3a and 3b which are meshed with each other are rotatable. Is inserted and built into. The cylinder 2 of this twin-screw kneading extruder 1 has an upstream end 2 to which the kneading material P is supplied.
From A to the downstream end 2B, a material supply section A, a transport section B1, B in order.
2, a kneading section C, a deaeration section D and a discharge section E.

【0003】シリンダ2は、前記二軸混練押出機1の構
成に対応して、供給口4が形成された材料供給シリンダ
2a、2個の輸送シリンダ2b1、2b2、混練シリン
ダ2c、脱気口5が形成された脱気シリンダ2d及び吐
出シリンダ2eの各ブロックシリンダを軸方向に接続し
て構成されている。各ブロックシリンダ2a〜2eに
は、図示しない加熱及び冷却装置が設けられており、混
練状況に適合する混練材料Pの温度制御を可能としてい
る。2本の前記スクリュ3a、3bは、前記二軸混練押
出機1の構成に対応して、材料供給部A、輸送部B1、
B2、脱気部D及び吐出部Eがフルフライトスクリュ3
F、混練部Cがニーディングディスク3Dで構成され、
前記材料供給シリンダ2aの端部に設けられた図示しな
い駆動装置により、同一回転速度で回転駆動される。図
2で示される場合は2本のスクリュ3a、3bが同方向
に回転駆動されるが、スクリュ3a、3bを適宜に組み
合わせることにより、異方向に回転駆動されてもよい。
また、2本のスクリュ3a、3bは、混練材料Pの混練
特性に対応して混練状態を変更可能なように、組み替え
可能な多数のスクリュピースを組み合わせて構成されて
いる。
Corresponding to the structure of the twin-screw kneading extruder 1, the cylinder 2 has a material supply cylinder 2a having a supply port 4 formed therein, two transport cylinders 2b1 and 2b2, a kneading cylinder 2c, and a degassing port 5. Each of the block cylinders of the deaeration cylinder 2d and the discharge cylinder 2e in which is formed is connected in the axial direction. Each of the block cylinders 2a to 2e is provided with a heating and cooling device (not shown) so that the temperature of the kneading material P suitable for the kneading condition can be controlled. The two screws 3a and 3b correspond to the configuration of the twin-screw kneading extruder 1 and have a material supply section A, a transport section B1,
B2, deaeration part D and discharge part E are full flight screws 3
F, the kneading section C is composed of a kneading disc 3D,
It is rotationally driven at the same rotational speed by a driving device (not shown) provided at the end of the material supply cylinder 2a. In the case shown in FIG. 2, the two screws 3a and 3b are rotationally driven in the same direction, but they may be rotationally driven in different directions by appropriately combining the screws 3a and 3b.
Further, the two screws 3a and 3b are configured by combining a large number of reconfigurable screw pieces so that the kneading state can be changed in accordance with the kneading characteristics of the kneading material P.

【0004】以上のように構成された二軸混練押出機1
の2個の輸送部シリンダ2b1、2b2及び混練部シリ
ンダ2cは、第1従来例として、2本のスクリュ3a、
3bが同方向回転の場合は図3、異方向回転の場合は図
4に示されるように、軸直角断面において、内孔2Hの
2つの円弧部2Q、2Rにそれぞれ複数の溝2Mが軸方
向に連続して設けられている。すなわち、内孔2Hに沿
って回転流動する混練材料Pの流動方向に流路断面の拡
大部が溝2Mによって形成され、各溝2Mは、軸直角断
面における断面形状が溝底面とスクリュ3a、3bの回
転外周(フライト外周)との間隔をスクリュ3a、3b
の回転方向に徐々に狭くするように滑らかな曲線形状に
形成されている。図7に示されるものは、溝2Mの代表
的な断面形状であり、スクリュ3a、3bの回転方向に
小さい第1曲率半径R1の第1円弧2Mと第1曲率半
径Rより大きい第2曲率半径R2の第2円弧2Mとを
滑らかに接続して溝底面形状が形成されている。また、
この第1円弧2Mはスクリュ3a、3bの回転方向に
沿う手前側に位置し、第2円弧2Mはスクリュ3a、
3bの回転方向に沿う後側に位置している。なお、この
溝底面形状は各円弧2M、2Mを接続されたものに
限定されるものではなく、1つの曲線で、または2つ以
上の直線、直線と円弧を含む曲線あるいは曲線を滑らか
に接続されてもよい。
The twin-screw kneading extruder 1 configured as described above
The two transport section cylinders 2b1 and 2b2 and the kneading section cylinder 2c are, as a first conventional example, two screws 3a,
When 3b rotates in the same direction, as shown in FIG. 3 and when it rotates in different directions, as shown in FIG. 4, a plurality of grooves 2M are respectively formed in the two arc portions 2Q, 2R of the inner hole 2H in the axial direction in a cross section perpendicular to the axis. Are provided continuously. That is, an enlarged portion of the flow passage cross section is formed by the groove 2M in the flow direction of the kneading material P that rotates and flows along the inner hole 2H, and each groove 2M has a cross-sectional shape in a cross section perpendicular to the axis and the groove bottom surface and the screws 3a, 3b. The rotation outer circumference (flight outer circumference) of the screw 3a, 3b
It is formed in a smooth curved shape so that it gradually narrows in the direction of rotation. What is shown in FIG. 7 is a typical cross-sectional shape of the groove 2M, that is, a first arc 2M 1 having a first radius of curvature R1 that is small in the rotation direction of the screws 3a and 3b and a second curvature that is larger than the first radius of curvature R. A groove bottom surface shape is formed by smoothly connecting to the second arc 2M 2 having the radius R2. Also,
The first circular arc 2M 1 is located on the front side along the rotation direction of the screws 3a, 3b, and the second circular arc 2M 2 is the screw 3a,
It is located on the rear side along the rotation direction of 3b. The shape of the bottom surface of the groove is not limited to the shape in which the circular arcs 2M 1 and 2M 2 are connected, and it may be a single curved line, or two or more straight lines, or a curved line including straight lines and circular arcs or a smooth curved line. May be connected.

【0005】以上のように構成され、スクリュ3a、3
bが回転駆動されている二軸混練押出機1において、材
料供給シリンダ2aの供給口4から平均粒径10ミクロ
ンメートル以下の粉状の材料が数10パーセント以上混
合された粒状あるいは粉状の樹脂材料、あるいは全体が
前記粉状の樹脂材料の混練材料Pが供給されると、混練
材料Pはシリンダ2の内孔2Hの軸直角断面における2
つの円弧2Q、2Rに沿って回転しながら、スクリュ3
a、3bの輸送作用により下流方向(シリンダ2の先端
方向)へ充満状態で順次輸送される。この間、混練材料
Pはシリンダ2に設けられた加熱装置により外部から加
熱されると共に、シリンダ2の内孔2H面とスクリュ3
a、3bとの混練作用と混練材料P間の摩擦とにより樹
脂材料が温度上昇し溶融する。この樹脂材料の溶融現象
は前記輸送部B1、B2から混練部Cへの遷移領域で始
まり、その下流側では混練材料Pは溶融状態で混練され
る。溶融状態の樹脂材料すなわち混練材料Pは粘性の高
い流動性物質であり、その変形速度が低くなる。
The screws 3a, 3 are constructed as described above.
In the twin-screw kneading extruder 1 in which b is rotatably driven, granular or powdery resin in which powdery material having an average particle diameter of 10 μm or less is mixed by several tens percent or more from the supply port 4 of the material supply cylinder 2a. When the material or the kneading material P of the powdery resin material as a whole is supplied, the kneading material P is 2 in the cross section perpendicular to the inner hole 2H of the cylinder 2.
Screw 3 while rotating along two circular arcs 2Q and 2R
Due to the transport action of a and 3b, they are sequentially transported in the downstream direction (the tip direction of the cylinder 2) in a filled state. During this time, the kneading material P is heated from the outside by the heating device provided in the cylinder 2, and the inner hole 2H surface of the cylinder 2 and the screw 3 are also heated.
The resin material rises in temperature and melts due to the kneading action with a and 3b and the friction between the kneading materials P. The melting phenomenon of the resin material starts in the transition region from the transport sections B1 and B2 to the kneading section C, and the kneading material P is kneaded in a molten state on the downstream side. The resin material in a molten state, that is, the kneading material P is a fluid substance having high viscosity, and its deformation rate becomes low.

【0006】それゆえ、溶融状態の混練材料Pは内孔2
Hに沿って流動する際に、溝2Mの開始部で図9に示さ
れるように、急激な流路断面の拡大に直ちに追従でき
ず、拡大開始部に空間Qが発生する。この空間Qは、各
溝2Mの開始部に沿って混練部シリンダ2cの下流端ま
で軸方向に連通して形成される。混練材料Pは粉状材料
の粒子間に介在して含まれている気体(多くの場合空
気)は容易に抜けず、混練材料Pに含まれたままシリン
ダ2内を下流方向へ輸送されるが、混練材料Pの温度上
昇により加熱された気体は体積を膨張させると共に圧力
が高くなる。圧力の高くなった気体は、流路断面の拡大
する溝2Mにおいて内部圧力が低下することにより混練
材料Pから容易に抜け出し、前記空間Qを経て低圧部で
ある下流側の脱気部シリンダ2dへ抜け、脱気口5から
シリンダ2の外部へ脱気される。すなわち、第1曲率半
径R1の第1円弧2Mで急激に体積が増加し、第2曲
率半径R2の第2円弧2Mで体積が徐々に小さくなる
ように構成されている。前記溝2Mは混練部シリンダ2
cの下流端まで形成され、脱気部シリンダ2dには形成
されていないが、混練部シリンダ2c内で回転駆動され
るスクリュ3a、3bがニーディングディスク3Dであ
り、回転するフライトの背面が負圧となって空間が形成
されるので、前記溝2Mに形成された空間Qを流れてき
た気体はニーディングディスク3Dの背面の空間を経て
脱気部シリンダ2dへ容易に流動する。
Therefore, the kneaded material P in the molten state has the inner hole 2
When flowing along H, as shown in FIG. 9 at the start portion of the groove 2M, it is not possible to immediately follow the rapid expansion of the flow path cross section, and a space Q is generated at the expansion start portion. The space Q is formed so as to axially communicate with the downstream end of the kneading section cylinder 2c along the start portion of each groove 2M. Although the gas (in most cases, air) contained in the kneading material P interposed between the particles of the powdery material does not easily escape and is transported in the cylinder 2 in the downstream direction while being contained in the kneading material P. The gas heated by the temperature rise of the kneading material P expands its volume and its pressure increases. The gas whose pressure becomes higher easily escapes from the kneading material P due to a decrease in internal pressure in the groove 2M with an enlarged flow passage cross section, and passes through the space Q to the degassing cylinder 2d on the downstream side which is a low pressure part. It escapes and is deaerated from the deaeration port 5 to the outside of the cylinder 2. That is, the volume is sharply increased at the first arc 2M 1 having the first radius of curvature R1, and the volume is gradually decreased at the second arc 2M 2 having the second radius of curvature R2. The groove 2M is the kneading section cylinder 2
Although it is formed up to the downstream end of c and is not formed in the deaerating cylinder 2d, the screws 3a and 3b that are rotationally driven in the kneading cylinder 2c are kneading discs 3D, and the back of the rotating flight is negative. Since the space is formed as a pressure, the gas flowing through the space Q formed in the groove 2M easily flows to the degassing cylinder 2d through the space on the back surface of the kneading disk 3D.

【0007】脱気部Dでは、混練材料Pがスクリュ3
a、3bの溝を完全に充満させずフルフライトスクリュ
3Fのフライトの背面に空間が形成されるので、混練部
Cから流動してきた空気はフライトの背面を経て脱気口
5へ容易に到達する。なお、前記溝2Mに空間部Qを除
いて充満した溶融状態の混練材料Pは、スクリュ3a、
3bの回転方向に滑らかに徐々に浅くなり本来の内孔2
Hに回復する溝底からスクリュ3a、3bと共に回転す
る隣接する混練材料Pに引きずられて容易に抜け出し、
溝2Mに滞留することはない。すなわち、混練材料P
は、スクリュ3a、3bによりシリンダ2の内孔2Hを
回転しながら下流側へ輸送される間に輸送部B1、B2
及び混練部Cにおいて繰り返し溝2Mを横断することに
より、混練材料P中に含まれる気体が分離されて脱気さ
れながら混練される。
In the degassing section D, the kneading material P is mixed with the screw 3
Since the grooves of a and 3b are not completely filled and a space is formed on the back surface of the flight of the full flight screw 3F, the air flowing from the kneading section C easily reaches the deaeration port 5 via the back surface of the flight. . The molten kneaded material P filled in the groove 2M excluding the space Q is the screw 3a,
3b It becomes smooth gradually shallower in the direction of rotation and the original inner hole 2
The kneading material P, which rotates with the screws 3a and 3b, is easily dragged out of the groove bottom that recovers to H, and easily comes out.
It does not stay in the groove 2M. That is, the kneading material P
Is transported to the downstream side while being rotated in the inner hole 2H of the cylinder 2 by the screws 3a and 3b, while being transported to the transport portions B1 and B2.
By repeatedly crossing the groove 2M in the kneading section C, the gas contained in the kneading material P is separated and kneaded while being deaerated.

【0008】次に、第2従来例として、2本のスクリュ
3a、3bが同方向回転する場合、図5に示されるよう
に輸送部シリンダ2b1、2b2及び混練部シリンダ2
cの軸直角断面において、内孔2Hの2つの円弧部2
Q、2Rの2箇所の接合部2Nにそれぞれ切り欠き2K
が軸方向に連続して設けられている。内孔2Hに沿って
回転流動する混練材料Pの流動方向に流路断面の拡大部
が切り欠き2Kによって形成され、各切り欠き2Kは、
軸直角断面における断面形状が切り欠き底面と一方のス
クリュ3aまたは3bの回転外周(フライト外周)との
間隔をスクリュ3aまたは3bの回転方向に徐々に狭く
する、すなわち、内孔2H空間部から接合部2Nに接近
し円弧に沿う方向に回転するスクリュ3aまたは3bの
回転外周に対し切り欠き2Kの底面との間隔を回転方向
に徐々に狭くするように滑らかな曲線状または直線状に
形成されている。図8に示されるものは切り欠き2Kの
代表的な断面形状であり、曲率半径R3の1つの円弧に
より切り欠き底面形状が形成されている。なお、切り欠
き底面形状は1つの円弧によるものに限定されるもので
はなく、直線あるいは2つ以上の曲線あるいは直線を滑
らかに接続して形成されてもよい。
Next, as a second conventional example, when the two screws 3a, 3b rotate in the same direction, as shown in FIG. 5, the transport section cylinders 2b1, 2b2 and the kneading section cylinder 2 are shown.
In the cross section perpendicular to the axis of c, the two arc portions 2 of the inner hole 2H
Notch 2K at each of the two joints 2N of Q and 2R
Are continuously provided in the axial direction. An enlarged portion of the flow path cross section is formed by the cutouts 2K in the flow direction of the kneading material P that rotates and flows along the inner hole 2H, and each cutout 2K is
The cross-sectional shape in the cross section perpendicular to the axis gradually narrows the distance between the notched bottom surface and the outer circumference of the rotation (flight outer circumference) of one of the screws 3a or 3b in the rotation direction of the screw 3a or 3b, that is, from the inner hole 2H space portion. Is formed in a smooth curved line or a straight line so as to gradually narrow the gap between the rotation outer circumference of the screw 3a or 3b, which approaches the portion 2N and rotates in the direction along the arc, and the bottom surface of the notch 2K in the rotation direction. There is. What is shown in FIG. 8 is a typical cross-sectional shape of the cutout 2K, and the cutout bottom surface shape is formed by one arc having a radius of curvature R3. The shape of the cutout bottom surface is not limited to the shape of one circular arc, and may be formed by a straight line or two or more curved lines or a smooth connection of straight lines.

【0009】以上のように構成され、スクリュ3a、3
bが同一方向に回転駆動される二軸混練押出機1におい
て、材料供給シリンダ2aの供給口4から供給された粉
状材料を含む混練材料Pは、前述の第1従来例の場合と
同様に溶融混練される。前記輸送部シリンダ2b1、2
b2及び混練部シリンダ2cにおいて、溶融状態の混練
材料Pは、内孔2Hに沿って流動する際に、内孔2Hの
円弧部2Q、2Rから接合部2Nの前記切り欠き2Kに
到達した時点で図10に示されるように、急激な流路断
面の拡大に直ちに追従できず、拡大開始部に空間Q’が
発生する。この空間Q’は、各切り欠き2Kの開始部に
沿って混練部シリンダ2cの下流端まで軸方向に連通し
て形成される。以下前述の第1実施例と同様に、混練材
料Pに含まれていた気体が前記空間Q’を経て脱気部シ
リンダ2dの脱気口5からシリンダ2の外部へ脱気され
る。前記切り欠き2Kに空間Q’を除いて充満した溶融
状態の混練材料Pについても第1従来例と同様に切り欠
き2Kから抜け出し、滞留することはない。すなわち、
混練材料Pは、スクリュ3a、3bによりシリンダ2の
内孔2Hを回転しながら下流側へ輸送される間に輸送部
B1、B2及び混練部Cにおいて繰り返し切り欠き2K
を横断することにより、混練材料P中に含まれる気体が
分離されて脱気されながら混練される。
The screws 3a, 3 are constructed as described above.
In the twin-screw kneading extruder 1 in which b is driven to rotate in the same direction, the kneading material P containing the powdery material supplied from the supply port 4 of the material supply cylinder 2a is the same as in the case of the first conventional example described above. Melt kneaded. The transport section cylinders 2b1, 2
In b2 and the kneading section cylinder 2c, when the kneading material P in a molten state flows along the inner hole 2H, when it reaches the notch 2K of the joining section 2N from the circular arc sections 2Q and 2R of the inner hole 2H. As shown in FIG. 10, it is not possible to immediately follow the rapid expansion of the flow path cross section, and a space Q ′ is generated at the expansion start portion. This space Q'is formed in axial communication with the downstream end of the kneading section cylinder 2c along the starting portion of each notch 2K. Similarly to the above-described first embodiment, the gas contained in the kneading material P is degassed from the degassing port 5 of the degassing unit cylinder 2d to the outside of the cylinder 2 through the space Q '. The kneaded material P in the molten state, which is filled in the cutout 2K except for the space Q ', does not escape from the cutout 2K and stay in the same manner as in the first conventional example. That is,
While the kneading material P is transported to the downstream side while being rotated in the inner hole 2H of the cylinder 2 by the screws 3a and 3b, the cutouts 2K are repeatedly cut in the transport portions B1 and B2 and the kneading portion C.
The gas contained in the kneading material P is separated and degassed by kneading while traversing.

【0010】さらに、図6に示されるものは第3実施例
であり、2本のスクリュ3a、3bが同方向回転する二
軸混練押出機1の輸送部シリンダ2b1、2b2及び混
練部シリンダ2cの軸直角断面において、前述の第1実
施例の複数の溝2Mと第2実施例の2箇所の切り欠き2
Kとを合わせて形成されている。以上のように構成され
た二軸混練押出機1においては、前述の第1従来例にお
ける溝2Mの作用と第2従来例における切り欠き2Kの
作用とがそれぞれの箇所において同様に起こる。
Further, FIG. 6 shows a third embodiment of the transport section cylinders 2b1 and 2b2 and the kneading section cylinder 2c of the twin-screw kneading extruder 1 in which two screws 3a and 3b rotate in the same direction. In the cross section perpendicular to the axis, the plurality of grooves 2M of the first embodiment described above and the two notches 2 of the second embodiment.
It is formed together with K. In the twin-screw kneading extruder 1 configured as described above, the action of the groove 2M in the first conventional example and the action of the notch 2K in the second conventional example similarly occur at each location.

【0011】また、前述の従来例において、シリンダ2
の内孔2Hに軸方向に設けられた複数の溝2Mあるいは
2箇所の切り欠き2Kにより内孔2Hに沿って回転移動
する混練材料Pの流路断面の拡大縮小が繰り返され、混
練材料Pは、材料の位置交換が数多く行われることによ
り混練分散がより効果的に行われ、より均一に混練され
る。さらには、流路断面の拡大部で混練材料P中の剪断
力が弱まることにより温度上昇がにぶり、混練材料Pが
不必要な温度上昇が防止される。なお、前記材料供給シ
リンダ2aとその下流の輸送シリンダ2b1との境界部
及び混練シリンダ2cとその下流の脱気シリンダ2dと
の境界部には、それ等の内孔2Hの軸直角断面形状を円
弧状から前記溝2Mあるいは前記切り欠き2Kに滑らか
に変化させる断面形状の遷移領域が設けられている。こ
の内孔2Hの軸直角断面の変化部に断面形状の遷移領域
が設けられることにより、隅部が存在せず、混練材料P
は滞留することがない。
Further, in the above-mentioned conventional example, the cylinder 2
Due to the plurality of grooves 2M or two notches 2K provided in the inner hole 2H in the axial direction, the cross-section of the flow passage of the kneading material P that is rotationally moved along the inner hole 2H is repeated, and the kneading material P is By performing a lot of positional exchange of the materials, the kneading and dispersion is more effectively performed, and the kneading is performed more uniformly. Furthermore, the shearing force in the kneading material P is weakened in the enlarged portion of the flow path cross section, so that the temperature rise is suppressed and the kneading material P is prevented from unnecessarily rising in temperature. At the boundary between the material supply cylinder 2a and the transport cylinder 2b1 downstream thereof and at the boundary between the kneading cylinder 2c and the degassing cylinder 2d downstream thereof, the cross-sectional shape of the inner holes 2H perpendicular to the axis is circular. A transition region having a cross-sectional shape that smoothly changes from an arc shape to the groove 2M or the notch 2K is provided. Since the transition region of the cross-sectional shape is provided in the changing portion of the cross section perpendicular to the axis of the inner hole 2H, there is no corner portion and the kneaded material P
Does not stay.

【0012】次に、動作について述べる。まず、スクリ
ュが回転駆動されているシリンダ内孔へ材料供給部の供
給口から供給された粉状材料を混合された混練材料は、
シリンダの内孔の軸直角断面における2つの円弧部に沿
って回転しながらスクリュの輸送作用により材料供給部
から輸送部、混練部、脱気部、吐出部へと順次輸送され
る。この間、混練材料は溶融混練され、混練材料に含ま
れる気体は分離されて脱気部の脱気口から排出され、均
質に混練された溶融樹脂が吐出部すなわちシリンダの先
端から押出される。溶融状態で粘性の大きい物質である
溶融樹脂は変形速度が比較的低く、溶融樹脂の流動方向
の流路断面が急激に増大する場合、その拡大開始部分で
は直ちに拡大形状に追従できず、拡大開始部の一部に空
間が発生する。シリンダ内孔の軸直角断面における2つ
の円弧部に設けられた溝は、2つの円弧部に沿って流動
する溶融樹脂に対して急激な流路断面の拡大となり、各
溝に空間が発生し、この空間は各溝において輸送部及び
混練部の軸方向に連通して形成される。輸送部及び混練
部において混練材料から分離された気体は、輸送部及び
混練部の各溝に沿って連通して形成された軸方向空間を
流路とし、混練部下流側の低圧の脱気部に連通して抜
け、脱気部の脱気口から排出される。溝は、スクリュの
回転方向に急激に拡大しその後徐々に狭くなる滑らかな
形状に形成されているので、流路断面の変化がより効果
的に行われると共に、溝に滞留しようとする混練材料は
溶融状態における高粘性の凝集性によりシリンダ内孔と
スクリュとの間に容易に引き込まれる。2本のスクリュ
が同方向回転するシリンダ内孔の軸直角断面における2
つの円弧部の接合部に設けられた切り欠きは、2つの円
弧部に沿って流動する溶融樹脂に対して急激な流路断面
の拡大となり、そこに空間が発生し、この空間は輸送部
及び混練部の軸方向に連通して形成される。輸送部及び
混練部において混練材料から分離された気体は、輸送部
及び混練部の切り欠きに沿って連通して形成された軸方
向空間を流路とし、混練部下流側の低圧の脱気部に連通
して抜け、脱気部の脱気口から排出される。切り欠き
は、一方のスクリュの回転外周との間隔がスクリュの回
転方向に徐々に狭くなる、すなわち、内孔空間部から接
合部に接近し円弧部に沿う方向に回転するスクリュに対
し切り欠き部の内孔壁面との間隔が回転方向に徐々に狭
くなるように形成されていることにより、同方向回転す
る他方のスクリュは、円弧部に沿って回転し切り欠き部
で内孔空間部に移行する際の流路断面の変化がより効果
的に行われる。また、切り欠きが一方のスクリュの回転
方向に徐々に狭くなることにより、切り欠き部に滞留し
ようとする混練材料は溶融状態における高粘性の凝集性
によりシリンダ内孔とスクリュとの間に容易に引き込ま
れる。2本のスクリュが同方向回転するシリンダ内孔の
軸直角断面における2つの円弧部に設けられた溝及び2
つの円弧部の接合部に設けられた切り欠きは、2つの円
弧部に沿って流動する溶融樹脂に対して急激な流路断面
の拡大となり、前述のそれぞれの作用がそれぞれの箇所
において同様に起きる。
Next, the operation will be described. First, the kneading material in which the powdery material supplied from the supply port of the material supply unit into the cylinder inner hole where the screw is rotationally driven is
The material is sequentially transported from the material supply section to the transport section, the kneading section, the degassing section, and the discharging section by the transporting action of the screw while rotating along the two arcuate portions in the cross section perpendicular to the axis of the inner hole of the cylinder. During this time, the kneading material is melt-kneaded, the gas contained in the kneading material is separated and discharged from the degassing port of the degassing section, and the homogeneously kneaded molten resin is extruded from the discharge section, that is, the tip of the cylinder. When the molten resin, which is a substance with high viscosity in the molten state, has a relatively low deformation rate and the cross-section of the flow channel in the flowing direction of the molten resin increases rapidly, it cannot immediately follow the enlarged shape at the portion where the enlargement starts and the enlargement starts. Space is generated in a part of the section. The grooves provided in the two arc portions in the cross section perpendicular to the axis of the cylinder inner hole cause a rapid expansion of the flow passage cross section with respect to the molten resin flowing along the two arc portions, and a space is generated in each groove. This space is formed in each groove so as to communicate with each other in the axial direction of the transport section and the kneading section. The gas separated from the kneading material in the transport section and the kneading section uses the axial space formed by communicating along each groove of the transport section and the kneading section as a flow path, and the low-pressure degassing section on the downstream side of the kneading section. To be discharged from the deaeration port of the deaeration unit. Since the grooves are formed in a smooth shape that rapidly expands in the screw rotation direction and then gradually narrows, the cross-section of the flow path is changed more effectively, and the kneading material that tends to stay in the grooves is Due to the highly viscous cohesive property in the molten state, it is easily drawn between the cylinder bore and the screw. 2 in the cross section perpendicular to the axis of the cylinder bore where the two screws rotate in the same direction
The notch provided at the joining portion of the two arc portions causes an abrupt expansion of the cross section of the flow path with respect to the molten resin flowing along the two arc portions, and a space is generated there. It is formed so as to communicate in the axial direction of the kneading section. The gas separated from the kneading material in the transport section and the kneading section uses the axial space formed by communicating along the notches of the transport section and the kneading section as a flow path, and the low-pressure degassing section on the downstream side of the kneading section. To be discharged from the deaeration port of the deaeration unit. The notch has a gap between the outer circumference of one screw and the outer circumference of the screw that gradually narrows in the direction of rotation of the screw, that is, a notch for a screw that approaches the joint from the inner hole space and rotates along the arc. Since the space between the inner wall surface and the inner wall surface of the screw gradually decreases in the rotation direction, the other screw rotating in the same direction rotates along the arc portion and moves to the inner hole space portion at the notch. The change of the flow path cross section at the time of performing is performed more effectively. Further, since the notch is gradually narrowed in the rotation direction of one screw, the kneaded material that tends to stay in the notch easily becomes easily between the cylinder bore and the screw due to the highly viscous cohesive property in the molten state. Be drawn in. A groove and 2 provided in two arc portions in a cross section perpendicular to the axis of the cylinder inner hole in which the two screws rotate in the same direction.
The notch provided at the joining portion of the two arc portions causes an abrupt expansion of the cross section of the flow path with respect to the molten resin flowing along the two arc portions, and the above-described respective actions similarly occur at the respective locations. .

【0013】[0013]

【発明が解決しようとする課題】従来の二軸混練押出機
は、以上のように構成されていたため、次のような課題
が存在していた。すなわち、従来の二軸混練押出機にお
いては、基本的に図11で示されるように一対の円形状
シリンダの接合部の先端部が鋭角状にとがった形状で
上、下に形成されるため、左右のスクリュが回転する
時、上、下の前記各接合部において、互いのスクリュの
山頂部が前記接合部に位置した時に、樹脂の逃げる場所
が少なくなり、その時に、発生する樹脂圧力により樹脂
温度が上昇し、溶融が加速されることになる。そのた
め、必要以上に製品を生産するための消費エネルギー
(kw・hr/kg)の上昇により、樹脂温度が必要以
上に上昇していた。また、前述の従来構成のように、各
シリンダの内壁に溝や切り欠きを形成するには、多くの
加工時間を必要とすると共に、コスト上からも多大の負
担となっていた。
Since the conventional twin-screw kneading extruder is constructed as described above, the following problems exist. That is, in the conventional twin-screw kneading extruder, basically, as shown in FIG. 11, since the tips of the joints of the pair of circular cylinders are formed in an upper and lower shape with an acute angle, When the left and right screws rotate, at each of the upper and lower joints, when the crests of the screws are located at the joints, there is less space for the resin to escape, and at that time, the resin pressure generated causes the resin to escape. The temperature will rise and the melting will be accelerated. Therefore, the resin temperature has increased more than necessary due to an increase in energy consumption (kw · hr / kg) for producing a product more than necessary. Further, as in the above-described conventional configuration, forming a groove or a notch in the inner wall of each cylinder requires a long processing time and is also a heavy burden in terms of cost.

【0014】本発明は、以上のような課題を解決するた
めになされたもので、特に、シリンダのシリンダ内孔の
上部と下部に形成される接合部の先端部の一方又は両方
を除去して切欠部を形成し、この切欠部によって樹脂の
逃げ場所を確保して消費エネルギーの低下、樹脂温度の
上昇を押さえた製品化を可能とした二軸混練押出機を提
供することを目的とする。
The present invention has been made to solve the above problems, and in particular, by removing one or both of the tip portions of the joints formed in the upper and lower portions of the cylinder inner hole of the cylinder. An object of the present invention is to provide a twin-screw kneading extruder capable of forming a cutout portion, securing a resin escape place by the cutout portion, and suppressing the reduction of energy consumption and the rise of resin temperature for commercialization.

【0015】[0015]

【課題を解決するための手段】本発明による二軸混練押
出機は、シリンダのシリンダ内孔に2本の互いに噛み合
うスクリュを回転可能に内蔵し、材料供給部、輸送部、
混練部、脱気部及び吐出部で構成される二軸混練押出機
において、前記輸送部及び混練部のシリンダ内孔の軸直
角断面における2つの円弧状内孔によって形成された接
合部の先端部を除去し前記軸直角の方向に沿って形成さ
れた切欠部を有する構成であり、また、前記切欠部の位
置は、前記各シリンダのシリンダ内孔の前記接合部の端
部と前記シリンダ内孔の円中心との間の距離の1.2倍
以上とした構成であり、また、前記切欠部は平坦面より
なる構成であり、また、前記切欠部は前記シリンダの上
部と下部の何れか一方又は両方に形成されている構成で
ある。
A twin-screw kneading extruder according to the present invention has two interlocking screws rotatably incorporated in a cylinder inner hole of a cylinder, and a material supply section, a transport section,
In a twin-screw kneading extruder composed of a kneading section, a degassing section and a discharging section, the tip of a joint formed by two arc-shaped inner holes in a cross section perpendicular to the axis of the cylinder inner hole of the transport section and the kneading section. And a notch formed along the direction perpendicular to the axis, and the position of the notch is the end of the joint part of the cylinder inner hole of each cylinder and the cylinder inner hole. The distance from the center of the circle is 1.2 times or more, and the notch has a flat surface, and the notch is either the upper part or the lower part of the cylinder. Or it is the structure formed in both.

【0016】[0016]

【発明の実施の形態】以下、図面と共に本発明による二
軸混練押出機の好適な実施の形態について説明する。
尚、従来例と同一又は同等部分については同一符号を用
いて説明すると共に、図2の従来構成として示した二軸
混練押出機1の断面構成については、本発明と同一であ
るため、図2の構成を援用し、その説明は重複を避ける
ために省略すると共に、従来と異なる部分についてのみ
説明するものとする。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of a twin-screw kneading extruder according to the present invention will be described below with reference to the drawings.
It should be noted that the same or equivalent parts as those of the conventional example will be described using the same reference numerals, and the sectional configuration of the twin-screw kneading extruder 1 shown as the conventional configuration of FIG. 2 is the same as that of the present invention. The configuration will be referred to, the description thereof will be omitted to avoid duplication, and only the part different from the conventional one will be described.

【0017】図1において符号2Nで示されるものは、
シリンダ2内のシリンダ内孔であり、このシリンダ内孔
2Nは、図2のシリンダ2の輸送部2b1と2b2及び
混練部2cのシリンダセグメントの軸直角断面の上部の
一部を示している。すなわち、図1は上部のみである
が、シリンダ内孔2Nの下部にも同様の構造が存在する
がここでは省略している。
The reference numeral 2N in FIG.
This is a cylinder inner hole in the cylinder 2, and this cylinder inner hole 2N shows a part of the upper portion of the cross section perpendicular to the axis of the cylinder segments of the transport parts 2b1 and 2b2 and the kneading part 2c of the cylinder 2 of FIG. That is, although FIG. 1 shows only the upper part, a similar structure exists in the lower part of the cylinder inner hole 2N, but it is omitted here.

【0018】前記シリンダ内孔2N内には、図2で示さ
れる一対のスクリュ3a、3bが矢印で示す同方向に回
転するように設けられており、このシリンダ内孔2Nに
は各スクリュ3a、3b用として各スクリュ3a、3b
の回転軌跡に沿って形成された円に近い状態の一対の円
弧状内孔2Hが形成されている。
Inside the cylinder inner hole 2N, a pair of screws 3a and 3b shown in FIG. 2 are provided so as to rotate in the same direction as shown by the arrows. Each screw 3a, 3b for 3b
A pair of arc-shaped inner holes 2H are formed in a state close to a circle formed along the rotation locus.

【0019】この各円弧状内孔2Hが従来のように互い
に接する接合部2MA(図1で一点鎖線で示す)は、シ
リンダ2の前記軸直角断面と同じ軸直角方向に沿ってこ
の接合部2MAの先端部を切断して除去して形成された
切欠部50が形成され、この切欠部50は平坦面(平坦
面でない例えば、凹凸又は段状の場合もある)によって
形成されている。
A joint portion 2MA (shown by a one-dot chain line in FIG. 1) in which the respective arcuate inner holes 2H are in contact with each other as in the conventional case is a joint portion 2MA along the same axis perpendicular direction as the cross section perpendicular to the axis of the cylinder 2. A notch 50 is formed by cutting and removing the tip end of the notch 50. The notch 50 is formed by a flat surface (not a flat surface, for example, it may be uneven or stepped).

【0020】前記切欠部50の前記シリンダ内孔2N内
の位置は、前記円弧状内孔2Hの半径の円中心51から
の距離52であり、この距離52は、従来の図11で示
す前記接合部2MAの端部2Maと前記円中心51との
間の距離aの1.2倍である1.2a以上に設定されて
いる。
The position of the notch 50 in the cylinder inner hole 2N is a distance 52 from a circle center 51 of the radius of the arcuate inner hole 2H, and this distance 52 is the same as the conventional joint shown in FIG. It is set to 1.2a or more, which is 1.2 times the distance a between the end 2Ma of the portion 2MA and the center 51 of the circle.

【0021】従って、前記各円弧状内孔2Hの接合部2
MAの先端部を除去してその切欠部50の分だけ従来よ
りも高さを高くしているため、溶融樹脂を輸送及び混練
する場合に樹脂圧力上昇を押さえ、消費エネルギーの上
昇を押さえるため、樹脂温度上昇を押さえた製品化を達
成することができる。尚、前述の図1ではシリンダ内孔
2Nの上部のみについて述べたが、上部又は下部又は両
方に切欠部50を形成することができる。
Therefore, the joint portion 2 of each arcuate inner hole 2H is formed.
Since the tip of MA is removed and the height is made higher than before by the amount of the notch 50, in order to suppress the increase in resin pressure and the increase in energy consumption when transporting and kneading the molten resin, It is possible to achieve commercialization while suppressing the resin temperature rise. Although only the upper part of the cylinder inner hole 2N is described in FIG. 1, the notch 50 can be formed in the upper part, the lower part, or both.

【0022】実施例 本出願人は本発明による二軸混練押出機を用いて次の実
験を行った。 実験装置 二軸混練押出機TEX65αII−35Pw−V スクリュ回転速度 60〜600rpm 主モータ容量 300kw 実験原料 ASペレット 実験結果は次の表1の第1表の通りであった。
Example The applicant carried out the following experiment using the twin-screw kneading extruder according to the present invention. Experimental apparatus Twin-screw kneading extruder T EX 65αII-35Pw-V Screw rotation speed 60 to 600 rpm Main motor capacity 300kw Experimental raw material AS pellets The experimental results are shown in Table 1 below.

【0023】[0023]

【表1】 すなわち、前述の第1表の実験結果によれば、従来構成
に比べて、本発明構成によるシリンダを用いた方が、樹
脂温度及び樹脂圧力とも低下していることが明らかであ
る。
[Table 1] That is, according to the experimental results shown in Table 1 above, it is clear that both the resin temperature and the resin pressure are lower when the cylinder according to the present invention is used as compared with the conventional configuration.

【0024】[0024]

【発明の効果】本発明による二軸混練押出機は、以上の
ように構成されているため、次のような効果を得ること
ができる。すなわち、円弧状内孔の接合部すなわち先端
部が除去されて切欠部が形成されているため、この切欠
部だけ樹脂の逃げを確保することができ、かつ、樹脂の
圧力及び温度上昇を押さえることができ、樹脂温度上昇
を押さえた製品化を達成することができる。
Since the twin-screw kneading extruder according to the present invention is constructed as described above, the following effects can be obtained. That is, since the notch portion is formed by removing the joining portion, that is, the tip end portion of the arcuate inner hole, the escape of the resin can be secured only by this notch portion, and the pressure and temperature rise of the resin can be suppressed. Therefore, it is possible to achieve commercialization while suppressing a rise in resin temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による二軸混練押出機の要部を示す断面
図である。
FIG. 1 is a sectional view showing a main part of a twin-screw kneading extruder according to the present invention.

【図2】本発明及び従来の二軸混練押出機を示す縦断面
図である。
FIG. 2 is a vertical sectional view showing the present invention and a conventional twin-screw kneading extruder.

【図3】図2の内孔形状図である。3 is a shape diagram of the inner hole of FIG. 2. FIG.

【図4】図2のシリンダに溝を設けた内孔形状図であ
る。
FIG. 4 is a shape diagram of an inner hole in which a groove is provided in the cylinder of FIG.

【図5】図2のシリンダに切り欠きを設けた内孔形状図
である。
5 is a shape diagram of an inner hole in which the cylinder of FIG. 2 is provided with a notch.

【図6】図2の軸直角断面の内孔形状図である。FIG. 6 is a shape diagram of an inner hole in a cross section perpendicular to the axis of FIG.

【図7】図2の軸直角断面の溝形状図である。7 is a groove shape view of a cross section perpendicular to the axis of FIG.

【図8】図2の軸直角断面の切り欠き形状図である。8 is a cutaway shape view of a cross section perpendicular to the axis of FIG.

【図9】従来の混練材料流動図である。FIG. 9 is a flow chart of a conventional kneading material.

【図10】従来の混練材料流動図である。FIG. 10 is a flow chart of a conventional kneading material.

【図11】従来のシリンダ内孔の要部を示す断面図であ
る。
FIG. 11 is a cross-sectional view showing a main part of a conventional cylinder inner hole.

【符号の説明】[Explanation of symbols]

2 シリンダ 2N シリンダ内孔 2b1、2b2 輸送部 2c 混練部 2M 接合部 2H 円弧状内孔 3a、3b スクリュ 50 切欠部 51 円中心 52 距離 2 cylinders 2N cylinder inner hole 2b1, 2b2 Transport Department 2c kneading section 2M joint 2H arc-shaped inner hole 3a, 3b screw 50 notch 51 Yen center 52 distance

フロントページの続き (72)発明者 新谷 浩昭 広島県広島市安芸区船越南1丁目6番1号 株式会社日本製鋼所内 Fターム(参考) 4F201 AP12 BA01 BK13 BK27 BK33 BK34 BK75 BQ34 BQ60 Continued front page    (72) Inventor Hiroaki Shintani             1-6-1, Funakoshi-minami, Aki-ku, Hiroshima-shi, Hiroshima               Japan Steel Works, Ltd. F term (reference) 4F201 AP12 BA01 BK13 BK27 BK33                       BK34 BK75 BQ34 BQ60

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリンダ(2)のシリンダ内孔(2N)に2本
の互いに噛み合うスクリュ(3a、3b)を回転可能に内蔵
し、材料供給部(2a)、輸送部(2b1、2b2)、混練部(2c)、
脱気部(2d)及び吐出部(2e)で構成される二軸混練押出機
において、 前記輸送部(2b1、2b2)及び混練部(2c)のシリンダ内孔(2
N)の軸直角断面における2つの円弧状内孔(2H)によって
形成された接合部(2MA)の先端部を除去し前記軸直角の
方向に沿って形成された切欠部(50)を有することを特徴
とする二軸混練押出機。
1. A cylinder inner hole (2N) of a cylinder (2) rotatably incorporating two mutually meshing screws (3a, 3b), a material supply section (2a), a transport section (2b1, 2b2), Kneading section (2c),
In a twin-screw kneading extruder composed of a degassing section (2d) and a discharging section (2e), a cylinder inner hole (2) of the transport section (2b1, 2b2) and the kneading section (2c)
(N) has a notch (50) formed along the direction perpendicular to the axis by removing the tip of the joint (2MA) formed by the two arcuate inner holes (2H) in the cross section perpendicular to the axis. A twin-screw kneading extruder characterized by:
【請求項2】 前記切欠部(50)の位置は、前記各シリン
ダ(2)のシリンダ内孔(2N)の前記接合部(2MA)の端部(2M
a)と前記シリンダ内孔(2H)の円中心(51)との間の距離(5
2)の1.2倍以上であることを特徴とする請求項1記載
の二軸混練押出機。
2. The position of the notch (50) is determined by the end (2M) of the joint (2MA) of the cylinder inner hole (2N) of each cylinder (2).
The distance (5) between the a) and the circle center (51) of the cylinder bore (2H)
The twin-screw kneading extruder according to claim 1, which is 1.2 times or more of 2).
【請求項3】 前記切欠部(50)は平坦面よりなることを
特徴とする請求項1又は2記載の二軸混練押出機。
3. The twin-screw kneading extruder according to claim 1, wherein the notch (50) has a flat surface.
【請求項4】 前記切欠部(50)は前記シリンダ(2)の上
部と下部の何れか一方又は両方に形成されていることを
特徴とする請求項1ないし3の何れかに記載の二軸混練
押出機。
4. The biaxial according to claim 1, wherein the cutout portion (50) is formed in one or both of an upper portion and a lower portion of the cylinder (2). Kneading extruder.
JP2002040033A 2002-02-18 2002-02-18 Twin-screw kneading extruder Pending JP2003236831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002040033A JP2003236831A (en) 2002-02-18 2002-02-18 Twin-screw kneading extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002040033A JP2003236831A (en) 2002-02-18 2002-02-18 Twin-screw kneading extruder

Publications (1)

Publication Number Publication Date
JP2003236831A true JP2003236831A (en) 2003-08-26

Family

ID=27780891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002040033A Pending JP2003236831A (en) 2002-02-18 2002-02-18 Twin-screw kneading extruder

Country Status (1)

Country Link
JP (1) JP2003236831A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106042207A (en) * 2016-07-13 2016-10-26 益阳橡胶塑料机械集团有限公司 Mixer chamber for shearing-type rotors and mixing method using mixer chamber for mixing
WO2019065786A1 (en) * 2017-09-26 2019-04-04 株式会社日本製鋼所 Kneading method for fiber-reinforced thermoplastic resin, plasticizing device, and extruding machine
JP2019059081A (en) * 2017-09-26 2019-04-18 株式会社日本製鋼所 Extruder for fiber reinforced thermoplastic resin
JP2019069527A (en) * 2017-10-06 2019-05-09 株式会社日本製鋼所 Kneading method and plasticizing apparatus for fiber reinforced thermoplastic resin
WO2019189352A1 (en) * 2018-03-28 2019-10-03 日本スピンドル製造株式会社 Kneading device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106042207A (en) * 2016-07-13 2016-10-26 益阳橡胶塑料机械集团有限公司 Mixer chamber for shearing-type rotors and mixing method using mixer chamber for mixing
WO2019065786A1 (en) * 2017-09-26 2019-04-04 株式会社日本製鋼所 Kneading method for fiber-reinforced thermoplastic resin, plasticizing device, and extruding machine
JP2019059081A (en) * 2017-09-26 2019-04-18 株式会社日本製鋼所 Extruder for fiber reinforced thermoplastic resin
KR20200042934A (en) * 2017-09-26 2020-04-24 가부시끼가이샤 니혼 세이꼬쇼 Fiber-reinforced thermoplastic resin kneading method, plasticizer and extruder
CN111132805A (en) * 2017-09-26 2020-05-08 株式会社日本制钢所 Method for kneading fiber-reinforced thermoplastic resin, plasticizing device, and extruder
KR102323052B1 (en) * 2017-09-26 2021-11-08 가부시끼가이샤 니혼 세이꼬쇼 Fiber-reinforced thermoplastic resin kneading method, plasticizer and extruder
US11992973B2 (en) 2017-09-26 2024-05-28 The Japan Steel Works, Ltd. Kneading method for fiber-reinforced thermoplastic resin, plasticizing device, and extruding machine
JP2019069527A (en) * 2017-10-06 2019-05-09 株式会社日本製鋼所 Kneading method and plasticizing apparatus for fiber reinforced thermoplastic resin
WO2019189352A1 (en) * 2018-03-28 2019-10-03 日本スピンドル製造株式会社 Kneading device
JPWO2019189352A1 (en) * 2018-03-28 2021-03-11 日本スピンドル製造株式会社 Kneading device
JP7165722B2 (en) 2018-03-28 2022-11-04 日本スピンドル製造株式会社 Kneading device

Similar Documents

Publication Publication Date Title
JP3224931B2 (en) Twin screw extruder
JP4024976B2 (en) Closed kneader
JP2905418B2 (en) Kneading machine
US11072104B2 (en) Screw for extruder comprising a passage crossing over between adjacent cylindrical bodies
TW201946754A (en) Production method for conductive composite material
JPS5818138B2 (en) continuous mixer
US5000900A (en) Twin screw extruder
JP2000153520A5 (en)
KR101801414B1 (en) Screw feed elements for extruding viscoelastic masses, and use and method
US20010019729A1 (en) Screw set for extruder
JP2007237679A (en) Plasticization kneading extruder for plastic raw material
JP2003236831A (en) Twin-screw kneading extruder
JP2009196303A (en) Kneading disk segment and twin-screw extruder
JP2003245534A (en) Kneader for rubber or rubbery composition
US5829872A (en) Kneading and extruding machine
US5356208A (en) Screw element having shearing and scraping flights
US3712783A (en) Feed system
JP2005001231A (en) Rubber continuous kneading extruder
JP2011183340A (en) Die head
JP2016522736A (en) Machine for processing polymer materials
JP2002086541A (en) Unidirectionally rotating twin-screw extruder
JP2004195675A (en) Screw extruder
JP2014172230A (en) Twin screw extruder
JP2002526280A (en) Simultaneously rotating twin screw extruder
JP3204869B2 (en) Twin screw extruder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050816