JP2003236696A - Method for producing flux cored wire for welding - Google Patents

Method for producing flux cored wire for welding

Info

Publication number
JP2003236696A
JP2003236696A JP2002041987A JP2002041987A JP2003236696A JP 2003236696 A JP2003236696 A JP 2003236696A JP 2002041987 A JP2002041987 A JP 2002041987A JP 2002041987 A JP2002041987 A JP 2002041987A JP 2003236696 A JP2003236696 A JP 2003236696A
Authority
JP
Japan
Prior art keywords
welding
flux
cored wire
temperature
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002041987A
Other languages
Japanese (ja)
Inventor
Yasuki Kusunoki
康樹 楠
Yasuo Kimiya
康雄 木宮
Koji Amaike
弘二 雨池
Yuuki Kashiwamori
雄己 栢森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2002041987A priority Critical patent/JP2003236696A/en
Publication of JP2003236696A publication Critical patent/JP2003236696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a flux cored wire for welding with which even in the case of developing the wear of a plasma arc welding torch or the stuck material onto a tip or an electrode, suitable joined part can be obtained and even after shrinking the diameter, crack on the outer shell of a welding pipe is not developed. <P>SOLUTION: In the method for producing the flux cored wire for welding, with which a steel strip is formed into U-shaped body, and after supplying the flux in the U-shaped body, this body is formed into a pipy body, and after plasma-arc welding both edge surfaces of this pipy body, this diameter is shrunk, a relation between the temperature of weld bead and the depth of penetration formed with the plasma-arc welding, is beforehand obtained, and the depth of penetration is kept to the constant by adjusting welding condition based on the measured result of the temperature in the weld bead. Further, the adjustment of the welding condition is performed with welding current or flow rate of pilot gas. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、この発明は炭素
鋼、ステンレス鋼などの金属管にフラックスを充填した
溶接用フラックス入りワイヤの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a flux-cored wire for welding in which a metal tube such as carbon steel or stainless steel is filled with flux.

【0002】[0002]

【従来の技術】溶接用フラックス入りシームレスワイヤ
の製造方法は、金属帯鋼を所要の幅でスリッティング
し、スリット後の帯鋼を成形ロールによりU字状体から
管状体に漸次成形する。この成形途中でU字状体帯鋼の
長手方向に沿った開口からフィーダによりフラックスを
帯鋼谷部に供給する。ついで、管状体に成形すると同時
に、開口の相対するエッジ面を溶接により接合し、引き
続いて縮径する。さらに必要に応じて焼鈍したのちフラ
ックスが充填された溶接管を所望の径に伸線して、スプ
ール等に巻取って製品とする。
2. Description of the Related Art In a method for manufacturing a flux-cored seamless wire for welding, a metal strip steel is slit by a required width, and the strip steel strip after slitting is gradually formed into a tubular body from a U-shaped body by a forming roll. During this forming, flux is supplied from the opening along the longitudinal direction of the U-shaped strip steel to the valley portion of the strip steel by the feeder. Then, at the same time as forming the tubular body, the opposite edge surfaces of the opening are joined by welding, and subsequently the diameter is reduced. Further, after being annealed as necessary, the flux-filled welded pipe is drawn into a desired diameter and wound on a spool or the like to obtain a product.

【0003】上記フラックスを充填したシームレス管の
製造における溶接方法として、高周波誘導溶接方法、高
周波抵抗溶接方法等の高周波溶接とTIG溶接等のアー
ク溶接が広く用いられている。高周波溶接では、スリッ
ト後の金属帯鋼を成形ロールによりU字状体から管状体
に成形したところで、発生するジュール熱により開口の
エッジ面を溶融温度まで加熱し、相対するエッジ面を一
対のスクイズロールにより圧接して接合する。いずれの
場合も溶接する近傍には強い磁界が生じる。
As a welding method in the production of the seamless tube filled with the above-mentioned flux, high frequency welding such as high frequency induction welding method and high frequency resistance welding method and arc welding such as TIG welding are widely used. In high-frequency welding, when the metal strip steel after slitting is formed into a tubular body from a U-shaped body by a forming roll, the edge surface of the opening is heated to the melting temperature by the generated Joule heat, and the opposing edge surfaces are squeezed. Bonded by pressing with a roll. In either case, a strong magnetic field is generated in the vicinity of welding.

【0004】ところで、フラックスを充填し、溶接した
管を圧延、伸線等により縮径する際に、管外皮に割れが
発生することがある。この割れの原因として次のように
考えられている。溶接時に管状体の開口エッジ面に酸化
物、ケイ酸物、鉄粉等のフラックスの一部が吸着する。
すなわち、溶接位置では溶接電流によって発生した磁場
により管状体の開口エッジ面は磁極となる。したがっ
て、調合されたフラックスの強磁性成分は、磁力により
開口エッジ面に吸着される。このとき、造粒されている
フラックスは非磁性成分も強磁性成分に伴われて開口エ
ッジ面に吸着する。これら開口エッジ面に吸着したフラ
ックスは、溶接部に介在し、溶接欠陥となる。この溶接
欠陥が起因して縮径時に溶接管に割れを発生する。
By the way, when a pipe filled with flux and welded is reduced in diameter by rolling, wire drawing or the like, cracks may occur in the outer skin of the pipe. The cause of this crack is considered as follows. During welding, a part of the flux of oxides, silicates, iron powder, etc. is adsorbed on the opening edge surface of the tubular body.
That is, at the welding position, the opening edge surface of the tubular body becomes a magnetic pole due to the magnetic field generated by the welding current. Therefore, the ferromagnetic component of the prepared flux is attracted to the opening edge surface by the magnetic force. At this time, the granulated flux is adsorbed on the edge surface of the opening along with the non-magnetic component and the ferromagnetic component. The flux adsorbed on the edge surfaces of the openings is present in the welded portion and becomes a welding defect. This welding defect causes cracks in the welded pipe when the diameter is reduced.

【0005】このような問題を解決する技術の一つに特
開昭60−234794号公報があり、比透磁率が1.
10以下の粉末原料の実質的に非磁性の粉体を充填し、
粉体が磁力より開口エッジ面に吸着するのを防止する。
特開昭63−5897号公報では、粉体の供給時に48
メッシュより細かい微粉末を除去し、微粉末が開口エッ
ジ面に付着するのを防止する。また、特開昭54−10
9040号公報には、管状体に充満されないようにして
粉体を供給し、接合部と供給された粉体層表面との間に
空隙すなわち距離を設けて、粉体が舞い上がって開口エ
ッジ面に至らないようにしている。
One of the techniques for solving such a problem is JP-A-60-234794, which has a relative magnetic permeability of 1.
Filling with substantially non-magnetic powder of 10 or less powder raw material,
Prevents the powder from being attracted to the opening edge surface by the magnetic force.
In Japanese Patent Laid-Open No. 63-5897, there is 48
Fine powder finer than the mesh is removed to prevent the fine powder from adhering to the opening edge surface. Also, JP-A-54-10
No. 9040 discloses that a powder is supplied so that the tubular body is not filled with the powder, and a gap, that is, a distance is provided between the joint portion and the surface of the supplied powder layer, so that the powder rises to the opening edge surface. I try not to reach it.

【0006】一方、特開昭58−209500号公報や
特開昭59−113996号公報に記載のTIG溶接や
プラズマアーク溶接等のアーク溶接では磁力により開口
エッジ面に吸着によって溶接部へ介在することはない
が、フラックスの舞い上がりにより、溶接部を直撃し、
フラックスが噛み込んで溶接欠陥を作る。フラックスの
舞い上がりは、溶接された管状体が熱伝導により管状体
全体を加熱し、更に溶接時に急激に膨張した空気が管に
内包されることによる。溶接管が縮径されるに従って、
膨張した空気は溶接工程を通過して外部へ排出され、フ
ラックスの充満率は上がる。この時の空気の排出量が多
いとフラックスを舞い上がらせ、溶接工程を通過する際
に舞い上がったフラックスの一部が溶接エッジ間に噛み
込まれて溶接欠陥となる。この溶接欠陥を内在したまま
溶接管を縮径すると割れが発生する。さらには、この割
れが起因して縮経過程で断線し、生産性低下の原因とも
なる。
On the other hand, in arc welding such as TIG welding or plasma arc welding described in JP-A-58-209500 and JP-A-59-113996, it is necessary to intervene in the welded portion by attraction due to magnetic force on the opening edge surface. However, due to the soaring flux, it hits the weld directly,
The flux becomes trapped and creates welding defects. The flux rises because the welded tubular body heats the entire tubular body by heat conduction, and the air that is rapidly expanded during welding is contained in the tube. As the diameter of the welded pipe is reduced,
The expanded air passes through the welding process and is discharged to the outside, increasing the flux filling rate. If the amount of air discharged at this time is large, the flux rises up, and a part of the flux that rises up when passing through the welding process is caught between the welding edges, resulting in a welding defect. If the diameter of the welded pipe is reduced while the welding defect is inherently present, cracking occurs. Furthermore, this crack causes disconnection in the shrinking process, which causes a decrease in productivity.

【0007】このフラックスの舞い上がりによる割れの
防止として、特開平1−40719号公報や特開平11
−226781号公報に溶接後の溶接管を冷却して溶接
熱で膨張した管内の空気の逆流を防ぐ技術が開示されて
いる。
As a method for preventing the cracks caused by the rising of the flux, Japanese Patent Laid-Open Nos. 1-40719 and 11 have been proposed.
JP-A-226781 discloses a technique of cooling a welded pipe after welding to prevent backflow of air in the pipe expanded by welding heat.

【0008】しかし、縮径時の割れは前記のエッジ面に
吸着あるいはエッジ面に噛み込まれたフラックスによる
欠陥が原因のみでなく、長時間連続で製造する場合、溶
接トーチ又はチップへの付着物や電極の消耗による形状
変化により溶け込み深さが変化し、溶融部に穴が開く溶
け落ちや溶け込み深さ不足の発生による欠陥が発生す
る。溶け落ち部は、後工程での断線原因となり、溶け込
み不足部は、金属帯鋼板厚に対して溶け込み率が100
%未満であると溶接部が後工程の縮径加工に耐えられ
ず、溶接部に割れが発生する。
However, the cracks at the time of diameter reduction are not only caused by the above-mentioned defects due to the flux adsorbed on the edge surface or the flux caught in the edge surface, but in the case of continuous production for a long time, the adhered matter on the welding torch or tip The penetration depth changes due to a change in shape due to wear of the electrode and the electrode, and a defect occurs due to burn-through that a hole is formed in the melted portion or insufficient penetration depth. The melt-through portion causes a disconnection in the subsequent process, and the melt-insufficient portion has a penetration rate of 100 relative to the thickness of the metal strip steel sheet.
If it is less than%, the welded part cannot withstand the post-process diameter reduction processing and cracks occur in the welded part.

【0009】特に溶け落ちは目視で確認できるが、溶け
込み不足は目視で確認できないため、溶け込み不足が発
生していた場合、後工程で溶接部に割れが多発し、大き
な歩留低下の原因となる。
In particular, although burn-through can be visually confirmed, insufficient melt-through cannot be visually confirmed. Therefore, if insufficient melt-through occurs, cracks frequently occur in the welded portion in the subsequent process, which causes a large decrease in yield. .

【0010】[0010]

【発明が解決しようとする課題】本発明は、プラズマア
ーク溶接トーチ又はチップへの付着物や電極の消耗が生
じた場合においても適正な接合部を得ることができ、縮
径後においても溶接管外皮に割れのない溶接用フラック
ス入りワイヤの製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention can obtain a proper joint even when deposits on the plasma arc welding torch or tip or wear of the electrode occur, and the welded pipe can be obtained even after the diameter is reduced. An object of the present invention is to provide a method for manufacturing a flux-cored wire for welding, which has no cracks on the outer skin.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は、金属帯
鋼をU字状体に成形し、該U字状体にフラックスを供給
したのち管状体に成形し、該管状体の両エッジ面をプラ
ズマアーク溶接したのち縮径する溶接用フラックス入り
ワイヤの製造方法において、予めプラズマアーク溶接で
形成された溶接ビードの温度と溶け込み深さとの関係を
求め、溶接ビードの温度測定結果に基づいて溶接条件を
調整して溶け込み深さをいっていにすることを特徴とす
る。
SUMMARY OF THE INVENTION The gist of the present invention is to form a metal strip steel into a U-shaped body, supply a flux to the U-shaped body and then form a tubular body, and to form both edges of the tubular body. In the manufacturing method of the flux-cored wire for welding after the surface is plasma arc welded and then reduced in diameter, the relationship between the temperature and the penetration depth of the weld bead previously formed by plasma arc welding is obtained, and based on the result of the temperature measurement of the weld bead. It is characterized by adjusting welding conditions to adjust the penetration depth.

【0012】また、溶接条件の調整が溶接電流またはパ
イロットガス流量である溶接用フラックス入りワイヤの
製造方法にある。
Further, there is a method of manufacturing a flux-cored wire for welding in which the welding condition is adjusted by the welding current or the pilot gas flow rate.

【0013】[0013]

【発明の実施の形態】次に図面を用いて本発明を詳細に
説明する。図1(a)は、プラズマアーク溶接を用いた
溶接用フラックス入りワイヤの製造装置の概略図であ
り、図1(b)は、各工程における金属帯鋼の成形状態
を示す断面図である。金属帯鋼1,Aはアンコイラー2
より供給され、ルーパー3を経て成形ロール群4により
U字状体Bに成形される。次いで、サイドロール5の間
においてフラックス供給装置6によりフラックス14を
供給してU字状体管Cに充填する。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail with reference to the drawings. FIG. 1 (a) is a schematic view of an apparatus for manufacturing a flux-cored wire for welding using plasma arc welding, and FIG. 1 (b) is a cross-sectional view showing a forming state of a metal strip steel in each step. Metal strip steel 1, A is uncoiler 2
It is supplied by the molding roll group 4 through the looper 3 and is molded into a U-shaped body B. Then, the flux 14 is supplied between the side rolls 5 by the flux supply device 6 to fill the U-shaped body tube C.

【0014】フラックスを充填されたU字状体Cはフィ
ンパスロール7、第1スクイズロール8を通過して溶接
直前の管状体Dとなりプラズマアーク溶接機9にて溶接
されて溶接管Eとなる。その後、第2スクイズロール1
0を経て、縮径ロール群12で所定の外径に縮径され、
コイラー13でコイル状に巻き取る。この後は、図示し
ない伸線機で製品径(0.8〜2.0mm程度)まで縮径
する。その際、必要に応じて焼鈍、酸洗、めっき等を行
う。
The U-shaped body C filled with the flux passes through the fin pass roll 7 and the first squeeze roll 8 to become a tubular body D immediately before welding, which is welded by a plasma arc welding machine 9 to form a welded pipe E. . After that, the second squeeze roll 1
After 0, it is reduced to a predetermined outer diameter by the reduced diameter roll group 12,
The coiler 13 winds it into a coil. After that, the wire diameter is reduced to a product diameter (about 0.8 to 2.0 mm) by a wire drawing machine (not shown). At that time, if necessary, annealing, pickling, plating, etc. are performed.

【0015】本発明においては、プラズマアーク溶接後
に、放射温度計11でビード温度表面温度を測定し、予
めビード温度と溶け込み深さの関係を求めておき、適性
ビード温度範囲を定め、その結果から溶接条件の調整を
行う。
In the present invention, after the plasma arc welding, the bead temperature surface temperature is measured by the radiation thermometer 11, the relationship between the bead temperature and the penetration depth is obtained in advance, the suitable bead temperature range is determined, and the result is obtained. Adjust the welding conditions.

【0016】ビード温度と溶け込み深さの関係を図2に
示す。使用した金属帯鋼は、JISG3141に規定さ
れるSPCCの板厚1.2mm、板幅23.0mm、その他
の条件は表1に示す。ビード温度を変化させ、それぞれ
溶け込み深さを検査した結果、エッジ面の底部(全板
厚)まで溶け込んだ場合を100%とした場合、ビード
温度680℃で溶け込み深さは60%、ビード温度74
0℃で80%、ビード温度780℃で100%となりビ
ード温度を高くすると溶け込み深さが深くなる関係があ
ることが分かる。したがって、溶接後にビード温度を測
定し、その測定結果から溶接条件を調整することによっ
て溶け込み深さを管理することができる。
The relationship between the bead temperature and the penetration depth is shown in FIG. The used metal strip steel has a SPCC plate thickness of 1.2 mm and a plate width of 23.0 mm specified in JIS G3141, and other conditions are shown in Table 1. As a result of changing the bead temperature and inspecting the penetration depth, assuming that the penetration to the bottom of the edge surface (total plate thickness) is 100%, the penetration depth is 60% at a bead temperature of 680 ° C and the bead temperature is 74
80% at 0 ° C. and 100% at a bead temperature of 780 ° C. It can be seen that there is a relationship that the penetration depth increases as the bead temperature increases. Therefore, the penetration depth can be controlled by measuring the bead temperature after welding and adjusting the welding conditions based on the measurement result.

【0017】[0017]

【表1】 [Table 1]

【0018】図3に溶接電流とビード温度(溶け込み深
さ)の関係を示す。試験条件は表1に示す。パイロット
ガス流量を1.2リットル/分の一定にして溶接電流を
240A、260A、280Aと変化したときのビード
温度を調査した。溶接電流を高くするとビード温度が上
昇すると共に溶け込みが深くなる。したがって、ビード
温度を測定し、その測定結果から溶接電流を調整するこ
とによって溶け込み深さを管理することができる。
FIG. 3 shows the relationship between the welding current and the bead temperature (penetration depth). The test conditions are shown in Table 1. The bead temperature was investigated when the welding current was changed to 240 A, 260 A, and 280 A while the pilot gas flow rate was kept constant at 1.2 liter / min. When the welding current is increased, the bead temperature rises and the penetration deepens. Therefore, the penetration depth can be controlled by measuring the bead temperature and adjusting the welding current based on the measurement result.

【0019】図4にパイロットガス流量とビード温度
(溶け込み深さ)の関係を示す。試験条件は表1に示
す。溶接電流を280Aの一定にし、パイロットガス流
量を0.8リットル/分、1.0リットル/分、1.2
リットル/分と変化させたときのビード温度と溶け込み
深さの関係を調査した。パイロットガス流量を上げると
ビード温度が上昇し溶け込みが深くなる関係が認められ
る。したがって、ビード温度測定し、その測定結果から
パイロットガス流量を調整することによって溶け込み深
さを管理することができる。
FIG. 4 shows the relationship between the pilot gas flow rate and the bead temperature (penetration depth). The test conditions are shown in Table 1. The welding current is kept constant at 280A, and the pilot gas flow rate is 0.8 liter / min, 1.0 liter / min, 1.2.
The relationship between the bead temperature and the penetration depth when changing to liter / minute was investigated. It is observed that increasing the pilot gas flow rate raises the bead temperature and deepens the penetration. Therefore, the penetration depth can be controlled by measuring the bead temperature and adjusting the pilot gas flow rate based on the measurement result.

【0020】プラズマアーク溶接による製造では、長時
間製造しているとチップへの付着物や電極の消耗などの
微妙な変化で溶け込み深さが変化するが、溶接点近傍の
ビード温度を測定して、その測定結果から溶接電流また
はパイロットガス流量などの溶接条件を調整することに
よって適正な溶け込み深さを長時間連続して維持するこ
とができる。
In the manufacturing by plasma arc welding, if the manufacturing is carried out for a long time, the penetration depth changes due to subtle changes such as deposits on the tip and wear of the electrode. However, measuring the bead temperature near the welding point By adjusting the welding conditions such as the welding current or the pilot gas flow rate from the measurement result, it is possible to maintain the appropriate penetration depth continuously for a long time.

【0021】なお、金属帯鋼板厚や溶接速度、温度測定
位置によってビード温度の絶対値が変化するので、あら
かじめ適性ビード温度許容範囲を調査する必要がある。
ビード温度の測定位置は、特込み深さとの関係が最も明
瞭となる溶接点から20〜200mm下流であることが好
ましい。
Since the absolute value of the bead temperature changes depending on the thickness of the metal strip steel plate, the welding speed, and the temperature measurement position, it is necessary to investigate the appropriate bead temperature allowable range in advance.
The measurement position of the bead temperature is preferably 20 to 200 mm downstream from the welding point where the relationship with the special depth is most clear.

【0022】[0022]

【実施例1】まず、図1に示す溶接用フラックス入りワ
イヤの製造装置を用いてフラックス入りワイヤを製造し
た。
Example 1 First, a flux-cored wire was manufactured using the welding flux-cored wire manufacturing apparatus shown in FIG.

【0023】使用した放射温度計は、測定温度範囲;6
00〜1600℃、分解能;1℃、応答速度;0.02
sec、焦点距離;1000mm〜無限大、測定視野;最小
直径4mmの物を使用し、溶接点から下流40mmの位置で
測定した。
The radiation thermometer used has a measurement temperature range of 6
00 to 1600 ° C, resolution: 1 ° C, response speed: 0.02
sec, focal length; 1000 mm to infinity, measurement field of view; minimum diameter of 4 mm was used, and measurement was made at a position of 40 mm downstream from the welding point.

【0024】使用金属帯鋼は、JIS G3141に規
定されるSPCCの板厚1.2mm、板幅23.0mm、プ
ラズマアーク溶接の製造開始時の溶接電流;290A、
パイロットガス流量1.2リットル/分、その他の条件
は表1に示す条件で、あらかじめ求めておいたビード温
度と溶け込み深さとの関係から、溶け込み深さが100
%得られるビード温度の下限900℃、上限1000℃
で管長手方向全長に亘ってビード温度を測定し、ビード
温度の測定結果から溶接電流の増減でビード温度を調整
しながら12時間連続で製造した。その結果、溶け落ち
がおきることなく製造でき、1.6mm径まで縮径した後
に全長渦流探傷機で調べた結果、溶接部に割れはなかっ
た。
The metal strip steel used is SPCC plate thickness 1.2 mm, plate width 23.0 mm defined by JIS G3141, welding current at the start of plasma arc welding production; 290 A,
The pilot gas flow rate is 1.2 liters / minute, and the other conditions are as shown in Table 1. From the relationship between the bead temperature and the penetration depth obtained in advance, the penetration depth is 100
% Lower limit of bead temperature obtained is 900 ° C., upper limit is 1000 ° C.
The bead temperature was measured over the entire length in the longitudinal direction of the pipe, and the bead temperature was adjusted by increasing or decreasing the welding current from the measurement result of the bead temperature to continuously manufacture for 12 hours. As a result, it was possible to manufacture without causing burn-through, and as a result of examination with a full length eddy current flaw detector after reducing the diameter to 1.6 mm, there was no crack in the weld.

【0025】比較例として、上述のビード温度測定を行
わないで一定の溶接条件で製造した結果、製造開始から
30分後に溶け落ちが発生し防止対策として溶接入熱量
を下げて3時間製造したが、1.6mm径まで縮径した後
に全長渦流探傷機で調べた結果、溶け込み不足による溶
接部割れが多数あった。
As a comparative example, as a result of manufacturing under constant welding conditions without performing the above-mentioned bead temperature measurement, burn-through occurred 30 minutes after the start of manufacturing, and the welding heat input amount was lowered to manufacture for 3 hours as a preventive measure. As a result of examination with a full length eddy current flaw detector after reducing the diameter to 1.6 mm, there were many weld cracks due to insufficient penetration.

【0026】[0026]

【実施例2】実施例1と同様に図1に示す溶接用フラッ
クス入りワイヤの製造装置および上述した放射温度計を
用いてステンレス鋼溶接用フラックス入りワイヤを製造
した。
Example 2 Similar to Example 1, a flux-cored wire for welding stainless steel was produced using the apparatus for producing a flux-cored wire for welding shown in FIG. 1 and the radiation thermometer described above.

【0027】使用金属帯鋼は、JIS G4305に規
定されるSUS304鋼の板厚0.8mm、板幅23.7
mm、プラズマアーク溶接の溶接電流;170A、製造開
始時のパイロットガス流量1.1リットル/分、その他
の条件は表1に示す条件で、あらかじめ求めておいたビ
ード温度と溶け込み深さとの関係から、溶け込み深さが
100%得られるビード温度の下限780℃、上限88
0℃で管長手方向全長に亘ってビード#温度を測定し、
ビード温度の測定結果からパイロットガス流量の増減で
ビード温度を調整しながら12時間連続で製造した。そ
の結果、溶け落ちがおきることなく製造でき、1.2mm
径まで縮径した後に全長渦流探傷機で調べた結果、溶接
部に割れはなかった。
The metal strip steel used is a SUS304 steel sheet having a thickness of 0.8 mm and a sheet width of 23.7 specified in JIS G4305.
mm, welding current of plasma arc welding: 170 A, pilot gas flow rate at the start of production 1.1 liter / min, and other conditions are as shown in Table 1. From the relationship between the bead temperature and the penetration depth obtained in advance. The lower limit of the bead temperature at which the penetration depth is 100% is 780 ° C. and the upper limit is 88.
Measure the bead # temperature at 0 ° C over the entire length in the longitudinal direction of the pipe,
It was continuously manufactured for 12 hours while adjusting the bead temperature by adjusting the flow rate of the pilot gas based on the measurement result of the bead temperature. As a result, 1.2mm can be manufactured without burn-through.
As a result of examination with a full length eddy current flaw detector after reducing the diameter to the diameter, there was no crack in the weld.

【0028】比較例として、上述のビード温度測定を行
わないで一定の溶接条件で製造したした結果、製造開始
から1時間後に溶け落ちが発生し防止対策として溶接入
熱量を下げて5時間製造したが、1.2mm径まで縮径し
た後に全長渦流探傷機で調べた結果、溶け込み不足によ
る溶接部割れが多数あった。
As a comparative example, as a result of manufacturing under constant welding conditions without performing the above-mentioned bead temperature measurement, one hour after the start of manufacturing, burn through occurred, and as a preventive measure, the welding heat input amount was lowered and the manufacturing was carried out for 5 hours. However, as a result of examination with a full length eddy current flaw detector after reducing the diameter to 1.2 mm, there were many weld cracks due to insufficient penetration.

【0029】[0029]

【発明の効果】以上記述したように本発明の溶接用フラ
ックス入りワイヤの製造方法によれば、長時間連続で製
造しても、縮径後溶接部に溶け込み不足による溶接管外
皮に割れのない溶接用フラックス入りワイヤが製造でき
る。
As described above, according to the method for manufacturing a flux-cored wire for welding of the present invention, even if it is manufactured continuously for a long time, the welded pipe outer shell does not crack due to insufficient penetration into the welded portion after the diameter reduction. Flux-cored wire for welding can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、溶接用フラックス入りワイヤの製造
装置の概略図であり、(b)は本発明の各工程の金属帯
鋼から溶接用フラックス入りワイヤまでの断面概略図で
ある。
FIG. 1A is a schematic view of a welding flux-cored wire manufacturing apparatus, and FIG. 1B is a schematic cross-sectional view from a metal strip steel to a welding flux-cored wire in each step of the present invention.

【図2】ビード温度と溶け込み深さの関係を示す図であ
る。
FIG. 2 is a diagram showing a relationship between a bead temperature and a penetration depth.

【図3】溶接電流とビード温度および溶け込み深さの関
係を示す図である。
FIG. 3 is a diagram showing a relationship between a welding current, a bead temperature, and a penetration depth.

【図4】パイロットガス流量とビード温度および溶け込
み深さの関係を示す図である。
FIG. 4 is a diagram showing a relationship among a pilot gas flow rate, a bead temperature, and a penetration depth.

【符号の説明】[Explanation of symbols]

1 金属帯鋼 2 アンコイラー 3 ルーパー 4 成形ロール群 5 サイドロール 6 フラックス供給装置 7 フィンパスロール 8 第1スクイズロール 9 プラズマアーク溶接機 10 第2スクイズロール 11 放射温度計 12 縮径ロール群 13 コイラー 14 フラックス A 金属帯鋼 B U字状体 C フラックス充填後のU字状体 D 溶接前の管状体 E 溶接管 F 縮径後の充填管 1 Metal strip steel 2 Uncoiler 3 looper 4 forming rolls 5 side rolls 6 Flux supply device 7 fin pass roll 8 first squeeze roll 9 Plasma arc welder 10 Second Squeeze Roll 11 Radiation thermometer 12 Reduced roll group 13 coilers 14 Flux A metal strip steel B U shape C U-shaped body after flux filling D Tubular body before welding E welded pipe F Filling tube after diameter reduction

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栢森 雄己 千葉県習志野市東習志野7丁目6番1号 日鐵溶接工業株式会社習志野工場内 Fターム(参考) 4E001 AA03 BB11 CA01 CA03 CC03 EA01 EA08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yuki Kajimori             7-6-1, Higashi Narashino, Narashino, Chiba Prefecture             Nittetsu Welding Co., Ltd. Narashino Factory F-term (reference) 4E001 AA03 BB11 CA01 CA03 CC03                       EA01 EA08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属帯鋼をU字状体に成形し、該U字状
体にフラックスを供給したのち管状体に成形し、該管状
体の両エッジ面をプラズマアーク溶接したのち縮径する
溶接用フラックス入りワイヤの製造方法において、予め
プラズマアーク溶接で形成された溶接ビードの温度と溶
け込み深さとの関係を求め、溶接ビードの温度測定結果
に基づいて溶接条件を調整して溶け込み深さを一定にす
ることを特徴とする溶接用フラックス入りワイヤの製造
方法。
1. A metal strip steel is formed into a U-shaped body, a flux is supplied to the U-shaped body, then formed into a tubular body, and both edge surfaces of the tubular body are plasma arc welded and then reduced in diameter. In the method for manufacturing the flux-cored wire for welding, the relationship between the temperature and the penetration depth of the welding bead formed by plasma arc welding is obtained in advance, and the penetration depth is adjusted by adjusting the welding conditions based on the temperature measurement result of the welding bead. A method for manufacturing a flux-cored wire for welding, which is characterized by making it constant.
【請求項2】 溶接条件の調整が溶接電流である請求項
1記載の溶接用フラックス入りワイヤの製造方法。
2. The method for producing a flux-cored wire for welding according to claim 1, wherein the adjustment of the welding condition is a welding current.
【請求項3】 溶接条件の調整がパイロットガス流量で
ある請求項1記載の溶接用フラックス入りワイヤの製造
方法。
3. The method for producing a flux-cored wire for welding according to claim 1, wherein the adjustment of the welding condition is a pilot gas flow rate.
JP2002041987A 2002-02-19 2002-02-19 Method for producing flux cored wire for welding Pending JP2003236696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002041987A JP2003236696A (en) 2002-02-19 2002-02-19 Method for producing flux cored wire for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002041987A JP2003236696A (en) 2002-02-19 2002-02-19 Method for producing flux cored wire for welding

Publications (1)

Publication Number Publication Date
JP2003236696A true JP2003236696A (en) 2003-08-26

Family

ID=27782243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002041987A Pending JP2003236696A (en) 2002-02-19 2002-02-19 Method for producing flux cored wire for welding

Country Status (1)

Country Link
JP (1) JP2003236696A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804534B (en) * 2009-02-18 2012-11-21 株式会社神户制钢所 Method for making a flux cored wire
CN105965171A (en) * 2016-06-13 2016-09-28 武汉铁锚焊接材料股份有限公司 Method and device for producing barreled seamless flux-cored wire used for high-strength steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804534B (en) * 2009-02-18 2012-11-21 株式会社神户制钢所 Method for making a flux cored wire
CN105965171A (en) * 2016-06-13 2016-09-28 武汉铁锚焊接材料股份有限公司 Method and device for producing barreled seamless flux-cored wire used for high-strength steel

Similar Documents

Publication Publication Date Title
EP2258493B1 (en) Welded steel pipe welded with a high energy density beam, and a manufacturing method therefor
EP0489167B1 (en) Method of manufacturing tube filled with powder and granular material
Simion et al. Controlling and monitoring of welding parameters for micro-alloyed steel pipes produced by high frequency electric welding
JPH0615447A (en) Manufacture of welded tube
JP2003236696A (en) Method for producing flux cored wire for welding
JPH07108475B2 (en) Method of manufacturing powder-filled tube
JP2732936B2 (en) Manufacturing method of powder filled tube
JPH06246484A (en) Production of powder and granular material packed pipe
JPH11226781A (en) Manufacture of flux cored wire for welding
JPH0852513A (en) Manufacture of welded tube
JP3199929B2 (en) Manufacturing method of powder filled tube
JPH1058161A (en) Welded steel tube and its manufacture
JP2666647B2 (en) Manufacturing method of welded pipe
JP2002113593A (en) Method and device for manufacturing packing tube for powdery material
JP3231440B2 (en) Manufacturing method of flux cored wire for welding
JP2732935B2 (en) Manufacturing method of powder filled tube
JP3596394B2 (en) Method for producing martensitic stainless laser welded steel pipe
JP2006068759A (en) Method for inspecting joint welded portion of electroseamed steel pipe
JPH02224815A (en) Method and apparatus for manufacturing high damping steel pipe
JPH11197885A (en) Production of powdery and granular material filled tube
JPH06218579A (en) Production of powdery particle filling tube
JPH0663791A (en) Production of powder and granular material filled pipe
JPH0623587A (en) Production of powder and granular material-packed tube
JP2006136934A (en) Flash butt welding method in electric resistance welded tube manufacturing equipment
JPH04237513A (en) Manufacturing device for electro-resistance-welded tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20031203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20050804

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060530

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD03 Notification of appointment of power of attorney

Effective date: 20060727

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A02 Decision of refusal

Effective date: 20060822

Free format text: JAPANESE INTERMEDIATE CODE: A02