JP2003229336A - Electric double-layer capacitor and electrode for the same - Google Patents

Electric double-layer capacitor and electrode for the same

Info

Publication number
JP2003229336A
JP2003229336A JP2002026379A JP2002026379A JP2003229336A JP 2003229336 A JP2003229336 A JP 2003229336A JP 2002026379 A JP2002026379 A JP 2002026379A JP 2002026379 A JP2002026379 A JP 2002026379A JP 2003229336 A JP2003229336 A JP 2003229336A
Authority
JP
Japan
Prior art keywords
electric double
layer capacitor
porous
double layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002026379A
Other languages
Japanese (ja)
Inventor
Nobuo Oya
修生 大矢
Yukihiko Asano
之彦 浅野
Shigeru Yao
滋 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2002026379A priority Critical patent/JP2003229336A/en
Publication of JP2003229336A publication Critical patent/JP2003229336A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for an electric double-layer capacitor and the electric double-layer capacitor having superior durability with respect to a high-temperature atmosphere and fewer troubles in a handling process. <P>SOLUTION: The electric double-layer capacitor uses a separator made of a polyimide porous film having a nonlinear fine hole and an electrolyte solution and a pair of polarization electrodes as components. The separator for the electric double-layer capacitor has a polyimide porous film as a component. In the polyimide porous film, an average void diameter ranges from 0.01 to 10 μm, a void rate is 20 to 80%, a Gurley value is 50 to 1,000 second/100 ml, a film thickness ranges from 5 to 300 μm, and the non-linear fine hole is provided. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明はパソコンのバック
アップ電源、セルモ−タ−起動用電源、自動車用電源な
どに好適な高容量の電気二重層キャパシタ−および該キ
ャパシタ−用電極に関するものであり、特にイオン移動
が容易である孔構造を持つ分極電極を使用することによ
り高電圧耐久性を有する電気二重層キャパシタ−および
該キャパシタ−用電極に関するものである。この明細書
において、非直線性微細連続孔とは、任意の表面から細
孔が通路状に他の表面まで連続している、いわゆる開放
孔をいい、細孔が屈曲しながらある面から反対面に通じ
ているもの(貫通孔)をいう。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-capacity electric double layer capacitor suitable for a backup power supply for personal computers, a power supply for starting a cell motor, a power supply for automobiles and the like, and more particularly to an electrode for the capacitor. The present invention relates to an electric double layer capacitor having high voltage durability by using a polarized electrode having a pore structure that facilitates ion migration, and an electrode for the capacitor. In this specification, the term "non-linear fine continuous pores" refers to so-called open pores in which pores are continuous from any surface to other surfaces in a passage-like manner, and the surface on which the pores are bent is the opposite surface. Refers to those that are connected to (through holes).

【0002】[0002]

【従来の技術】電気二重層キャパシタ−とは、一対の分
極電極と電解液界面に生じる電気二重層を利用したファ
ラッドオ−ダの大きな静電容量を持つキャパシタ−のこ
とである。充放電は電解質イオンの電極表面への物理吸
脱着現象であるため、化学反応を利用する二次電池に比
べると、エネルギ−密度は小さいが充放電による劣化が
極めて小さい。電気二重層キャパシタ−における電極材
としては、高い電気伝導度、高い耐腐蝕性、電気化学的
な安定性、イオン種を可逆的に吸着脱離できること、重
金属を含まないことが求められる。
2. Description of the Related Art An electric double layer capacitor is a capacitor having a large capacitance of farad order utilizing an electric double layer formed at a boundary between a pair of polarized electrodes and an electrolyte. Since charge / discharge is a physical adsorption / desorption phenomenon of electrolyte ions on the electrode surface, the energy density is smaller than that of a secondary battery using a chemical reaction, but deterioration due to charge / discharge is extremely small. The electrode material in the electric double layer capacitor is required to have high electric conductivity, high corrosion resistance, electrochemical stability, capable of reversibly adsorbing and desorbing ionic species, and free of heavy metal.

【0003】このため、分極電極の基材としては、一般
的には粉末状活性炭をバインダ−と一緒にプレス成形又
は圧延ロ−ルして分極電極としたものと、フェノ−ル
系、レ−ヨン系、アクリル系、ピッチ系などの繊維を耐
炎化および炭化賦活処理して活性炭又は活性炭索繊維と
し、これをフェルト状、繊維状、または紙状などの分極
電極としたものが使用されている。
Therefore, as the base material of the polarized electrode, generally, a powdered activated carbon is pressed or rolled together with a binder to form a polarized electrode, and a phenol type or a laser type is used. Fibers such as Yong-based, acrylic-based, and pitch-based fibers are subjected to flame resistance and carbonization activation treatment to form activated carbon or activated carbon cord fibers, which are used as polarized electrodes such as felt-like, fibrous, or paper-like. .

【0004】しかし、最近では、さらに、耐電圧とエネ
ルギ−密度が大きく急速充放電性に優れ、高電圧印加時
の充放電サイクル耐久性に優れた電気二重層キャパシタ
−の実現が望まれており、分極電極の基材についても種
々の提案がなされている。
However, recently, it has been desired to realize an electric double layer capacitor which has a large withstand voltage and energy density, is excellent in rapid charge / discharge characteristics, and is excellent in charge / discharge cycle durability when a high voltage is applied. Various proposals have been made for the base material of the polarized electrode.

【0005】例えば、特開平11−297580号公報
には、炭素−フッ素結合を有するバインダ−物質を含ま
ない活性炭電極が記載されている。また、特開平11−
322322号公報には、アルカリ金属、アルカリ土類
金属からなる元素の合計含有量が100ppm以上20
00ppm以下であり非水系電解液中で、Li/Li
を対局とした場合の自然電位が1.5V以上2.85V
以下である炭素質物質を主材料とする電極を使用した電
気二重層キャパシタ−が記載されている。また、特開2
000−124084号公報には、特定の大きな比表面
積を有する多孔質炭素物質を主成分とする分極性電極を
正極とし、小さな比表面積を有し密度が1.8〜2.2
3g/cmで炭素物質にリチウムイオンを吸蔵させた
非分極電極を負極とした耐電圧とエネルギ−密度が大き
く、急速充放電性に優れた電気二重層キャパシタ−が記
載されている。
For example, Japanese Patent Application Laid-Open No. 11-297580 describes an activated carbon electrode containing no binder substance having a carbon-fluorine bond. In addition, JP-A-11-
No. 322322 discloses that the total content of elements consisting of alkali metals and alkaline earth metals is 100 ppm or more 20
It is less than 00 ppm and is Li / Li + in the non-aqueous electrolyte solution.
Potential is 1.5V or more and 2.85V
The following describes an electric double layer capacitor using an electrode containing a carbonaceous substance as a main material. In addition, Japanese Patent Laid-Open No.
In Japanese Patent Laid-Open No. 000-124084, a polarizable electrode containing a specific porous carbon material having a large specific surface area as a main component is used as a positive electrode and has a small specific surface area and a density of 1.8 to 2.2.
It describes an electric double layer capacitor having a high withstand voltage and energy density, which uses a non-polarized electrode having a lithium ion occluded in a carbon material at 3 g / cm 3 as a negative electrode, and has excellent rapid charge / discharge characteristics.

【0006】しかし、いずれの電気二重層キャパシタ−
用分極電極の電極材料も、活性炭粉末と熱可塑性樹脂と
を加圧成型して得るものであり、分極電極の静電容量が
小さい。この発明者らは、電気二重層キャパシタ−の分
極電極の比表面積と電気二重層キャパシタ−の静電容量
との関係に着目し検討した結果、比表面積が大きいほど
静電容量を高めることができるとの原理にもかかわらず
従来技術では比表面積と単位体積当たりの静電容量とが
比例関係にないことを見出した。これは、高比表面積の
電極材料であってもそのイオン移動抵抗が大きい場合
は、利用されない細孔が多いためである。
However, any of the electric double layer capacitors
The electrode material of the polarized electrode for use is also obtained by pressure molding of activated carbon powder and thermoplastic resin, and the electrostatic capacity of the polarized electrode is small. As a result of paying attention to the relationship between the specific surface area of the polarized electrode of the electric double layer capacitor and the electrostatic capacity of the electric double layer capacitor, the inventors have found that the larger the specific surface area, the higher the electrostatic capacity. Despite this principle, it was found that the specific surface area and the capacitance per unit volume are not in a proportional relationship in the prior art. This is because even if the electrode material has a high specific surface area, there are many pores that are not used when the ion transfer resistance is high.

【0007】[0007]

【発明が解決しようとする課題】この発明の目的は、充
放電時のイオン移動がスム−ズな分極電極を使用するこ
とによって静電容量が大きい電気二重層キャパシタ−お
よび該キャパシタ−用電極を提供することである。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide an electric double layer capacitor having a large electrostatic capacity by using a polarized electrode which has a smooth ion movement during charge and discharge, and an electrode for the capacitor. Is to provide.

【0008】[0008]

【課題を解決するための手段】この発明は、非直線性微
細連続孔を有する多孔質炭化膜からなる分極電極、セパ
レ−タおよび電解質溶液を構成要素とする電気二重層キ
ャパシタ−に関する。また、この発明は、前記の電気二
重層キャパシタ−に使用される非直線性微細連続孔を有
する多孔質炭化膜からなる分極電極に関する。さらに、
この発明は、平均空孔径0.01〜10μm、空孔率2
0〜80%、厚さ5〜300μmである非直線性微細連
続孔を有する多孔質炭化膜からなる電気二重層キャパシ
タ−用分極電極に関する。
SUMMARY OF THE INVENTION The present invention relates to an electric double layer capacitor having a polarizing electrode composed of a porous carbonized film having non-linear fine continuous pores, a separator and an electrolyte solution as constituent elements. The present invention also relates to a polarized electrode composed of a porous carbonized film having non-linear fine continuous pores used in the electric double layer capacitor. further,
This invention has an average pore diameter of 0.01 to 10 μm and a porosity of 2
The present invention relates to a polarized electrode for an electric double layer capacitor, which is composed of a porous carbonized film having non-linear fine continuous pores having a thickness of 0 to 80% and a thickness of 5 to 300 μm.

【0009】[0009]

【発明の実施の形態】以下にこの発明の好ましい態様を
列記する。 1)電解質溶液が、非水電解液である請上記の電気二重
層キャパシタ−。 2)多孔質炭化膜が、平均空孔径0.01〜10μm、
空孔率20〜80%、厚さ5〜300μmである上記の
電気二重層キャパシタ−。 3)多孔質炭化膜が、非直線性微細連続孔を有する多孔
質耐熱性ポリマ−膜を炭素化または黒鉛化したものであ
る上記の電気二重層キャパシタ−。 4)多孔質炭化膜が、非直線性微細連続孔を有する多孔
質耐熱性ポリイミド膜を炭素化または黒鉛化したもので
ある上記の電気二重層キャパシタ−。
Preferred embodiments of the present invention will be listed below. 1) The electric double layer capacitor as described above, wherein the electrolyte solution is a non-aqueous electrolyte solution. 2) The porous carbonized film has an average pore diameter of 0.01 to 10 μm,
The electric double layer capacitor having a porosity of 20 to 80% and a thickness of 5 to 300 μm. 3) The electric double layer capacitor as described above, wherein the porous carbonized film is a carbonized or graphitized porous heat resistant polymer film having non-linear fine continuous pores. 4) The electric double layer capacitor as described above, wherein the porous carbonized film is obtained by carbonizing or graphitizing a porous heat-resistant polyimide film having non-linear fine continuous pores.

【0010】この発明の電気二重層キャパシタ−におい
ては、非直線性微細連続孔を有する多孔質炭化膜からな
る分極電極を使用することが必要であり、直線的な貫通
孔を設けた多孔質炭化膜では、比表面積が小さく電気二
重層キャパシタ−の静電容量を大きくすることができな
い。
In the electric double layer capacitor of the present invention, it is necessary to use a polarized electrode composed of a porous carbonized film having non-linear fine continuous pores, and the porous carbonized carbon having linear through holes is provided. The film has a small specific surface area and cannot increase the capacitance of the electric double layer capacitor.

【0011】前記の非直線性微細連続孔を有する多孔質
炭化膜は、好適には非直線性微細連続孔を有する高耐熱
性樹脂製の多孔質膜を嫌気性雰囲気下800−1800
℃、好適にはさらに1800−3000℃の範囲内の温
度(場合によってはさらに3000−3500℃の範囲
内の温度)で、必要ならば張力下あるいは多孔膜表面に
垂直に圧力を加えながら加熱して炭化することによって
得ることができる。前記の炭化における嫌気性雰囲気と
は、酸素など酸化活性の気体がないことが必要であり、
嫌気性気体には、アルゴン、ヘリウム、窒素などが適当
であり、特に2000℃以上の温度範囲での熱処理に際
してはアルゴン、ヘリウム雰囲気であることが必要であ
る。
The porous carbonized film having the non-linear fine continuous pores is preferably a porous film made of a high heat resistant resin having the non-linear fine continuous pores in an anaerobic atmosphere 800-1800.
At a temperature in the range of 1800 ° C., preferably in the range of 1800-3000 ° C. (and optionally in the range of 3000-3500 ° C.), if necessary under tension or while applying pressure perpendicular to the surface of the porous membrane. It can be obtained by carbonizing. The anaerobic atmosphere in the carbonization, it is necessary that there is no oxidizing gas such as oxygen,
Argon, helium, nitrogen and the like are suitable for the anaerobic gas, and it is particularly necessary to have an atmosphere of argon and helium for the heat treatment in the temperature range of 2000 ° C. or higher.

【0012】前記の高耐熱性樹脂としては、酸成分とジ
アミン成分とを縮重合し加熱によって高分子量でかつ高
耐熱性ポリマ−となる樹脂、好適には芳香族ポリイミド
が挙げられる。高耐熱性樹脂製の多孔質膜は、例えばポ
リイミド前駆体からなる溶液をフィルム状に流延し、溶
媒置換速度調整材を介して凝固溶媒に接触させることに
よってポリイミド前駆体を析出させて、微細な連続孔の
ポリイミド前駆体多孔質フィルムを得た後、該ポリイミ
ド前駆体多孔質フィルムを熱イミド化処理或いは化学イ
ミド化処理することによって得ることができる。
Examples of the above high heat resistant resin include a resin which becomes a high heat resistant polymer having a high molecular weight by condensation polymerization of an acid component and a diamine component, and preferably an aromatic polyimide. Porous film made of high heat resistant resin, for example, a solution of a polyimide precursor is cast into a film, and the polyimide precursor is deposited by contacting with a coagulating solvent through a solvent displacement rate adjusting material, and a fine It can be obtained by obtaining a polyimide precursor porous film having various continuous pores and then subjecting the polyimide precursor porous film to thermal imidization treatment or chemical imidization treatment.

【0013】前記の非直線性微細連続孔を有するポリイ
ミド多孔質膜は、好適にはガラス転移温度が250℃以
上の(または250℃以下の温度ではガラス転移温度を
示さない)ポリイミドを与える極限粘度数数が2.2以
上のポリイミドまたは該ポリイミドを与えるポリイミド
前駆体の有機溶媒溶液を溶媒置換誘起の粘弾性相分離に
よりポリマ−成分を析出し、多孔質化することによって
得ることができる。前記のポリイミドまたはポリイミド
前駆体の有機溶媒溶液は、ポリイミドまたはポリイミド
前駆体の濃度が12重量%以下でかつ溶液粘度が400
ポイズ以上であることが好ましい。また、前記の溶媒置
換誘起は、溶媒置換速度調整材を用いて凝固溶媒とポリ
イミドまたはポリイミド前駆体の有機溶媒溶液との直接
接触を避けて行うことが好ましい。
The above-mentioned polyimide porous membrane having non-linear fine continuous pores preferably has an intrinsic viscosity that gives a polyimide having a glass transition temperature of 250 ° C. or higher (or does not show a glass transition temperature at a temperature of 250 ° C. or lower). It can be obtained by depositing a polymer component of an organic solvent solution of a polyimide having a number of 2.2 or more or a polyimide precursor that gives the polyimide by viscoelastic phase separation induced by solvent substitution and making it porous. The organic solvent solution of the polyimide or the polyimide precursor has a concentration of the polyimide or the polyimide precursor of 12% by weight or less and a solution viscosity of 400.
It is preferably poise or more. Further, it is preferable that the solvent substitution induction is performed by using a solvent substitution rate adjusting material while avoiding direct contact between the coagulation solvent and the polyimide or the organic solvent solution of the polyimide precursor.

【0014】前記の溶媒置換速度調整材としては、前記
多層フィルムを凝固溶媒と接触させてポリイミド前駆体
を析出させる際に、ポリイミド前駆体の溶媒及び凝固溶
媒が適切な速度で透過する事が出来る程度の透過性を有
するものが好ましい。溶媒置換速度調整材としては、具
体的には、ポリエチレン、ポリプロピレン等のポリオレ
フィン、セルロ−スなどを材料とした不織布或いは多孔
膜などが用いられ、特にポリオレフィン製の微多孔質膜
を用いた際に、製造されたポリイミド多孔質フィルム表
面の平滑性に優れるので好適である。
As the solvent displacement rate adjusting material, when the multilayer film is brought into contact with a coagulating solvent to precipitate the polyimide precursor, the solvent of the polyimide precursor and the coagulating solvent can permeate at an appropriate rate. Those having a degree of transparency are preferable. As the solvent displacement rate adjusting material, specifically, a polyolefin such as polyethylene or polypropylene, a non-woven fabric or a porous film made of a material such as cellulose, or the like is used, and particularly when a microporous film made of polyolefin is used. It is preferable because the surface of the manufactured polyimide porous film is excellent in smoothness.

【0015】ポリイミド前駆体を流延させて、溶媒置換
速度調整材を介して凝固溶媒と接触させることでポリイ
ミド前駆体の析出、多孔質化を行う。ポリイミド前駆体
の凝固溶媒としては、エタノ−ル、メタノ−ル等のアル
コ−ル類、アセトン、水等のポリイミド前駆体の非溶媒
またはこれら非溶媒99.9〜40重量%と前記ポリイ
ミド前駆体の溶媒0.1〜60重量%とのの混合溶媒を
用いることができる。非溶媒および溶媒の組合わせには
特に制限はないが、凝固溶媒に非溶媒と溶媒からなる混
合溶媒を用いた場合に析出したポリイミド前駆体の多孔
質構造が均一となるので好適である。特に、凝固溶媒と
して、ポリイミド前駆体の溶媒0.1〜50重量%と非
溶媒99.9〜50重量%とからなる混合溶媒を用いる
ことが好ましい。
The polyimide precursor is cast and brought into contact with the coagulation solvent through the solvent displacement rate adjusting material to precipitate and porous the polyimide precursor. The coagulation solvent for the polyimide precursor includes alcohols such as ethanol and methanol, non-solvents of the polyimide precursor such as acetone and water, or 99.9 to 40% by weight of these non-solvents and the polyimide precursor. It is possible to use a mixed solvent of 0.1 to 60% by weight of the above solvent. The combination of the non-solvent and the solvent is not particularly limited, but a mixed solvent of the non-solvent and the solvent is used as the coagulation solvent because the polyimide precursor deposited has a uniform porous structure, which is preferable. In particular, it is preferable to use a mixed solvent composed of 0.1 to 50% by weight of the solvent of the polyimide precursor and 99.9 to 50% by weight of the non-solvent as the coagulation solvent.

【0016】多孔質化されたポリイミド前駆体フィルム
は、ついで熱イミド化処理或いは化学イミド化処理が施
される。ポリイミド前駆体フィルムの熱イミド化は、溶
媒置換速度調整材を取除いたポリイミド前駆体多孔質フ
ィルムをピン、チャック或いはピンチロ−ル等を用いて
熱収縮が生じないように固定し、大気中にて280〜5
00℃で5〜60分間行われる。
The porous polyimide precursor film is then subjected to thermal imidization treatment or chemical imidization treatment. Thermal imidization of the polyimide precursor film, the polyimide precursor porous film from which the solvent displacement rate adjusting material has been removed is fixed using a pin, a chuck or a pin chill roller so that thermal contraction does not occur, and the film is exposed to the atmosphere. 280-5
It is carried out at 00 ° C. for 5 to 60 minutes.

【0017】このようにして製造される非直線性微細連
続孔を有するポリイミド多孔質膜は、前記製造条件の選
択によっても多少異なるが、平均空孔径0.01〜10
μm(好適には0.01〜2μm)、空孔率20〜80
%(好適には25〜65%)、厚さが5〜300μm
(好適には10〜150μm)である。
The polyimide porous membrane having non-linear fine continuous pores produced in this manner has an average pore diameter of 0.01 to 10 although it varies somewhat depending on the selection of the production conditions.
μm (preferably 0.01 to 2 μm), porosity 20 to 80
% (Preferably 25 to 65%), thickness 5 to 300 μm
(Preferably 10 to 150 μm).

【0018】前記の非直線性微細連続孔を有するポリイ
ミド多孔質膜を嫌気性雰囲気下で温度800−1800
℃で加熱することによって、非直線性微細連続孔を有す
る多孔質炭化膜を得ることができる。前記の範囲内の温
度で焼成すると、無定形に近い、あるいは、結晶化度が
約20%以下の炭化物を得ることができる。また、多孔
質ポリイミド膜を前記のように嫌気性雰囲気下で温度8
00−1800℃で加熱炭素化することによって、非直
線性微細連続孔を有する多孔質炭化膜を得ることができ
る。
The above-mentioned polyimide porous membrane having non-linear fine continuous pores was heated in an anaerobic atmosphere at a temperature of 800-1800.
By heating at ℃, it is possible to obtain a porous carbonized film having non-linear fine continuous pores. By firing at a temperature within the above range, it is possible to obtain a carbide close to an amorphous form or having a crystallinity of about 20% or less. In addition, the porous polyimide film is heated to a temperature of 8 in an anaerobic atmosphere as described above.
By heating and carbonizing at 00-1800 ° C., a porous carbonized film having non-linear fine continuous pores can be obtained.

【0019】また、前記のように嫌気性雰囲気下で温度
800−1800℃で加熱した後、さらに嫌気性雰囲気
下で温度1800−3500℃で加熱することによっ
て、非直線性微細連続孔を有し、高度の結晶化度の炭化
物からなる多孔質黒鉛膜を得ることができる。
Further, after heating in an anaerobic atmosphere at a temperature of 800 to 1800 ° C. and then in an anaerobic atmosphere at a temperature of 1800 to 3500 ° C., non-linear fine continuous holes are formed. It is possible to obtain a porous graphite film made of a carbide having a high degree of crystallinity.

【0020】前記のいずれかの方法によって、平均空孔
径0.01〜10μm、空孔率20〜80%、厚さ5〜
300μmで、好適には密度1.7〜2.2g/cm
の非直線性微細連続孔を有する多孔質炭化膜を得ること
ができる。
By any of the above methods, the average pore diameter is 0.01 to 10 μm, the porosity is 20 to 80%, and the thickness is 5 to 5.
300 μm, preferably with a density of 1.7-2.2 g / cm 3.
It is possible to obtain a porous carbonized film having non-linear fine continuous pores.

【0021】この発明に用いる電解液としては、水溶液
系電解液および非水電解液(有機溶媒系電解液)のいず
れでももよいが、非水電解液が好適である。具体例とし
ては、非プロトン性極性溶媒で誘電率が高いもの、ある
いは粘度が低いもの、電気化学的に安定で且つ下記に示
される電解質塩を良く溶解する有機溶媒やその混合物が
選ばれる。これらの具体例としては、プロピレンカ−ボ
ネ−ト(PC)、エチレンカ−ボネ−ト(EC)、ジメ
チルカ−ボネ−ト、ジエチルカ−ボネ−ト、エチルメチ
ルカ−ボネ−ト(EMC)等のカ−ボネ−ト類、γ−ブ
チロラクトン(BL)等のラクトン類、ジメチルホルム
アミド(DMF)、ジメチルアセトアミド(DMAC)
等のアミド系溶剤、スルホラン、アセトニトリル、ジメ
チルスルフォキシド(DMSO)、テトラヒドロフラ
ン、ジメトキシエタン等が挙げられる。
The electrolytic solution used in the present invention may be either an aqueous solution type electrolytic solution or a non-aqueous electrolytic solution (organic solvent type electrolytic solution), but the non-aqueous electrolytic solution is preferable. As a specific example, an aprotic polar solvent having a high dielectric constant or a low viscosity, an organic solvent which is electrochemically stable and well dissolves the electrolyte salt shown below, and a mixture thereof are selected. Specific examples of these include propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate (EMC) and the like. Carbonates, lactones such as γ-butyrolactone (BL), dimethylformamide (DMF), dimethylacetamide (DMAC)
And other amide solvents, sulfolane, acetonitrile, dimethyl sulfoxide (DMSO), tetrahydrofuran, dimethoxyethane and the like.

【0022】また、電解質塩の具体例としては、4級化
アルキルアンモニウム塩が非水溶媒中での電解質として
好ましく、具体例としては(RN)(M)の構造
のものが用いられる。Rで示されるアルキル基としては
メチル、エチル、ブチル基等が例示され、アニオン成分
であるMとして、テトラフルオロホウ素(BF)、パ
−クロレ−ト(ClO)基等が例示される。
As a specific example of the electrolyte salt, a quaternized alkylammonium salt is preferable as an electrolyte in a non-aqueous solvent, and a specific example is one having a structure of (R 4 N) + (M) −. To be The alkyl group represented by R are exemplified by methyl, ethyl, or butyl group, as M is an anion component, tetrafluoro boron (BF 4), Pa - Kurore - DOO (ClO 4) group and the like.

【0023】この発明のセパレタ−としては、例えば、
コンデンサ−ペ−パ−と呼ばれる高密度コンデンサ−ペ
−パ−、電解紙と呼ばれる低密度コンデンサ−ペ−パ
−、ポリエチレン、ポリプロピレンのフィルムで微孔性
をもたせたもの、ポリエチレン繊維やポリプロピレン繊
維を使用した不織布、これらポリオレフィン系不織布の
スルホン化物などが挙げられる。
The separator of the present invention is, for example,
High density condenser paper called condenser paper, low density condenser paper called electrolytic paper, polyethylene and polypropylene film with micropores, polyethylene fiber or polypropylene fiber Examples of the nonwoven fabric used include sulfonated products of these polyolefin-based nonwoven fabrics.

【0024】この発明の電気二重層キャパシタ−は、前
記の多孔質炭化膜を分極電極として、例えばこの分極電
極とステンレス、白金、グラファイト板などの集電体と
を導電性接着剤で接着して正極と負極とを作製し、セパ
レ−タを挟んだ状態でポリフッ化エチレン樹脂製フレ−
ムなどの容器中に収納し、必要ならばネオプレンゴムな
どのガスケットを設け、容器内に電解液を好ましくは減
圧状態で注入し、この電解液をセパレ−タに十分含浸せ
しめることによって得ることができる。
In the electric double layer capacitor of the present invention, the above-mentioned porous carbonized film is used as a polarized electrode, and this polarized electrode and a current collector such as stainless steel, platinum or a graphite plate are bonded by a conductive adhesive. A positive electrode and a negative electrode were prepared, and a separator made of polyfluoroethylene resin was used with the separator interposed therebetween.
It can be obtained by placing it in a container such as a rubber container, providing a gasket such as neoprene rubber if necessary, injecting the electrolytic solution into the container preferably under reduced pressure, and sufficiently impregnating the electrolytic solution with a separator. it can.

【0025】[0025]

【実施例】次に実施例及び比較例を示し、この発明につ
いて更に詳細に説明するが、この発明はこれらに限定さ
れるものではない。以下の各例において、平均空孔径、
空孔率は以下によって求めたものである。
EXAMPLES The present invention will now be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In each of the following examples, the average pore diameter,
The porosity is obtained by the following.

【0026】平均空孔径 多孔質フィルム表面の走査型電子顕微鏡写真より、任意
の50点以上の開孔部について孔面積を測定し、該孔面
積の平均値から次式に従って孔形状が真円であるとした
際の平均直径を計算より求めた。次式のSaは孔面積の
平均値を意味する。 平均空孔径=2×(Sa/π)1/2
Average pore size From the scanning electron micrograph of the surface of the porous film, the pore area was measured at arbitrary 50 or more open pores, and the pore shape was a perfect circle according to the following formula from the average value of the pore areas. The average diameter when it was assumed was calculated. Sa in the following equation means the average value of the pore area. Average pore diameter = 2 × (Sa / π) 1/2

【0027】空孔率 所定の大きさに切取った多孔質フィルムの膜厚及び重量
を測定し、目付重量から空孔率を次の式によって求め
た。次式のSは多孔質膜の面積、dは膜厚、wは測定し
た重量、Dは膜の密度を意味し、ポリイミドの密度は
1.34g/cmとし、炭化物の真密度は1.7×
[1−結晶化度(%)+2.2×結晶化度(%)]g/
cmとした。 空孔率=S×d×D/w×100
Porosity The thickness and weight of the porous film cut into a predetermined size were measured, and the porosity was calculated from the weight per unit area by the following formula. In the following formula, S means the area of the porous film, d means the film thickness, w means the measured weight, D means the film density, the density of the polyimide is 1.34 g / cm 3, and the true density of the carbide is 1. 7x
[1-Crystallinity (%) + 2.2 x crystallinity (%)] g /
It was set to cm 3 . Porosity = S × d × D / w × 100

【0028】実施例1 正極用に膜厚37μm、平均孔径0.02μm、空孔率
45%の非直線性微細多孔質ポリイミドフィルムを14
00℃で不活性雰囲気下に加熱することによって炭化し
て得られた平均空孔径0.18μm、空孔率43%、結
晶化度27%、曲げ強度0.5GPa、厚さ30μmの
多孔質炭化膜(断面の走査型電子顕微鏡写真の結果およ
びこの多孔質炭化フィルムをメタノ−ルが通過したこと
から微細な連続孔を有していることを確認)を用い、負
極用に多孔質ポリイミドフィルムを2600℃で不活性
雰囲気下に加熱することによって炭化黒鉛化して得られ
た平均空孔径0.14μm、空孔率40%、結晶化度9
4%、曲げ強度0.9GPa、厚さ27μmの多孔質炭
化膜(断面の走査型電子顕微鏡写真の結果およびこの多
孔質炭化フィルムをメタノ−ルが通過したことから微細
な連続孔を有していることを確認)を窒素雰囲気中30
0℃で3時間熱処理した後、アルゴン雰囲気のグロ−ブ
ボックスへ移した。
Example 1 A non-linear fine porous polyimide film having a film thickness of 37 μm, an average pore diameter of 0.02 μm and a porosity of 45% was used as a positive electrode for a positive electrode.
Porous carbonization having an average pore diameter of 0.18 μm, a porosity of 43%, a crystallinity of 27%, a bending strength of 0.5 GPa and a thickness of 30 μm, obtained by carbonizing by heating at 00 ° C. in an inert atmosphere. A porous polyimide film was prepared for the negative electrode using a membrane (the result of the scanning electron micrograph of the cross section and confirmed that the porous carbonized film has fine continuous pores because of the passage of methanol). The average pore diameter was 0.14 μm, the porosity was 40%, and the crystallinity was 9 which was obtained by carbonization and graphitization by heating in an inert atmosphere at 2600 ° C.
4%, flexural strength 0.9 GPa, thickness 27 μm porous carbonized film (the result of a scanning electron micrograph of the cross section and the presence of fine continuous pores due to the passage of methanol through this porous carbonized film 30) in a nitrogen atmosphere
After heat treatment at 0 ° C. for 3 hours, it was transferred to a glove box in an argon atmosphere.

【0029】ポリエチレン製セパレ−タを2枚の多孔質
炭化膜からなる電極で挟み、その外側に集電体として白
金2枚で全体を挟み込んだ。その後、集電体、電極、セ
パレ−タがよく接触するように外側からポリフッ化エチ
レン樹脂板を介しボルトで挟んだ。得られたオ−プンセ
ル型キャパシタ−を金属リチウム箔に圧着し、リチウム
極を1MのLiBF/プロピレンカ−ボネ−トの電解
質溶液に浸漬した。次にリチウム極と多孔質炭化膜とを
リ−ド線でつなぎ、約1時間短絡させた。短絡させた
後、多孔質炭化膜とリチウム電極との間に電圧計を接続
して測定した自然電位は2枚とも2.1Vであった。そ
の後、電極部を分解して、多孔質炭化膜電極体を2枚取
り出した。
A polyethylene separator was sandwiched between two electrodes made of a porous carbonized film, and the whole was sandwiched by two platinum sheets as a current collector on the outside thereof. After that, the current collector, the electrode, and the separator were sandwiched with bolts from the outside through a polyfluorinated ethylene resin plate so that they were in good contact with each other. The obtained open cell type capacitor was pressure-bonded to a metal lithium foil, and the lithium electrode was immersed in a 1M LiBF 4 / propylene carbonate electrolyte solution. Next, the lithium electrode and the porous carbonized film were connected by a lead wire and short-circuited for about 1 hour. After short-circuiting, the self-potential measured by connecting a voltmeter between the porous carbonized film and the lithium electrode was 2.1V for both sheets. Then, the electrode part was disassembled, and two porous carbon film electrode bodies were taken out.

【0030】これらの多孔質炭化膜2枚に、1.3Mの
トリエチルアンモニウムテトラフルオロボレ−ト/プロ
ピレンカ−ボネト+エチレンカ−ボネト(50/50、
容量比)の電解質溶液を充分に含浸させたものを各々正
極、負極とし、ポリエチレン製セパレ−タを両極間に配
置してコイン型セルを組み立てた。得られた電気二重層
キャパシタ−の内部抵抗は1.85Ωであり、室温で
3.8Vの電圧を1時間印加した後、1.18mAで1
Vまで定電流放電して求めた初期静電容量は3.4F/
g、初期エネルギ−密度は5.02Jであった。電圧印
加条件下におけるキャパシタ−の長期的な作動信頼性を
評価するため室温下で3.8Vの電圧を800時間印加
した後のエネルギ−密度の変化率は−8%であった。
On these two porous carbonized membranes, 1.3M triethylammonium tetrafluoroborate / propylene carbonate + ethylene carbonate (50/50,
A coin-type cell was assembled by fully impregnating an electrolyte solution of a capacity ratio) as a positive electrode and a negative electrode, and placing a polyethylene separator between both electrodes. The obtained electric double layer capacitor had an internal resistance of 1.85Ω, and after applying a voltage of 3.8 V at room temperature for 1 hour, it was 1 at 18 mA.
The initial capacitance obtained by constant current discharge to V is 3.4 F /
g, initial energy-density was 5.02J. In order to evaluate the long-term operation reliability of the capacitor under voltage application conditions, the rate of change in energy density after applying a voltage of 3.8 V for 800 hours at room temperature was -8%.

【0031】[0031]

【発明の効果】この発明によると、イオン移動が容易で
ある孔構造を有する分極電極を使用することによって、
高電圧耐久性を有する電気二重層キャパシタ−および該
キャパシタ−用電極が得られる。
According to the present invention, by using a polarized electrode having a pore structure that facilitates ion transfer,
An electric double layer capacitor having high voltage durability and an electrode for the capacitor can be obtained.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】非直線性微細連続孔を有する多孔質炭化膜
からなる分極電極、セパレ−タおよび電解質溶液を構成
要素とする電気二重層キャパシタ−。
1. An electric double layer capacitor comprising a polarized electrode composed of a porous carbonized film having non-linear fine continuous pores, a separator and an electrolyte solution as constituent elements.
【請求項2】電解質溶液が、非水電解液である請求項1
に記載の電気二重層キャパシタ−。
2. The electrolytic solution is a non-aqueous electrolytic solution.
The electric double layer capacitor described in 1 ..
【請求項3】多孔質炭化膜が、平均空孔径0.01〜1
0μm、空孔率20〜80%、厚さ5〜300μmであ
る請求項1に記載の電気二重層キャパシタ−。
3. A porous carbonized film having an average pore diameter of 0.01 to 1
The electric double layer capacitor according to claim 1, wherein the electric double layer capacitor has a thickness of 0 μm, a porosity of 20 to 80%, and a thickness of 5 to 300 μm.
【請求項4】多孔質炭化膜が、非直線性微細連続孔を有
する多孔質耐熱性ポリマ−膜を炭素化または黒鉛化した
ものである請求項1に記載の電気二重層キャパシタ−。
4. The electric double layer capacitor according to claim 1, wherein the porous carbonized film is a carbonized or graphitized porous heat resistant polymer film having non-linear fine continuous pores.
【請求項5】多孔質炭化膜が、非直線性微細連続孔を有
する多孔質耐熱性ポリイミド膜を炭素化または黒鉛化し
たものである請求項1に記載の電気二重層キャパシタ
−。
5. The electric double layer capacitor according to claim 1, wherein the porous carbonized film is obtained by carbonizing or graphitizing a porous heat-resistant polyimide film having non-linear fine continuous pores.
【請求項6】請求項1〜4のいずれかに記載の電気二重
層キャパシタ−に使用される非直線性微細連続孔を有す
る多孔質炭化膜からなる分極電極。
6. A polarized electrode composed of a porous carbonized film having non-linear fine continuous pores used in the electric double layer capacitor according to claim 1. Description:
【請求項7】平均空孔径0.01〜10μm、空孔率2
0〜80%、厚さ5〜300μmである非直線性微細連
続孔を有する多孔質炭化膜からなる電気二重層キャパシ
タ−用電極。
7. An average pore diameter of 0.01 to 10 μm and a porosity of 2
An electrode for an electric double layer capacitor, which is composed of a porous carbonized film having non-linear fine continuous pores having a thickness of 0 to 80% and a thickness of 5 to 300 μm.
JP2002026379A 2002-02-04 2002-02-04 Electric double-layer capacitor and electrode for the same Pending JP2003229336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002026379A JP2003229336A (en) 2002-02-04 2002-02-04 Electric double-layer capacitor and electrode for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002026379A JP2003229336A (en) 2002-02-04 2002-02-04 Electric double-layer capacitor and electrode for the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006235079A Division JP2007019532A (en) 2006-08-31 2006-08-31 Porous carbonized film for capacitor electrode

Publications (1)

Publication Number Publication Date
JP2003229336A true JP2003229336A (en) 2003-08-15

Family

ID=27748235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002026379A Pending JP2003229336A (en) 2002-02-04 2002-02-04 Electric double-layer capacitor and electrode for the same

Country Status (1)

Country Link
JP (1) JP2003229336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001771A1 (en) * 2002-06-19 2003-12-31 Ube Industries, Ltd. Polyelectrolyte membrane and production method therefor
JP2005136401A (en) * 2003-10-10 2005-05-26 Japan Gore Tex Inc Electrode for electric double layer capacitor and its manufacturing method, and electric double layer capacitor as well as conductive adhesive
CN111433871A (en) * 2017-11-07 2020-07-17 柯帕瑟特科学有限责任公司 Nonlinear capacitor and energy storage device including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001771A1 (en) * 2002-06-19 2003-12-31 Ube Industries, Ltd. Polyelectrolyte membrane and production method therefor
US7544445B2 (en) 2002-06-19 2009-06-09 Ube Industries, Ltd. Polyelectrolyte membrane and production method therefor
JP2005136401A (en) * 2003-10-10 2005-05-26 Japan Gore Tex Inc Electrode for electric double layer capacitor and its manufacturing method, and electric double layer capacitor as well as conductive adhesive
CN111433871A (en) * 2017-11-07 2020-07-17 柯帕瑟特科学有限责任公司 Nonlinear capacitor and energy storage device including the same

Similar Documents

Publication Publication Date Title
Zhang et al. Anion‐sorbent composite separators for high‐rate lithium‐ion batteries
Zhou et al. In situ synthesis of a hierarchical all‐solid‐state electrolyte based on nitrile materials for high‐performance lithium‐ion batteries
KR101296183B1 (en) Electric double layer capacitor
JP5031835B2 (en) Heat-resistant ultrafine fiber separation membrane and secondary battery using the same
Volfkovich Electrochemical supercapacitors (a review)
US20110182001A1 (en) Activated carbon material, and production method and use thereof
JP2010500718A (en) Separation membrane having heat-resistant ultrafine fiber layer and secondary battery using the same
US10276312B2 (en) High surface area carbon materials and methods for making same
Zhang et al. Effects of sodium alginate on the composition, morphology, and electrochemical properties of electrospun carbon nanofibers as electrodes for supercapacitors
TW201526049A (en) Low resistance ultracapacitor electrode and manufacturing method thereof
JP2007059899A (en) Electrochemical device
Coustan et al. Thin fiber-based separators for high-rate sodium ion batteries
TW201507974A (en) High voltage EDLC electrodes containing CO2 activated coconut char
JP2006338918A (en) Electronic component and separator therefor
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
Bhat et al. Mixture of non-ionic and organic ionic plastic crystals immobilized in poly (vinylidene fluoride-co-hexafluoropropylene): A flexible gel polymer electrolyte composition for high performance carbon supercapacitors
JP3591055B2 (en) Electric double layer capacitor, method of manufacturing the same, and method of manufacturing electrodes therefor
Liu et al. Flexible thermotolerant Zn-ion hybrid supercapacitors enabled by heat-resistant polymer electrolyte
JP2006338917A (en) Electronic component and separator therefor
Hor et al. Enhanced energy density quasi-solid-state supercapacitor based on an ionic liquid incorporated aqueous gel polymer electrolyte with a redox-additive trimethyl sulfoxonium iodide
JP2014064030A (en) Electrochemical capacitor
Zhang et al. All‐Carbon Hybrid Mobile Ion Capacitors Enabled by 3D Laser‐Scribed Graphene
JP2003229336A (en) Electric double-layer capacitor and electrode for the same
JP2008010613A (en) Electric double layer capacitor
JP2008147283A (en) Electric double-layer capacitor, active carbon for electrode of the capacitor, and manufacturing method for the active carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040304

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060627

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925