JP2003231786A - Vinyl chloride polymer composition, manufacturing method thereof, and molding formed therefrom - Google Patents

Vinyl chloride polymer composition, manufacturing method thereof, and molding formed therefrom

Info

Publication number
JP2003231786A
JP2003231786A JP2002032662A JP2002032662A JP2003231786A JP 2003231786 A JP2003231786 A JP 2003231786A JP 2002032662 A JP2002032662 A JP 2002032662A JP 2002032662 A JP2002032662 A JP 2002032662A JP 2003231786 A JP2003231786 A JP 2003231786A
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride polymer
polymer composition
polymerization
swelling silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002032662A
Other languages
Japanese (ja)
Other versions
JP3802818B2 (en
Inventor
Takashi Inoue
隆 井上
Masahisa Enomoto
真久 榎本
Toshihiko Tanaka
利彦 田中
Keizo Suzuki
啓三 鈴木
Hiroyuki Enokido
洋之 榎戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunimine Industries Co Ltd
Taiyo Vinyl Corp
Original Assignee
Kunimine Industries Co Ltd
Taiyo Vinyl Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunimine Industries Co Ltd, Taiyo Vinyl Corp filed Critical Kunimine Industries Co Ltd
Priority to JP2002032662A priority Critical patent/JP3802818B2/en
Publication of JP2003231786A publication Critical patent/JP2003231786A/en
Application granted granted Critical
Publication of JP3802818B2 publication Critical patent/JP3802818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vinyl chloride polymer composition which gives excellent toughness in such breakdown mode as crack propagation at a long-term use, while maintaining high elastic modulus characteristic of a vinyl chloride polymer and without damaging tensile elongation characteristics, to provide its manufacturing method, and to provide a molding obtained from the composition. <P>SOLUTION: In the composition, (A) the vinyl chloride polymer has an average degree of polymerization of 600 or more, (B) a stratified swelling silicate is the one in which part of exchangeable inorganic cations present between the layers is substituted by organic cations, (C) the stratified swelling silicate dispersed in the composition has an average layer thickness of 0.5-50 nm and an average aspect ratio (ratio of layer length and layer thickness) of 10 or more, and (D) the stratified swelling silicate leaves 0.05-0.7 wt.% of the composition as the residue when the composition is completely burned at 950°C. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高い弾性率を維持
し、引張り伸び特性を損ねることなく、優れた破壊靭性
値を有する成形品が得られる塩化ビニル系重合体組成
物、その製造方法及びその組成物より得られた成形品に
関する。
TECHNICAL FIELD The present invention relates to a vinyl chloride polymer composition capable of obtaining a molded article having an excellent fracture toughness value while maintaining a high elastic modulus and not impairing tensile elongation characteristics, a method for producing the same, and a method for producing the same. It relates to a molded article obtained from the composition.

【0002】[0002]

【従来の技術】塩化ビニル系重合体及びその組成物は、
剛性、耐候性、難燃性等に優れ、又、比較的安価である
等の理由より、これまで、押出成形などにより、パイ
プ、窓枠、平板、シートなどの分野で広く用いられてい
る。この中で、パイプの用途等においては、使用時や施
工時に生じる微細な亀裂等に伴う長時間使用時での亀裂
進展性といったパイプの長期耐久性が問題となってきて
いる。長期耐久性を向上させるには成形体の靭性を向上
させること、つまり破壊靭性値を向上させることが有効
であることが知られている。
BACKGROUND OF THE INVENTION Vinyl chloride polymers and compositions thereof are
It has been widely used in the fields of pipes, window frames, flat plates, sheets and the like by extrusion molding and the like because it is excellent in rigidity, weather resistance, flame retardancy, etc. and is relatively inexpensive. Among them, in the use of pipes, long-term durability of pipes such as crack progress during long-time use due to fine cracks generated during use or construction has become a problem. It is known that improving the toughness of a molded product, that is, improving the fracture toughness value is effective for improving long-term durability.

【0003】破壊靭性値とは、長時間にわたって成形品
に負荷が加わった場合のノッチ近傍の応力集中に伴う亀
裂進展性のしにくさを評価するものであり、例えば3点
曲げ試験で評価する場合においては、破断する最大応力
から破壊靭性値Kcが算出される。またクリープ試験で
評価する場合は、一定時間で破断するのに必要な荷重の
大きさより破壊靭性値Kcが算出される。したがって、
破壊靭性値の向上には亀裂進展させるのに必要な応力の
大きさが重要となり、単に延性的な材料よりも、延性と
剛性を兼ね備えた材料が要求される。
The fracture toughness value is a value for evaluating the difficulty of crack propagation due to stress concentration near the notch when a load is applied to a molded product for a long time, and is evaluated by, for example, a three-point bending test. In some cases, the fracture toughness value Kc is calculated from the maximum stress at fracture. Further, in the case of evaluation by the creep test, the fracture toughness value Kc is calculated from the magnitude of the load required to break in a certain time. Therefore,
In order to improve the fracture toughness value, the magnitude of the stress necessary for crack propagation is important, and a material having both ductility and rigidity is required rather than simply ductile material.

【0004】特表平4‐500402号公報では、塩化
ビニル系プラスチックパイプの破壊靭性値の改良手法と
して、塩化ビニル系重合体中に少量の塩素化ポリエチレ
ン等の破壊性能作用剤(延伸性付与剤)を添加する技術
が開示されている。また、特開2000‐319479
号公報には、塩化ビニル系重合体組成物の破壊靭性値の
改善手法として、塩化ビニル系重合体中に少量のゴム成
分を添加する技術が開示されている。これらの技術で
は、塩化ビニル系重合体の破壊靭性値の向上を促すが、
塩化ビニル系重合体に少量の破壊性能作用剤あるいはゴ
ム成分を均一に分散させる必要があり、均一に分散させ
るためには混錬を長くするあるいは強くするなどの対策
が必要となる。そのため、成形物の製造ではコストの増
加や、破壊靭性値を改善したにもかかわらず、十分な性
能が引出せないという技術的ネックが懸念され、必ずし
も満足できる技術とは言えない。
In JP-A-4-500402, as a method for improving the fracture toughness of vinyl chloride plastic pipes, a small amount of chlorinated polyethylene or other fracture performance agent (stretchability imparting agent in a vinyl chloride polymer) is used. ) Is disclosed. Also, Japanese Patent Laid-Open No. 2000-319479
The publication discloses a technique of adding a small amount of a rubber component to a vinyl chloride polymer as a method for improving the fracture toughness of a vinyl chloride polymer composition. These techniques promote the improvement of the fracture toughness value of vinyl chloride polymer,
It is necessary to uniformly disperse a small amount of the agent for destructive performance or the rubber component in the vinyl chloride polymer, and in order to disperse it uniformly, it is necessary to take measures such as lengthening or strengthening the kneading. Therefore, in the production of a molded product, there is a concern about a technical bottleneck that sufficient performance cannot be obtained despite an increase in cost and an improvement in fracture toughness value, which is not necessarily a satisfactory technique.

【0005】一方、塩化ビニル系重合体の剛性付与に
は、塩化ビニル系重合体に炭酸カルシウムやタルク、マ
イカ等の無機充填剤を添加する方法が一般になされてい
る。この場合、無機充填剤がより微細に分散される程、
弾性率が向上する。例えば、層状膨潤性ケイ酸塩は、厚
さが約1nmの非常に微細な薄片状結晶がイオン結合に
より層状に凝集してなる無機鉱物であるが、この層状構
造を化学的または物理的な手段により剥離させ、高分子
材料中に薄片状結晶をナノオーダーレベルの大きさで分
散させること(いわゆるナノコンポジット)で、従来の
無機充填剤の添加と比べ、弾性率のみならず耐熱性、ガ
スバリヤー性が著しく向上することが、近年知られてき
た。
On the other hand, in order to impart rigidity to the vinyl chloride polymer, a method of adding an inorganic filler such as calcium carbonate, talc or mica to the vinyl chloride polymer is generally used. In this case, the more finely the inorganic filler is dispersed,
The elastic modulus is improved. For example, the layered swelling silicate is an inorganic mineral composed of very fine flaky crystals having a thickness of about 1 nm that are aggregated in layers by ionic bonds. The layered structure is formed by chemical or physical means. By exfoliating and dispersing flaky crystals in the polymer material in the size of nano-order level (so-called nanocomposite), not only elastic modulus but also heat resistance, gas barrier compared to the addition of conventional inorganic fillers. It has been known in recent years that the sex is remarkably improved.

【0006】特開2000−159962号公報では、
塩化ビニル系重合体に特定のアミノ化合物で有機化され
た層状膨潤性ケイ酸塩をナノレベルの大きさで微分散化
させることによる弾性率と耐熱性の向上技術が開示され
ている。しかしながら、これら開示されている技術で
は、剛性が向上する反面、延性が著しく低下し、工業用
材料として使用するには未だ不十分である。
In Japanese Patent Laid-Open No. 2000-159962,
A technique for improving elastic modulus and heat resistance by finely dispersing a layered swelling silicate organically modified with a specific amino compound in a vinyl chloride polymer at a nano level is disclosed. However, in these disclosed techniques, although the rigidity is improved, the ductility is remarkably reduced, and it is still insufficient for use as an industrial material.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記した事情
に鑑みてなされたものであり、塩化ビニル系重合体特有
の高い弾性率を維持しつつ、引張り伸び特性を損ねるこ
となく、長時間使用時での亀裂進展性といった破壊モー
ドにおける強靱性に優れた塩化ビニル系重合体組成物、
その製造方法及びその組成物より得られる成形品を提供
することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and it can be used for a long period of time without deteriorating the tensile elongation property while maintaining the high elastic modulus peculiar to a vinyl chloride polymer. Vinyl chloride-based polymer composition having excellent toughness in a fracture mode such as crack propagation at time,
An object of the present invention is to provide a molded product obtained from the production method and the composition.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明は以下により特定される。
The present invention for solving the above-mentioned problems is specified by the following.

【0009】(1)塩化ビニル系重合体に層状膨潤性ケ
イ酸塩を分散してなる塩化ビニル系重合体組成物におい
て、(A)塩化ビニル系重合体が、平均重合度600以
上であり、(B)層状膨潤性ケイ酸塩として、層間に存
在する交換性無機陽イオンの一部が有機陽イオンに置換
されたものが用いられ、(C)組成物中に分散した層状
膨潤性ケイ酸塩が、電子顕微鏡で測定した平均層厚さ
0.5〜50nmで、平均アスペクト比(層長さと層厚
さの比)10以上であり、かつ、(D)層状膨潤性ケイ
酸塩が、組成物を950℃で完全燃焼させたときに残滓
として、組成物の0.05〜0.7重量%が含まれるこ
とを特徴とする塩化ビニル系重合体組成物。
(1) In a vinyl chloride polymer composition obtained by dispersing a layered swelling silicate in a vinyl chloride polymer, (A) the vinyl chloride polymer has an average degree of polymerization of 600 or more, As (B) the layered swelling silicate, one in which a part of the exchangeable inorganic cations existing between layers is replaced with an organic cation is used, and (C) the layered swelling silicic acid dispersed in the composition. The salt has an average layer thickness of 0.5 to 50 nm measured by an electron microscope, an average aspect ratio (ratio of layer length and layer thickness) of 10 or more, and (D) the layered swelling silicate, A vinyl chloride polymer composition, characterized in that 0.05 to 0.7% by weight of the composition is contained as a residue when the composition is completely burned at 950 ° C.

【0010】(2)有機陽イオンが、アンモニウムイオ
ンである上記(1)記載の塩化ビニル系重合体組成物。
(2) The vinyl chloride polymer composition according to the above (1), wherein the organic cation is an ammonium ion.

【0011】(3)アンモニウムイオンが、少なくとも
一つの炭素数1〜18の極性基を有する炭化水素基を有
し、且つ全炭素数4〜25の第4級アンモニウムである
上記(2)記載の塩化ビニル系重合体組成物。
(3) The ammonium ion has a hydrocarbon group having at least one polar group having 1 to 18 carbon atoms, and is a quaternary ammonium having 4 to 25 carbon atoms in total. Vinyl chloride polymer composition.

【0012】(4)ASTM D5045‐99に準じ
て測定した破壊靭性値が3.1MPa・m1/2以上とな
る上記(1)〜(3)のいずれかに記載の塩化ビニル系
重合体組成物。
(4) The vinyl chloride polymer composition according to any one of the above (1) to (3), which has a fracture toughness value of 3.1 MPa · m 1/2 or more measured according to ASTM D5045-99. object.

【0013】(5)塩化ビニル単独であるいは塩化ビニ
ルと共重合可能なビニル系単量体と共に重合開始剤の存
在下に水性媒体中で重合するに際し、重合開始前から重
合終了までのいずれかの時期に、層間に存在する交換性
無機陽イオンの一部が有機陽イオンに置換された層状膨
潤性ケイ酸塩を1度にあるは分割して添加することを特
徴とする、上記(1)記載の塩化ビニル系重合体組成物
の製造方法。
(5) When conducting polymerization in an aqueous medium in the presence of a polymerization initiator, vinyl chloride alone or together with a vinyl monomer copolymerizable with vinyl chloride, either from before initiation of polymerization to completion of polymerization. The layered swelling silicate in which a part of the exchangeable inorganic cations existing between the layers is replaced with an organic cation is added at one time or at once. A method for producing the vinyl chloride polymer composition described.

【0014】(6)有機陽イオンが、アンモニウムイオ
ンである上記(5)記載の塩化ビニル系重合体組成物の
製造方法。
(6) The method for producing a vinyl chloride polymer composition according to the above (5), wherein the organic cation is an ammonium ion.

【0015】(7)アンモニウムイオンが、少なくとも
一つの炭素数1〜18の極性基を有する炭化水素基を有
し、且つ全炭素数4〜25の第4級アンモニウムである
上記(6)記載の塩化ビニル系重合体組成物の製造方
法。
(7) The above-mentioned (6), wherein the ammonium ion is a quaternary ammonium having at least one hydrocarbon group having a polar group of 1 to 18 carbon atoms and having a total of 4 to 25 carbon atoms. A method for producing a vinyl chloride polymer composition.

【0016】(8)上記(1)〜(4)のいずれかに記
載の塩化ビニル系重合体組成物を成形してなることを特
徴とする成形品。
(8) A molded product obtained by molding the vinyl chloride polymer composition according to any one of (1) to (4) above.

【0017】(9)成形品がパイプである上記(8)記
載の成形品。
(9) The molded product according to (8) above, wherein the molded product is a pipe.

【0018】[0018]

【発明の実施の形態】本発明は、特定粒子形状の層状膨
潤性ケイ酸塩を極少量分散してなる塩化ビニル系重合体
組成物、その製造方法およびその成形品に関するもので
あり、破壊靭性値(ASTM D5045‐99に準じ
て測定)という指標を用いて、組成と分散形態の最適化
を図ることにより、得られる成形品の長期耐久性と剛性
を両立させている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a vinyl chloride polymer composition obtained by dispersing a very small amount of a layered swelling silicate having a specific particle shape, a method for producing the same, and a molded article thereof, which has fracture toughness. By optimizing the composition and dispersion morphology using an index called a value (measured according to ASTM D5045-99), both long-term durability and rigidity of the obtained molded product are achieved.

【0019】すなわち、本発明の塩化ビニル系重合体組
成物は、層状膨潤性ケイ酸塩の層間に存在する交換性無
機陽イオンを有機陽イオンにイオン交換させたものを用
いることにより、層状膨潤性ケイ酸塩の塩化ビニル系重
合体に対する親和性を改善し、塩化ビニル系重合体中
に、成分として、0.05〜0.7重量%といった極少
量の層状膨潤性ケイ酸塩を平均層厚さとして0.5〜5
0nm、アスペクト比10以上の大きさで微分散させた
構造を形成させることを特徴とするものである。このよ
うな構造形成により、高い弾性率を維持した上で、伸び
特性を損ねることなく、破壊靭性値を著しく向上させ、
成形体の長期耐久性、具体的には長時間使用時での亀裂
進展性といった破壊モードにおける強靱性を向上させる
ことができる。
That is, the vinyl chloride polymer composition of the present invention uses a layered swelling silicate ion-exchanged with an exchangeable inorganic cation existing between the layers to form an organic cation. Of a hydrophilic silicate to a vinyl chloride polymer is improved, and a very small amount of a layered swelling silicate such as 0.05 to 0.7% by weight is contained in the vinyl chloride polymer as an average layer. 0.5 to 5 as thickness
It is characterized in that a finely dispersed structure having a size of 0 nm and an aspect ratio of 10 or more is formed. By forming such a structure, while maintaining a high elastic modulus, the fracture toughness value is significantly improved without impairing the elongation property,
It is possible to improve the long-term durability of the molded product, specifically, the toughness in a fracture mode such as crack growth property during long-term use.

【0020】この理由は必ずしも明かではないが、本発
明で得られた成形品の構造は、透過型電子顕微鏡で観察
した場合、ナノオーダーレベルの大きさに微分散した薄
片結晶状の層状膨潤性ケイ酸塩が、重なり合うことな
く、塩化ビニル系重合体の残存粒子構造の界面を覆うよ
うに、網目状に分散した多層構造となっていることか
ら、成形品に膨張応力が生じた際に、残存粒子構造界面
自身の高剛性化と、残存粒子構造界面での応力集中点の
分散化によるクレーズやミクロボイドの多数形成を伴っ
た界面の局所的な塑性変形の両立が可能となり、破壊靭
性値が向上するものと考えられる。
Although the reason for this is not clear, the structure of the molded article obtained by the present invention has a layered swelling property in the form of flakes finely dispersed in a nano-order level size when observed with a transmission electron microscope. Silicate, without overlapping, so as to cover the interface of the residual particle structure of the vinyl chloride polymer, since it has a multilayer structure dispersed in a mesh, when the expansion stress occurs in the molded product, It is possible to achieve both high rigidity of the residual grain structure interface itself and local plastic deformation of the interface with the formation of many crazes and microvoids due to the dispersion of stress concentration points at the residual grain structure interface. It is expected to improve.

【0021】この場合、組成物中の層状膨潤性ケイ酸塩
の含有率が増加すると、残存粒子構造界面中に分散した
層状膨潤性ケイ酸塩の薄片結晶同士が過度に重なり合う
こととなり、残存粒子構造界面自身の剛性は高くなるも
のの、そこにかかる応力集中を分散化できず、破壊靭性
値は低下してしまう。また、層状膨潤性ケイ酸塩の含有
率が少なすぎると、残存粒子構造界面自身への剛性付与
が乏しく、さら応力集中の分散化効率も乏しく、必ずし
も満足できる破壊靭性値の成形品が得られない。従っ
て、破壊靭性値が高い成形品を得るには、組成物中の最
適な層状膨潤性ケイ酸塩の含有率が存在する。
In this case, when the content of the layered swelling silicate in the composition is increased, the flaky crystals of the layered swelling silicate dispersed in the residual particle structure interface are excessively overlapped with each other, and the residual particles are Although the rigidity of the structural interface itself becomes high, the stress concentration applied there cannot be dispersed, and the fracture toughness value decreases. Further, if the content of the layered swelling silicate is too low, rigidity is insufficiently imparted to the residual grain structure interface itself, and the dispersion efficiency of stress concentration is also poor, and a molded product with a satisfactory fracture toughness value can be obtained. Absent. Therefore, in order to obtain molded articles with high fracture toughness values, there is an optimum content of layered swelling silicate in the composition.

【0022】また、層状膨潤性ケイ酸塩が分散不良、つ
まり、薄片結晶同士が凝集した大きな構造単位で分散し
ていると、それ自身が構造欠陥として振る舞い、亀裂進
展を促進してしまい、破壊靭性値が低下する。そのた
め、破壊靭性値の高い成形品を得るには、層状膨潤性ケ
イ酸塩が分散した際の最適な大きさが存在し、層状膨潤
性ケイ酸塩を上述したナノオーダーレベルの大きさにま
で微分散させる必要がある。
If the layered swelling silicate is poorly dispersed, that is, if the flaky crystals are dispersed in a large structural unit in which flaky crystals are aggregated, each behaves as a structural defect and promotes crack propagation, resulting in fracture. The toughness value decreases. Therefore, in order to obtain a molded article with a high fracture toughness value, there is an optimum size when the layered swelling silicate is dispersed, and the layered swelling silicate is up to the above-mentioned nano-order level size. Need to be finely dispersed.

【0023】以上のように本発明の塩化ビニル系重合体
組成物は、極少量の層状膨潤性ケイ酸塩をナノオーダー
レベルの大きさにまで微分散させた構造を有することを
特徴とするものであり、製造方法を特に限定するもので
はないが、好ましくは以下の2つの製造方法が好まし
い。
As described above, the vinyl chloride polymer composition of the present invention is characterized by having a structure in which a very small amount of layered swelling silicate is finely dispersed to a nano-order level size. The production method is not particularly limited, but the following two production methods are preferable.

【0024】第一の方法として、層状膨潤性ケイ酸塩の
層間に存在するナトリウムイオン、カルシウムイオン等
の交換性無機陽イオンを有機陽イオンでイオン交換さ
せ、本来親水性である層状膨潤性ケイ酸塩を疎水化もし
くは有機化させ、塩化ビニル系重合体と相溶しやすい構
造に改質した所定量の層状膨潤性ケイ酸塩と塩化ビニル
系重合体を溶融混練させる方法が挙げられる。
As a first method, exchangeable inorganic cations such as sodium ions and calcium ions existing between layers of a layered swelling silicate are ion-exchanged with an organic cation to give a layered swelling silica which is originally hydrophilic. Examples thereof include a method of melt-kneading a predetermined amount of a layered swelling silicate and a vinyl chloride polymer, which are obtained by hydrophobizing or organizing an acid salt and modifying the structure to be compatible with the vinyl chloride polymer.

【0025】第二の方法として、塩化ビニル系重合体を
懸濁重合法で製造する際に、重合開始前及び/又は、重
合開始から重合終了までの時期に、上記の有機化処理さ
せた層状膨潤性ケイ酸塩を水性媒体中、または、塩化ビ
ニル系単量体液滴中に分散させて懸濁重合を行い、重合
過程で、塩化ビニル系単量体液滴に所定量の層状膨潤性
ケイ酸塩を吸着させ、塩化ビニル系重合体中に微分散さ
せる方法が挙げられる。
As a second method, when a vinyl chloride polymer is produced by a suspension polymerization method, the above-mentioned organically modified layered layer is formed before the start of polymerization and / or at the time from the start of polymerization to the end of polymerization. The swelling silicate is dispersed in an aqueous medium or in vinyl chloride monomer droplets to carry out suspension polymerization, and a predetermined amount of layered swelling silicic acid is added to the vinyl chloride monomer droplets during the polymerization process. Examples thereof include a method of adsorbing a salt and finely dispersing it in a vinyl chloride polymer.

【0026】本発明は上述した手段により破壊靭性値の
向上を図っているが、破壊靭性値は、好ましくは3.1
MPa・m1/2以上、さらに好ましくは3.7MPa・
1/2以上、最も好ましくは4.0MPa・m1/2以上と
する。ここで破壊靭性値の測定は、ASTM D−50
45−95に準じて、片側に切り欠きを挿入した平板に
よる3点曲げ試験により求めることができる。破壊靭性
値を上記のような値とすることによって長期耐久性に優
れた成形品を得ることができる。破壊靭性値の上限は特
に無いが、たとえば6.0MPa・m1/2程度もあれば
充分である。後に実施例等において説明するように、本
発明によれば、成形品の弾性率を損ねることなく、高い
破壊靭性値Kcが得られ、高品質な塩化ビニル系重合体
組成物が提供される。
Although the present invention is intended to improve the fracture toughness value by the means described above, the fracture toughness value is preferably 3.1.
MPa · m 1/2 or more, more preferably 3.7 MPa ·
m 1/2 or more, and most preferably 4.0 MPa · m 1/2 or more. Here, the fracture toughness value is measured by ASTM D-50.
According to 45-95, it can be determined by a three-point bending test using a flat plate with a notch inserted on one side. By setting the fracture toughness value to the above value, a molded article having excellent long-term durability can be obtained. There is no particular upper limit to the fracture toughness value, but it is sufficient if it is, for example, about 6.0 MPa · m 1/2 . As will be described later in Examples and the like, according to the present invention, a high fracture toughness value Kc is obtained without impairing the elastic modulus of a molded article, and a high-quality vinyl chloride polymer composition is provided.

【0027】本発明における塩化ビニル系重合体は、塩
化ビニルの単独重合体または、塩化ビニルと塩化ビニル
と共重合可能な他のビニル系単量体との共重合体、さら
には、塩化ビニル、必要により共重合可能な他のビニル
系単量体および多官能性モノマーとの共重合による部分
架橋された塩化ビニル系重合体などが挙げられる。
The vinyl chloride-based polymer in the present invention is a homopolymer of vinyl chloride or a copolymer of vinyl chloride and another vinyl-based monomer copolymerizable with vinyl chloride, and further vinyl chloride, Examples thereof include a partially cross-linked vinyl chloride polymer obtained by copolymerization with other vinyl-based monomers and polyfunctional monomers which can be copolymerized, if necessary.

【0028】ここで用いる塩化ビニルと共重合可能な他
のビニル系単量体としては、エチレン、プロピレン、ブ
チレンなどのα−モノオレフィン系単量体;酢酸ビニ
ル、プロピオン酸ビニル等のビニルエステル;メチルビ
ニルエーテル、セチルビニルエーテル等のアルキルビニ
ルエーテル;スチレン、α‐メチルスチレン等のスチレ
ン誘導体;n‐ブチルアクリレート、2‐エチルヘキシ
ルアクリレート、メチルメタクリレート等の(メタ)ア
クリル酸エステル類;アクリロニトリル、メタクリロニ
トリル等のシアン化ビニル;シクロヘキシルマレイミ
ド、フェニルマレイミド等のN−置換マレイミド;塩化
ビニリデンなどのビニリデン類等であり、これらのうち
少なくとも1種以上を塩化ビニルと共重合させる。
Other vinyl monomers copolymerizable with vinyl chloride used here include α-monoolefin monomers such as ethylene, propylene and butylene; vinyl esters such as vinyl acetate and vinyl propionate; Alkyl vinyl ethers such as methyl vinyl ether and cetyl vinyl ether; styrene derivatives such as styrene and α-methyl styrene; (meth) acrylic acid esters such as n-butyl acrylate, 2-ethylhexyl acrylate and methyl methacrylate; acrylonitrile, methacrylonitrile, etc. Vinyl cyanide; N-substituted maleimides such as cyclohexylmaleimide and phenylmaleimide; vinylidenes such as vinylidene chloride; and at least one of them is copolymerized with vinyl chloride.

【0029】また、部分架橋させる塩化ビニルと多官能
性モノマーとしては、ジアリルフタレート、ジアリルイ
ソフタレート、ジアリルテレフタレート、ジアリルフマ
レート、ジアリルアジペート、トリアリルシアヌレート
等の多官能アリル化合物;エチレングリコールジビニル
エーテル、オクタデカンジビニルエーテル等の多官能ビ
ニルエーテル類;1,3−ブチレングリコールジ(メ
タ)アクリレート、トリプロピレングリコールジ(メ
タ)アクリレート、ネオペンチルグリコールジ(メタ)
アクリレート、ポリエチレングリコールジ(メタ)アク
リレート、トリメチロールプロパントリ(メタ)アクリ
レートなどの多官能(メタ)アクリレート類等があげら
れる。これらのうち少なくとも1種以上を塩化ビニルと
共重合させ、部分的に架橋構造を有する塩化ビニル系重
合体とする。
As the vinyl chloride to be partially crosslinked and the polyfunctional monomer, polyfunctional allyl compounds such as diallyl phthalate, diallyl isophthalate, diallyl terephthalate, diallyl fumarate, diallyl adipate and triallyl cyanurate; ethylene glycol divinyl ether. , Polyfunctional vinyl ethers such as octadecane divinyl ether; 1,3-butylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, neopentyl glycol di (meth)
Examples thereof include polyfunctional (meth) acrylates such as acrylate, polyethylene glycol di (meth) acrylate, and trimethylolpropane tri (meth) acrylate. At least one of these is copolymerized with vinyl chloride to obtain a vinyl chloride polymer partially having a crosslinked structure.

【0030】塩化ビニル系重合体の平均重合度は、60
0以上である。この範囲とすることにより得られる成形
品の破壊靭性値を良好にすることができる。塩化ビニル
系重合体の平均重合度が600未満では破壊靭性値の改
良効果が得られない。ここで塩化ビニル系重合体の平均
重合度が600〜3000、好ましくは700〜200
0であると、破壊靭性値と成形性のバランスがさらに良
好となり、成形時の流動性が良好で、成形機の混練トル
クが小さくて、かつ破壊靭性値の高い成形品が得られ好
ましい。
The vinyl chloride polymer has an average degree of polymerization of 60.
It is 0 or more. When the content is within this range, the fracture toughness value of the obtained molded product can be improved. If the average degree of polymerization of the vinyl chloride polymer is less than 600, the effect of improving the fracture toughness value cannot be obtained. The vinyl chloride polymer has an average degree of polymerization of 600 to 3000, preferably 700 to 200.
When it is 0, the balance between the fracture toughness value and the moldability is further improved, the fluidity at the time of molding is good, the kneading torque of the molding machine is small, and a molded product having a high fracture toughness value is obtained, which is preferable.

【0031】塩化ビニル系重合体は、懸濁重合法、乳化
重合法、溶液重合法、塊状重合法などのいずれの方法で
製造されたものでも良く、特に制限はないが、懸濁重合
法で製造されたものが、残存モノマーが少なく、好まし
い。
The vinyl chloride-based polymer may be produced by any method such as suspension polymerization method, emulsion polymerization method, solution polymerization method, bulk polymerization method and the like, and is not particularly limited, but suspension polymerization method is used. The produced product has less residual monomer and is preferable.

【0032】塩化ビニル系重合体の懸濁重合法はよく知
られており、公知の方法を用いればよく、特に制限は無
い。
The suspension polymerization method of a vinyl chloride polymer is well known, and a known method may be used without any particular limitation.

【0033】本発明における層状膨潤性ケイ酸塩とは、
主として酸化珪素の四面体シートと、主として金属水酸
化物の八面体シートからなる薄片状結晶が層状に重なっ
た構造を有し、層間にナトリウムイオン、カルシウムイ
オン等の交換性陽イオンを有する水溶性のケイ酸塩鉱物
である。層状膨潤性ケイ酸塩の種類は特に限定されるも
のではないが、例えば、モンモリロナイト、サポナイ
ト、ヘクトライト、バイデライト、ノントリロナイト、
ソーコナイト、ベントナイト等のスメクタイト系粘土鉱
物及び、バーミキュライト、ハロイサイト、あるいは膨
潤性マイカなどが挙げられる。これらは天然のものでも
合成されたものでも構わない。中でも、モンモリロナイ
ト、ベントナイト、膨潤性雲母が、入手の容易さ、物性
改良の点から好ましい。
The layered swelling silicate in the present invention is
It has a structure in which flaky crystals consisting mainly of silicon oxide tetrahedron sheets and mainly metal hydroxide octahedron sheets are laminated in layers, and water-soluble with exchangeable cations such as sodium and calcium ions between layers. Is a silicate mineral. The type of the layered swelling silicate is not particularly limited, for example, montmorillonite, saponite, hectorite, beidellite, nontrilonite,
Examples thereof include smectite clay minerals such as sauconite and bentonite, vermiculite, halloysite, and swelling mica. These may be natural or synthetic. Among them, montmorillonite, bentonite, and swelling mica are preferable from the viewpoint of easy availability and improvement of physical properties.

【0034】本発明では層状膨潤性ケイ酸塩の層間に存
在するナトリウムイオンやカルシウムイオン等の交換性
無機陽イオンを有機陽イオンで部分イオン交換されたも
のを用いる。なお、本発明では、用いる有機陽イオンの
種類により異なるが、有機陽イオンが0.5〜60重量
%になるようイオン交換されているものが好ましく、層
状膨潤性ケイ酸塩が適当な疎水性を有し、塩化ビニル系
重合体との混和時の親和性が良好となり、破壊靭性値が
向上する。
In the present invention, an exchangeable inorganic cation such as sodium ion or calcium ion existing between layers of the layered swelling silicate is partially ion-exchanged with an organic cation. In the present invention, it is preferable that the organic cations are ion-exchanged so as to be 0.5 to 60% by weight, though the layered swelling silicate has a suitable hydrophobicity, although it varies depending on the type of the organic cations used. It has a good affinity when mixed with a vinyl chloride polymer, and the fracture toughness value is improved.

【0035】ここで用いる有機陽イオンとしては、酸
素、硫黄、窒素、リン、砒素、ヨード等を含む有機化合
物のこれらの孤立電子対を有する元素にプロトン
(H+)や他の陽イオンが付加したものであり、特に、
1価の陽イオンはオニウム(ONIUM)として知られ
ている。
As the organic cations used here, protons (H + ) and other cations are added to the elements having these lone electron pairs of organic compounds containing oxygen, sulfur, nitrogen, phosphorus, arsenic, iodine and the like. And especially,
The monovalent cation is known as ONIUM.

【0036】オニウムの例としては、アンモニウム(窒
素)、ホスホニウム(リン)、アルソニウム(砒素)、
スチボニウム(アンチモン)、オキソニウム(酸素)、
スルホニウム(硫黄)、セレノニウム(セレン)、スタ
ンノニウム(錫)、ヨードニウム(ヨード)等が挙げら
れる。なお、これらは適宜組み合わせて用いられてもよ
い。
Examples of onium include ammonium (nitrogen), phosphonium (phosphorus), arsonium (arsenic),
Stibonium (antimony), oxonium (oxygen),
Examples thereof include sulfonium (sulfur), selenonium (selenium), stannonium (tin), and iodonium (iodine). In addition, these may be used in combination as appropriate.

【0037】有機陽イオンとしては、炭化水素基を有す
るアンモニウムイオンが、入手の容易さより、好まし
い。炭化水素基を有するアンモニウムイオンの例として
は、トリラウリルメチルアンモニウムイオン、ジデシル
ジメチルアンモニウムイオン、ジココイルジメチルアン
モニウムイオン、ジステアリルジメチルアンモニウムイ
オン、ジオレイルジメチルアンモニウムイオン、セチル
トリメチルアンモニウムイオン、ステアリルトリメチル
アンモニウムイオン、ベヘニルトリメチルアンモニウム
イオン、ココイルビス(2−ヒドロキシエチル)メチル
アンモニウムイオン、ポリオキシエチレン(15)ココ
ステアリルメチルアンモニウムイオン、オレイルビス
(2−ヒドロキシエチル)メチルアンモニウムイオン、
ココベンジルジメチルアンモニウムイオン等が挙げら
れ、単独又は2種以上組み合わせて使用してもかまわな
い。
As the organic cation, an ammonium ion having a hydrocarbon group is preferable because it is easily available. Examples of the ammonium ion having a hydrocarbon group include trilaurylmethylammonium ion, didecyldimethylammonium ion, dicocoyldimethylammonium ion, distearyldimethylammonium ion, dioleyldimethylammonium ion, cetyltrimethylammonium ion, stearyltrimethylammonium ion. Ion, behenyltrimethylammonium ion, cocoylbis (2-hydroxyethyl) methylammonium ion, polyoxyethylene (15) cocostearylmethylammonium ion, oleylbis (2-hydroxyethyl) methylammonium ion,
Examples thereof include cocobenzyldimethylammonium ion, and these may be used alone or in combination of two or more kinds.

【0038】更に好ましくは、炭化水素基を有するアン
モニウムイオンが炭素数1〜18の炭化水素基と極性基
を有し,且つ全炭素数4〜25の第4級アンモニウムイ
オンであると、塩化ビニル系重合体中への層状膨潤性ケ
イ酸塩の分散性が良好となり、破壊靭性値が向上し、好
ましい。
More preferably, the ammonium ion having a hydrocarbon group is a quaternary ammonium ion having a hydrocarbon group having 1 to 18 carbon atoms and a polar group and having 4 to 25 carbon atoms in total, vinyl chloride. The dispersibility of the layered swelling silicate in the polymer is improved, and the fracture toughness value is improved, which is preferable.

【0039】上記の炭素数1〜18の炭化水素基と極性
基を有し,且つ全炭素数4〜25の第4級アンモニウム
イオンの例としては、極性基として、水酸基、メルカプ
ト基、カルボニル基等の極性基を1つ以上有するもので
あり、オレイルビス(2−ヒドロキシエチル)メチルア
ンモニウムイオン、ラウリルビス(2−ヒドロキシエチ
ル)メチルアンモニウムイオン、デシルビス(2−ヒド
ロキシエチル)メチルアンモニウムイオン、オレイルビ
ス(2−メルカプトエチル)メチルアンモニウムイオ
ン、ラウリルビス(2−メルカプトエチル)メチルアン
モニウムイオン、トリメチルアミノエトキシプロピルア
ンモニウムイオン等が挙げられ、単独又は2種以上組み
合わせ使用される。
Examples of the above quaternary ammonium ion having a hydrocarbon group having 1 to 18 carbon atoms and a polar group and having 4 to 25 carbon atoms include polar groups such as hydroxyl group, mercapto group and carbonyl group. Etc. having one or more polar groups such as oleylbis (2-hydroxyethyl) methylammonium ion, laurylbis (2-hydroxyethyl) methylammonium ion, decylbis (2-hydroxyethyl) methylammonium ion, oleylbis (2- Examples thereof include mercaptoethyl) methylammonium ion, laurylbis (2-mercaptoethyl) methylammonium ion, and trimethylaminoethoxypropylammonium ion, which may be used alone or in combination of two or more.

【0040】上述したように、本発明では、層状膨潤性
ケイ酸塩の層間に存在する交換性無機陽イオンを有機陽
イオンにイオン交換されたものを使用するが、有機陽イ
オンでイオン交換する前の層状膨潤性ケイ酸塩の陽イオ
ン交換容量が、50〜200meq/100gの範囲で
ある層状膨潤性ケイ酸塩が好ましく、また、有機陽イオ
ンでイオン交換された層状膨潤性ケイ酸塩中の有機陽イ
オンの含有量が、0.5〜60重量%、好ましくは、
1.0〜50重量%であることが好ましい。有機陽イオ
ン)の含有量が上記の範囲内であると、十分な破壊靭性
値の向上効果が得られるばかりでなく、成形時の有機陽
イオンの熱分解による成形品の変色も抑制でき好まし
い。
As described above, in the present invention, the exchangeable inorganic cation existing between the layers of the layered swelling silicate is ion-exchanged with the organic cation, but the organic cation is used for the ion exchange. A layered swelling silicate in which the cation exchange capacity of the preceding layered swelling silicate is in the range of 50 to 200 meq / 100 g is preferable, and in the layered swelling silicate ion-exchanged with an organic cation. Content of the organic cation of 0.5 to 60% by weight, preferably,
It is preferably 1.0 to 50% by weight. When the content of (organic cation) is within the above range, not only a sufficient effect of improving the fracture toughness value can be obtained, but also discoloration of the molded product due to thermal decomposition of the organic cation at the time of molding can be suppressed, which is preferable.

【0041】本発明に用いられる有機陽イオンでイオン
交換された層状膨潤性ケイ酸塩は、層状膨潤性ケイ酸塩
の層間に存在する交換性無機陽イオンを有機陽イオンで
イオン交換させる公知の方法で製造され、特にその製造
には制限は無い。例えば、層状膨潤性ケイ酸塩を予め水
性媒体中に溶解させ、水性媒体中で層間が十分に膨潤、
剥離させた状態で有機陽イオンを含む水溶液を常温下、
撹拌混合させ、有機陽イオンを層間挿入させ、イオン交
換させる方法が、イオン交換の効率が高く、好ましい。
The layered swelling silicate ion-exchanged with the organic cation used in the present invention is a known one in which the exchangeable inorganic cation existing between the layers of the layered swelling silicate is ion-exchanged with the organic cation. It is produced by a method, and there is no particular limitation on the production. For example, a layered swelling silicate is previously dissolved in an aqueous medium, and the layers are sufficiently swelled in the aqueous medium,
In an exfoliated state, an aqueous solution containing organic cations at room temperature,
A method of stirring and mixing, intercalating an organic cation between layers, and performing ion exchange is preferable because of high ion exchange efficiency.

【0042】本発明では、成形品中で層状膨潤性ケイ酸
塩の層間が剥離し、薄片状結晶単位にできる限り分散さ
れた形態を有していることが必要である。従って、本発
明に用いられる層状膨潤性ケイ酸塩の成形品中で分散し
た状態での形状としては、平均層厚さが0.5〜50n
m、かつ平均アスペクト比(層長さと層厚さの比)が1
0以上である。好ましくは、平均厚さが0.5〜30n
m、かつ平均アスペクト比が20〜500である。更に
好ましくは、平均厚さが0.5〜20nm、かつ平均ア
スペクト比が30〜300である。
In the present invention, the layers of the layered swelling silicate must be separated from each other in the molded product, and the flaky crystal units must be dispersed as much as possible. Therefore, the shape of the layered swelling silicate used in the present invention in a state of being dispersed in a molded article has an average layer thickness of 0.5 to 50 n.
m, and the average aspect ratio (ratio of layer length and layer thickness) is 1
It is 0 or more. Preferably, the average thickness is 0.5 to 30n
m, and the average aspect ratio is 20 to 500. More preferably, the average thickness is 0.5 to 20 nm and the average aspect ratio is 30 to 300.

【0043】成形品中に分散した状態での層状膨潤性ケ
イ酸塩の平均層厚さが50nmを越えたり、または平均
アスペクト比が10未満であると、層状膨潤性ケイ酸塩
は、その層間剥離が不充分で、薄片状結晶が多数凝集し
た形態を有しているため、構造欠陥となり、高い破壊靭
性値が得られず、好ましくない。また、成形品中に分散
した状態での層状膨潤性ケイ酸塩の平均厚さが0.5n
m未満であることは物理的に困難であり、そこまでの分
散性を必要とするものではない。
When the average layer thickness of the layered swellable silicate dispersed in the molded article exceeds 50 nm or the average aspect ratio is less than 10, the layered swellable silicate is formed into the interlayer layer. Since the exfoliation is insufficient and a large number of flaky crystals are aggregated, it becomes a structural defect and a high fracture toughness value cannot be obtained, which is not preferable. The average thickness of the layered swelling silicate dispersed in the molded product is 0.5 n.
It is physically difficult to be less than m, and dispersibility to that extent is not required.

【0044】本発明の塩化ビニル系重合体組成物中の層
状膨潤性ケイ酸塩の含有率としては、無機成分の重量分
率として、0.05〜0.7重量%、好ましくは、0.
07〜0.6重量%、更に好ましくは、0.1〜0.6
重量%である。
The content of the layered swelling silicate in the vinyl chloride polymer composition of the present invention is 0.05 to 0.7% by weight as the weight fraction of the inorganic component, preferably 0.
07-0.6% by weight, more preferably 0.1-0.6
% By weight.

【0045】層状膨潤性ケイ酸塩の含有率が、無機成分
の重量分率として、0.05重量%未満であると、破壊
靭性値の改良効果が乏しく、好ましくない。又、層状膨
潤性ケイ酸塩の含有率が、無機成分の重量分率として、
0.7重量%を越えると、弾性率の向上はみられるもの
の、破壊靭性値が著しく低下し、好ましくない。
If the content of the layered swelling silicate is less than 0.05% by weight as the weight fraction of the inorganic component, the effect of improving the fracture toughness value is poor, which is not preferable. Further, the content of the layered swelling silicate, as a weight fraction of the inorganic component,
When it exceeds 0.7% by weight, although the elastic modulus is improved, the fracture toughness value is remarkably lowered, which is not preferable.

【0046】ちなみに、層状膨潤性ケイ酸塩の含有率
は、得られた塩化ビニル系重合体組成物の成形品を95
0℃で完全燃焼させ、灰分の重量測定より、規定される
ものであり、無機成分の重量分率として規定される。
By the way, the content of the layered swelling silicate was 95% in the molded article of the obtained vinyl chloride polymer composition.
It is completely combusted at 0 ° C., and is specified by measuring the weight of ash, and is defined as the weight fraction of inorganic components.

【0047】本発明の製造方法については、特に制限さ
れるものではなく、例えば、塩化ビニル系重合体と有機
陽イオンでイオン交換された層状膨潤性ケイ酸塩を所定
量配合し、必要に応じ各種添加剤を配合したものをヘン
シェルミキサー、らいかい機、プラネタリーミキサー、
その他各種ミキサーなどを用いて均一に混合することに
よって得られ、常温下でのいわゆるコールドブレンドで
行っても、また、60〜140℃の範囲でのいわゆるホ
ットブレンドで行ってもかまわない。上記の方法で製造
した塩化ビニル系重合体組成物を、例えば、単軸押出
機、二軸押出機、ロール混練機、バンバリーミキサー等
の混練機により、所定の剪断応力場で溶融混練させ、成
形して成形品を製造することにより、成形品中に極少量
の層状膨潤性ケイ酸塩がナノオーダーレベルの大きさに
微分散された構造を形成させることができる。
The production method of the present invention is not particularly limited. For example, a predetermined amount of a vinyl chloride polymer and a layered swelling silicate ion-exchanged with an organic cation are blended, and if necessary. Henschel mixer, raider machine, planetary mixer, blended with various additives
In addition, it can be obtained by uniform mixing using various mixers, etc., and may be so-called cold blending at room temperature or so-called hot blending in the range of 60 to 140 ° C. The vinyl chloride polymer composition produced by the above method, for example, by a kneader such as a single-screw extruder, a twin-screw extruder, a roll kneader, a Banbury mixer, melt kneading in a predetermined shear stress field, molding By producing a molded product by doing so, it is possible to form a structure in which a very small amount of the layered swelling silicate is finely dispersed in a size of nano-order level in the molded product.

【0048】しかしながら、上記のような有機陽イオン
でイオン交換された層状膨潤性ケイ酸塩を塩化ビニル系
重合体に均一混合させた後に、溶融混練により成形加工
を行った場合、成形品中に層状膨潤性ケイ酸塩を薄片状
結晶単位まで剥離させ、均一にナノオーダーレベルの大
きさに微分散させるには、溶融混練時に高い剪断力を必
要とし、剪断速度、温度、混練時間等の混練条件の最適
化を図る必要があり、必ずしも最適な製造方法とは言え
ない。
However, when the layered swelling silicate ion-exchanged with the organic cation as described above is uniformly mixed with the vinyl chloride polymer, and the mixture is subjected to molding by melt kneading, a molded article is obtained. In order to exfoliate the layered swelling silicate to the flaky crystal unit and finely disperse it uniformly to the size of nano-order level, high shearing force is required during melt kneading, and kneading such as shear rate, temperature, kneading time, etc. It is necessary to optimize the conditions, and it cannot be said that the manufacturing method is optimal.

【0049】上記した事情を鑑み検討した結果、本発明
の塩化ビニル系重合体組成物のより好ましい製造方法と
して、単に塩化ビニル系重合体と有機陽イオンでイオン
交換した層状膨潤性ケイ酸塩を機械ブレンドさせるので
はなく、塩化ビニル系重合体を懸濁重合法で製造する際
に、重合系の中で、塩化ビニル系重合体中に有機陽イオ
ンでイオン交換された層状膨潤性ケイ酸塩添加すること
により、層状膨潤性ケイ酸塩をナノオーダーレベルの大
きさに微分散させる方法を見出した。つまり、塩化ビニ
ル系重合体を懸濁重合法で製造する課程で、有機陽イオ
ンでイオン交換された層状膨潤性ケイ酸塩を水性媒体
中、または、塩化ビニル系単量体液滴中に分散させて懸
濁重合を行い、塩化ビニル系単量体液滴内に層状膨潤性
ケイ酸塩を移行、吸着させ、重合課程で、塩化ビニル系
重合体中に層状膨潤性ケイ酸塩を微分散させる方法を用
いることにより、更なる均一分散性が改良され、得られ
る成形品の破壊靭性値を著しく上昇させることができ、
更に好ましい。
As a result of an examination in view of the above circumstances, as a more preferable method for producing the vinyl chloride polymer composition of the present invention, a vinyl chloride polymer and a layered swelling silicate ion-exchanged with an organic cation are simply used. When a vinyl chloride polymer is produced by a suspension polymerization method instead of mechanical blending, a layered swelling silicate ion-exchanged with an organic cation in the vinyl chloride polymer in the polymerization system. A method of finely dispersing the layered swelling silicate to a nano-order level size by the addition was found. That is, in the process of producing a vinyl chloride polymer by the suspension polymerization method, the layered swelling silicate ion-exchanged with an organic cation is dispersed in an aqueous medium or a vinyl chloride monomer droplet. Suspension polymerization to transfer the layered swelling silicate into the vinyl chloride monomer droplets and cause it to adsorb, and finely disperse the layered swelling silicate in the vinyl chloride polymer during the polymerization process. By using, further uniform dispersibility is improved, it is possible to significantly increase the fracture toughness value of the resulting molded article,
More preferable.

【0050】その際に、有機陽イオンでイオン交換され
た層状膨潤性ケイ酸塩を重合系内に添加する時期につい
ては、特に制限はなく、例えば、重合開始前に一括で添
加してもよく、重合途中の所定の時期に一括添加しても
よく、重合終了直前に一括添加してもよく、重合開始前
から終了までの所定の期間に連続的に徐々に添加しても
構わない。
At that time, there is no particular limitation on the time of adding the layered swelling silicate ion-exchanged with the organic cation into the polymerization system, and for example, it may be added all at once before the initiation of the polymerization. It may be added all at once at a predetermined time during the polymerization, immediately before the end of the polymerization, or continuously and gradually during the predetermined period from the start to the end of the polymerization.

【0051】その他の重合条件、例えば、用いられる重
合開始剤の種類や添加重量、分散剤の種類や添加重量、
撹拌条件等については特に制限されず、公知の塩化ビニ
ル系重合体の懸濁重合法で通常用いられる重合開始剤を
使用し、通常の撹拌条件で重合して構わない。
Other polymerization conditions, for example, the type and weight of the polymerization initiator used, the type and weight of the dispersant,
The stirring conditions and the like are not particularly limited, and a polymerization initiator which is commonly used in a known suspension polymerization method of a vinyl chloride-based polymer may be used and polymerization may be performed under normal stirring conditions.

【0052】本発明の塩化ビニル系重合体組成物は、上
述の重合法で得られた、塩化ビニル系重合体と層状膨潤
性ケイ酸塩の複合重合体を、各種添加剤とともに均一混
合させることによって得ることができるが、塩化ビニル
系重合体と該複合重合体とを所定量配合し、各種添加剤
とともに各種ミキサーなどを用いて均一に混合させるこ
とによっても得ることができ、所定の温度と剪断応力場
で溶融混練させて成形品を製造することができる。
The vinyl chloride polymer composition of the present invention is obtained by uniformly mixing the vinyl chloride polymer and the layered swelling silicate composite polymer obtained by the above-mentioned polymerization method together with various additives. Can be obtained by blending a predetermined amount of the vinyl chloride polymer and the composite polymer, and evenly mixing with various additives using various mixers, etc., at a predetermined temperature A molded product can be manufactured by melt-kneading in a shear stress field.

【0053】本発明の塩化ビニル系重合体組成物には、
目的に応じて、顔料や染料、熱安定剤、酸化防止剤、紫
外線吸収剤、光安定剤、滑剤、可塑剤、難燃剤、加工助
剤、耐衝撃改良剤、耐電防止剤等の添加剤を添加しても
良い。
The vinyl chloride polymer composition of the present invention comprises
Additives such as pigments, dyes, heat stabilizers, antioxidants, UV absorbers, light stabilizers, lubricants, plasticizers, flame retardants, processing aids, impact modifiers, antistatic agents, etc., depending on the purpose. You may add.

【0054】また、本発明の組成物からなる成形品は、
公知の樹脂の成形方法、例えば、プレス成形、押出成
形、射出成形、ブロー成形、カレンダー成形等によっ
て、溶融混練、賦形加工されることにより得られる。溶
融混練時の温度については特に制限は無いが、140〜
200℃の温度範囲で成形加工することにより、高い弾
性率と高い破壊靭性値を有する成形品が得られ好まし
い。特に、押出成形により、パイプを成形した場合、高
い剛性を有し、且つ破壊靭性値が高く、長期耐久性に優
れたパイプが得られ、好ましい。
Molded articles made of the composition of the present invention are
It can be obtained by melt-kneading and shaping by a known resin molding method such as press molding, extrusion molding, injection molding, blow molding, calender molding and the like. The temperature at the time of melt kneading is not particularly limited, but 140 to
Molding in a temperature range of 200 ° C. is preferable because a molded product having a high elastic modulus and a high fracture toughness value can be obtained. In particular, when a pipe is formed by extrusion molding, a pipe having high rigidity, high fracture toughness value, and long-term durability is obtained, which is preferable.

【0055】[0055]

【実施例】以下、本発明を実施例によって具体的に説明
するが、本発明はこれに限定されるものではない。下記
の実施例及び比較例で得られた塩化ビニル系重合体組成
物の評価は、以下に示す方法によって行った。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. The vinyl chloride polymer compositions obtained in the following Examples and Comparative Examples were evaluated by the methods described below.

【0056】(平均重合度の測定方法)JIS−K67
21に準じて、ニトロベンゼンを溶媒とした塩化ビニル
系重合体溶液の粘度測定により、算出した。なお、塩化
ビニル系重合体が完全に溶解しない場合は、不溶分を濾
過し、可溶分の粘度測定によった。
(Measurement method of average degree of polymerization) JIS-K67
According to No. 21, it was calculated by measuring the viscosity of a vinyl chloride polymer solution using nitrobenzene as a solvent. When the vinyl chloride polymer was not completely dissolved, the insoluble matter was filtered and the viscosity of the soluble matter was measured.

【0057】(成形品の作製方法)塩化ビニル系重合体
組成物を165℃の温度のロールで5分間混練し、ロー
ル混練シートを作製し、このロール混練シートを、17
5℃にて、圧力15MPaの条件で20分間プレス成形
し、成形品を作製した。
(Method for producing molded article) The vinyl chloride polymer composition was kneaded for 5 minutes with a roll having a temperature of 165 ° C. to produce a roll kneading sheet.
Press molding was carried out at 5 ° C. for 20 minutes under a pressure of 15 MPa to prepare a molded product.

【0058】(成形品中の層状膨潤性ケイ酸塩の平均層
厚さ及び平均アスペクト比の測定方法)上記で作成した
成形品をウルトラミクロトームで厚さ1μmの薄片に切
削し、薄片を透過型電子顕微鏡(日本電子社製、JEM
−2000FX)で50万倍に拡大して観察し、0.1
mm角の中に分散している層状膨潤性ケイ酸塩の層厚さ
と層長さを計測し、平均層厚さおよび平均アスペクト比
を算出した。
(Measurement Method of Average Layer Thickness and Average Aspect Ratio of Layered Swelling Silicate in Molded Article) The molded article prepared above is cut into a thin piece having a thickness of 1 μm with an ultramicrotome, and the thin piece is a transmission type. Electron microscope (JEM, JEM
-2000FX) magnified 500,000 times and observed.
The layer thickness and the layer length of the layered swelling silicate dispersed in the mm square were measured, and the average layer thickness and the average aspect ratio were calculated.

【0059】(成形品中の層状膨潤性ケイ酸塩の含有率
の測定方法)上記で作成した成形品から1gを切削し、
950℃で1時間燃焼させ、灰分の重量測定より、層状
膨潤性ケイ酸塩の含有率を算出した。
(Measurement Method for Content of Layered Swelling Silicate in Molded Article) 1 g of the molded article prepared above was cut,
The content of the layered swelling silicate was calculated from the weight of ash by burning at 950 ° C. for 1 hour.

【0060】(破壊靭性試験方法)上記で作成した成形
品を用いて、ASTM D−5045−95に準じる試
験機(エーアンドディ社製、テンシロン)にて、片側に
切り欠きを挿入した平板による3点曲げ試験により、最
大応力より破壊靭性値(Kc)を算出した。なお、非線
形破壊を示した成形品については、最大応力到達時が、
成形品のクラック成長開始点とみなし、最大応力より破
壊靭性値(Kc)を算出した。
(Fracture toughness test method) Using the molded product prepared above, a flat plate having a notch inserted on one side was used with a tester (A & D Co., Ltd., Tensilon) according to ASTM D-5045-95. The fracture toughness value (Kc) was calculated from the maximum stress by a three-point bending test. For molded products that show non-linear fracture, when the maximum stress is reached,
The fracture toughness value (Kc) was calculated from the maximum stress, considering the crack growth starting point of the molded product.

【0061】(引張り弾性率及び伸びの測定方法)上記
で作成した成形品を用いて、JIS−K7113に準じ
る試験機(エーアンドディ社製、テンシロン)にて、引
張り弾性率及び伸びを測定した。
(Measurement Method of Tensile Elastic Modulus and Elongation) Using the molded article prepared above, the tensile elastic modulus and elongation were measured with a testing machine (manufactured by A & D Co., Tensilon) according to JIS-K7113. .

【0062】参考例1(モンモリロナイトAの製造) 天然のベントナイト鉱石から精製されたモンモリロナイ
ト(クニミネ工業(株)製:クニピアF)(モンモリロ
ナイトCとする)3重量部を水100重量部中に溶解さ
せ、撹拌下で塩化オレイルビス(2−ヒドロキシエチ
ル)メチルアンモニウム1.5重量部を添加し、60分
間撹拌し、凝集、沈降した沈降物を乾燥させ、モンモリ
ロナイトの層間のナトリウムイオンをオレイルビス(2
−ヒドロキシエチル)メチルアンモニウムイオンでイオ
ン交換した、有機分として30重量%含有するモンモリ
ロナイトAを調製した。
Reference Example 1 (Production of montmorillonite A) 3 parts by weight of montmorillonite (Kunipia F manufactured by Kunimine Industries Co., Ltd.) purified from natural bentonite ore (referred to as montmorillonite C) was dissolved in 100 parts by weight of water. Then, 1.5 parts by weight of oleylbis (2-hydroxyethyl) methylammonium chloride was added with stirring, and the mixture was stirred for 60 minutes, and the precipitate that had aggregated and settled was dried to remove sodium ions between the layers of montmorillonite from oleylbis (2
A montmorillonite A containing 30% by weight as an organic component, which was ion-exchanged with -hydroxyethyl) methylammonium ion, was prepared.

【0063】参考例2(モンモリロナイトBの製造) 参考例1において、塩化オレイルビス(2−ヒドロキシ
エチル)メチルアンモニウムに替えて塩化ジステアリル
ジメチルアンモニウムを用いる他は参考例1と同様にし
て、モンモリロナイトの層間のナトリウムイオンをジス
テアリルジメチルアンモニウムイオンでイオン交換し
た、有機分として42重量%含有するモンモリロナイト
Bを得た。
Reference Example 2 (Production of Montmorillonite B) In the same manner as in Reference Example 1, except that distearyldimethylammonium chloride was used instead of oleylbis (2-hydroxyethyl) methylammonium chloride in Reference Example 1, an interlayer of montmorillonite was used. Was obtained by ion-exchange of sodium ion of the above with distearyldimethylammonium ion to obtain montmorillonite B containing 42 wt% as an organic component.

【0064】参考例3(ポリ塩化ビニル−層状膨潤性ケ
イ酸塩の複合重合体Aの製造) 撹拌翼を装備した内容積3000cm3の重合器に、脱
イオン水2430g、モンモリロナイトA10.41g
および平均鹸化度80%の部分鹸化ポリビニルアルコー
ル0.73gを仕込み、撹拌混合させ、水中に溶解させ
た後に、塩化ビニル単量体243gとパーオキサイド系
重合開始剤0.13gを入れ、57.4℃で懸濁重合
し、得られたポリ塩化ビニル−層状膨潤性ケイ酸塩複合
重合体Aを定法で分離した。得られた複合重合体Aの平
均重合度は950、灰分率から定量された重合体中の層
状膨潤性ケイ酸塩の含有率は、3.20重量%であっ
た。
Reference Example 3 (Production of Polyvinyl Chloride-Layered Swelling Silicate Composite Polymer A) 2430 g of deionized water and 10.41 g of montmorillonite A were placed in a polymerization vessel having an inner volume of 3000 cm 3 equipped with a stirring blade.
Then, 0.73 g of partially saponified polyvinyl alcohol having an average saponification degree of 80% was charged, mixed with stirring, dissolved in water, and then 243 g of a vinyl chloride monomer and 0.13 g of a peroxide-based polymerization initiator were added to obtain 57.4%. Suspension polymerization was carried out at 0 ° C., and the obtained polyvinyl chloride-layered swellable silicate composite polymer A was separated by a conventional method. The average degree of polymerization of the obtained composite polymer A was 950, and the content of the layered swelling silicate in the polymer, which was determined from the ash content, was 3.20% by weight.

【0065】実施例1 平均重合度1020の懸濁重合法で製造した塩化ビニル
重合体(大洋塩ビ(株)製:TH−1000)300
g、参考例1で得られたモンモリロナイトA0.34
g、ジオクチル錫メルカプト系安定剤(三共有機(株)
製:ONZ−82BF)3g、ジペンタエリスリトール
ヘキサステアレート(理研ビタミン(株)製:SL−0
2)3gをヘンシェルミキサーで混合し、ロール混練及
びプレス成形して塩化ビニル系重合体組成物を作製し
た。得られた成形品の灰分率から定量したモンモリロナ
イトの含有率は0.08重量%であり、モンモリロナイ
トは平均層厚さが5nm、平均アスペクト比が105の
大きさで塩化ビニル系重合体の残存粒子界面に沿って、
網目状に分散されていた。また、得られた成形品の破壊
靭性値は高く、引張り弾性率、引張り伸びも高く、良好
であった。
Example 1 Vinyl chloride polymer (TH-1000 manufactured by Taiyo PVC Co., Ltd.) 300 produced by a suspension polymerization method having an average degree of polymerization of 1020
g, montmorillonite A 0.34 obtained in Reference Example 1
g, dioctyl tin mercapto stabilizer (Sankyo Machine Co., Ltd.)
(Manufactured by: ONZ-82BF) 3 g, dipentaerythritol hexastearate (manufactured by Riken Vitamin Co., Ltd .: SL-0)
2) 3 g was mixed with a Henschel mixer, roll-kneaded and press-molded to prepare a vinyl chloride polymer composition. The content of montmorillonite quantified from the ash content of the obtained molded product was 0.08% by weight. The montmorillonite had an average layer thickness of 5 nm, an average aspect ratio of 105, and residual particles of vinyl chloride polymer. Along the interface,
It was dispersed like a mesh. Moreover, the fracture toughness value of the obtained molded product was high, and the tensile elastic modulus and tensile elongation were also high, which were good.

【0066】実施例2 実施例1において、モンモリロナイトAを0.86gと
変更した以外は、実施例1と同様にして塩化ビニル系重
合体組成物を作製した。得られた成形品の灰分率から定
量したモンモリロナイトの含有率は0.2重量%であ
り、モンモリロナイトは平均層厚さが7nm、平均アス
ペクト比が110の大きさで、塩化ビニル系重合体の残
存粒子界面に沿って網目状に分散されていた。また、得
られた成形品の破壊靭性値は高く、引張り弾性率、引張
り伸びも高く、良好であった。
Example 2 A vinyl chloride polymer composition was prepared in the same manner as in Example 1 except that the amount of montmorillonite A was changed to 0.86 g. The content of montmorillonite quantified from the ash content of the obtained molded product was 0.2% by weight. The montmorillonite had an average layer thickness of 7 nm, an average aspect ratio of 110, and a residual vinyl chloride polymer. It was dispersed like a mesh along the grain interface. Moreover, the fracture toughness value of the obtained molded product was high, and the tensile elastic modulus and tensile elongation were also high, which were good.

【0067】実施例3 実施例1において、モンモリロナイトAを2.14gと
変更した以外は、実施例1と同様にして塩化ビニル系重
合体組成物を作製した。得られた成形品の灰分率から定
量したモンモリロナイトの含有率は0.5重量%であ
り、モンモリロナイトは平均層厚さが7nm、平均アス
ペクト比が95の大きさで、塩化ビニル系重合体の残存
粒子界面に沿って網目状に分散されていた。また、得ら
れた成形品の破壊靭性値は高く、引張り弾性率、引張り
伸びも高く、良好であった。
Example 3 A vinyl chloride polymer composition was prepared in the same manner as in Example 1 except that the amount of montmorillonite A used was changed to 2.14 g. The content of montmorillonite quantified from the ash content of the obtained molded product was 0.5% by weight. The montmorillonite had an average layer thickness of 7 nm and an average aspect ratio of 95, and the residual vinyl chloride polymer. It was dispersed like a mesh along the grain interface. Moreover, the fracture toughness value of the obtained molded product was high, and the tensile elastic modulus and tensile elongation were also high, which were good.

【0068】実施例4 実施例1において、モンモリロナイトAを3.0gと変
更した以外は、実施例1と同様にして塩化ビニル系重合
体組成物を作製した。得られた成形品の灰分率から定量
したモンモリロナイトの含有率は0.7重量%であり、
モンモリロナイトは平均層厚さが10nm、平均アスペ
クト比が98の大きさで、塩化ビニル系重合体の残存粒
子界面に沿って網目状に分散されていた。また、得られ
た成形品の破壊靭性値は高く、引張り弾性率、引張り伸
びも高く、良好であった。
Example 4 A vinyl chloride polymer composition was prepared in the same manner as in Example 1 except that the amount of montmorillonite A was changed to 3.0 g. The content of montmorillonite determined from the ash content of the obtained molded product was 0.7% by weight,
The montmorillonite had an average layer thickness of 10 nm and an average aspect ratio of 98, and was dispersed in a mesh shape along the interface of the residual particles of the vinyl chloride polymer. Moreover, the fracture toughness value of the obtained molded product was high, and the tensile elastic modulus and tensile elongation were also high, which were good.

【0069】実施例5 実施例3において、塩化ビニル系重合体として、平均重
合度1290の懸濁重合法で製造した塩化ビニル重合体
(大洋塩ビ(株)製:TH−1300)300gを用い
る以外は、実施例3と同様にして塩化ビニル系重合体組
成物を作製した。得られた成形品の灰分率から定量した
モンモリロナイトの含有率は0.5重量%であり、モン
モリロナイトは平均層厚さが5nm、平均アスペクト比
が100の大きさで、塩化ビニル系重合体の残存粒子界
面に沿って網目状に分散されていた。また、得られた成
形品の破壊靭性値は高く、引張り弾性率、引張り伸びも
高く、良好であった。
Example 5 In Example 3, except that 300 g of a vinyl chloride polymer (TH-1300 manufactured by Taiyo PVC Co., Ltd.) produced by a suspension polymerization method having an average degree of polymerization of 1290 was used as the vinyl chloride polymer. In the same manner as in Example 3, a vinyl chloride polymer composition was prepared. The content of montmorillonite quantified from the ash content of the obtained molded product was 0.5% by weight. The montmorillonite had an average layer thickness of 5 nm, an average aspect ratio of 100, and a residual vinyl chloride polymer. It was dispersed like a mesh along the grain interface. Moreover, the fracture toughness value of the obtained molded product was high, and the tensile elastic modulus and tensile elongation were also high, which were good.

【0070】実施例6 実施例3において、層状膨潤性ケイ酸塩として、モンモ
リロナイトB2.59gを用いる以外は、実施例3と同
様にして塩化ビニル系重合体組成物を作製した。得られ
た成形品の灰分率から定量したモンモリロナイトの含有
率は0.5重量%であり、モンモリロナイトは平均層厚
さが15nm、平均アスペクト比が60の大きさで、塩
化ビニル系重合体の残存粒子界面に沿って網目状に分散
されていた。また、得られた成形品の破壊靭性値は高
く、引張り弾性率、引張り伸びも高く、良好であった。
Example 6 A vinyl chloride polymer composition was prepared in the same manner as in Example 3 except that 2.59 g of montmorillonite B was used as the layered swelling silicate. The content of montmorillonite quantified from the ash content of the obtained molded product was 0.5% by weight. The montmorillonite had an average layer thickness of 15 nm, an average aspect ratio of 60, and remained vinyl chloride polymer. It was dispersed like a mesh along the grain interface. Moreover, the fracture toughness value of the obtained molded product was high, and the tensile elastic modulus and tensile elongation were also high, which were good.

【0071】実施例7 塩化ビニル系重合体として、平均重合度1020の懸濁
重合法で製造した塩化ビニル重合体(大洋塩ビ(株)
製:TH−1000)235.9g、層状膨潤性ケイ酸
塩として、参考例3で製造したポリ塩化ビニル−層状膨
潤性ケイ酸塩複合重合体A64.1g、安定剤として、
ジオクチル錫メルカプト系安定剤(三共有機(株)製:
ONZ−82BF)3g、および、滑剤として、ジペン
タエリスリトールヘキサステアレート(理研ビタミン
(株)製:SL−02)3gをヘンシェルミキサーで混
合し、ロール混練及びプレス成形して塩化ビニル系重合
体組成物を作製した。得られた成形品の灰分率から定量
したモンモリロナイトの含有率は0.5重量%であり、
モンモリロナイトは平均層厚さが5nm、平均アスペク
ト比が108の大きさで、塩化ビニル系重合体の残存粒
子界面に沿って網目状に分散されていた。また、得られ
た成形品の破壊靭性値は高く、引張り弾性率、引張り伸
びも高く、良好であった。以上の結果を表1に示した。
Example 7 As a vinyl chloride polymer, a vinyl chloride polymer produced by a suspension polymerization method having an average degree of polymerization of 1020 (Tayo PVC Co., Ltd.)
Manufactured: TH-1000) 235.9 g, as a layered swelling silicate, polyvinyl chloride-layered swellable silicate composite polymer A64.1 g produced in Reference Example 3, as a stabilizer,
Dioctyl tin mercapto stabilizer (manufactured by Sankyo Machine Co., Ltd .:
3 g of ONZ-82BF) and 3 g of dipentaerythritol hexastearate (manufactured by Riken Vitamin Co., Ltd .: SL-02) as a lubricant are mixed with a Henschel mixer, roll-kneaded and press-molded to form a vinyl chloride polymer composition. The thing was made. The content of montmorillonite determined from the ash content of the obtained molded product was 0.5% by weight,
The montmorillonite had an average layer thickness of 5 nm and an average aspect ratio of 108, and was dispersed like a mesh along the interface of the residual particles of the vinyl chloride polymer. Moreover, the fracture toughness value of the obtained molded product was high, and the tensile elastic modulus and tensile elongation were also high, which were good. The above results are shown in Table 1.

【0072】[0072]

【表1】 [Table 1]

【0073】比較例1 実施例1において、モンモリロナイトAを全く使用せ
ず、以下実施例1と同様にして塩化ビニル系重合体組成
物を作製した。得られた成形品の灰分率から定量したモ
ンモリロナイトの含有率は0重量%であった。また、得
られた成形品の引張り伸びは高かったが、破壊靭性値は
低く、引張り弾性率も低く、好ましくなかった。
Comparative Example 1 A vinyl chloride polymer composition was prepared in the same manner as in Example 1 except that montmorillonite A was not used in Example 1. The content of montmorillonite determined from the ash content of the obtained molded product was 0% by weight. The tensile elongation of the obtained molded product was high, but the fracture toughness value was low and the tensile elastic modulus was low, which was not preferable.

【0074】比較例2 実施例1において、層状膨潤性ケイ酸塩として、天然の
ベントナイト鉱石から精製されたモンモリロナイトC
1.5gを用いる以外は、実施例1と同様にして塩化ビ
ニル系重合体組成物を作製した。得られた成形品の灰分
率から定量したモンモリロナイトの含有率は0.5重量
%であり、モンモリロナイトは平均層厚さが150μ
m、平均アスペクト比が2.5の大きさで、凝集状に分
散されていた。また、得られた成形品の引張り伸びは高
かったが、破壊靭性値は低く、引張り弾性率も低く、好
ましくなかった。
Comparative Example 2 In Example 1, as the layered swelling silicate, montmorillonite C refined from natural bentonite ore.
A vinyl chloride polymer composition was produced in the same manner as in Example 1 except that 1.5 g was used. The content of montmorillonite determined from the ash content of the obtained molded product was 0.5% by weight, and the average layer thickness of montmorillonite was 150 μm.
m, the average aspect ratio was 2.5, and the particles were dispersed in an aggregated state. The tensile elongation of the obtained molded product was high, but the fracture toughness value was low and the tensile elastic modulus was low, which was not preferable.

【0075】比較例3 実施例1において、モンモリロナイトAを4.29gと
変更した以外は、実施例1と同様にして塩化ビニル系重
合体組成物を作製した。得られた成形品の灰分率から定
量したモンモリロナイトの含有率は1.0重量%であ
り、モンモリロナイトは平均層厚さが10nm、平均ア
スペクト比が65の大きさで、塩化ビニル系重合体の残
存粒子界面に沿って網目状に分散されていた。また、得
られた成形品の引張り弾性率は高かったが、破壊靭性値
は低く、引張り伸びも低く、好ましくなかった。
Comparative Example 3 A vinyl chloride polymer composition was prepared in the same manner as in Example 1 except that the amount of montmorillonite A was changed to 4.29 g. The content of montmorillonite quantified from the ash content of the obtained molded product was 1.0% by weight. The montmorillonite had an average layer thickness of 10 nm, an average aspect ratio of 65, and a residual vinyl chloride polymer. It was dispersed like a mesh along the grain interface. Further, although the obtained molded product had a high tensile modulus, it had a low fracture toughness value and a low tensile elongation, which was not preferable.

【0076】比較例4 比較例3において、層状膨潤性ケイ酸塩として、モンモ
リロナイトAを8.57gの添加に変更した以外は、比
較例3と同様にして塩化ビニル系重合体組成物を作製し
た。得られた成形品の灰分率から定量したモンモリロナ
イトの含有率は2.0重量%であり、モンモリロナイト
は平均層厚さが11nm、平均アスペクト比が82の大
きさで、塩化ビニル系重合体の残存粒子界面に沿って網
目状に分散されていた。また、得られた成形品の引張り
弾性率は高かったが、破壊靭性値は低く、引張り伸びも
低く、好ましくなかった。
Comparative Example 4 A vinyl chloride polymer composition was prepared in the same manner as in Comparative Example 3 except that 8.57 g of montmorillonite A was added as the layered swelling silicate in Comparative Example 3. . The content of montmorillonite quantified from the ash content of the obtained molded product was 2.0% by weight. The montmorillonite had an average layer thickness of 11 nm and an average aspect ratio of 82, and the residual vinyl chloride polymer. It was dispersed like a mesh along the grain interface. Further, although the obtained molded product had a high tensile modulus, it had a low fracture toughness value and a low tensile elongation, which was not preferable.

【0077】比較例5 実施例3において、塩化ビニル系重合体として、平均重
合度510の懸濁重合法で製造した塩化ビニル重合体
(大洋塩ビ(株)製:TH−500)300gを用いた
以外は、実施例3と同様にして塩化ビニル系重合体組成
物を作製した。得られた成形品の灰分率から定量したモ
ンモリロナイトの含有率は0.5重量%であり、モンモ
リロナイトは平均層厚さが5nm、平均アスペクト比が
98の大きさで、均一に分散されていた。また、得られ
た成形品の引張り弾性率は高かったが、破壊靭性値は低
く、引張り弾性率も低く、好ましくなかった。以上の比
較例の結果を表2に示す。
Comparative Example 5 In Example 3, 300 g of a vinyl chloride polymer (TH-500 manufactured by Taiyo PVC Co., Ltd.) produced by a suspension polymerization method having an average degree of polymerization of 510 was used as the vinyl chloride polymer. A vinyl chloride polymer composition was produced in the same manner as in Example 3 except for the above. The content of montmorillonite determined from the ash content of the obtained molded product was 0.5% by weight, and the montmorillonite had an average layer thickness of 5 nm and an average aspect ratio of 98, and was uniformly dispersed. Further, the tensile modulus of the obtained molded product was high, but the fracture toughness value was low and the tensile modulus was low, which was not preferable. Table 2 shows the results of the above comparative examples.

【0078】[0078]

【表2】 [Table 2]

【0079】[0079]

【発明の効果】以上述べたとおり、本発明によれば、高
い弾性率を維持し、引張り伸び特性を損ねることなく、
優れた破壊靭性値を有する成形品が得られる塩化ビニル
系重合体組成物を得ることができる。
As described above, according to the present invention, a high elastic modulus is maintained and tensile elongation characteristics are not impaired.
It is possible to obtain a vinyl chloride polymer composition capable of obtaining a molded product having an excellent fracture toughness value.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 9/04 C08K 9/04 F16L 11/06 F16L 11/06 11/08 11/08 B (72)発明者 井上 隆 山形県米沢市金池5−12−22−501 (72)発明者 榎本 真久 三重県四日市市霞1−8 大洋塩ビ株式会 社内 (72)発明者 田中 利彦 三重県四日市市霞1−8 大洋塩ビ株式会 社内 (72)発明者 鈴木 啓三 栃木県黒磯市鍋掛1085 クニミネ工業株式 会社内 (72)発明者 榎戸 洋之 福島県いわき市常磐下船尾町杭出作23−5 クニミネ工業株式会社内 Fターム(参考) 3H111 AA02 BA15 BA31 BA34 CB02 CB14 DA11 DA12 EA04 4F071 AA24 AA81 AB30 AC05 AC06 AF13 AG01 BC05 4J002 BD031 DJ006 FA016 FB086 4J011 AA05 JB26 PA13 PB02 PB15 PB22 4J026 AC00 BA01 BA02 BA03 BA05 BA10 BA16 BA17 BA19 BA20 BA21 BA22 BA27 BA28 BA31 BA38 BA40 BA50 DB03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C08K 9/04 C08K 9/04 F16L 11/06 F16L 11/06 11/08 11/08 B (72) Invention Takashi Inoue 5-12-22-501 Kanaike, Yonezawa City, Yamagata Prefecture (72) Inventor Masahisa Enomoto 1-8 Kasumi, Yokkaichi, Mie Prefecture In-house (72) Inventor, Toshihiko Tanaka Kasumi, Yokkaichi, Mie 1- 8 Taiyo PVC Co., Ltd. In-house (72) Inventor Keizo Suzuki 1085 Nabekake, Kuroiso City, Tochigi Prefecture Kunimine Industry Co., Ltd. (72) Inventor Hiroyuki Enokido 23-5, Hakusaku, Joban Shimo-Funao, Iwaki, Fukushima Prefecture Kunimine Industry Co., Ltd. F term (reference) 3H111 AA02 BA15 BA31 BA34 CB02 CB14 DA11 DA12 EA04 4F071 AA24 AA81 AB30 AC05 AC06 AF13 AG01 BC05 4J002 BD031 DJ006 FA016 FB086 4J011 AA05 JB26 PA13 PB02 PB15 PB22 4J026 AC00 BA01 BA02 BA03 BA05 BA10 BA16 BA17 BA19 BA20 BA21 BA22 BA27 BA28 BA31 BA38 BA40 BA50 DB03

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 塩化ビニル系重合体に層状膨潤性ケイ酸
塩を分散してなる塩化ビニル系重合体組成物において、
(A)塩化ビニル系重合体が、平均重合度600以上で
あり、(B)層状膨潤性ケイ酸塩として、層間に存在す
る交換性無機陽イオンの一部が有機陽イオンに置換され
たものが用いられ、(C)組成物中に分散した層状膨潤
性ケイ酸塩が、電子顕微鏡で測定した平均層厚さ0.5
〜50nmで、平均アスペクト比(層長さと層厚さの
比)10以上であり、かつ、(D)層状膨潤性ケイ酸塩
が、組成物を950℃で完全燃焼させたときに残滓とし
て、組成物の0.05〜0.7重量%が含まれることを
特徴とする塩化ビニル系重合体組成物。
1. A vinyl chloride polymer composition obtained by dispersing a layered swelling silicate in a vinyl chloride polymer,
(A) The vinyl chloride polymer has an average degree of polymerization of 600 or more, and (B) a layered swelling silicate in which a part of the exchangeable inorganic cations existing between layers is replaced with an organic cation. Is used, and the layered swelling silicate dispersed in the composition (C) has an average layer thickness of 0.5 measured by an electron microscope.
˜50 nm, an average aspect ratio (ratio of layer length to layer thickness) of 10 or more, and (D) the layered swelling silicate as a residue when the composition is completely burned at 950 ° C., A vinyl chloride polymer composition comprising 0.05 to 0.7% by weight of the composition.
【請求項2】 有機陽イオンが、アンモニウムイオンで
ある請求項1記載の塩化ビニル系重合体組成物。
2. The vinyl chloride polymer composition according to claim 1, wherein the organic cation is an ammonium ion.
【請求項3】 アンモニウムイオンが、少なくとも一つ
の炭素数1〜18の極性基を有する炭化水素基を有し、
且つ全炭素数4〜25の第4級アンモニウムである請求
項2記載の塩化ビニル系重合体組成物。
3. The ammonium ion has a hydrocarbon group having at least one polar group having 1 to 18 carbon atoms,
The vinyl chloride polymer composition according to claim 2, which is a quaternary ammonium having a total carbon number of 4 to 25.
【請求項4】 ASTM D5045‐99に準じて測
定した破壊靭性値が3.1MPa・m1/2以上となる請
求項1〜3のいずれかに記載の塩化ビニル系重合体組成
物。
4. The vinyl chloride polymer composition according to claim 1, which has a fracture toughness value of 3.1 MPa · m 1/2 or more as measured according to ASTM D5045-99.
【請求項5】 塩化ビニル単独であるいは塩化ビニルと
共重合可能なビニル系単量体と共に重合開始剤の存在下
に水性媒体中で重合するに際し、重合開始前から重合終
了までのいずれかの時期に、層間に存在する交換性無機
陽イオンの一部が有機陽イオンに置換された層状膨潤性
ケイ酸塩を1度にあるは分割して添加することを特徴と
する、請求項1記載の塩化ビニル系重合体組成物の製造
方法。
5. Polymerization in an aqueous medium in the presence of a polymerization initiator with vinyl chloride alone or with a vinyl-based monomer copolymerizable with vinyl chloride, at any time from the initiation of the polymerization to the termination of the polymerization. 2. The layered swelling silicate in which a part of the exchangeable inorganic cations existing between the layers is replaced with an organic cation is added once or dividedly. A method for producing a vinyl chloride polymer composition.
【請求項6】 有機陽イオンが、アンモニウムイオンで
ある請求項5記載の塩化ビニル系重合体組成物の製造方
法。
6. The method for producing a vinyl chloride polymer composition according to claim 5, wherein the organic cation is an ammonium ion.
【請求項7】 アンモニウムイオンが、少なくとも一つ
の炭素数1〜18の極性基を有する炭化水素基を有し、
且つ全炭素数4〜25の第4級アンモニウムである請求
項6記載の塩化ビニル系重合体組成物の製造方法。
7. The ammonium ion has a hydrocarbon group having at least one polar group having 1 to 18 carbon atoms,
The method for producing a vinyl chloride polymer composition according to claim 6, which is a quaternary ammonium having a total carbon number of 4 to 25.
【請求項8】 請求項1〜4のいずれかに記載の塩化ビ
ニル系重合体組成物を成形してなることを特徴とする成
形品。
8. A molded article obtained by molding the vinyl chloride polymer composition according to any one of claims 1 to 4.
【請求項9】 成形品がパイプである請求項8記載の成
形品。
9. The molded product according to claim 8, wherein the molded product is a pipe.
JP2002032662A 2002-02-08 2002-02-08 Vinyl chloride polymer composition and molded article molded from the composition Expired - Fee Related JP3802818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002032662A JP3802818B2 (en) 2002-02-08 2002-02-08 Vinyl chloride polymer composition and molded article molded from the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002032662A JP3802818B2 (en) 2002-02-08 2002-02-08 Vinyl chloride polymer composition and molded article molded from the composition

Publications (2)

Publication Number Publication Date
JP2003231786A true JP2003231786A (en) 2003-08-19
JP3802818B2 JP3802818B2 (en) 2006-07-26

Family

ID=27775714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002032662A Expired - Fee Related JP3802818B2 (en) 2002-02-08 2002-02-08 Vinyl chloride polymer composition and molded article molded from the composition

Country Status (1)

Country Link
JP (1) JP3802818B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510790A (en) * 2003-11-14 2007-04-26 エルジー・ケム・リミテッド Vinyl chloride nanocomposite resin composition having excellent impact resistance and method for producing the same
JP2016023260A (en) * 2014-07-23 2016-02-08 三洋化成工業株式会社 Silicic acid (silicate)-containing composition and method for production thereof
CN110470534A (en) * 2019-07-22 2019-11-19 中国航发北京航空材料研究院 A kind of composite material interlayer I type fracture toughness test method without tracking crackle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510790A (en) * 2003-11-14 2007-04-26 エルジー・ケム・リミテッド Vinyl chloride nanocomposite resin composition having excellent impact resistance and method for producing the same
JP2016023260A (en) * 2014-07-23 2016-02-08 三洋化成工業株式会社 Silicic acid (silicate)-containing composition and method for production thereof
CN110470534A (en) * 2019-07-22 2019-11-19 中国航发北京航空材料研究院 A kind of composite material interlayer I type fracture toughness test method without tracking crackle
CN110470534B (en) * 2019-07-22 2021-10-15 中国航发北京航空材料研究院 Composite material interlayer I-type fracture toughness testing method without tracking cracks

Also Published As

Publication number Publication date
JP3802818B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP4268190B2 (en) Vinyl chloride nanocomposite resin composition having excellent impact resistance and method for producing the same
JP4879407B2 (en) Resin composition for extrusion molding
JP6225919B2 (en) Nitrile copolymer rubber composition
JP5892171B2 (en) Nitrile copolymer rubber composition and rubber cross-linked product
JP2009545667A (en) Nanoscale carboxylic acid / anhydride copolymer processing aids
JP7409359B2 (en) Polyvinyl chloride resin molded product and its manufacturing method
JP2003231786A (en) Vinyl chloride polymer composition, manufacturing method thereof, and molding formed therefrom
KR20170118708A (en) Rubber bridge
WO2007111730A2 (en) Intermediate elastomer compositions
JP3749185B2 (en) Vinyl chloride polymer composition, process for producing the same, and molded article molded from the composition
JP4168189B2 (en) Composite of acrylic rubber and fluororubber, method for producing the same, and vulcanizable rubber composition
JP4245472B2 (en) Molded product molded from vinyl chloride polymer composition
JP4396217B2 (en) Flame retardant polymer composition
JP2008063423A (en) Polyvinyl chloride resin composition
CN1461771A (en) Polyvinylchloride modifier and its preparation method and use
JP4901111B2 (en) Nanocomposite thermoplastic resin composition and method for producing the same
JP7156422B2 (en) Polyvinyl chloride resin molded product and its manufacturing method
JP2005036110A (en) Vinyl chloride resin plate for vacuum forming
JP2001055476A (en) Vinyl chloride resin composite material and its production
JP2004169020A (en) Curable composition, sealing material and adhesive
JP6881213B2 (en) Polychlorinated resin molded products and their manufacturing methods
JP2005290275A (en) Curable composition, sealing material and adhesive
JP4990638B2 (en) Acrylic resin composition having excellent transparency and method for producing the same
JP2004155813A (en) Curable composition, sealing material and adhesive
JPH07331013A (en) Polyvinyl alcohol composite material and melt-molded product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3802818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees