JP2003234499A - Optical coupling semiconductor device and its manufacturing method - Google Patents

Optical coupling semiconductor device and its manufacturing method

Info

Publication number
JP2003234499A
JP2003234499A JP2002029418A JP2002029418A JP2003234499A JP 2003234499 A JP2003234499 A JP 2003234499A JP 2002029418 A JP2002029418 A JP 2002029418A JP 2002029418 A JP2002029418 A JP 2002029418A JP 2003234499 A JP2003234499 A JP 2003234499A
Authority
JP
Japan
Prior art keywords
optical coupling
semiconductor device
manufacturing
fuv
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002029418A
Other languages
Japanese (ja)
Inventor
Tsuguo Uchino
嗣男 内野
Yoichi Fukunaga
洋一 福永
Kenichi Tanishita
健一 谷下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002029418A priority Critical patent/JP2003234499A/en
Publication of JP2003234499A publication Critical patent/JP2003234499A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical coupling semiconductor device and its manufacturing method wherein an optical coupling semiconductor device having superior insulating characteristic can be formed in the state free from danger of FUV expose of a worker, manufacturing cost can be reduced by reducing activation treatment time by FUV, and cost of manufacturing equipment is low. <P>SOLUTION: This manufacturing method is provided with a process wherein a light emitting element 2 and a light receiving element 3 which are arranged at a prescribed interval on a lead frame 4 are coated with optical coupling material 7 composed of silicon resin, in which diphenyl siloxane of 1-20 mol% is added to polydimethyl siloxane which has transmissivity of at least 90% to radiant ion rays in a range from ultraviolet to infrared; a process wherein irradiation of far-ultraviolet rays whose peak wavelength is at most 180 nm is performed for 10 sec under an atmosphere, whose oxygen concentration is at most 5 vol.% after coating is performed with the optical coupling material 7; and a process wherein sealing is performed with sealing material 10 which has reflectivity of at least 90% to radiant ion rays in the range from ultraviolet to infrared after irradiation of far-ultraviolet rays is performed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばシングルモ
ールド構造を有する反射型の光結合半導体装置及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection type optically coupled semiconductor device having a single mold structure and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、シングルモールド構造の反射型光
結合半導体装置は、電圧印加により紫外域から赤外域ま
での放射線を発する発光素子と、この発光素子の発する
放射線に対し受光感度を有する受光素子を、リードフレ
ームの所定位置にそれぞれ固着し、さらに、ジメチルシ
ロキサンを重合した紫外域から赤外域の放射線に対し透
過性を有するシリコーン樹脂からなる光結合材料で発光
素子と受光素子を被覆し、またさらに紫外域から赤外域
の放射線に対して50%以上の反射率を有する白色エポ
キシ樹脂の封止材料で封止した構成となっている。
2. Description of the Related Art Conventionally, a reflection type optically coupled semiconductor device having a single mold structure includes a light emitting element that emits radiation from an ultraviolet region to an infrared region when a voltage is applied, and a light receiving element that has a light receiving sensitivity to the radiation emitted by the light emitting device. Are fixed to respective predetermined positions of the lead frame, and further, the light emitting element and the light receiving element are covered with an optical coupling material made of a silicone resin having a transparency to ultraviolet rays to infrared rays, which is obtained by polymerizing dimethylsiloxane, and Furthermore, the structure is such that it is sealed with a white epoxy resin sealing material having a reflectance of 50% or more with respect to radiation in the ultraviolet to infrared regions.

【0003】そして、封止材料で封止するに際しては、
発光素子と受光素子を被覆し、硬化させた光結合材料の
表面に、図7に示す波長分布を有する低圧水銀ランプか
ら放射される波長254nm及び185nmの遠紫外線
(FUV)を約15分間照射する活性化処理を行うこと
で、光結合材料のシリコーン樹脂と封止材料の白色エポ
キシ樹脂との共有化学結合が形成され、強固に密着し、
両者間に界面剥離が生じ難くなる。また絶縁耐力も増加
し、5kV〜6kVで絶縁破壊が生じていたものが、1
0kV以上の電圧が印加されても絶縁破壊することがな
かった。
When sealing with a sealing material,
The surface of the light-coupled material, which covers the light emitting element and the light receiving element and is cured, is irradiated with deep ultraviolet rays (FUV) of wavelengths 254 nm and 185 nm emitted from the low-pressure mercury lamp having the wavelength distribution shown in FIG. 7 for about 15 minutes. By performing the activation treatment, a covalent chemical bond is formed between the silicone resin, which is an optical coupling material, and the white epoxy resin, which is a sealing material.
Interfacial peeling is less likely to occur between the two. In addition, the dielectric strength also increased, and dielectric breakdown occurred at 5 kV to 6 kV.
Dielectric breakdown did not occur even when a voltage of 0 kV or higher was applied.

【0004】しかしながら、このようにして形成された
光結合半導体装置では、シリコーン樹脂の熱膨張率が
3.64×10-4/℃、白色エポキシ樹脂の熱膨張率
が2.50×10-5/℃と、密着している両者の熱膨
張率差が約10倍あり、室温状態ではシリコーン樹脂
に、常に引張り応力が内在しており、シリコーン樹脂の
特性のばらつきにより、光結合半導体装置の絶縁特性を
低下させ、信頼性を低下させる要因となっていた。
However, in the optical coupling semiconductor device thus formed, the coefficient of thermal expansion of the silicone resin is 3.64 × 10 −4 / ° C. and the coefficient of thermal expansion of the white epoxy resin is 2.50 × 10 −5. / ° C and the difference in the coefficient of thermal expansion between the two in close contact are about 10 times, and the tensile stress is always present in the silicone resin at room temperature. Due to the variation in the characteristics of the silicone resin, the insulation of the optically coupled semiconductor device is insulated. This is a factor that deteriorates the characteristics and reliability.

【0005】一方、上記のような硬化させたシリコーン
樹脂の表面にFUVを照射して活性化処理を行う場合に
は、用いる低圧水銀ランプのピーク発光波長が波長25
4nm及び185nmであるのでフォトンエネルギが低
く、良好な絶縁性を確保するためには活性化時間を長く
取る必要があり、処理時間が長くなって製造コストを上
昇させるものとなっていた。また空気中の酸素による吸
収が少なく、有効距離が15cm〜20cmと長いため
に、作業者が被爆する可能性が高く、ガンを誘発する虞
があり、作業にあたっては細心の注意を払う必要があっ
た。
On the other hand, when the surface of the cured silicone resin as described above is irradiated with FUV for activation treatment, the peak emission wavelength of the low-pressure mercury lamp used is wavelength 25.
Since it is 4 nm and 185 nm, the photon energy is low, and it is necessary to take a long activation time in order to secure a good insulating property, and the processing time becomes long and the manufacturing cost is increased. In addition, since there is little absorption by oxygen in the air and the effective distance is as long as 15 cm to 20 cm, there is a high possibility that the worker will be exposed to radiation, which may cause a cancer, and it is necessary to pay close attention to the work. It was

【0006】このため、FUVの光源を例えばキセノン
(Xe)タイプエキシマランプとし、図8に示すように
ピーク波長を180nm以下の短波長化することで、活
性化時間は60秒以下に短縮でき、空気中での有効距離
も20mm以下とすることができ、作業者の安全性を確
保することができた。
Therefore, the activation time can be shortened to 60 seconds or less by using, for example, a xenon (Xe) type excimer lamp as the FUV light source and shortening the peak wavelength to 180 nm or less as shown in FIG. The effective distance in air can be set to 20 mm or less, and the safety of the worker can be secured.

【0007】しかし、ピーク波長を180nm以下の短
波長化することで、FUVは、図9に示すように空気中
の酸素に吸収されてオゾンが発生し、FUV光源からの
距離が離れるにしたがいFUV照度が減衰する。このた
め、製造装置設計の裕度が減少し、FUV光源を1つの
ランプから2つにするなど多灯化する必要等が生じ、製
造装置コストが上昇してしまう状況となっていた。
However, by shortening the peak wavelength to 180 nm or less, the FUV is absorbed by oxygen in the air to generate ozone as shown in FIG. 9, and the FUV increases as the distance from the FUV light source increases. The illuminance is reduced. For this reason, the margin of design of the manufacturing apparatus is reduced, and it becomes necessary to increase the number of FUV light sources from one lamp to two, and the manufacturing apparatus cost is increased.

【0008】[0008]

【発明が解決しようとする課題】上記のような状況に鑑
みて本発明はなされたもので、その目的とするところは
光結合半導体装置を、光結合材料の特性ばらつきが少な
く、良好な絶縁特性を有し、信頼性が向上したものとす
ることができ、また光結合半導体装置を形成するに際し
て、作業者のFUV被爆の虞を無くし、作業の安全性を
十分に確保することができ、さらに活性化処理の時間の
短縮により製造コストを低減させることができると共
に、FUV光源の多灯化の必要がなくて製造装置のコス
ト上昇を招くことのない光結合半導体装置及びその製造
方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and an object of the present invention is to provide an optically coupled semiconductor device which has a small variation in the characteristics of the optically coupled material and good insulation characteristics. In addition, it is possible to improve the reliability, to eliminate the risk of FUV exposure of the worker when forming the optically coupled semiconductor device, and to sufficiently secure the safety of the work. (EN) Provided are an optically coupled semiconductor device and a method for manufacturing the same, which can reduce the manufacturing cost by shortening the time of the activation process, and which does not require multiple lighting of the FUV light source and thus does not increase the cost of the manufacturing apparatus. Especially.

【0009】[0009]

【課題を解決するための手段】本発明の光結合半導体装
置及びその製造方法は、光結合半導体装置が、フレーム
上に所定距離を隔てて配置された発光素子と受光素子
を、紫外域から赤外域の放射線に対して90%以上の透
過率を有するポリジメチルシロキサンにジフェニルシロ
キサンを1〜20mol%添加したシリコーン樹脂から
なる光結合材料で被覆し、該光結合材料の表面に遠紫外
線を所定時間照射した後、紫外域から赤外域の放射線に
対して90%以上の反射率を有する封止材料で封止して
なるものであって、前記光結合材料が、0.3MPa以
上の引張り強度と、150%以上の伸び率とを有してい
ることを特徴とするものであり、さらに、前記遠紫外線
のピーク波長を180nm以下とし、照射時間を10秒
以下としたものであることを特徴とするものであり、ま
た、光結合半導体装置の製造方法が、フレーム上に所定
距離を隔てて配置された発光素子と受光素子を、紫外域
から赤外域の放射線に対して90%以上の透過率を有す
るポリジメチルシロキサンにジフェニルシロキサンを1
〜20mol%添加したシリコーン樹脂からなる光結合
材料で被覆する工程と、光結合材料で被覆後に酸素濃度
5vol%以下の雰囲気中で遠紫外線を所定時間照射す
る工程と、遠紫外線を照射した後に紫外域から赤外域の
放射線に対して90%以上の反射率を有する封止材料で
封止する工程を備えていることを特徴とする方法であ
り、さらに、前記遠紫外線のピーク波長が180nm以
下であり、照射時間が10秒以下であることを特徴とす
る方法であり、さらに、前記遠紫外線を照射する際、該
遠紫外線の放射源からの直射遠紫外線と、前記放射源に
対向して設けた反射体からの反射遠紫外線を照射するよ
うにしたことを特徴とする方法である。
In the optically coupled semiconductor device and the method of manufacturing the same according to the present invention, an optically coupled semiconductor device includes a light emitting element and a light receiving element which are arranged on a frame with a predetermined distance from each other. A polydimethylsiloxane having a transmittance of 90% or more for external radiation is coated with a photocoupling material made of a silicone resin in which 1 to 20 mol% of diphenylsiloxane is added, and the surface of the photocoupling material is exposed to deep ultraviolet rays for a predetermined time. After irradiation, the optical coupling material is sealed with a sealing material having a reflectance of 90% or more with respect to radiation in the ultraviolet region to the infrared region, and the optical coupling material has a tensile strength of 0.3 MPa or more. And an elongation of 150% or more, and further, the peak wavelength of the far ultraviolet rays is 180 nm or less, and the irradiation time is 10 seconds or less. According to the method of manufacturing an optically coupled semiconductor device, a light emitting element and a light receiving element which are arranged on a frame with a predetermined distance from each other are provided in an amount of 90% with respect to radiation in the ultraviolet region to the infrared region. Diphenylsiloxane is added to polydimethylsiloxane having the above transmittance.
A step of coating with a photo-bonding material made of a silicone resin added by ˜20 mol%, a step of irradiating with a deep ultraviolet ray for a predetermined time in an atmosphere having an oxygen concentration of 5 vol% or less after coating with a photo-bonding material, and an ultraviolet ray after irradiating with a deep ultraviolet ray. The method further comprises a step of sealing with a sealing material having a reflectance of 90% or more with respect to radiation in the infrared region to the infrared region, and further, the peak wavelength of the far ultraviolet rays is 180 nm or less. And the irradiation time is 10 seconds or less. Further, when irradiating the far-ultraviolet ray, the far-ultraviolet ray directly emitted from a radiation source of the far-ultraviolet ray is provided so as to face the radiation source. The method is characterized in that far ultraviolet rays reflected from the reflector are irradiated.

【0010】[0010]

【発明の実施の形態】以下本発明の一実施形態を、図1
乃至図6を参照して説明する。図1は光結合半導体装置
を示す縦断面図であり、図2はFUV照射工程を示す断
面図であり、図3は雰囲気圧力(雰囲気のO濃度)と
水の接触角の関係を示す図であり、図4はシリコーン樹
脂の一定伸び率における引張り強度と絶縁耐圧不良率の
関係を示す図であり、図5はFUV照射工程の変形形態
を示す断面図であり、図6は光結合半導体装置の変形形
態を示す縦断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIG.
It will be described with reference to FIGS. 1 is a vertical cross-sectional view showing an optically coupled semiconductor device, FIG. 2 is a cross-sectional view showing an FUV irradiation step, and FIG. 3 is a view showing a relationship between atmospheric pressure (O 2 concentration in the atmosphere) and water contact angle. FIG. 4 is a diagram showing the relationship between tensile strength and insulation breakdown voltage defective rate of silicone resin at a constant elongation rate, FIG. 5 is a sectional view showing a modified form of the FUV irradiation step, and FIG. 6 is an optically coupled semiconductor. It is a longitudinal section showing a modification of a device.

【0011】図1乃至図6において、シングルモールド
構造の反射型光結合半導体装置1は、電圧印加により紫
外域から赤外域までの放射線を発するLED等の発光素
子2と、この発光素子2の発する放射線に対し受光感度
を有するフォト・ダイオード等の受光素子3を、例えば
銅(Cu)あるいは銅合金でなるリードフレーム4のそ
れぞれのマウント部分4a,4bに、導電性ペースト5
により固着することによって構成されている。さらに、
発光素子2と受光素子3とは、それぞれの電極部2a,
3aが、例えば金(Au)製のリード線6a,6bを用
いてリードフレーム4の図示しないインナーリード部分
に結線されている。
1 to 6, in a reflection type optically coupled semiconductor device 1 having a single mold structure, a light emitting element 2 such as an LED which emits radiation from an ultraviolet region to an infrared region when a voltage is applied, and the light emitting device 2 emits the radiation. A light-receiving element 3 such as a photodiode having a light-receiving sensitivity to radiation is attached to each of the mounting portions 4a and 4b of the lead frame 4 made of, for example, copper (Cu) or a copper alloy, by using the conductive paste 5
It is configured by being fixed by. further,
The light emitting element 2 and the light receiving element 3 are provided with respective electrode portions 2a,
3a is connected to an inner lead portion (not shown) of the lead frame 4 by using, for example, gold (Au) lead wires 6a and 6b.

【0012】また、リードフレーム4上に固着された発
光素子2と受光素子3は、ジフェニルシロキサンを5m
ol%添加したジメチルシロキサンを重合した紫外域か
ら赤外域の放射線に対し透過性を有するシリコーン樹脂
からなる光結合材料7によって被覆されており、光結合
材料7を硬化させた後に、チャンバ8内に収納され、光
結合材料7の外表面の活性化処理がなされる。
Further, the light emitting element 2 and the light receiving element 3 fixed on the lead frame 4 are made of diphenylsiloxane of 5 m.
It is covered with an optical coupling material 7 made of a silicone resin having transparency to ultraviolet to infrared radiation obtained by polymerizing dimethylsiloxane added in an amount of ol%. After curing the optical coupling material 7, the inside of the chamber 8 is cured. It is housed and the outer surface of the optical coupling material 7 is activated.

【0013】活性化処理は、遠紫外線(FUV)を光結
合材料7の外表面に照射することにより行うもので、そ
の工程は、先ずチャンバ8内の雰囲気を、窒素ガス(N
)ベースの酸素(O)濃度5vol%以下としたフ
ォーミングガスをチャンバ8内に送り込むことによって
低酸素濃度雰囲気にする。そして、チャンバ8内に配置
した、例えば図8に分光分布を示すようなキセノン(X
e)タイプエキシマランプを用いたFUV光源9を10
秒間だけ点灯させ、低酸素濃度雰囲気中で光結合材料7
の外表面に、ピーク波長172nmのFUVを10秒間
照射する。
The activation treatment is carried out by irradiating the outer surface of the photocoupling material 7 with deep ultraviolet rays (FUV). In the step, first, the atmosphere in the chamber 8 is changed to nitrogen gas (N
2 ) A low oxygen concentration atmosphere is created by sending a forming gas having a base oxygen (O 2 ) concentration of 5 vol% or less into the chamber 8. Then, for example, xenon (X
e) FUV light source 9 using a type excimer lamp 10
Light for only a second, and use optical coupling material 7 in a low oxygen concentration atmosphere.
The outer surface of the is irradiated with FUV having a peak wavelength of 172 nm for 10 seconds.

【0014】なお、光結合材料7の外表面の活性化状況
について、雰囲気圧力:atm(酸素濃度:%)と活性
化効果をガラス板と水との接触角の関係が、酸素濃度が
比較的高濃度の状態では等価であることに基づき大気中
での検証を行ったところ、FUV照度6.7mW/cm
、照射距離5mmとし、照射時間を変えて接触角を測
定したところ、図3に示すように、FUVの照射が10
秒間である場合には特性線X10のようになり、5秒間
では特性線Xのようになった。これにより、酸素濃度
が約0.2%の点に水の接触角の極小値があり、大気状
態から酸素濃度を低下させることで水の接触角は小さく
なり、活性化処理が促進されていることが判る。そし
て、最も良好な活性状態を得るためには、酸素濃度を
0.2vol%程度とすることが好ましいが、実用的に
は酸素濃度を0.05vol%〜5vol%とすればよ
い。また照射時間も10秒以下、好ましくは5秒〜10
秒程度とすればよい。
Regarding the activation state of the outer surface of the optical coupling material 7, the relation between the atmospheric pressure: atm (oxygen concentration:%) and the activation effect is the contact angle between the glass plate and water. As a result of verification in the atmosphere based on the fact that they are equivalent in a high concentration state, the FUV illuminance is 6.7 mW / cm.
2 , the irradiation distance was 5 mm, and the contact angle was measured while changing the irradiation time. As shown in FIG.
The characteristic line X 10 was obtained in the case of second, and the characteristic line X 5 was obtained in 5 seconds. As a result, there is a minimum value of the contact angle of water at a point where the oxygen concentration is about 0.2%, and the contact angle of water is reduced by lowering the oxygen concentration from the atmospheric state, and the activation process is promoted. I understand. Then, in order to obtain the best active state, it is preferable to set the oxygen concentration to about 0.2 vol%, but practically, the oxygen concentration may be set to 0.05 vol% to 5 vol%. The irradiation time is also 10 seconds or less, preferably 5 seconds to 10 seconds.
It may be about a second.

【0015】その後、光結合材料7の活性化処理を行っ
た発光素子2と受光素子3を備えるリードフレーム4を
チャンバ8内から取り出し、紫外域から赤外域の放射線
に対して50%以上、好ましくは90%以上の反射率を
有する白色エポキシ樹脂の封止材料10で光結合材料7
全体を封止し、図示しないアウターリードのみが延出す
る光結合半導体装置1を形成する。
After that, the lead frame 4 including the light emitting element 2 and the light receiving element 3 on which the photocoupling material 7 has been activated is taken out from the chamber 8 and is 50% or more, preferably 50% or more, with respect to the radiation from the ultraviolet region to the infrared region. Is a white epoxy resin encapsulating material 10 having a reflectance of 90% or more.
The whole is sealed, and the optically coupled semiconductor device 1 in which only the outer leads (not shown) extend is formed.

【0016】以上のように構成することで、FUV照射
がチャンバ8内で行なわれ、作業者のFUV被爆の虞が
無くなり、作業の安全性を十分に確保することができ
る。さらに、光結合材料7の活性化処理が低酸素濃度雰
囲気中でのFUVの照射となり、FUV光源9との距離
を大きく取ることができるため、製造装置設計における
裕度を増すことができ、FUVの照射も10秒以下と短
縮でき、FUV光源9も連続点灯でなく、間欠点灯とす
ることができるため、FUV光源9を長寿命化でき、メ
ンテナンスの面からも手間を要せず、製造コストを低減
することができる。
With the above-mentioned structure, FUV irradiation is performed in the chamber 8, there is no fear of FUV exposure of the worker, and sufficient work safety can be ensured. Furthermore, the activation treatment of the optical coupling material 7 is irradiation of FUV in an atmosphere of low oxygen concentration, and a large distance from the FUV light source 9 can be taken, so that it is possible to increase the margin in the design of the manufacturing apparatus. Irradiation can be shortened to 10 seconds or less, and the FUV light source 9 can be intermittently lit instead of being continuously lit. Therefore, the life of the FUV light source 9 can be extended and maintenance is not required, and the manufacturing cost can be reduced. Can be reduced.

【0017】また、上記構成のものについて絶縁特性を
みたところ、その絶縁耐力は10kV以上の電圧が印加
されても絶縁破壊することがなく、良好な絶縁特性を有
するものとなっている。さらにシリコーン樹脂からなる
光結合材料7について、その表面にFUVを照射した後
の樹脂特性を引張り強度と伸び率を組み合わせた、光結
合半導体装置1の絶縁耐圧(BVs)不良率の状況をみ
たところ、図4に示す結果が得られた。
Further, when the insulating characteristics of the above-mentioned structure are examined, the dielectric strength does not cause dielectric breakdown even when a voltage of 10 kV or more is applied, and has good insulating characteristics. Further, with respect to the optical coupling material 7 made of a silicone resin, the state of the withstand voltage (BVs) defect rate of the optical coupling semiconductor device 1 in which the resin characteristics after the surface is irradiated with FUV is combined with the tensile strength and the elongation rate is examined. The results shown in FIG. 4 were obtained.

【0018】すなわち、伸び率100%とした場合の引
張り強度に対する絶縁耐圧不良率は特性線Y100のよ
うになり、伸び率150%では特性線Y150のように
なり、さらに伸び率200%では特性線Y200のよう
になる。このため、光結合材料7の樹脂特性を伸び率1
50%以上とし、引張り強度を0.3MPa以上とする
ことで、特性ばらつきが少ないものとなり、絶縁耐圧不
良率を低い水準としながら高い絶縁耐力を安定的に得る
ことができ、要すれば引張り強度を0.5MPa〜2M
Paとすることでより良好なものすることができ、形成
された光結合半導体装置1は信頼性がより向上したもの
となる。
That is, when the elongation rate is 100%, the dielectric strength failure rate with respect to the tensile strength is as shown by the characteristic line Y 100 , when the elongation rate is 150%, it becomes the characteristic line Y 150 , and when the elongation rate is 200%. It becomes like a characteristic line Y 200 . Therefore, the resin characteristics of the optical coupling material 7 are set to have an elongation of 1
By setting the tensile strength to 50% or more and the tensile strength to 0.3 MPa or more, the characteristic variation becomes small, and it is possible to stably obtain a high dielectric strength while maintaining a low withstand voltage failure rate. 0.5 MPa to 2 M
By setting the pressure to Pa, it is possible to improve the quality, and the formed optical coupling semiconductor device 1 has higher reliability.

【0019】なお、上記実施形態においてはFUV光源
9からの直射FUVにより光結合材料7の表面の活性化
処理を行うようにしたが、例えば図5に示す変形形態の
ように、チャンバ8内にFUV反射部材11をFUV光
源9に対向配置し、FUV光源9とFUV反射部材11
の間に光結合材料7を位置させてFUVの照射工程を行
うようにしてもよい。このようにすることで、FUV光
源9からの直射FUVだけでなく、FUV光源9に対し
影となる光結合材料7の表面部分にも、FUV反射部材
11から直接的、間接的に反射してくる反射FUVによ
るFUV照射が行え、効率よい活性化処理が行え、装置
コスト等の削減が可能となる。
In the above embodiment, the activation treatment of the surface of the optical coupling material 7 is performed by the direct irradiation FUV from the FUV light source 9. However, for example, as in the modification shown in FIG. The FUV reflecting member 11 is disposed so as to face the FUV light source 9, and the FUV light source 9 and the FUV reflecting member 11 are arranged.
The FUV irradiation step may be performed by placing the optical coupling material 7 between them. By doing so, not only the direct FUV light emitted from the FUV light source 9 but also the surface portion of the optical coupling material 7 which is a shadow for the FUV light source 9 is reflected directly or indirectly from the FUV reflecting member 11. FUV irradiation by the reflected FUV can be performed, an efficient activation process can be performed, and the device cost can be reduced.

【0020】また上記実施形態における光結合半導体装
置1は反射型構造のものとしたが、これに限るものでは
なく、例えば図6に示す変形形態のように対向型構造の
光結合半導体装置12等でもよい。
Further, although the optically coupled semiconductor device 1 in the above-mentioned embodiment has a reflection type structure, it is not limited to this, and for example, the optically coupled semiconductor device 12 having an opposed type structure as shown in a modification of FIG. 6 and the like. But it's okay.

【0021】なおさらに、上記の実施形態における活性
化処理時の低酸素濃度雰囲気の形成については、チャン
バ8内を大気構成のまま減圧状態にしたり、あるいはN
ガスをパージしたりするなどの方法によって作り出し
てもよい。
Furthermore, regarding the formation of the low oxygen concentration atmosphere during the activation process in the above-described embodiment, the chamber 8 is kept in a decompressed state with the atmospheric configuration, or N
It may be created by a method such as purging two gases.

【0022】[0022]

【発明の効果】以上の説明から明らかなように、本発明
によれば、光結合材料の特性ばらつきが少なく、良好な
絶縁特性を有し、信頼性が向上した光結合半導体装置
を、作業者のFUV被爆の虞のない、安全性が十分に確
保された作業環境のもとに形成することができ、また短
時間で活性化処理が行えることから製造コストが低減で
き、FUV光源の多灯化の必要もなく、製造装置のコス
ト上昇を招くこともない等の効果を奏する。
As is apparent from the above description, according to the present invention, an operator can obtain an optically coupled semiconductor device having less variation in the characteristics of the optically coupled material, good insulating characteristics, and improved reliability. It can be formed in a work environment where there is no risk of FUV exposure and the safety is sufficiently secured, and because activation processing can be performed in a short time, manufacturing costs can be reduced, and multiple lamps with FUV light sources can be used. There is an effect that it is not necessary to make the manufacturing cost higher and the cost of the manufacturing apparatus is not increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る光結合半導体装置を
示す縦断面図である。
FIG. 1 is a vertical sectional view showing an optically coupled semiconductor device according to an embodiment of the present invention.

【図2】本発明の一実施形態におけるFUV照射工程を
示す断面図である。
FIG. 2 is a cross-sectional view showing an FUV irradiation step in one embodiment of the present invention.

【図3】本発明の一実施形態に係る雰囲気圧力(雰囲気
のO濃度)と水の接触角の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the atmospheric pressure (O 2 concentration in the atmosphere) and the contact angle of water according to the embodiment of the present invention.

【図4】本発明の一実施形態に係るシリコーン樹脂の一
定伸び率における引張り強度と絶縁耐圧不良率の関係を
示す図である。
FIG. 4 is a diagram showing a relationship between tensile strength and insulation breakdown voltage defective rate at a constant elongation rate of a silicone resin according to an embodiment of the present invention.

【図5】本発明の一実施形態におけるFUV照射工程の
変形形態を示す断面図である。
FIG. 5 is a cross-sectional view showing a modification of the FUV irradiation step according to the embodiment of the present invention.

【図6】本発明の一実施形態における光結合半導体装置
の変形形態を示す縦断面図である。
FIG. 6 is a vertical sectional view showing a modification of the optically coupled semiconductor device according to the embodiment of the present invention.

【図7】従来技術に係る低圧水銀ランプの分光分布図で
ある。
FIG. 7 is a spectral distribution diagram of a low-pressure mercury lamp according to a conventional technique.

【図8】キセノンタイプエキシマランプの分光分布図で
ある。
FIG. 8 is a spectral distribution diagram of a xenon type excimer lamp.

【図9】FUV照度と照射距離の関係を示す図である。FIG. 9 is a diagram showing a relationship between FUV illuminance and irradiation distance.

【符号の説明】[Explanation of symbols]

1,12…光結合半導体装置 2…発光素子 3…受光素子 4…リードフレーム 7…光結合材料 8…チャンバ 9…FUV光源 10…封止材料 11…FUV反射部材 1, 12 ... Optically coupled semiconductor device 2 ... Light emitting element 3 ... Light receiving element 4 ... Lead frame 7 ... Optical coupling material 8 ... Chamber 9 ... FUV light source 10 ... Sealing material 11 ... FUV reflecting member

フロントページの続き (72)発明者 谷下 健一 福岡県北九州市小倉北区下到津1丁目10番 1号 株式会社東芝北九州工場内 Fターム(参考) 4M109 AA02 BA01 CA05 CA21 EA02 EA10 EA15 EC11 EC12 EE12 EE13 GA01 5F061 AA02 BA01 CA05 CA21 DE03 FA01 5F089 AB01 AB03 AC15 DA14 EA04Continued front page    (72) Inventor Kenichi Tanishita             Fukuoka Prefecture Kitakyushu City Kokurakita-ku Shimonitsu 1-10-10             No. 1 Toshiba Kitakyushu Factory F-term (reference) 4M109 AA02 BA01 CA05 CA21 EA02                       EA10 EA15 EC11 EC12 EE12                       EE13 GA01                 5F061 AA02 BA01 CA05 CA21 DE03                       FA01                 5F089 AB01 AB03 AC15 DA14 EA04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 フレーム上に所定距離を隔てて配置され
た発光素子と受光素子を、紫外域から赤外域の放射線に
対して90%以上の透過率を有するポリジメチルシロキ
サンにジフェニルシロキサンを1〜20mol%添加し
たシリコーン樹脂からなる光結合材料で被覆し、該光結
合材料の表面に遠紫外線を所定時間照射した後、紫外域
から赤外域の放射線に対して90%以上の反射率を有す
る封止材料で封止してなるものであって、前記光結合材
料が、0.3MPa以上の引張り強度と、150%以上
の伸び率とを有していることを特徴とする光結合半導体
装置。
1. A light-emitting element and a light-receiving element, which are arranged on a frame at a predetermined distance from each other, wherein diphenylsiloxane is added to polydimethylsiloxane having a transmittance of 90% or more for radiation in the ultraviolet region to the infrared region. A seal having a reflectance of 90% or more with respect to radiation from the ultraviolet region to the infrared region is obtained by coating the surface of the photocoupling material with deep ultraviolet rays for a predetermined period of time by coating with 20 mol% of a silicone resin-containing photocoupling material. An optical coupling semiconductor device, which is sealed with a stop material, wherein the optical coupling material has a tensile strength of 0.3 MPa or more and an elongation of 150% or more.
【請求項2】 前記遠紫外線のピーク波長を180nm
以下とし、照射時間を10秒以下としたものであること
を特徴とする請求項1記載の光結合半導体装置。
2. The deep ultraviolet has a peak wavelength of 180 nm.
2. The optically coupled semiconductor device according to claim 1, wherein the irradiation time is 10 seconds or less.
【請求項3】 フレーム上に所定距離を隔てて配置され
た発光素子と受光素子を、紫外域から赤外域の放射線に
対して90%以上の透過率を有するポリジメチルシロキ
サンにジフェニルシロキサンを1〜20mol%添加し
たシリコーン樹脂からなる光結合材料で被覆する工程
と、光結合材料で被覆後に酸素濃度5vol%以下の雰
囲気中で遠紫外線を所定時間照射する工程と、遠紫外線
を照射した後に紫外域から赤外域の放射線に対して90
%以上の反射率を有する封止材料で封止する工程を備え
ていることを特徴とする光結合半導体装置の製造方法。
3. A light emitting element and a light receiving element, which are arranged on a frame with a predetermined distance therebetween, wherein polydimethylsiloxane having a transmittance of 90% or more for radiation in the ultraviolet region to the infrared region has 1 to 1 diphenylsiloxane. A step of coating with an optical coupling material made of a silicone resin added with 20 mol%, a step of irradiating with deep ultraviolet rays for a predetermined time in an atmosphere with an oxygen concentration of 5 vol% or less after coating with the optical coupling material, and an ultraviolet region after irradiation with deep ultraviolet rays. From 90 to infrared radiation
A method for manufacturing an optically coupled semiconductor device, comprising a step of sealing with a sealing material having a reflectance of at least%.
【請求項4】 前記遠紫外線のピーク波長が180nm
以下であり、照射時間が10秒以下であることを特徴と
する請求項3記載の光結合半導体装置の製造方法。
4. The deep ultraviolet has a peak wavelength of 180 nm.
The method for manufacturing an optically coupled semiconductor device according to claim 3, wherein the irradiation time is 10 seconds or less.
【請求項5】 前記遠紫外線を照射する際、該遠紫外線
の放射源からの直射遠紫外線と、前記放射源に対向して
設けた反射体からの反射遠紫外線を照射するようにした
ことを特徴とする請求項3記載の光結合半導体装置の製
造方法。
5. When irradiating the far-ultraviolet rays, direct-ray far-ultraviolet rays from a radiation source of the far-ultraviolet rays and reflected far-ultraviolet rays from a reflector provided so as to face the radiation source are emitted. The method of manufacturing an optically coupled semiconductor device according to claim 3, wherein
JP2002029418A 2002-02-06 2002-02-06 Optical coupling semiconductor device and its manufacturing method Pending JP2003234499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002029418A JP2003234499A (en) 2002-02-06 2002-02-06 Optical coupling semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002029418A JP2003234499A (en) 2002-02-06 2002-02-06 Optical coupling semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003234499A true JP2003234499A (en) 2003-08-22

Family

ID=27773681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002029418A Pending JP2003234499A (en) 2002-02-06 2002-02-06 Optical coupling semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003234499A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081430A (en) * 2007-09-04 2009-04-16 Toyoda Gosei Co Ltd Light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081430A (en) * 2007-09-04 2009-04-16 Toyoda Gosei Co Ltd Light emitting device

Similar Documents

Publication Publication Date Title
US10032620B2 (en) Broadband light source including transparent portion with high hydroxide content
CN101079464A (en) Ultraviolet ray emitting element package
TW200945477A (en) Silver reflectors for semiconductor processing chambers
US8124012B2 (en) Air purification system, method for purifying air inside a structure
US10500794B2 (en) Method of joining resin tubes
KR100961325B1 (en) Ultraviolet irradiation apparatus
JP5333960B2 (en) Method and apparatus for manufacturing solar cell module
CN111640845A (en) Deep ultraviolet LED light source and packaging method thereof
JP2004031557A (en) Optical heating device
JP2003234499A (en) Optical coupling semiconductor device and its manufacturing method
KR101640608B1 (en) Apparatus for radiating ultraviolet ray
JP2000261027A (en) Optical semiconductor bonding device and its manufacture
JP4048998B2 (en) Lamp and ultraviolet light irradiation device
US6949881B2 (en) Discharge lamp of the short arc type
JP2985452B2 (en) Semiconductor laser device and method of manufacturing the same
US7156285B2 (en) Compression bonding method and apparatus using light
JP2006344383A (en) Light irradiation device
TWI620351B (en) Uv led package structure, uv lighting unit, and manufacturing method of uv lighting unit
JP3644139B2 (en) Power supply wire for high-pressure discharge lamp, method for manufacturing the same, and lighting device using high-pressure discharge lamp
JP3404788B2 (en) High pressure discharge lamp and light source device using the same
JP2006332541A (en) Optical heating arrangement
TWI493596B (en) Fluorescent light
JP2701072B2 (en) Resin-sealed optical coupling semiconductor device and method of manufacturing the same
TWI757717B (en) UVC LED package structure
US11626276B1 (en) Reflector for intense pulse light device