JP2003228187A - Electrophotographic photoreceptor and electrophotographic device equipped with the photoreceptor - Google Patents

Electrophotographic photoreceptor and electrophotographic device equipped with the photoreceptor

Info

Publication number
JP2003228187A
JP2003228187A JP2002025177A JP2002025177A JP2003228187A JP 2003228187 A JP2003228187 A JP 2003228187A JP 2002025177 A JP2002025177 A JP 2002025177A JP 2002025177 A JP2002025177 A JP 2002025177A JP 2003228187 A JP2003228187 A JP 2003228187A
Authority
JP
Japan
Prior art keywords
electrophotographic
photosensitive member
phthalocyanine
potential
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002025177A
Other languages
Japanese (ja)
Inventor
Shigefumi Terasaki
成史 寺崎
Ikuo Takagi
郁夫 高木
Mikio Yamazaki
幹夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Imaging Device Co Ltd
Original Assignee
Fuji Electric Imaging Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Imaging Device Co Ltd filed Critical Fuji Electric Imaging Device Co Ltd
Priority to JP2002025177A priority Critical patent/JP2003228187A/en
Publication of JP2003228187A publication Critical patent/JP2003228187A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor causing no failure such as decrease in sensitivity in a low electric field region and increase in residual potential due to repeated use and having low transfer memory potential. <P>SOLUTION: In the electrophotographic photoreceptor, the charge generating layer contains oxytitanylphthalocyanine and vinyl chloride resin by 0.8 to 2.0 weight ratio (phthalocyanine/resin) and the charge transfer layer contains a charge transfer material having the ionization potential (Ip (CTM)) (eV) satisfying the relation of Ip(CGM)≤Ip(CTM)≤Ip(CGM)+0.3, wherein Ip (CGM) (eV) is the ionization potential of oxytitanylphthalocyanine. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電子写真感光体およ
びこの感光体を備えた電子写真装置に関し、詳しくは少
なくとも電荷発生層と電荷輸送層を備えた電子写真感光
体およびこの感光体を備え、反転現像方式により画像形
成が行われる電子写真方式のプリンター、ファクシミリ
や複写機等の電子写真装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member and an electrophotographic apparatus including the photosensitive member, and more specifically, to an electrophotographic photosensitive member including at least a charge generation layer and a charge transport layer, and the photosensitive member. The present invention relates to an electrophotographic apparatus such as an electrophotographic printer, a facsimile, and a copying machine, in which an image is formed by a reversal development method.

【0002】[0002]

【従来の技術】電子写真感光体は、導電性基体上に光導
電機能を有する感光層を備えた構造を基本構造とする。
2. Description of the Related Art An electrophotographic photosensitive member has a basic structure having a photosensitive layer having a photoconductive function on a conductive substrate.

【0003】感光体には暗所で表面電荷を保持する機
能、光を受容して電荷を発生する機能、更には発生した
電荷を輸送する機能が必要であり、これらの機能を併せ
持った単層の感光層を備えたいわゆる単層型感光体と、
主として光受容時の電荷発生機能を担う電荷発生層と、
暗所で表面電荷を保持する機能および電荷発生層にて発
生した電荷を輸送する機能を担う電荷輸送層とに機能分
離して積層させたいわゆる機能分離積層型感光体があ
る。
The photoreceptor is required to have a function of retaining surface charges in a dark place, a function of receiving light to generate charges, and a function of transporting the generated charges, and a single layer having these functions together. A so-called single-layer type photoreceptor having a photosensitive layer of
A charge generation layer mainly responsible for the charge generation function at the time of receiving light,
There is a so-called function-separated layered type photoreceptor in which a function-separated layered type photoreceptor is layered so as to be function-separated with a charge-transporting layer having a function of retaining surface charges in a dark place and a function of transporting charges generated in a charge-generating layer.

【0004】近年、有機化合物を用い、その材料の多様
性、高生産性、安全性などの利点を活かして電荷の発生
や輸送機能を分担して担わせる積層型電子写真感光体が
数多く発明され実用化されて市場における感光体および
この感光体を用いた電子写真装置の主流タイプとなって
いる。
In recent years, many laminated electrophotographic photoconductors have been invented which use organic compounds and take advantage of the versatility, high productivity and safety of the materials to share charge generation and transport functions. It has been put to practical use and has become the mainstream type of photoconductor and electrophotographic apparatus using this photoconductor on the market.

【0005】これらの感光体を使用する電子写真装置
は、帯電と転写工程における印加電圧の極性が共に同極
であって未露光部を現像する正転現像方式と、前記極性
が互いに逆極性であって露光部を現像する反転現像方式
に大別される。従来、複写機には正転現像方式、プリン
ターやファクシミリには反転現像方式が主に用いられて
きたが、複写機でも、近年急速に普及し始めたデジタル
方式の複写機では、プリンターと同じ反転現像方式が主
流となっている。
The electrophotographic apparatus using these photoconductors has the same polarity in the applied voltage in the charging step and the transfer step and develops the unexposed portion in the normal rotation developing method, and the polarity is opposite to each other. Therefore, it is roughly classified into a reversal development method for developing the exposed portion. Conventionally, the normal development method has been mainly used for copying machines, and the reversal development method has been mainly used for printers and facsimiles. The development method is the mainstream.

【0006】反転現像方式では、転写工程において感光
体表面のトナー像を用紙に転写するために転写紙の背面
側より帯電工程と逆極性の転写用帯電を行うため、転写
紙の有り無し(すなわち紙部と紙間部)またはトナー像
有り無しの差が感光体表面上の電位差として記録され、
次の帯電の際、その差がキャンセルされずハーフトーン
画像上などに濃淡差として顕在化する、いわゆる転写メ
モリーが発生する。少なくとも電荷発生層上に電荷輸送
層を積層してなる負帯電型感光体に関しては、この転写
メモリー現象は転写部にて帯電と逆極性のプラス電荷が
電荷輸送層表面から膜内に注入することに起因すると考
えられ、電荷発生材料に対してイオン化ポテンシャルが
充分に大きな値の電荷輸送材料を使用すると、前記のよ
うに表面から膜内へのプラス電荷の注入が阻害されるの
で、転写メモリーに関しては良好な結果が得られる。
In the reversal development method, since transfer toner having a polarity opposite to that of the charging step is transferred from the back side of the transfer paper in order to transfer the toner image on the surface of the photoreceptor to the paper in the transfer step, the presence or absence of the transfer paper (that is, The difference between the paper area and the paper area) or the presence or absence of a toner image is recorded as the potential difference on the surface of the photoconductor,
At the next charging, a so-called transfer memory occurs in which the difference is not canceled and is manifested as a gray level difference on a halftone image or the like. At least for the negative charging type photoconductor in which the charge transport layer is laminated on the charge generating layer, this transfer memory phenomenon is caused by the positive charge having the opposite polarity to the charge being injected from the surface of the charge transport layer into the film at the transfer portion. When a charge transport material having a sufficiently large ionization potential with respect to the charge generating material is used, the injection of positive charges from the surface into the film is blocked as described above. Gives good results.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、イオン
化ポテンシャルの十分に大きな電荷輸送材料を用いた場
合、電荷発生層から電荷輸送層への電荷注入がスムーズ
に行われなくなることから、特に低電界領域での感度低
下や繰り返し使用による残留電位上昇といった問題が新
たに発生し、改善が求められていた。
However, when a charge transporting material having a sufficiently large ionization potential is used, charge injection from the charge generating layer into the charge transporting layer cannot be carried out smoothly, so that particularly in a low electric field region. Problems such as a decrease in sensitivity and an increase in residual potential due to repeated use have newly occurred, and improvements have been demanded.

【0008】一方、特開平11−265081号公報に
は、繰り返し使用の後も、高感度で、帯電位と残留電位
の変動を少なくし、良好な画像を得るという目的を達成
するために電荷発生層と電荷輸送層とを備え、電荷発生
層にフタロシアニン系化合物および塩ビ樹脂バインダー
を含有し、それらのフタロシアニン/塩ビ樹脂が重量比
で0.3〜0.8とした電子写真感光体という趣旨の発
明の記述があるが、転写メモリーに関しては全く考慮さ
れず、電荷発生材料のフタロシアニンと組み合わせる電
荷輸送材料が本発明とは異なるだけでなく、それらのイ
オン化ポテンシャル値の関係も本発明とは異なってい
る。
On the other hand, in Japanese Patent Laid-Open No. 11-265081, charge generation is performed in order to achieve the object of obtaining a good image with high sensitivity and small fluctuations of the charging potential and residual potential even after repeated use. Layer and a charge transport layer, the charge generation layer contains a phthalocyanine compound and a vinyl chloride resin binder, and the phthalocyanine / vinyl chloride resin has a weight ratio of 0.3 to 0.8. Although there is a description of the invention, the transfer memory is not considered at all, and not only the charge transport material combined with the phthalocyanine of the charge generation material is different from the present invention, and the relationship of their ionization potential values is also different from the present invention. There is.

【0009】特開平11−249333号公報には、注
入効率の点で電荷発生材料との組み合わせに好適な電荷
輸送材料として、イオン化ポテンシャルが5.3以下の
ものを含む機能分離型有機感光体についての記載がある
が、特定の電荷発生層とのイオン化ポテンシャルの関係
を特定することに関しては記載がなく、示唆もない。
Japanese Patent Application Laid-Open No. 11-249333 discloses a function-separated type organic photoconductor containing a charge transporting material suitable for combination with a charge generating material in terms of injection efficiency and having an ionization potential of 5.3 or less. However, there is no description and no suggestion about specifying the relationship of the ionization potential with a specific charge generation layer.

【0010】また、特開平6−250421号公報に
は、高速で繰り返し使用しても安定して優れた画像を得
ることのできる画像形成方法とするために、感光層がオ
キシチタニウムフタロシアニンおよび電荷輸送材料を含
有し、オキシチタニウムフタロシアニンの仕事関数(W
FCG)および電荷輸送材料の仕事関数(WFCT)が
次式0.2<WFCG−WFCT≦0(eV)を満足す
ることを要件の一つとする発明の記載がある。しかし、
前記と同様に転写メモリーに関しては考慮されていない
ために、電荷発生層のバインダ樹脂として、その実施例
では、本発明においては後述する比較例のバインダ樹脂
に相当するポリビニルブチラール樹脂を用いている。
Further, in JP-A-6-250421, in order to provide an image forming method capable of stably obtaining an excellent image even when it is repeatedly used at high speed, the photosensitive layer contains oxytitanium phthalocyanine and charge transport. The work function of the oxytitanium phthalocyanine (W
There is a description of the invention that one of the requirements is that the work function (WFCT) of the FCG) and the charge transport material satisfies the following expression 0.2 <WFCG−WFCT ≦ 0 (eV). But,
Since the transfer memory is not considered in the same manner as described above, the polyvinyl butyral resin corresponding to the binder resin of the comparative example described later in the present invention is used as the binder resin of the charge generation layer in the embodiment.

【0011】さらにまた、特開平10−63015号公
報では、電子写真複写機の帯電電位を安定させ、最初の
コピーが可能となるまでの時間を短縮することのできる
電子写真感光体の提供を目的として、電荷発生層中の電
荷発生材料のイオン化ポテンシャルIpG(eV)と電
荷輸送層中の電荷輸送材料のイオンポテンシャルIpT
(eV)と、電荷輸送層の正孔移動度μ(cm2/ボル
ト・秒)とが下記式、0≦(IpG―IpT)≦1.2
+0.15 log(μ)を満たす電子写真感光体とす
る趣旨の記載がある。しかし、転写メモリーに関しては
考慮されていないために、後述の本発明とは電荷輸送材
料が異なっており、本発明とはその構成が異なる。
Further, in Japanese Patent Laid-Open No. 10-63015, it is an object to provide an electrophotographic photosensitive member capable of stabilizing the charging potential of an electrophotographic copying machine and shortening the time until the first copy becomes possible. As the ionization potential IpG (eV) of the charge generating material in the charge generating layer and the ion potential IpT of the charge transporting material in the charge transporting layer.
(EV) and the hole mobility μ (cm 2 / volt · second) of the charge transport layer are represented by the following formula: 0 ≦ (IpG−IpT) ≦ 1.2
There is a description to the effect that the electrophotographic photosensitive member satisfies +0.15 log (μ). However, since the transfer memory is not taken into consideration, the charge transport material is different from that of the present invention described later, and the configuration thereof is different from that of the present invention.

【0012】以上説明した問題点に鑑みて、本発明は低
電界領域における感度低下や繰り返し使用による残留電
位上昇といった障害が発生せず、さらに転写メモリー電
位の小さい電子写真感光体を提供することを目的とす
る。
In view of the above-mentioned problems, the present invention provides an electrophotographic photosensitive member having a small transfer memory potential without causing problems such as a decrease in sensitivity in a low electric field region and an increase in residual potential due to repeated use. To aim.

【0013】またさらに本発明は、反転現像方式におい
て、転写メモリー画像が発生せず、良好な印字画像が得
られる電子写真装置を提供することを目的とする。
Still another object of the present invention is to provide an electrophotographic apparatus in which a transfer memory image does not occur and a good printed image can be obtained in the reversal development system.

【0014】[0014]

【課題を解決するための手段】請求項1または2記載の
発明によれば、前記目的は導電性基体上に少なくとも電
荷発生層と電荷輸送層を積層した電子写真感光体におい
て、前記電荷発生層がオキシチタニルフタロシアニンと
塩化ビニル樹脂を0.8ないし2.0好ましくは1.0
ないし2.0の範囲の重量比(前記フタロシアニン/前
記樹脂)で含有し、前記電荷輸送層は、前記オキシチタ
ニルフタロシアニンのイオン化ポテンシャル(eV)と
の間で下記式(1)の関係式を満足するイオン化ポテン
シャル(eV)を有する電荷輸送材料を含有する電子写
真感光体とすることにより、達成される。
According to the invention of claim 1 or 2, the object is an electrophotographic photosensitive member comprising a conductive substrate and at least a charge generating layer and a charge transporting layer laminated on the conductive substrate. Is 0.8 to 2.0, preferably 1.0 to oxytitanyl phthalocyanine and vinyl chloride resin.
The weight ratio (the phthalocyanine / the resin) is in the range of 2.0 to 2.0, and the charge transport layer satisfies the relational expression (1) below with the ionization potential (eV) of the oxytitanyl phthalocyanine. It is achieved by providing an electrophotographic photosensitive member containing a charge transport material having an ionization potential (eV).

【0015】[0015]

【数2】 [Equation 2]

【0016】請求項3記載の発明によれば、前記目的は
オキシチタニルフタロシアニンはCuKα−X線回折ス
ペクトルにおいて、ブラッグ角(2θ±0.2°)が
7.5°、12.3°、16.3°、25.3°、2
8.7°(α型オキシチタニルフタロシアニン)または
9.5°、9.7°、11.7°、15.0°、23.
5°、24.1°、27.3°(通称、Y型オキシチタ
ニルフタロシアニン)に主要ピークを有する請求項1ま
たは2記載の電子写真感光体とすることが望ましい。
According to the third aspect of the present invention, the object is that oxytitanyl phthalocyanine has a Bragg angle (2θ ± 0.2 °) of 7.5 °, 12.3 °, 16 in a CuKα-X-ray diffraction spectrum. .3 °, 25.3 °, 2
8.7 ° (α-type oxytitanyl phthalocyanine) or 9.5 °, 9.7 °, 11.7 °, 15.0 °, 23.
The electrophotographic photoreceptor according to claim 1 or 2, which has major peaks at 5 °, 24.1 °, and 27.3 ° (commonly known as Y-type oxytitanyl phthalocyanine).

【0017】請求項4記載の発明によれば、前記目的は
請求項1ないし3のいずれか一項に記載の電子写真感光
体と、少なくとも帯電機構、露光機構、現像機構、転写
機構を有し、反転現像方式により画像形成される構成を
備える電子写真装置とすることにより、達成される。
According to a fourth aspect of the present invention, the object has the electrophotographic photosensitive member according to any one of the first to third aspects and at least a charging mechanism, an exposure mechanism, a developing mechanism, and a transfer mechanism. This is achieved by providing an electrophotographic apparatus having a configuration in which an image is formed by the reversal development method.

【0018】[0018]

【発明の実施の形態】以下、この発明にかかる電子写真
感光体およびこの感光体を用いた電子写真装置の実施の
形態について、図面を用いて詳細に説明する。この発明
は以下に説明する実施の形態の記載に限定されるもので
はない。図1は本発明にかかる電子写真感光体10を示
す模式的要部断面図であり、導電性基体1の上に中間層
2、電荷発生層3、電荷輸送層4、保護層5を順次積層
した構成を備える機能分離積層型感光体10である。本
発明では、中間層2と保護層5は必要に応じて付加され
る層である。図2は本発明にかかる電子写真装置100
の概略構成図である。図3は本発明にかかる感光体の表
面電位測定機の概略構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an electrophotographic photosensitive member according to the present invention and an electrophotographic apparatus using the photosensitive member will be described in detail below with reference to the drawings. The present invention is not limited to the description of the embodiments described below. FIG. 1 is a schematic cross-sectional view of an essential part showing an electrophotographic photosensitive member 10 according to the present invention, in which an intermediate layer 2, a charge generation layer 3, a charge transport layer 4, and a protective layer 5 are sequentially laminated on a conductive substrate 1. It is a function-separated laminated type photoreceptor 10 having the above configuration. In the present invention, the intermediate layer 2 and the protective layer 5 are layers added as needed. FIG. 2 shows an electrophotographic apparatus 100 according to the present invention.
2 is a schematic configuration diagram of FIG. FIG. 3 is a schematic configuration diagram of a photoconductor surface potential measuring device according to the present invention.

【0019】図1に示す導電性基体1は、感光体の電極
としての役目と同時に感光体を構成する各機能層の支持
体となっており、円筒状、板状、フィルム状等いずれの
形状でもよく、材質的にはアルミニウム、ステンレス
鋼、ニッケル等の金属類、あるいはガラス、樹脂等の表
面に導電処理を施したものが用いられる。好ましくは円
筒状であり、材質としてはアルミニウム(合金を含む)
が好ましい。
The conductive substrate 1 shown in FIG. 1 serves not only as an electrode of the photoconductor but also as a support for each functional layer constituting the photoconductor, and has any shape such as a cylindrical shape, a plate shape, or a film shape. However, as the material, a metal such as aluminum, stainless steel, or nickel, or a material such as glass or resin whose surface is subjected to a conductive treatment is used. It is preferably cylindrical, and the material is aluminum (including alloy)
Is preferred.

【0020】中間層2は、有機樹脂を主成分とする層あ
るいはアルマイト等の金属酸化皮膜からなり、導電性基
体から感光層(電荷発生層と電荷輸送層)への電荷の注
入を制御するため、または基体表面の欠陥の被覆、感光
層と導電性基体との密着性向上等の目的で、必要に応じ
て設けられる。中間層に用いられる樹脂材料としては、
カゼイン、ポリビニルアルコール、ポリアミド、メラミ
ン、セルロース等の絶縁性高分子、ポリチオフェン、ポ
リピロール、ポリアニリン等の導電性高分子などが挙げ
られ、これらの樹脂は単独であるいは適宜組み合わせて
混合して用いることができる。また、これらの樹脂に二
酸化チタン、酸化亜鉛等の金属酸化物微粒子を含有する
ことができる。これらの金属酸化物微粒子は前記樹脂材
料への分散性を良くするために、特公平6−59397
号公報に記載の方法に従って、アミノシラン処理などの
施されることが好ましい。
The intermediate layer 2 is composed of a layer containing an organic resin as a main component or a metal oxide film such as alumite, for controlling the injection of charges from the conductive substrate to the photosensitive layer (charge generation layer and charge transport layer). Alternatively, it is provided as necessary for the purpose of covering defects on the surface of the substrate and improving the adhesion between the photosensitive layer and the conductive substrate. As the resin material used for the intermediate layer,
Examples include insulating polymers such as casein, polyvinyl alcohol, polyamide, melamine, and cellulose, and conductive polymers such as polythiophene, polypyrrole, and polyaniline. These resins can be used alone or in admixture in an appropriate combination. . Further, these resins may contain metal oxide fine particles such as titanium dioxide and zinc oxide. In order to improve the dispersibility of these metal oxide fine particles in the resin material, Japanese Patent Publication No. 6-59397 is used.
It is preferable that aminosilane treatment or the like is performed according to the method described in the publication.

【0021】電荷発生層3は有機電荷発生材料と樹脂バ
インダを主要成分として構成される。電荷発生材料とし
ては、本発明ではオキシチタニルフタロシアニン顔料が
使用される。樹脂バインダとしては、塩化ビニル樹脂を
単独または、主成分として酢酸ビニル、ビニルアルコー
ル、ポリビニルアセタール、ポリカーボネート、ポリエ
ステル、ポリアミドその他の樹脂と混合して用いられ
る。
The charge generation layer 3 is mainly composed of an organic charge generation material and a resin binder. In the present invention, an oxytitanyl phthalocyanine pigment is used as the charge generating material. As the resin binder, vinyl chloride resin may be used alone or as a main component mixed with vinyl acetate, vinyl alcohol, polyvinyl acetal, polycarbonate, polyester, polyamide and other resins.

【0022】電荷発生層3に塩化ビニル樹脂を含む樹脂
バインダを用いるのは、塗布槽中の塗布液に塩化ビニル
樹脂を含ませると、塗布作業が長期間にわたり繰り返し
行われた後でも、塗布液の一部が結晶化等により槽壁に
固着することが無くなる結果、固着した場合のように槽
壁から剥がれ落ちたものの再付着による塗布膜の外観欠
陥が無くなるという工業的生産上のメリットが大きいた
めである。
A resin binder containing a vinyl chloride resin is used for the charge generation layer 3 when the coating liquid in the coating tank contains the vinyl chloride resin, even if the coating operation is repeated for a long period of time. As a result of a part of the product not sticking to the tank wall due to crystallization, etc., there is a large merit in industrial production that the appearance defect of the coating film due to redeposition of the film that has peeled off from the tank wall as in the case of sticking is eliminated. This is because.

【0023】電荷輸送層4は電荷輸送材料と樹脂バイン
ダを主要成分として構成される。電荷輸送材料としては
ヒドラゾン化合物、ブタジエン化合物、ジアミン化合
物、インドール化合物、インドリン化合物、スチルベン
化合物、ジスチルベン化合物などから、前記本発明にか
かるオキシチタニルフタロシアニンのイオン化ポテンシ
ャル(eV)との間で前記式(1)の関係式を満足する
イオン化ポテンシャル(eV)を有する化合物を選択
し、単独或いは混合して用いられる。樹脂バインダとし
てはビスフェノールA型、ビスフェノールZ型、ビスフ
ェノールA型−ビフェニル共重合体等のポリカーボネー
ト樹脂、ポリスチレン樹脂、ポリフェニレン樹脂等が単
独或いは混合して用いられる。また、以下、単に感光層
というときは電荷発生層と電荷輸送層を指す。
The charge transport layer 4 is mainly composed of a charge transport material and a resin binder. As the charge transport material, a hydrazone compound, a butadiene compound, a diamine compound, an indole compound, an indoline compound, a stilbene compound, a distilbene compound, or the like is used, and the formula (1) is used between the ionization potential (eV) of the oxytitanyl phthalocyanine according to the present invention. The compounds having the ionization potential (eV) satisfying the relational expression (1) are selected and used alone or in combination. As the resin binder, polycarbonate resins such as bisphenol A type, bisphenol Z type, bisphenol A type-biphenyl copolymer, polystyrene resins, polyphenylene resins and the like are used alone or in combination. Further, hereinafter, when simply referred to as a photosensitive layer, it means a charge generation layer and a charge transport layer.

【0024】更に各機能層には、感度の向上、残留電位
の減少、耐環境性や有害な気体や光に対する安定性向上
等を目的として、必要に応じて電子受容性物質、酸化防
止剤、光安定剤等を添加することができる。このような
目的で用いられる化合物としては、トコフェロールなど
のクロマール誘導体およびエーテル化化合物、エステル
化化合物、ポリアリールアルカン化化合物、ハイドロキ
ノン誘導体、ジエーテル化化合物、ベンゾフェノン誘導
体、ベンゾトリアゾール誘導体、チオエーテル化合物、
フェニレンジアミン誘導体、ホスホン酸エステル、亜リ
ン酸エステル、フェノール化合物、ヒンダードフェノー
ル化合物、直鎖アミン化合物、ヒンダードアミン化合物
等が挙げられる。
Further, in each functional layer, an electron-accepting substance, an antioxidant, and the like may be added, if necessary, for the purpose of improving sensitivity, reducing residual potential, improving environment resistance and stability against harmful gas and light. A light stabilizer or the like can be added. Examples of the compound used for such purpose include chromal derivatives such as tocopherol and etherified compounds, esterified compounds, polyarylalkane compounds, hydroquinone derivatives, dietherified compounds, benzophenone derivatives, benzotriazole derivatives, thioether compounds,
Examples thereof include a phenylenediamine derivative, a phosphonic acid ester, a phosphite ester, a phenol compound, a hindered phenol compound, a linear amine compound, and a hindered amine compound.

【0025】更に、感光層中には、形成した塗膜のレベ
リング性の向上や、更なる潤滑性の付与を目的としてシ
リコーンオイルやフッ素系添加剤等のレベリング剤を含
有させることができる。
Further, the photosensitive layer may contain a leveling agent such as silicone oil or a fluorine-containing additive for the purpose of improving the leveling property of the formed coating film and imparting further lubricity.

【0026】また、感光層表面に、機械的強度を向上さ
せる目的で、必要に応じて表面保護層を設けても良い。
表面保護層は機械的ストレスに対する耐久性に優れた材
料で構成され、電荷発生層が感応する光をできるだけ低
損失で透過させる性能を有していることが望まれる。
If necessary, a surface protective layer may be provided on the surface of the photosensitive layer for the purpose of improving mechanical strength.
The surface protective layer is made of a material having excellent durability against mechanical stress, and it is desired that the surface protective layer has a property of transmitting light, which is sensitive to the charge generation layer, with as low loss as possible.

【0027】図2は本発明にかかる、帯電機構、露光機
構、現像機構および転写機構を備え、帯電機構にスコロ
トロンによるコロナ帯電法を用いた反転現像方式の電子
写真装置100の概略構成図である。この図を用いて、
本発明にかかる電子写真装置について以下、説明する。
FIG. 2 is a schematic configuration diagram of a reversal development type electrophotographic apparatus 100 according to the present invention, which has a charging mechanism, an exposure mechanism, a developing mechanism and a transfer mechanism, and uses a corona charging method by a scorotron for the charging mechanism. . Using this figure,
The electrophotographic apparatus according to the present invention will be described below.

【0028】この電子写真装置100は、前記図1に示
す電子写真感光体10の円筒の外周縁部にスコロトロン
帯電部材21、この帯電部材に印加電圧を供給する高圧
電源22を備える帯電機構、像露光機構23、現像機構
24、給紙ローラと給紙ガイド25、コロトロンによる
転写帯電機構26、クリーニング装置27等が順次配置
されてなり、反転現像方式により画像形成が行われる。
The electrophotographic apparatus 100 includes a charging mechanism including a scorotron charging member 21 on the outer peripheral edge of the cylinder of the electrophotographic photosensitive member 10 shown in FIG. 1, and a high voltage power source 22 for supplying a voltage to the charging member, and a charging mechanism. An exposure mechanism 23, a developing mechanism 24, a paper feed roller and a paper feed guide 25, a transfer charging mechanism 26 by a corotron, a cleaning device 27, and the like are sequentially arranged, and an image is formed by a reversal development method.

【0029】帯電機構は図2ではスコロトロン帯電部材
を示したが、コロトロン帯電方式あるいは帯電ローラや
帯電ブラシ等の接触による電荷注入帯電方式であって、
かつ直流成分のみ印加することにより印加電源部を簡素
化した機構でも、本発明によれば、転写メモリー電位が
小さいので、良好な画像が得られる。
The charging mechanism shown in FIG. 2 is a scorotron charging member, but it is a corotron charging system or a charge injection charging system by contact with a charging roller, a charging brush or the like.
In addition, according to the present invention, since the transfer memory potential is small, a good image can be obtained even with a mechanism in which the application power source section is simplified by applying only the DC component.

【0030】また本発明によれば、通常のスコロトロン
帯電方式あるいは通常の帯電ローラや帯電ブラシ等の電
荷注入帯電方式により直流と交流成分を重畳させて帯電
する方式において、OHPシートや厚紙のように大幅に
増加した転写電流を必要とする場合など特にメモリー画
像がでやすい画像形成条件の場合にも、メモリー画像を
伴わない良好な画像が得られる。
Further, according to the present invention, in a method of charging by superimposing DC and AC components by a normal scorotron charging method or a charge injection charging method such as a normal charging roller or a charging brush, like an OHP sheet or thick paper. A good image without a memory image can be obtained even under image forming conditions where a memory image is likely to appear, such as when a significantly increased transfer current is required.

【0031】画像形成の方法は、まず、電子写真感光体
10上に配置されているスコロトロン帯電用部材21に
高圧電源22から供給される電圧を印加して感光体10
表面を帯電し、像露光機構23によって原稿に対応した
画像を感光体10に像露光し、静電潜像を形成する。
In the image forming method, first, the voltage supplied from the high voltage power source 22 is applied to the scorotron charging member 21 arranged on the electrophotographic photosensitive member 10, and the photosensitive member 10 is subjected to the image forming.
The surface is charged, and an image corresponding to the original is imagewise exposed on the photoconductor 10 by the image exposure mechanism 23 to form an electrostatic latent image.

【0032】次に、現像機構24中のトナーを感光体1
0に付着させることにより感光体10上の静電潜像を現
像(可視像化)する。
Next, the toner in the developing mechanism 24 is transferred to the photosensitive member 1.
By making it adhere to 0, the electrostatic latent image on the photoconductor 10 is developed (visualized).

【0033】さらに感光体10上に形成されたトナー像
を給紙ローラと給紙ガイド25を通して供給された紙な
どの転写材上にコロトロン転写帯電機構26によって転
写する。この際、特にこの転写材がOHPシートのよう
に通常の印字用紙とは材質が異なり、厚みも大きい場合
は、転写電流を大幅に増加しなければならないことがあ
る。そうすると、次のOHPシートとの間隙において、
感光体表面に通常より高い電圧がチャージされることに
なって、次の電子写真プロセスのサイクルの帯電工程に
おいて、キャンセルされずに前のサイクルの表面電位が
転写メモリー電位として現れ易くなる。本発明によれ
ば、このような場合にも転写メモリーが発生することな
く、良好な画像が得られる。
Further, the toner image formed on the photosensitive member 10 is transferred by a corotron transfer charging mechanism 26 onto a transfer material such as paper supplied through a paper feed roller and a paper feed guide 25. At this time, especially when the transfer material is different from a normal printing paper such as an OHP sheet and has a large thickness, the transfer current may have to be significantly increased. Then, in the gap with the next OHP sheet,
Since the surface of the photoreceptor is charged with a voltage higher than usual, the surface potential of the previous cycle is likely to appear as the transfer memory potential without being canceled in the charging step of the cycle of the next electrophotographic process. According to the present invention, a good image can be obtained without causing a transfer memory even in such a case.

【0034】次にクリーニング部材27によって、転写
材に転写されずに感光体10上に残った残トナーを回収
する。
Next, the cleaning member 27 collects the residual toner remaining on the photoconductor 10 without being transferred to the transfer material.

【0035】一方、トナー像が形成された紙などの転写
材は図示しない搬送部によって図示しない定着器に送ら
れてトナー像が定着され、出力される。
On the other hand, the transfer material such as paper on which the toner image is formed is sent to a fixing device (not shown) by a carrying unit (not shown), and the toner image is fixed and output.

【0036】この電子写真装置100において、像露光
機構23の光源としてはハロゲン光、蛍光灯、LED、
レーザー光などを用いることができる。また必要に応じ
て他の補助プロセスを加えてもよい。
In the electrophotographic apparatus 100, the light source of the image exposure mechanism 23 is a halogen light, a fluorescent lamp, an LED,
Laser light or the like can be used. Also, other auxiliary processes may be added if necessary.

【0037】このような電子写真装置100としては、
複写機の他、レーザービームプリンター装置、ファクシ
ミリ、電子写真製版システムなどがある。
As such an electrophotographic apparatus 100,
In addition to copiers, there are laser beam printers, facsimiles, electrophotographic plate making systems, etc.

【0038】図3は以下に述べる実施例において、電子
写真プロセスにおける各主要プロセス毎の電子写真感光
体の表面電位を測定するために用いた表面電位測定機の
概略構成図である。
FIG. 3 is a schematic configuration diagram of a surface potential measuring device used for measuring the surface potential of the electrophotographic photosensitive member in each main process in the electrophotographic process in the examples described below.

【0039】この表面電位測定機は、円筒状電子写真感
光体10の外周縁部にスコロトロン帯電機構12、表面
電位測定プローブ11−1、露光源18からの光を78
0nmの波長のみに選別する光学フィルター17、光を
開閉する光学シャッター20を介して感光体表面に供給
する露光部材16からなる露光機構13、表面電位測定
プローブ11−2、転写用コロトロン帯電機構15がそ
れぞれこの順に45度の周角度で配置され、さらに90
度の周角度で位置し露光源18と630nmの波長を選
別する光学フィルター19と光学シャッター20を介し
て光を供給する露光部材14からなる(除電用)露光機
構が配置され、さらに45度の周角度をおいて表面電位
測定プローブ11−3が配置されている。
In this surface potential measuring instrument, light from the scorotron charging mechanism 12, the surface potential measuring probe 11-1 and the exposure source 18 is applied to the outer peripheral edge of the cylindrical electrophotographic photosensitive member 78.
An optical filter 17 that selects only a wavelength of 0 nm, an exposure mechanism 13 including an exposure member 16 that supplies light to the surface of the photoconductor through an optical shutter 20 that opens and closes light, a surface potential measurement probe 11-2, and a transfer corotron charging mechanism 15. Are arranged in this order at a peripheral angle of 45 degrees, and further 90
An exposure mechanism (for static elimination), which is located at a peripheral angle of 4 degrees, is composed of an exposure source 18, an optical filter 19 for selecting a wavelength of 630 nm, and an exposure member 14 for supplying light via an optical shutter 20, is arranged. The surface potential measurement probe 11-3 is arranged at a circumferential angle.

【0040】感光体10が図3の矢印の方向に回転する
と、スコロトロン帯電機構12により、所定の負電位に
帯電された感光体表面は表面電位測定プローブ11−1
の位置で表面電位が測定され、露光部材16の位置に達
すると露光され、さらに次の表面電位測定プローブ11
−2の位置で露光後の表面電位が測定される。続いて転
写用コロトロン帯電部材15の位置で転写用の逆極性の
正帯電を受ける。この転写用帯電のON時およびOFF
時の各表面電位を表面電位測定プローブ11−3で測定
した表面電位値の差の絶対値が転写メモリー電位であ
る。
When the photoconductor 10 rotates in the direction of the arrow in FIG. 3, the surface of the photoconductor charged to a predetermined negative potential by the scorotron charging mechanism 12 is the surface potential measuring probe 11-1.
The surface potential is measured at the position of, and exposed when the position of the exposure member 16 is reached, and the surface potential measuring probe 11 is further exposed.
The surface potential after exposure is measured at the position -2. Subsequently, at the position of the transfer corotron charging member 15, a positive charge having a reverse polarity for transfer is received. When this transfer charging is ON and OFF
The absolute value of the difference between the surface potential values measured by the surface potential measurement probe 11-3 at each time is the transfer memory potential.

【0041】[0041]

【実施例】以下、本発明について、本発明にかかる感光
体が比較例に比べて転写メモリー電位が小さいので、特
に転写メモリーの発生しやすい反転現像方式の電子写真
装置においても転写メモリーが発生しにくく、良好な印
字、画像が得られることを比較実験から明らかにする。
本発明は下記の実施例において具体的に説明した電子写
真感光体および電子写真装置に限定されないことはいう
までもない。
EXAMPLES As for the present invention, since the photoconductor according to the present invention has a lower transfer memory potential than that of the comparative example, the transfer memory is generated even in the reversal development type electrophotographic apparatus in which the transfer memory is likely to occur. It is clarified from a comparative experiment that it is difficult to obtain good print and image.
It goes without saying that the present invention is not limited to the electrophotographic photosensitive member and the electrophotographic apparatus specifically described in the following examples.

【0042】(実施例1)直径30mmのアルミニウム
製円筒状基体を洗浄、乾燥した後、以下に示す組成の中
間層用塗布液を浸漬塗工し、100℃で30分乾燥して
膜厚約1μmの中間層を形成した。 アルコール可溶性ポリアミド系樹脂(CM−8000:東レ(株)製) 5重量部 アミノシラン処理された酸化チタン微粒子 5重量部 メタノール/ジクロロメタン混合溶剤(6重量部/4重量部) 90重量部
Example 1 An aluminum cylindrical substrate having a diameter of 30 mm was washed and dried, and then an intermediate layer coating solution having the following composition was applied by dip coating and dried at 100 ° C. for 30 minutes to obtain a film thickness of about A 1 μm intermediate layer was formed. Alcohol-soluble polyamide resin (CM-8000: manufactured by Toray Industries, Inc.) 5 parts by weight Aminosilane-treated titanium oxide fine particles 5 parts by weight Methanol / dichloromethane mixed solvent (6 parts by weight / 4 parts by weight) 90 parts by weight

【0043】次に、以下に示す組成の電荷発生層分散液
を浸漬塗工し、80℃で15分乾燥して膜厚約0.2μ
mの電荷発生層を形成した。 α型オキシチタニルフタロシアニン 1.2重量部 塩化ビニル樹脂(MR−110:日本ゼオン(株)製) 0.8重量部 ジクロロメタン/1、2−ジクロロエタン混合溶剤(7重量部/3重量部) 98重量部
Next, a charge generation layer dispersion having the following composition was applied by dip coating and dried at 80 ° C. for 15 minutes to give a film thickness of about 0.2 μm.
m charge generating layer was formed. α-type oxytitanyl phthalocyanine 1.2 parts by weight Vinyl chloride resin (MR-110: Nippon Zeon Co., Ltd.) 0.8 parts by weight Dichloromethane / 1,2-dichloroethane mixed solvent (7 parts by weight / 3 parts by weight) 98 parts by weight Department

【0044】次に、以下に示す組成の電荷輸送層塗布液
を浸漬塗工し、90℃で60分乾燥して膜厚約20μm
の電荷輸送層を形成した。電荷輸送材料(CTM材料
1)として、下記の化合物3を用いた。 化合物3(下記構造式3) 9重量部 ビスフェノールA−ビフェニル共重合ポリカーボネート(タフゼットB−500 /出光興産(株)製) 11重量部 2、6−ジ−tert−ブチル−4−メチルフェノール(武田薬品工業(株)) 0.5重量部 ジクロロメタン 100重量部 以上の層構成により、実施例1の電子写真感光体を作製
した。
Next, a charge transport layer coating solution having the following composition was applied by dip coating and dried at 90 ° C. for 60 minutes to give a film thickness of about 20 μm.
Was formed on the charge transport layer. The following compound 3 was used as the charge transport material (CTM material 1). Compound 3 (the following structural formula 3) 9 parts by weight Bisphenol A-biphenyl copolymerized polycarbonate (Tafuzet B-500 / manufactured by Idemitsu Kosan Co., Ltd.) 11 parts by weight 2,6-di-tert-butyl-4-methylphenol (Takeda Yakuhin Kogyo Co., Ltd. 0.5 parts by weight Dichloromethane 100 parts by weight The electrophotographic photoreceptor of Example 1 was prepared with a layer structure of 100 parts by weight or more.

【0045】(実施例2)実施例1のα型オキシチタニ
ルフタロシアニンをY型オキシチタニルフタロシアニン
に変更し、フタロシアニン/樹脂比率を1.0(Y型オ
キシチタニルフタロシアニン1重量部/塩化ビニル樹脂
1重量部)とし、同前記化合物3の代わりに2種類のC
TM材料1と2としてそれぞれ化合物1(下記構造式
1)4.5重量部と化合物2(下記構造式2)4.5重量
部に変えた以外は実施例1と同様にして実施例2の電子
写真感光体を作製した。
Example 2 The α-type oxytitanyl phthalocyanine of Example 1 was changed to Y-type oxytitanyl phthalocyanine, and the phthalocyanine / resin ratio was 1.0 (1 part by weight Y-type oxytitanyl phthalocyanine / 1 part by weight vinyl chloride resin). Part) and two kinds of C instead of the compound 3
Example 2 was the same as Example 1 except that the TM materials 1 and 2 were changed to 4.5 parts by weight of compound 1 (the following structural formula 1) and compound 2 (the following structural formula 2), respectively. An electrophotographic photoreceptor was produced.

【0046】(実施例3)実施例2において、電荷輸送
層中の化合物1と化合物2のかわりにCTM材料1とし
て、化合物3(下記構造式3)のみを9重量部とした以
外は実施例2と同様にして実施例3の電子写真感光体を
作製した。
Example 3 Example 3 is the same as Example 2 except that the CTM material 1 is replaced by the compound 3 (the following structural formula 3) instead of the compound 1 and the compound 2 in the charge transport layer, and only 9 parts by weight is used. An electrophotographic photosensitive member of Example 3 was manufactured in the same manner as in 2.

【0047】(実施例4)実施例2において、フタロシ
アニン/樹脂比率を0.8(Y型オキシチタニルフタロ
シアニン0.8重量部/塩化ビニル樹脂1重量部)とし
た以外は実施例2と同様にして実施例4の電子写真感光
体を作製した。
Example 4 The same as Example 2 except that the phthalocyanine / resin ratio was 0.8 (0.8 parts by weight of Y-type oxytitanyl phthalocyanine / 1 part by weight of vinyl chloride resin). Thus, an electrophotographic photosensitive member of Example 4 was produced.

【0048】(実施例5)実施例2において、フタロシ
アニン/樹脂比率を2.0(Y型オキシチタニルフタロ
シアニン2重量部/塩化ビニル樹脂1重量部)とした以
外は実施例2と同様にして実施例5の電子写真感光体を
作製した。
Example 5 Example 5 was carried out in the same manner as in Example 2 except that the phthalocyanine / resin ratio was 2.0 (2 parts by weight of Y-type oxytitanyl phthalocyanine / 1 part by weight of vinyl chloride resin). An electrophotographic photosensitive member of Example 5 was produced.

【0049】(比較例1)実施例1の電荷発生層におけ
る塩化ビニル樹脂をポリビニルブチラール樹脂(積水化
学(株)製BM−1)に変更した以外は実施例1と同様
にして比較例1の電子写真感光体を作製した。
Comparative Example 1 Comparative Example 1 was carried out in the same manner as in Example 1 except that the polyvinyl chloride resin in the charge generation layer of Example 1 was changed to polyvinyl butyral resin (BM-1 manufactured by Sekisui Chemical Co., Ltd.). An electrophotographic photoreceptor was produced.

【0050】(比較例2)実施例2の電荷発生層の内、
塩化ビニル樹脂をポリビニルブチラール樹脂(積水化学
(株)製BX−1)に変更した以外は実施例2と同様に
して比較例2の電子写真感光体を作製した。
(Comparative Example 2) Of the charge generation layers of Example 2,
An electrophotographic photosensitive member of Comparative Example 2 was produced in the same manner as in Example 2 except that the polyvinyl chloride resin was changed to polyvinyl butyral resin (BX-1 manufactured by Sekisui Chemical Co., Ltd.).

【0051】(比較例3)実施例2の電荷輸送層の内、
化合物1と化合物2のかわりにCTM材料1として化合
物4(下記構造式4)のみを9重量部とし、塩化ビニル
樹脂をポリビニルブチラール樹脂(積水化学(株)製B
X−1)とした以外は実施例2と同様にして比較例3の
電子写真感光体を作製した。
(Comparative Example 3) Of the charge transport layers of Example 2,
Instead of compound 1 and compound 2, CTM material 1 was compound 4 (the following structural formula 4) alone in 9 parts by weight, and vinyl chloride resin was polyvinyl butyral resin (B manufactured by Sekisui Chemical Co., Ltd.).
An electrophotographic photoreceptor of Comparative Example 3 was produced in the same manner as in Example 2 except that X-1) was used.

【0052】(比較例4)実施例2において、フタロシ
アニン/樹脂比率を0.6(Y型オキシチタニルフタロ
シアニン0.6重量部/塩化ビニル樹脂1重量部)とし
た以外は実施例2と同様にして比較例4の電子写真感光
体を作製した。
Comparative Example 4 The same as Example 2 except that the phthalocyanine / resin ratio was 0.6 (0.6 parts by weight of Y-type oxytitanyl phthalocyanine / 1 part by weight of vinyl chloride resin). To prepare an electrophotographic photosensitive member of Comparative Example 4.

【0053】(比較例5)実施例2において、フタロシ
アニン/樹脂比率を2.2(Y型オキシチタニルフタロ
シアニン2.2重量部/塩化ビニル樹脂1重量部)とし
た以外は実施例2と同様にして比較例5の電子写真感光
体を作製した。
(Comparative Example 5) The same as Example 2 except that the phthalocyanine / resin ratio was 2.2 (2.2 parts by weight of Y-type oxytitanyl phthalocyanine / 1 part by weight of vinyl chloride resin). An electrophotographic photosensitive member of Comparative Example 5 was produced.

【0054】(比較例6)実施例3において、電荷輸送
層中の化合物3のかわりにCTM材料として、化合物5
(下記構造式5)を9重量部とした以外は実施例3と同
様にして、比較例6の電子写真感光体を作製した。
(Comparative Example 6) In Example 3, instead of Compound 3 in the charge transport layer, Compound 5 was used as a CTM material.
An electrophotographic photosensitive member of Comparative Example 6 was produced in the same manner as in Example 3 except that (the following structural formula 5) was changed to 9 parts by weight.

【0055】(比較例7)実施例3において、電荷輸送
層中の化合物3のかわりにCTM材料として、化合物6
(下記構造式6)を9重量部とした以外は実施例3と同
様にして、比較例7の電子写真感光体を作製した。
(Comparative Example 7) In Example 3, instead of Compound 3 in the charge transport layer, Compound 6 was used as a CTM material.
An electrophotographic photosensitive member of Comparative Example 7 was produced in the same manner as in Example 3 except that (the following structural formula 6) was changed to 9 parts by weight.

【0056】以上の実施例1〜5と比較例1〜7におけ
る材料および組成の違いを下記表1に一覧表にして示
す。この表1において、CGL、CTMとあるはそれぞ
れ電荷発生層、電荷輸送材料を表し、α−TiOPc、
Y−TiOPc、Pcとあるはそれぞれ前記α型オキシ
チタニルフタロシアニン、Y型オキシチタニルフタロシ
アニン、フタロシアニンを表す。さらに塩ビとあるは塩
化ビニル樹脂を表す。
Differences in materials and compositions between the above Examples 1 to 5 and Comparative Examples 1 to 7 are listed in Table 1 below. In Table 1, CGL and CTM represent a charge generation layer and a charge transport material, respectively, and α-TiOPc,
Y-TiOPc and Pc represent the above α-type oxytitanyl phthalocyanine, Y-type oxytitanyl phthalocyanine and phthalocyanine, respectively. Further, "vinyl chloride" means vinyl chloride resin.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【化1】 [Chemical 1]

【0059】[0059]

【化2】 [Chemical 2]

【0060】[0060]

【化3】 [Chemical 3]

【0061】[0061]

【化4】 [Chemical 4]

【0062】[0062]

【化5】 [Chemical 5]

【0063】[0063]

【化6】 [Chemical 6]

【0064】(評価)前記実施例1〜5および比較例1
〜7で作製した各感光体について、図3に示す表面電位
測定機により、転写機構のON/OFF(稼動/スキッ
プ)時の各表面電位値の測定を表面電位測定プローブ1
1−3により行い、それらの表面電位値の差から転写メ
モリー電位を求めた。その転写メモリー電位値を表2に
示す。この転写メモリー電位は値が大きいと転写メモリ
ー画像が発生し易くなる。
(Evaluation) Examples 1 to 5 and Comparative Example 1
For each of the photoconductors prepared in Nos. 7 to 7, the surface potential measurement probe shown in FIG. 3 is used to measure the surface potential value when the transfer mechanism is turned ON / OFF (operation / skip).
1-3, and the transfer memory potential was determined from the difference between the surface potential values. The transfer memory potential value is shown in Table 2. If this transfer memory potential has a large value, a transfer memory image is likely to occur.

【0065】これとは別に、理研計器(株)製表面分析
装置AC−1を用い、粉末試料により光量50nwにて
測定したフタロシアニンと電荷輸送材料(材料1と材料
2、または材料1)の各イオン化ポテンシャル(eV)
の値IP(CGM)、IP(CTM材料1)、IP(C
TM材料2)を表2の実施例1〜5、比較例1〜7につ
いてそれぞれ示す。
Separately, each of phthalocyanine and charge transport material (material 1 and material 2 or material 1) measured with a powder sample using a surface analyzer AC-1 manufactured by Riken Keiki Co., Ltd. with a light amount of 50 nw. Ionization potential (eV)
Value of IP (CGM), IP (CTM material 1), IP (C
The TM material 2) is shown for Examples 1-5 and Comparative Examples 1-7 in Table 2, respectively.

【0066】また、前記表面電位測定機により、光強度
2.5μJ/cm2の光による照射後の感光体の各表面
電位を測定した結果(小さい値ほど感光体の感度が高
い)および、前記各実施例1〜5と各比較例1〜7で作
製の各感光体を装着した市販のデジタル複写機(反転現
像方式)を用い、OHPシートによるA4紙1万枚の印
字試験前後の転写メモリー画像の有無および1万枚の印
字試験前後の黒ベタ濃度測定を行った結果を下記表3に
示す。黒べた濃度(ID)は1万枚印字前後で値の変化
しないものが好ましく、黒べた濃度(ID)が小さいも
のあるいは1万枚印字後にID値が変化して小さくなる
ものは、低電界領域における感度低下や残留電位上昇と
いう障害が発生することを表す。
The surface potential of each of the photoconductors after irradiation with light having a light intensity of 2.5 μJ / cm 2 was measured by the surface potential measuring device (the smaller the value, the higher the sensitivity of the photoconductor), and Using a commercially available digital copying machine (reversal development method) equipped with each of the photoconductors prepared in Examples 1 to 5 and Comparative Examples 1 to 7, a transfer memory before and after a printing test of 10,000 A4 sheets of OHP sheets was used. Table 3 below shows the presence or absence of an image and the results of black solid density measurement before and after the printing test on 10,000 sheets. It is preferable that the black solid density (ID) does not change before and after printing 10,000 sheets, and if the black solid density (ID) is small or the ID value changes after printing 10,000 sheets, the low electric field area It means that problems such as decreased sensitivity and increased residual potential occur at.

【0067】[0067]

【表2】 [Table 2]

【0068】[0068]

【表3】 [Table 3]

【0069】実施例2、4、5では、電荷発生層のフタ
ロシアニン/塩化ビニル樹脂の重量比がそれぞれ0.8
ないし2.0の範囲にあるので、表2と表3から転写メ
モリー電位、光強度2.5μJ/cm2の光照射後の感
光体の表面電位が小さく(初期感度良好)、繰り返し
(1万枚)使用前後の印字濃度変化も小さいことから、
低電界領域における感度低下が無く、繰り返し使用によ
る残留電位上昇といった障害が発生せず、さらに転写メ
モリー画像の発生しない電子写真感光体であることが判
る。
In Examples 2, 4, and 5, the weight ratio of phthalocyanine / vinyl chloride resin in the charge generation layer was 0.8.
To 2.0, the transfer memory potential and the surface potential of the photoconductor after light irradiation with a light intensity of 2.5 μJ / cm 2 are small (initial sensitivity is good) from Tables 2 and 3, and repeated (10,000 times). Since the change in print density before and after use is small,
It can be seen that the electrophotographic photoreceptor has no deterioration in sensitivity in the low electric field region, does not cause a failure such as an increase in residual potential due to repeated use, and does not generate a transfer memory image.

【0070】また、実施例1と比較例1、および実施例
2と比較例2のようにそれぞれ同一の電荷発生材料と電
荷輸送材料で同一の重量比の組み合わせの場合であって
も、電荷発生層のバインダ樹脂を実施例1、2の塩化ビ
ニル樹脂から比較例1、2のポリビニルブチラール樹脂
にそれぞれ変更すると、表2、表3から初期感度(2.
5μJ/cm2の光照射後の感光体の表面電位)および
繰り返し使用後の黒ベタ濃度特性(ID)は共に良好で
あるものの、転写メモリー電位が実施例1、2の20
V、22Vに比べて比較例1、2では46V、45Vと
大きくなり、さらに転写メモリー画像もそれぞれ初期か
ら発生することから、実施例1と2の塩化ビニル樹脂バ
インダーの方の優れていることが判る。
Even when the same charge generating material and charge transporting material are combined in the same weight ratio as in Example 1 and Comparative Example 1, and in Example 2 and Comparative Example 2, charge generation is performed. When the binder resin of the layer was changed from the vinyl chloride resin of Examples 1 and 2 to the polyvinyl butyral resin of Comparative Examples 1 and 2, respectively, the initial sensitivities (2.
Although the surface potential of the photoconductor after irradiation with light of 5 μJ / cm 2 ) and the black solid density characteristic (ID) after repeated use are good, the transfer memory potential is 20 as in Examples 1 and 2.
Compared with V and 22V, Comparative Examples 1 and 2 have higher voltages of 46V and 45V, respectively, and transfer memory images are also generated from the initial stage. Therefore, the vinyl chloride resin binders of Examples 1 and 2 are superior. I understand.

【0071】実施例3は、電荷発生層が実施例2と材
料、重量比共、同じで、電荷輸送層の電荷輸送材料を化
合物1、2(イオン化ポテンシャルが5.23eVと
5.12eV)から化合物3(イオン化ポテンシャルが
5.40eV)へ、オキシチタニルフタロシアニンのイ
オン化ポテンシャルの5.10eVに対して+0.3だ
け大きい材料に変更したものである。この場合は本発明
の範囲に含まれる感光体であり、転写メモリー電位は1
8Vと実施例1、2よりさらに小さくなり、メモリー画
像も全く発生しない。
In Example 3, the charge generation layer was the same in material and weight ratio as in Example 2, and the charge transport material of the charge transport layer was formed of compounds 1 and 2 (ionization potentials of 5.23 eV and 5.12 eV). Compound 3 (with an ionization potential of 5.40 eV) was changed to a material larger by +0.3 than the ionization potential of oxytitanyl phthalocyanine of 5.10 eV. In this case, the photoconductor is within the scope of the present invention, and the transfer memory potential is 1
The voltage is 8 V, which is smaller than those in Examples 1 and 2, and no memory image is generated.

【0072】また、比較例3の場合は、電荷輸送材料に
イオン化ポテンシャル(5.60eV)が、本発明にか
かるオキシチタニルフタロシアニンの場合のイオン化ポ
テンシャル(5.10eV)より十分に大きな材料(+
0.5)を用いるので、表2、表3に示すように、転写
メモリー値(15V)が小さくて転写メモリー画像は防
止できるものの、表3に示すように光強度2.5μJ/
cm2の光による照射後の感光体の表面電位(80V)
が高い(低初期感度)ことから黒ベタ濃度が初期から
1.20と低く、実用性のないことが判る。
Further, in the case of Comparative Example 3, the material (+) having an ionization potential (5.60 eV) of the charge transport material is sufficiently larger than the ionization potential (5.10 eV) of the oxytitanyl phthalocyanine according to the present invention.
0.5) is used, the transfer memory value (15V) is small as shown in Tables 2 and 3 to prevent the transfer memory image, but as shown in Table 3, the light intensity is 2.5 μJ /
Surface potential of photoconductor after irradiation with light of cm 2 (80V)
Is high (low initial sensitivity), the black solid density is as low as 1.20 from the initial stage, which means that it is not practical.

【0073】さらに、比較例4から、オキシチタニルフ
タロシアニン/塩化ビニル樹脂の重量比が本発明範囲外
の0.6である場合には、転写メモリー電位が初期的に
は22Vと小さく、転写メモリー画像も見られなかった
ものの、繰り返し使用後の1万枚印字後では黒ベタ濃度
の低下(1.35から1.18)と転写メモリー画像の
発生が見られた。
Furthermore, from Comparative Example 4, when the weight ratio of oxytitanyl phthalocyanine / vinyl chloride resin was 0.6, which is outside the range of the present invention, the transfer memory potential was initially as small as 22 V, and the transfer memory image was Although not seen, the black solid density was lowered (1.35 to 1.18) and the occurrence of a transfer memory image was observed after printing 10,000 sheets after repeated use.

【0074】また、比較例5では、初期感度と1万枚印
字後の黒ベタ濃度も良好であり、繰り返し使用後の感度
低下もほとんど見られないが、転写メモリーが40Vと
大きく、転写メモリー画像が初期から発生した。
Further, in Comparative Example 5, the initial sensitivity and the black solid density after printing 10,000 sheets were good, and there was almost no decrease in sensitivity after repeated use, but the transfer memory was as large as 40 V and the transfer memory image Occurred from the beginning.

【0075】比較例6は、電荷輸送材料として、そのイ
オン化ポテンシャルが、オキシチタニルフタロシアニン
のイオン化ポテンシャル5.10eVより小さい4.8
7eVの化合物5を用いた場合であり、従来から負帯電
積層型の電子写真感光体においてよく知られたイオン化
ポテンシャルに関する法則に従う場合である。電荷発生
層において発生した電荷の電荷輸送層への注入性は極め
て良好であり、そのため初期感度(光強度2.5μJ/
cm2の光による照射後の感光体の表面電位)は表3か
ら30Vと良好であるが転写メモリー値が55Vと大き
く、初期から転写メモリー画像が発生する。
In Comparative Example 6, as the charge transport material, its ionization potential was smaller than the ionization potential of oxytitanyl phthalocyanine, which was 5.10 eV, 4.8.
This is the case where the compound 5 of 7 eV was used, and the case where the law relating to the ionization potential well known in the prior art for the negatively charged laminated electrophotographic photosensitive member was followed. The injection property of the charges generated in the charge generation layer into the charge transport layer is extremely good, and therefore the initial sensitivity (light intensity 2.5 μJ /
The surface potential of the photoconductor after irradiation with light of cm 2 is as good as 30 V from Table 3, but the transfer memory value is large at 55 V, and a transfer memory image is generated from the initial stage.

【0076】比較例7は、電荷輸送材料として、そのイ
オン化ポテンシャルが、オキシチタニルフタロシアニン
のイオン化ポテンシャル5.10eVより本発明にかか
る範囲を超える(+0.4)程大きい5.50eVの化
合物6を用いる場合であり、前記比較例3と同様に転写
メモリーは小さいものの、初期感度が低く、初期時の黒
ベタ濃度が低く、さらに繰り返し使用(1万枚)後の感
度低下および転写メモリーも見られ、実用性に乏しいこ
とが判る。
In Comparative Example 7, as the charge transport material, the compound 6 having an ionization potential of 5.50 eV, which is larger than the ionization potential of oxytitanyl phthalocyanine of 5.10 eV by a value (+0.4) exceeding the range according to the present invention, is used. In this case, although the transfer memory is small as in Comparative Example 3, the initial sensitivity is low, the black solid density at the initial stage is low, and the sensitivity decrease and the transfer memory after repeated use (10,000 sheets) are also observed. It turns out that it is not practical.

【0077】実験例では示さなかったが、オキシチタニ
ルフタロシアニン/塩化ビニル樹脂の重量比が比較例5
よりさらに大きい場合は、大きくなるにしたがい、表面
電位の低下(保持率の低下)が見られ、また帯電電位も
所定の基準仕様値以下にしか帯電できなくなった。
Although not shown in the experimental example, the weight ratio of oxytitanyl phthalocyanine / vinyl chloride resin was comparative example 5.
When it was larger, the surface potential decreased (reduction of the holding ratio) as it increased, and the charging potential could be charged only below a predetermined standard specification value.

【0078】このように表2、3から、本発明にかかる
感光体については、転写メモリー電位が小さいことか
ら、スコロトロン帯電方式や直流−交流を重畳した接触
帯電方式であって、OHPシートのように通常の印字用
紙とは厚みや材質の異なる場合に対応させて転写電流を
大幅に増加させる条件など、転写後の表面電位が次の帯
電機構でキャンセルされず残りやすい(すなわち転写メ
モリー画像が発生し易い)電子写真プロセスにより画像
形成する電子写真装置において特に好適に効果を発揮す
ることが判る。
As can be seen from Tables 2 and 3, the photoconductors according to the present invention have a small transfer memory potential, and thus are of the scorotron charging type or the DC-AC superposed contact charging type, and are similar to OHP sheets. The surface potential after transfer tends to remain without being canceled by the next charging mechanism, such as the condition that the transfer current is greatly increased in response to the case where the thickness and material are different from those of normal printing paper (that is, transfer memory image occurs It is understood that the effect is particularly suitably exerted in an electrophotographic apparatus that forms an image by an electrophotographic process.

【0079】さらに、コロトロンや直流のみ印加する方
式の電荷注入帯電方式などのように転写後の表面電位が
次の帯電機構でキャンセルされず残りやすい電子写真プ
ロセスにより画像形成する電子写真装置においても前述
と同様に効果を有することが判った。
Further, in the electrophotographic apparatus for forming an image by an electrophotographic process in which the surface potential after transfer is likely to remain without being canceled by the next charging mechanism, such as a corotron or a charge injection charging method in which only direct current is applied. It was found to have the same effect as in.

【0080】[0080]

【発明の効果】本発明によれば、導電性基体上に少なく
とも電荷発生層と電荷輸送層を積層した電子写真感光体
において、前記電荷発生層がオキシチタニルフタロシア
ニンと塩化ビニル樹脂を0.8ないし2.0好ましくは
1.0ないし2.0の範囲の重量比(前記フタロシアニ
ン/前記樹脂)で含有し、前記電荷輸送層は、前記オキ
シチタニルフタロシアニンのイオン化ポテンシャル(e
V)との間で前記式(1)の関係式を満足するイオン化
ポテンシャル(eV)を有する電荷輸送材料を含有する
電子写真感光体としたので、低電界領域における感度低
下や繰り返し使用による残留電位上昇といった障害が発
生せず、さらに転写メモリー電位の小さな電子写真感光
体を提供でき、またさらに反転現像方式において、転写
メモリー画像が発生せず良好な印字画像が得られる電子
写真装置を提供することができる。
According to the present invention, in an electrophotographic photosensitive member having at least a charge generation layer and a charge transport layer laminated on a conductive substrate, the charge generation layer contains oxytitanyl phthalocyanine and vinyl chloride resin in an amount of 0.8 to 0.8. 2.0, preferably in a weight ratio of 1.0 to 2.0 (the phthalocyanine / the resin), and the charge transport layer comprises an ionization potential (e) of the oxytitanyl phthalocyanine.
V), the electrophotographic photosensitive member contains a charge transport material having an ionization potential (eV) satisfying the relational expression (1), so that the sensitivity decreases in the low electric field region and the residual potential due to repeated use. (EN) An electrophotographic apparatus which can provide an electrophotographic photosensitive member having a small transfer memory potential without causing an obstacle such as a rise, and can further obtain a good printed image without generating a transfer memory image in the reversal development method. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる電子写真感光体の模式的要部断
面図
FIG. 1 is a schematic cross-sectional view of essential parts of an electrophotographic photosensitive member according to the present invention.

【図2】本発明にかかる電子写真装置の概略構成図FIG. 2 is a schematic configuration diagram of an electrophotographic apparatus according to the present invention.

【図3】感光体の表面電位測定機の概略構成図FIG. 3 is a schematic configuration diagram of a photoconductor surface potential measuring device.

【符号の説明】[Explanation of symbols]

1 導電性基体 2 中間層 3 電荷発生層 4 電荷輸送層 5 保護層 10 電子写真感光体 21 帯電部材 23 露光機構 24 現像機構 26 転写機構 100 電子写真装置 1 Conductive substrate 2 Middle class 3 Charge generation layer 4 Charge transport layer 5 protective layer 10 Electrophotographic photoreceptor 21 Charging member 23 Exposure mechanism 24 Development mechanism 26 Transfer mechanism 100 electrophotographic device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 幹夫 長野県松本市筑摩四丁目18番1号 富士電 機画像デバイス株式会社内 Fターム(参考) 2H068 AA13 AA19 AA20 BA11 BA13 BA39 BB12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mikio Yamazaki             Fujiden, 4-18-1 Chikuma, Matsumoto City, Nagano Prefecture             Machine Image Device Co., Ltd. F term (reference) 2H068 AA13 AA19 AA20 BA11 BA13                       BA39 BB12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電性基体上に少なくとも電荷発生層と
電荷輸送層を積層した電子写真感光体において、前記電
荷発生層がオキシチタニルフタロシアニンと塩化ビニル
樹脂を0.8ないし2.0の範囲の重量比(前記フタロ
シアニン/前記樹脂)で含有し、前記電荷輸送層は、前
記オキシチタニルフタロシアニンのイオン化ポテンシャ
ル(eV)との間で下記式(1)の関係式を満足するイ
オン化ポテンシャル(eV)を有する電荷輸送材料を含
有することを特徴とする電子写真感光体。 【数1】
1. An electrophotographic photosensitive member comprising a conductive substrate and at least a charge generation layer and a charge transport layer laminated on the conductive substrate, wherein the charge generation layer contains oxytitanyl phthalocyanine and vinyl chloride resin in a range of 0.8 to 2.0. A weight ratio (the phthalocyanine / the resin) is included, and the charge transport layer has an ionization potential (eV) satisfying the relational expression of the following formula (1) with the ionization potential (eV) of the oxytitanyl phthalocyanine. An electrophotographic photoreceptor comprising the charge transport material having [Equation 1]
【請求項2】 電荷発生層が少なくともオキシチタニル
フタロシアニンと塩化ビニル樹脂を1.0ないし2.0
の範囲の重量比(前記フタロシアニン/前記樹脂)で含
有することを特徴とする請求項1記載の電子写真感光
体。
2. The charge generation layer comprises at least oxytitanyl phthalocyanine and vinyl chloride resin in an amount of 1.0 to 2.0.
The electrophotographic photosensitive member according to claim 1, wherein the electrophotographic photosensitive member is contained in a weight ratio (the phthalocyanine / the resin) in the range of.
【請求項3】 オキシチタニルフタロシアニンはCuK
αのX線回折スペクトルにおいて、ブラッグ角(2θ±
0.2°)が7.5°、12.3°、16.3°、2
5.3°、28.7°または9.5°、9.7°、1
1.7°、15.0°、23.5°、24.1°、2
7.3°に主要ピークを有することを特徴とする請求項
1または2記載の電子写真感光体。
3. Oxytitanyl phthalocyanine is CuK.
In the X-ray diffraction spectrum of α, the Bragg angle (2θ ±
0.2 °) is 7.5 °, 12.3 °, 16.3 °, 2
5.3 °, 28.7 ° or 9.5 °, 9.7 °, 1
1.7 °, 15.0 °, 23.5 °, 24.1 °, 2
The electrophotographic photosensitive member according to claim 1 or 2, which has a main peak at 7.3 °.
【請求項4】 請求項1ないし3のいずれか一項に記載
の電子写真感光体と、少なくとも帯電機構、露光機構、
現像機構、転写機構を有し、反転現像方式により画像形
成される構成を備えることを特徴とする電子写真装置。
4. The electrophotographic photosensitive member according to claim 1, at least a charging mechanism, an exposure mechanism,
An electrophotographic apparatus comprising a developing mechanism and a transfer mechanism, and having a structure for forming an image by a reversal developing method.
JP2002025177A 2002-02-01 2002-02-01 Electrophotographic photoreceptor and electrophotographic device equipped with the photoreceptor Pending JP2003228187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002025177A JP2003228187A (en) 2002-02-01 2002-02-01 Electrophotographic photoreceptor and electrophotographic device equipped with the photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002025177A JP2003228187A (en) 2002-02-01 2002-02-01 Electrophotographic photoreceptor and electrophotographic device equipped with the photoreceptor

Publications (1)

Publication Number Publication Date
JP2003228187A true JP2003228187A (en) 2003-08-15

Family

ID=27747410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002025177A Pending JP2003228187A (en) 2002-02-01 2002-02-01 Electrophotographic photoreceptor and electrophotographic device equipped with the photoreceptor

Country Status (1)

Country Link
JP (1) JP2003228187A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026794A (en) * 2006-07-25 2008-02-07 Ricoh Co Ltd Photoreceptor evaluation device, image forming apparatus and evaluation method
JP2008040178A (en) * 2006-08-07 2008-02-21 Ricoh Co Ltd Evaluation device for durability characteristics of photoreceptor and evaluation method for durability characteristics of photoreceptor
JPWO2008117806A1 (en) * 2007-03-27 2010-07-15 キヤノン株式会社 Process cartridge and electrophotographic apparatus
JP2014098910A (en) * 2006-03-30 2014-05-29 Mitsubishi Chemicals Corp Image forming method
WO2018025545A1 (en) * 2016-08-05 2018-02-08 パナソニックIpマネジメント株式会社 Imaging device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098910A (en) * 2006-03-30 2014-05-29 Mitsubishi Chemicals Corp Image forming method
JP2008026794A (en) * 2006-07-25 2008-02-07 Ricoh Co Ltd Photoreceptor evaluation device, image forming apparatus and evaluation method
JP4743877B2 (en) * 2006-07-25 2011-08-10 株式会社リコー Photoreceptor evaluation apparatus, image forming apparatus, and evaluation method
JP4686417B2 (en) * 2006-08-07 2011-05-25 株式会社リコー Photoconductor durability characteristic evaluation apparatus and photoconductor durability characteristic evaluation method
JP2008040178A (en) * 2006-08-07 2008-02-21 Ricoh Co Ltd Evaluation device for durability characteristics of photoreceptor and evaluation method for durability characteristics of photoreceptor
JP4739450B2 (en) * 2007-03-27 2011-08-03 キヤノン株式会社 Process cartridge and electrophotographic apparatus
JPWO2008117806A1 (en) * 2007-03-27 2010-07-15 キヤノン株式会社 Process cartridge and electrophotographic apparatus
WO2018025545A1 (en) * 2016-08-05 2018-02-08 パナソニックIpマネジメント株式会社 Imaging device
CN109075181A (en) * 2016-08-05 2018-12-21 松下知识产权经营株式会社 Photographic device
JPWO2018025545A1 (en) * 2016-08-05 2019-05-30 パナソニックIpマネジメント株式会社 Imaging device
US10559629B2 (en) 2016-08-05 2020-02-11 Panasonic Intellectual Property Management Co., Ltd. Imaging device including at least one unit pixel cell
US10861904B2 (en) 2016-08-05 2020-12-08 Panasonic Intellectual Property Management Co., Ltd. Imaging device including a photoelectric converter and a voltage application circuit
CN109075181B (en) * 2016-08-05 2023-05-12 松下知识产权经营株式会社 Image pickup apparatus

Similar Documents

Publication Publication Date Title
JP4798494B2 (en) Electrophotographic photoreceptor and method for producing the same
JP4838749B2 (en) Method for producing electrophotographic photosensitive member
JP2004226637A (en) Monolayer electrophotographic photoreceptor, and image forming apparatus with the same
KR20140029315A (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5564805B2 (en) Electrophotographic photosensitive member, and image forming method, image forming apparatus, and process cartridge using the same
JP2006323310A (en) Image forming apparatus
JP6741165B2 (en) Electrophotographic photoreceptor, manufacturing method thereof and electrophotographic apparatus
JP2003228187A (en) Electrophotographic photoreceptor and electrophotographic device equipped with the photoreceptor
JP2006195476A (en) Electrophotographic photoreceptor, electrophotographic cartridge and electrophotographic imaging apparatus
JP2000162791A (en) Electrophotographic photoreceptor and electrophotographic device
JP2001228637A (en) Electrophotographic photoreceptor and electrophotographic device
JP2015018035A (en) Electrophotographic photoreceptor and image forming apparatus using the same
JP2001066805A (en) Electrophotographic photoreceptor
JP2005049470A (en) Electrophotographic photoreceptor
US20050064309A1 (en) Image forming method
JP5718413B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
KR20140029321A (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2002123028A (en) Image forming device
JP5434246B2 (en) Electrophotographic photosensitive member, and electrophotographic method, electrophotographic apparatus and process cartridge using the electrophotographic photosensitive member
JP2002072520A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP3471873B2 (en) Image forming method
JP2005043632A (en) Electrophotographic photoreceptor
JP2003043713A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP5434260B2 (en) Electrophotographic photosensitive member, and electrophotographic method, electrophotographic apparatus and process cartridge using the electrophotographic photosensitive member
JP2008164715A (en) Electrophotographic photoreceptor