JP2003223918A - Resistance measurement equipment and diagnostic equipment - Google Patents

Resistance measurement equipment and diagnostic equipment

Info

Publication number
JP2003223918A
JP2003223918A JP2002022730A JP2002022730A JP2003223918A JP 2003223918 A JP2003223918 A JP 2003223918A JP 2002022730 A JP2002022730 A JP 2002022730A JP 2002022730 A JP2002022730 A JP 2002022730A JP 2003223918 A JP2003223918 A JP 2003223918A
Authority
JP
Japan
Prior art keywords
resistance
signal
voltage
fuel cell
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002022730A
Other languages
Japanese (ja)
Other versions
JP4025080B2 (en
Inventor
Kenji Kobayashi
健二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2002022730A priority Critical patent/JP4025080B2/en
Publication of JP2003223918A publication Critical patent/JP2003223918A/en
Application granted granted Critical
Publication of JP4025080B2 publication Critical patent/JP4025080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide resistance measurement equipment which can measure effective resistance of a fuel cell efficiently in a short time. <P>SOLUTION: The diagnostic equipment 1, which measures the effective resistance of the fuel cell BT, has a signal generation section 11 that generates signals for measurement including a 1st alternate current signal for measurement for measuring membrane resistance, which forms a part of the effective resistance, and a 2nd alternate current signal for measurement for measuring a reaction resistance, which forms a part of the effective resistance, and has a measurement section 12 that obtains a resistance value of the membrane resistance based on a current value of the 1st alternate current signal for measurement flowing in the membrane resistance in a state where the signal for measurement is impressed on the fuel cell BT, and voltage which is generated in the membrane, and also obtains the resistance value of the reaction resistance based on the current value of the 2nd alternate current signal for measurement flowing in the reaction resistance, and the voltage which is generated in the reaction resistance. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、固体高分
子形燃料電池の実効抵抗を四端子法に従って測定するの
に適した抵抗測定装置、およびその抵抗測定装置を備え
た診断装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance measuring device suitable for measuring the effective resistance of a polymer electrolyte fuel cell according to the four-terminal method, and a diagnostic device equipped with the resistance measuring device. is there.

【0002】[0002]

【従来の技術】一般的に、固体高分子形燃料電池(以下
「燃料電池」ともいう)の内部抵抗(インピーダンス)
のうちの実効抵抗としては、主として、燃料電池を構成
する電解質膜の抵抗、触媒の抵抗、電極等の抵抗および
これらの接触抵抗(本明細書では、これらを「膜抵抗」
と定義する)と、触媒および燃料ガスの反応に起因する
反応抵抗とで構成される。この場合、燃料電池の内部抵
抗における実効抵抗成分(以下、「実効抵抗」ともい
う)については、四端子法に従って、測定用交流信号
(以下「測定用信号」ともいう)を燃料電池に印加して
測定する。この際に、印加する測定用信号が高い周波数
のときには、膜抵抗が実効抵抗として測定され、低い周
波数のときには、反応抵抗が実効抵抗として測定され
る。この測定用信号の周波数をパラメータにした燃料電
池の内部抵抗における実効抵抗成分と、虚数成分との関
係は、一例として、図2に示すコール・コール・プロッ
トで表される。この場合、「R1」は、燃料電池が正常
な状態のときの膜抵抗を表し、「R2」は、その状態の
ときの反応抵抗を表す。一方、燃料電池が、例えば、内
部でショートしている状態では、膜抵抗が抵抗値R1よ
りも小さな抵抗値を示し、燃料電池が消耗した状態で
は、膜抵抗が同図に示すように抵抗値R1よりも大きな
抵抗値R3を示す。また、触媒と燃料ガスとの反応状態
が悪い状態では、反応抵抗が同図に示すように抵抗値R
2よりも大きな抵抗値R4を示す。したがって、膜抵抗
および反応抵抗を測定して、各々の測定値を所定の基準
値と比較することにより、燃料電池の良否判定が可能と
なる。
2. Description of the Related Art Generally, the internal resistance (impedance) of a polymer electrolyte fuel cell (hereinafter also referred to as "fuel cell")
As the effective resistance, among them, the resistance of the electrolyte membrane that constitutes the fuel cell, the resistance of the catalyst, the resistance of the electrodes and the like, and the contact resistance thereof (these are referred to as “membrane resistance” in this specification).
Defined) and the reaction resistance due to the reaction of the catalyst and the fuel gas. In this case, for the effective resistance component (hereinafter, also referred to as “effective resistance”) in the internal resistance of the fuel cell, an AC signal for measurement (hereinafter also referred to as “measurement signal”) is applied to the fuel cell according to the four-terminal method. To measure. At this time, when the applied measurement signal has a high frequency, the membrane resistance is measured as an effective resistance, and when the measurement signal has a low frequency, the reaction resistance is measured as an effective resistance. The relationship between the effective resistance component and the imaginary number component in the internal resistance of the fuel cell using the frequency of the measurement signal as a parameter is represented by the Cole-Cole plot shown in FIG. 2 as an example. In this case, "R1" represents the membrane resistance when the fuel cell is in a normal state, and "R2" represents the reaction resistance in that state. On the other hand, for example, when the fuel cell is internally short-circuited, the membrane resistance shows a resistance value smaller than the resistance value R1, and when the fuel cell is exhausted, the membrane resistance shows the resistance value as shown in FIG. A resistance value R3 larger than R1 is shown. When the reaction state between the catalyst and the fuel gas is poor, the reaction resistance is the resistance value R as shown in FIG.
The resistance value R4 is larger than 2. Therefore, the quality of the fuel cell can be determined by measuring the membrane resistance and the reaction resistance and comparing each measured value with a predetermined reference value.

【0003】燃料電池の実効抵抗を四端子法に従って測
定する抵抗測定装置として、図3に示す抵抗測定装置6
1が従来から知られている。この抵抗測定装置61を使
用して測定対象の燃料電池BTの実効抵抗を測定する際
には、印加する測定用信号の周波数を変化させて膜抵抗
および反応抵抗を測定する。具体的には、同図に示すよ
うに、まず、可変負荷62の抵抗値を燃料電池BTの起
電力に応じた抵抗値に設定した後に、可変負荷62をプ
ローブP1,P2を介して燃料電池BTの両電極に接続
する。また、燃料電池BTを流れる測定用信号の電流値
を検出する電流検出センサ(カレントトランス)CTを
プローブP1および可変負荷62の間に配置し、電流検
出センサCTと抵抗測定装置61のセンサ信号入力端子
とを接続する。さらに、プローブP3,P5を燃料電池
BTの一方の電極に接続すると共にプローブP4,P6
を他方の電極に接続する。次いで、測定用信号を所定の
周波数(例えば、1mHzの低周波数)に設定した後
に、プローブP3,P4を介して燃料電池BTに印加
し、プローブP5,P6を介して、測定用信号が流れる
ことによって燃料電池BTの内部抵抗に発生する交流電
圧を入力する。同時に、電流検出センサCTの検出電圧
を入力する。
A resistance measuring device 6 shown in FIG. 3 is used as a resistance measuring device for measuring the effective resistance of a fuel cell according to the four-terminal method.
1 is conventionally known. When measuring the effective resistance of the fuel cell BT to be measured using this resistance measuring device 61, the frequency of the measurement signal to be applied is changed to measure the membrane resistance and the reaction resistance. Specifically, as shown in the figure, first, after setting the resistance value of the variable load 62 to a resistance value according to the electromotive force of the fuel cell BT, the variable load 62 is connected to the fuel cell via the probes P1 and P2. Connect to both electrodes of BT. Further, a current detection sensor (current transformer) CT that detects the current value of the measurement signal flowing through the fuel cell BT is arranged between the probe P1 and the variable load 62, and the current detection sensor CT and the sensor signal input of the resistance measuring device 61 are input. Connect with the terminal. Further, the probes P3 and P5 are connected to one electrode of the fuel cell BT and the probes P4 and P6 are connected.
Is connected to the other electrode. Then, after setting the measurement signal to a predetermined frequency (for example, a low frequency of 1 mHz), the measurement signal is applied to the fuel cell BT through the probes P3 and P4, and the measurement signal flows through the probes P5 and P6. The AC voltage generated in the internal resistance of the fuel cell BT is input by. At the same time, the detection voltage of the current detection sensor CT is input.

【0004】この場合、この抵抗測定装置61では、内
部抵抗に発生する交流電圧と、電流検出センサCTによ
って検出された検出電圧とに基づいて燃料電池BTの実
効抵抗を算出する。続いて、測定用信号の周波数を所定
の周波数刻みで高い周波数に変更し、同様にして燃料電
池BTの実効抵抗を算出する。このようにして、測定用
信号の周波数を例えば数十kHzまでの高い周波数に徐
々に変更しつつ実効抵抗を算出する。これにより、図3
に示すコール・コール・プロットが作成される。この場
合、高い周波数の測定用信号で同図に示す膜抵抗(R
1)が求められ、低い周波数の測定用信号で同図に示す
反応抵抗(R2)が求められ、この膜抵抗および反応抵
抗の大きさを確認することで燃料電池BTの良否を判定
することができる。
In this case, the resistance measuring device 61 calculates the effective resistance of the fuel cell BT based on the AC voltage generated in the internal resistance and the detection voltage detected by the current detection sensor CT. Then, the frequency of the measurement signal is changed to a higher frequency in predetermined frequency steps, and the effective resistance of the fuel cell BT is calculated in the same manner. In this way, the effective resistance is calculated while gradually changing the frequency of the measurement signal to a high frequency up to several tens of kHz. As a result, FIG.
The Cole-Cole plot shown in is created. In this case, the membrane resistance (R
1) is obtained, and the reaction resistance (R2) shown in the same figure is obtained with a low-frequency measurement signal, and the quality of the fuel cell BT can be determined by confirming the magnitudes of the membrane resistance and the reaction resistance. it can.

【0005】[0005]

【発明が解決しようとする課題】ところが、従来の抵抗
測定装置61には、以下の問題点がある。すなわち、従
来の抵抗測定装置61では、測定用信号の周波数を徐々
に変更して実効抵抗をその都度測定している。この場
合、実効抵抗の測定に際しては、測定用信号の少なくと
も1サイクルに相当する時間だけ燃料電池BTに印加し
続ける必要があるため、低い周波数の測定用信号で測定
するときには、その測定に長時間を要することになる。
その一方、燃料電池の膜抵抗R1および反応抵抗R2を
測定するためには、高い周波数および低い周波数の測定
用信号を印加して測定する必要がある。したがって、長
時間を要する測定を何度も実施することになり、測定作
業が煩雑で非効率であるという問題点がある。
However, the conventional resistance measuring device 61 has the following problems. That is, in the conventional resistance measuring device 61, the frequency of the measurement signal is gradually changed and the effective resistance is measured each time. In this case, when measuring the effective resistance, it is necessary to continue to apply the measurement signal to the fuel cell BT for a time corresponding to at least one cycle. Will be required.
On the other hand, in order to measure the membrane resistance R1 and the reaction resistance R2 of the fuel cell, it is necessary to apply measurement signals of high frequency and low frequency to measure. Therefore, the measurement that requires a long time is performed many times, and there is a problem that the measurement work is complicated and inefficient.

【0006】本発明は、かかる問題点に鑑みてなされた
ものであり、燃料電池の実効抵抗を短時間で効率よく測
定し得る抵抗測定装置、およびこの抵抗測定装置によっ
て測定された実効抵抗に基づいて燃料電池の良否を効率
よく診断し得る診断装置を提供することを主目的とす
る。
The present invention has been made in view of the above problems, and is based on a resistance measuring device capable of efficiently measuring the effective resistance of a fuel cell in a short time, and an effective resistance measured by the resistance measuring device. The main object of the present invention is to provide a diagnostic device capable of efficiently diagnosing the quality of a fuel cell.

【0007】[0007]

【課題を解決するための手段】上記目的を達成すべく請
求項1記載の抵抗測定装置は、燃料電池の実効抵抗を測
定する測定装置であって、前記実効抵抗の一部を形成す
る膜抵抗を測定するための第1測定用交流信号と当該実
効抵抗の一部を形成する反応抵抗を測定するための第2
測定用交流信号とを含む測定用信号を生成する測定用信
号生成部と、前記測定用信号を前記燃料電池に印加した
状態において前記膜抵抗を流れる前記第1測定用交流信
号の電流値および当該膜抵抗に発生する電圧に基づいて
当該膜抵抗の抵抗値を求めると共に前記反応抵抗を流れ
る前記第2測定用交流信号の電流値および当該反応抵抗
に発生する電圧に基づいて当該反応抵抗の抵抗値を求め
る測定部とを備えている。
In order to achieve the above object, a resistance measuring device according to claim 1 is a measuring device for measuring an effective resistance of a fuel cell, the film resistance forming a part of the effective resistance. A first measuring alternating current signal for measuring and a second measuring current resistance for forming a part of the effective resistance.
A measurement signal generator that generates a measurement signal including a measurement AC signal, and a current value of the first measurement AC signal that flows through the membrane resistance in a state where the measurement signal is applied to the fuel cell and The resistance value of the membrane resistance is calculated based on the voltage generated in the membrane resistance, and the resistance value of the reaction resistance is calculated based on the current value of the second measuring AC signal flowing through the reaction resistance and the voltage generated in the reaction resistance. And a measuring unit for determining.

【0008】請求項2記載の抵抗測定装置は、請求項1
記載の抵抗測定装置において、前記測定部は、前記燃料
電池を流れる前記測定用信号の電流値に応じた電圧を入
力したときに前記膜抵抗を流れる前記第1測定用交流信
号の電流値に応じた電圧を出力する第1バンドパスフィ
ルタと、前記燃料電池の両電極間に発生する電圧と前記
第1測定用交流信号の電流値に応じた電圧とで同期検波
して前記膜抵抗に発生する電圧を検出する第1同期整流
回路と、当該第1同期整流回路によって検出された電圧
を前記第1測定用交流信号の電流値に応じた電圧で除算
することによって前記膜抵抗の抵抗値を求める第1除算
器と、前記燃料電池を流れる前記測定用信号の電流値に
応じた電圧を入力して前記反応抵抗を流れる前記第2測
定用交流信号の電流値に応じた電圧を出力する第2バン
ドパスフィルタと、前記燃料電池の前記両電極間に発生
する電圧と前記第2測定用交流信号の電流値に応じた電
圧とで同期検波して前記反応抵抗に発生する電圧を検出
する第2同期整流回路と、当該第2同期整流回路によっ
て検出された電圧を前記第2測定用交流信号の電流値に
応じた電圧で除算することによって前記反応抵抗の抵抗
値を求める第2除算器とを備えて構成されている。
A resistance measuring device according to a second aspect is the first aspect.
In the resistance measuring device described above, the measuring unit responds to a current value of the first measuring AC signal flowing through the membrane resistance when a voltage corresponding to a current value of the measuring signal flowing through the fuel cell is input. And a voltage corresponding to the current value of the first measuring AC signal, which is generated by the membrane resistance. A first synchronous rectification circuit that detects a voltage, and a resistance value of the membrane resistance is obtained by dividing the voltage detected by the first synchronous rectification circuit by a voltage according to a current value of the first measurement AC signal. A first divider and a second voltage input according to a current value of the measurement signal flowing through the fuel cell, and a voltage output according to a current value of the second measurement AC signal flowing through the reaction resistance. With bandpass filter A second synchronous rectification circuit for synchronously detecting the voltage generated between the electrodes of the fuel cell and the voltage corresponding to the current value of the second measuring AC signal to detect the voltage generated in the reaction resistance; A second divider that obtains the resistance value of the reaction resistance by dividing the voltage detected by the second synchronous rectification circuit by the voltage corresponding to the current value of the second measurement AC signal. There is.

【0009】請求項3記載の診断装置は、燃料電池の良
否を診断する診断装置であって、請求項1または2記載
の抵抗測定装置と、前記膜抵抗の抵抗値が所定範囲内か
否かを判定すると共に前記反応抵抗の抵抗値が所定の上
限値以下か否かを判定する判定部とを備えている。
The diagnostic device according to claim 3 is a diagnostic device for diagnosing the quality of a fuel cell, wherein the resistance measuring device according to claim 1 or 2 and whether the resistance value of the membrane resistance is within a predetermined range or not. And a determination unit that determines whether or not the resistance value of the reaction resistance is less than or equal to a predetermined upper limit value.

【0010】請求項4記載の診断装置は、請求項3記載
の診断装置において、前記判定部は、前記膜抵抗の抵抗
値が前記所定範囲を外れているとき、または前記反応抵
抗の抵抗値が前記所定の上限値を超えているときに、診
断対象の前記燃料電池を不良と判定する。
According to a fourth aspect of the present invention, in the diagnostic apparatus according to the third aspect, the judging section determines that the resistance value of the membrane resistance is out of the predetermined range or the resistance value of the reaction resistance is When the predetermined upper limit is exceeded, the fuel cell to be diagnosed is determined to be defective.

【0011】請求項5記載の診断装置は、請求項3また
は4記載の診断装置において、前記判定部の判定結果を
表示する表示部を備えている。
A diagnostic device according to a fifth aspect is the diagnostic device according to the third or fourth aspect, further comprising a display section for displaying the determination result of the determination section.

【0012】[0012]

【発明の実施の形態】以下、添付図面を参照して、本発
明に係る抵抗測定装置および診断装置の好適な実施の形
態について説明する。なお、図3に示す構成と同一の構
成要素については、同一の符号を付して重複する説明を
省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of a resistance measuring device and a diagnostic device according to the present invention will be described below with reference to the accompanying drawings. The same components as those in the configuration shown in FIG. 3 are designated by the same reference numerals, and redundant description will be omitted.

【0013】最初に、診断装置1の構成について、図1
を参照して説明する。
First, regarding the configuration of the diagnostic device 1, FIG.
Will be described with reference to.

【0014】診断装置1は、測定対象の燃料電池の実効
抵抗を測定してその測定値に基づいて燃料電池の良否を
診断する診断装置であって、図1に示すように、信号生
成部11、測定部12、判定部13および表示部14を
備えて構成されている。信号生成部11は、発振器2
1,22、アンプ23および抵抗24〜26を備えてい
る。この場合、発振器21は、測定対象である燃料電池
BTの膜抵抗を測定し得る周波数(例えば10kHz)
の第1測定用交流信号を生成し、発振器22は、燃料電
池BTの反応抵抗を測定し得る周波数(第1測定用交流
信号の周波数よりも低い周波数:例えば10Hz)の第
2測定用交流信号を生成する。また、アンプ23および
抵抗24〜26は、発振器21,22によって生成され
た第1測定用交流信号および第2測定用交流信号をミキ
シングして測定用信号を生成する。
The diagnostic device 1 is a diagnostic device for measuring the effective resistance of the fuel cell to be measured and diagnosing the quality of the fuel cell based on the measured value. As shown in FIG. The measurement unit 12, the determination unit 13, and the display unit 14 are provided. The signal generator 11 includes the oscillator 2
1, 22, an amplifier 23 and resistors 24 to 26. In this case, the oscillator 21 has a frequency (for example, 10 kHz) at which the membrane resistance of the fuel cell BT to be measured can be measured.
Of the second measurement AC signal having a frequency (a frequency lower than the frequency of the first measurement AC signal: eg, 10 Hz) at which the oscillator 22 can measure the reaction resistance of the fuel cell BT. To generate. The amplifier 23 and the resistors 24 to 26 mix the first measurement AC signal and the second measurement AC signal generated by the oscillators 21 and 22 to generate a measurement signal.

【0015】測定部12は、バンドパスフィルタ31,
41、同期検波回路32,42、ローパスフィルタ3
3,43、除算器34,44およびコンパレータ35,
45を備えて構成されている。この場合、バンドパスフ
ィルタ31、同期検波回路32、ローパスフィルタ33
および除算器34が膜抵抗を測定する。具体的には、バ
ンドパスフィルタ31は、本発明における第1バンドパ
スフィルタに相当し、電流検出センサCTから出力され
るセンサ信号を入力した際に、第1測定用交流信号の電
流値に応じた電圧V2を出力する。同期検波回路32
は、本発明における第1同期整流回路に相当し、測定用
信号が流れることによって燃料電池BTの内部抵抗に発
生する電圧V1と電圧V2とで同期検波することによっ
て、等価的に膜抵抗の両端に発生する電圧に対応する電
圧を含む電圧V3を生成する。この場合、バンドパスフ
ィルタ31に電圧V1を入力して、同期検波回路32に
電圧V1に代えて電流検出センサCTから出力されるセ
ンサ信号を入力してもよい(後述する反応抵抗の測定回
路においても同様)。ローパスフィルタ33は、抵抗3
6およびコンデンサ37と相俟って電圧V3から高周波
成分を除去して膜抵抗の両端に発生する電圧に対応する
直流の電圧V4のみを出力する。除算器34は、電圧V
4を電圧V2で除算することによって膜抵抗の実効抵抗
値に比例する電圧値の電圧V5を出力する。
The measuring section 12 includes a bandpass filter 31,
41, synchronous detection circuits 32 and 42, low-pass filter 3
3, 43, dividers 34, 44 and comparator 35,
It is configured with 45. In this case, the band pass filter 31, the synchronous detection circuit 32, the low pass filter 33
And a divider 34 measures the membrane resistance. Specifically, the bandpass filter 31 corresponds to the first bandpass filter in the present invention, and when the sensor signal output from the current detection sensor CT is input, it corresponds to the current value of the first measurement AC signal. Output voltage V2. Synchronous detection circuit 32
Corresponds to the first synchronous rectification circuit in the present invention, and the voltage V1 and the voltage V2 generated in the internal resistance of the fuel cell BT by the flow of the measurement signal are synchronously detected, so that both ends of the membrane resistance are equivalently detected. A voltage V3 including a voltage corresponding to the voltage generated at is generated. In this case, the voltage V1 may be input to the bandpass filter 31, and the sensor signal output from the current detection sensor CT may be input to the synchronous detection circuit 32 instead of the voltage V1 (in a reaction resistance measuring circuit described later). The same). The low-pass filter 33 has a resistor 3
6 and the capacitor 37, the high frequency component is removed from the voltage V3 to output only the DC voltage V4 corresponding to the voltage generated across the membrane resistance. The divider 34 has a voltage V
By dividing 4 by the voltage V2, a voltage V5 having a voltage value proportional to the effective resistance value of the film resistance is output.

【0016】一方、バンドパスフィルタ41、同期検波
回路42、ローパスフィルタ43および除算器44は反
応抵抗を測定する。具体的には、バンドパスフィルタ4
1は、本発明における第2バンドパスフィルタに相当
し、電流検出センサCTから出力されるセンサ信号を入
力した際に、第2測定用信号の電流値に応じた電圧V1
2を出力する。同期検波回路42は、本発明における第
2同期整流回路に相当し、測定用信号が流れることによ
って燃料電池BTの内部抵抗に発生する電圧V1と電圧
V12とで同期検波することによって、等価的に反応抵
抗の両端に発生する電圧に対応する電圧を含む電圧V1
3を生成する。ローパスフィルタ43は、抵抗46およ
びコンデンサ47と相俟って電圧V13から高周波部分
を除去して反応抵抗の両端に発生する電圧に対応する直
流の電圧V14のみを出力する。除算器44は、電圧V
14を電圧V12で除算することによって反応抵抗の実
効抵抗値に比例する電圧V15を出力する。
On the other hand, the bandpass filter 41, the synchronous detection circuit 42, the lowpass filter 43 and the divider 44 measure the reaction resistance. Specifically, the bandpass filter 4
1 corresponds to the second bandpass filter in the present invention, and when the sensor signal output from the current detection sensor CT is input, the voltage V1 corresponding to the current value of the second measurement signal is input.
2 is output. The synchronous detection circuit 42 corresponds to the second synchronous rectification circuit in the present invention, and is equivalently equivalent to the synchronous detection by the voltage V1 and the voltage V12 generated in the internal resistance of the fuel cell BT when the measurement signal flows. A voltage V1 including a voltage corresponding to the voltage generated across the reaction resistance
3 is generated. The low-pass filter 43, in combination with the resistor 46 and the capacitor 47, removes a high frequency part from the voltage V13 and outputs only a DC voltage V14 corresponding to the voltage generated across the reaction resistor. The divider 44 has a voltage V
A voltage V15 proportional to the effective resistance value of the reaction resistance is output by dividing 14 by the voltage V12.

【0017】コンパレータ35は、下限判定用電源38
から出力される下限電圧V6および上限判定用電源39
から出力される上限電圧V7と電圧V5とを比較して、
電圧V5が下限電圧V6から上限電圧V7までの電圧範
囲(所定範囲)から外れたときに検出信号を出力する。
この場合、下限電圧V6は、内部でショートしていない
状態の良品の燃料電池BTにおける膜抵抗の最小実効抵
抗値(図2に示す抵抗値R1の例えば70%の値とす
る)に相当する電圧に対応し、上限電圧V7は、良品の
燃料電池BTの膜抵抗として許容できる最大実効抵抗値
(図2に示す抵抗値R1の例えば130%の値とする)
に相当する電圧に対応する。また、コンパレータ45
は、上限判定用電源48から出力される上限電圧V16
と電圧V15とを比較して、電圧V15が上限電圧V1
6を超えているときに検出信号を出力する。この場合、
上限電圧V16は、良品の燃料電池BTの反応抵抗とし
て許容できる最大実効抵抗値(図2に示す抵抗値R2の
例えば130%とする)に相当する電圧に対応する。し
たがって、このコンパレータ35,45の検出信号を監
視することで、膜抵抗の実効抵抗値が抵抗値R1に対し
て±30%の範囲内に収まり、かつ反応抵抗の実効抵抗
値が抵抗値R2に対して+130%以下の範囲内に収ま
っているときに、内部ショートが発生することなく、反
応状態が正常の燃料電池BTと判別することが可能とな
る。なお、反応抵抗の実効抵抗値の下限値については、
コンパレータ35の検出信号に基づいて内部ショートを
判別できるため、その設定が不要である。
The comparator 35 includes a lower limit judgment power source 38.
Lower limit voltage V6 and upper limit determination power supply 39 output from
Comparing the upper limit voltage V7 and the voltage V5 output from
When the voltage V5 is out of the voltage range (predetermined range) from the lower limit voltage V6 to the upper limit voltage V7, the detection signal is output.
In this case, the lower limit voltage V6 is a voltage corresponding to the minimum effective resistance value (for example, 70% of the resistance value R1 shown in FIG. 2) of the membrane resistance in the non-defective fuel cell BT which is not internally short-circuited. Corresponding to, the upper limit voltage V7 is the maximum effective resistance value allowable as the film resistance of the non-defective fuel cell BT (for example, 130% of the resistance value R1 shown in FIG. 2).
Corresponds to the voltage corresponding to. In addition, the comparator 45
Is the upper limit voltage V16 output from the upper limit determination power supply 48.
And the voltage V15 are compared, and the voltage V15 is the upper limit voltage V1.
When it exceeds 6, the detection signal is output. in this case,
The upper limit voltage V16 corresponds to a voltage corresponding to the maximum effective resistance value (for example, 130% of the resistance value R2 shown in FIG. 2) that is allowable as the reaction resistance of the non-defective fuel cell BT. Therefore, by monitoring the detection signals of the comparators 35 and 45, the effective resistance value of the membrane resistance falls within ± 30% of the resistance value R1, and the effective resistance value of the reaction resistance becomes the resistance value R2. On the other hand, when it is within + 130% or less, it is possible to determine that the fuel cell BT is in a normal reaction state without causing an internal short circuit. Regarding the lower limit of the effective resistance value of the reaction resistance,
Since the internal short circuit can be discriminated based on the detection signal of the comparator 35, its setting is unnecessary.

【0018】判定部13は、コンパレータ35,45に
よって出力される検出信号に基づいて燃料電池BTの良
否を判定し、その判定結果を図外の外部装置に出力する
と共に表示部14に表示させる。具体的には、判定部1
3は、外部装置に対して、例えば、コンパレータ35,
45の少なくとも一方から検出信号が出力されたときに
NG信号を出力し、いずれからも検出信号が入力されな
いときはOK信号を出力する。また、判定部13は、電
圧V5,V15の電圧値を燃料電池BTの膜抵抗および
反応抵抗の各実効抵抗値に変換演算した後に、表示部1
4に対して各実効抵抗値を表示させると共に、OK信号
を出力するときには「良品」を示す旨を表示させ、NG
信号を出力するときには「不良品」を示す旨を表示させ
る。表示部14は、判定部13によって出力される表示
データに基づいて、燃料電池BTの膜抵抗および反応抵
抗の各実効抵抗値を表示すると共に良否も表示する。
The determination unit 13 determines the quality of the fuel cell BT based on the detection signals output by the comparators 35 and 45, and outputs the determination result to an external device (not shown) and displays it on the display unit 14. Specifically, the determination unit 1
3 is an external device, for example, a comparator 35,
The NG signal is output when the detection signal is output from at least one of the 45, and the OK signal is output when the detection signal is not input from any of the 45. In addition, the determination unit 13 converts the voltage values of the voltages V5 and V15 into effective resistance values of the membrane resistance and the reaction resistance of the fuel cell BT, and then calculates the display unit 1
No. 4, each effective resistance value is displayed, and when an OK signal is output, a message indicating “non-defective product” is displayed.
When outputting the signal, a message indicating "defective product" is displayed. The display unit 14 displays the effective resistance values of the membrane resistance and the reaction resistance of the fuel cell BT based on the display data output by the determination unit 13, and also displays the quality.

【0019】次に、この診断装置1による燃料電池BT
の実効電圧の測定方法および良否診断動作について、図
1を参照して説明する。
Next, the fuel cell BT by this diagnostic device 1
The method of measuring the effective voltage and the pass / fail diagnosis operation will be described with reference to FIG.

【0020】測定に先立ち、図1に示すように、まず、
燃料電池BTの起電力に応じた所定抵抗値の負荷2をプ
ローブP1,P2を介して燃料電池BTの両電極に接続
する。次いで、燃料電池BTに流れる電流を検出する電
流検出センサCTを燃料電池BTの正極側に接続したプ
ローブP1を取り囲むようにして配置し、その電流検出
センサCTと、診断装置1のセンサ信号入力端子とを接
続する。
Prior to the measurement, as shown in FIG.
A load 2 having a predetermined resistance value corresponding to the electromotive force of the fuel cell BT is connected to both electrodes of the fuel cell BT via the probes P1 and P2. Next, a current detection sensor CT that detects the current flowing through the fuel cell BT is arranged so as to surround the probe P1 connected to the positive electrode side of the fuel cell BT, and the current detection sensor CT and the sensor signal input terminal of the diagnostic device 1 are arranged. And connect.

【0021】また、プローブP3をプローブP1(また
は燃料電池BTの正極電極)に接続し、プローブP4を
燃料電池BTの負極電極に接続する。さらに、プローブ
P5を燃料電池BTの正極電極に接続すると共にプロー
ブP6を燃料電池BTの負極電極に接続する。これによ
り、燃料電池BTに測定用信号が印加されて、燃料電池
BTを流れる測定用信号の電流値に応じた電圧に相当す
るセンサ信号が電流検出センサCTから診断装置1のセ
ンサ信号入力端子に出力されると共に、プローブP5を
介して燃料電池BTの両電極間に発生する電圧V1が診
断装置1のセンスH端子(測定部12の入力部)に出力
される。
The probe P3 is connected to the probe P1 (or the positive electrode of the fuel cell BT), and the probe P4 is connected to the negative electrode of the fuel cell BT. Further, the probe P5 is connected to the positive electrode of the fuel cell BT, and the probe P6 is connected to the negative electrode of the fuel cell BT. As a result, the measurement signal is applied to the fuel cell BT, and the sensor signal corresponding to the voltage corresponding to the current value of the measurement signal flowing through the fuel cell BT is output from the current detection sensor CT to the sensor signal input terminal of the diagnostic device 1. In addition to being output, the voltage V1 generated between both electrodes of the fuel cell BT is output via the probe P5 to the sense H terminal (the input section of the measuring section 12) of the diagnostic device 1.

【0022】電流検出センサCTから出力されたセンサ
信号は、センサ信号入力端子を介して測定部12に入力
され、2分配されてバンドパスフィルタ31,41にそ
れぞれ入力される。この際に、バンドパスフィルタ31
は、入力したセンサ信号から第1測定用交流信号の電流
値に比例する(応じた)電圧V2を抽出して同期検波回
路32に出力する。次いで、同期検波回路32は、電圧
V2と電圧V1とで同期検波して電圧V3を生成して出
力し、続いて、ローパスフィルタ33がその電圧V3に
含まれている高周波成分を除去して、膜抵抗の実効抵抗
に発生する電圧に比例する電圧V4を出力する。次い
で、除算器34が、電圧V4を電圧V2で除算すること
によって膜抵抗の実効抵抗値に比例する電圧V5をコン
パレータ35および判定部13に出力する。一方、バン
ドパスフィルタ41は、入力したセンサ信号から第2測
定用交流信号の電流値に比例する(応じた)電圧V12
を抽出して同期検波回路42に出力する。次いで、同期
検波回路42は、電圧V12と電圧V1とで同期検波し
て電圧V13を生成して出力し、続いて、ローパスフィ
ルタ43がその電圧V13に含まれている高周波部分を
除去して、反応抵抗の実効抵抗に発生する電圧に比例す
る電圧V14を出力する。次いで、除算器44が、電圧
V14を電圧V12で除算することによって反応抵抗の
実効抵抗値に比例する電圧V15をコンパレータ45お
よび判定部13に出力する。これにより、膜抵抗および
反応抵抗の各実効抵抗値が同時に測定される。
The sensor signal output from the current detection sensor CT is input to the measuring unit 12 via the sensor signal input terminal, divided into two, and input to the bandpass filters 31 and 41, respectively. At this time, the bandpass filter 31
Extracts a voltage V2 proportional to (corresponding to) the current value of the first measuring AC signal from the input sensor signal and outputs the voltage V2 to the synchronous detection circuit 32. Next, the synchronous detection circuit 32 synchronously detects the voltage V2 and the voltage V1 to generate and output the voltage V3, and subsequently, the low-pass filter 33 removes a high frequency component included in the voltage V3, A voltage V4 proportional to the voltage generated in the effective resistance of the membrane resistance is output. Next, the divider 34 outputs the voltage V5 proportional to the effective resistance value of the film resistance to the comparator 35 and the determination unit 13 by dividing the voltage V4 by the voltage V2. On the other hand, the bandpass filter 41 has a voltage V12 proportional (according to) the current value of the second measurement AC signal from the input sensor signal.
Is extracted and output to the synchronous detection circuit 42. Next, the synchronous detection circuit 42 synchronously detects the voltage V12 and the voltage V1 to generate and output the voltage V13, and subsequently, the low-pass filter 43 removes a high frequency portion included in the voltage V13, The voltage V14 proportional to the voltage generated in the effective resistance of the reaction resistance is output. Next, the divider 44 outputs the voltage V15 proportional to the effective resistance value of the reaction resistance to the comparator 45 and the determination unit 13 by dividing the voltage V14 by the voltage V12. Thereby, the effective resistance values of the membrane resistance and the reaction resistance are simultaneously measured.

【0023】続いて、コンパレータ35が、電圧V5
と、下限判定用電源38から入力した下限電圧V6およ
び上限判定用電源39から入力した上限電圧V7とを比
較して、電圧V5が両電圧の範囲から外れたときに、検
出信号を出力する。一方、コンパレータ45は、電圧V
15と、上限判定用電源48から入力した上限電圧V1
6とを比較して、電圧V15が上限電圧V16を超える
ときに、検出信号を出力する。続いて、判定部13がコ
ンパレータ35,45からそれぞれ出力される検出信号
に基づいて燃料電池BTの良否を判定する。この場合、
判定部13は、除算器34,44から電圧V5,V15
がそれぞれ出力された後に所定時間待機し、コンパレー
タ35,45の少なくとも一方から検出信号が出力され
たときには、燃料電池BTを不良と判断してNG信号を
出力し、いずれからも検出信号が出力されていないとき
には、正常と判断してOK信号を出力する。これによ
り、膜抵抗および反応抵抗のそれぞれの測定結果に基づ
いて、燃料電池BTの良否が診断される。また、判定部
13は、除算器34から出力された電圧V5および除算
器44から出力された電圧V15をそれぞれ数値化する
と共にその各数値(測定値)と燃料電池BTの良否判定
結果とを表示部14に表示させる。これにより、測定者
に対して、燃料電池BTの膜抵抗および反応抵抗の各測
定値と、診断結果とが報知される。
Subsequently, the comparator 35 causes the voltage V5
And the lower limit voltage V6 input from the lower limit determination power supply 38 and the upper limit voltage V7 input from the upper limit determination power supply 39 are compared, and when the voltage V5 is out of the range of both voltages, a detection signal is output. On the other hand, the comparator 45
15 and the upper limit voltage V1 input from the upper limit determination power supply 48
6, the detection signal is output when the voltage V15 exceeds the upper limit voltage V16. Subsequently, the determination unit 13 determines the quality of the fuel cell BT based on the detection signals output from the comparators 35 and 45, respectively. in this case,
The determination unit 13 outputs the voltages V5 and V15 from the dividers 34 and 44.
Is output for a predetermined time, and when a detection signal is output from at least one of the comparators 35 and 45, the fuel cell BT is determined to be defective, an NG signal is output, and the detection signal is output from both. If not, it is judged to be normal and an OK signal is output. Thereby, the quality of the fuel cell BT is diagnosed based on the measurement results of the membrane resistance and the reaction resistance. In addition, the determination unit 13 digitizes the voltage V5 output from the divider 34 and the voltage V15 output from the divider 44, and displays each numerical value (measured value) and the pass / fail determination result of the fuel cell BT. It is displayed on the section 14. As a result, the measurement person is notified of the measured values of the membrane resistance and reaction resistance of the fuel cell BT and the diagnostic result.

【0024】このように、この診断装置1によれば、燃
料電池BTの膜抵抗および反応抵抗の各実効抵抗値をそ
れぞれ測定するための第1測定用信号および第2測定用
信号をミキシングした測定用信号を生成する信号生成部
11と、膜抵抗および反応抵抗の各実効抵抗値をそれぞ
れ測定する測定部12とを備えて構成したことにより、
膜抵抗および反応抵抗の各実効抵抗値を同時に測定する
ことができる。したがって、測定に要する時間を短縮す
ることができるため、燃料電池BTの実効抵抗を効率的
に測定することができる。また、判定部13を備えたこ
とにより、燃料電池の良否を自動診断させることができ
る。さらに、表示部14を備えたことにより、測定者が
判定結果を視覚的に確実に認識することができると共
に、測定値を容易に確認することができる。
As described above, according to the diagnostic device 1, the measurement is performed by mixing the first measurement signal and the second measurement signal for measuring the effective resistance values of the membrane resistance and the reaction resistance of the fuel cell BT. With the configuration including the signal generation unit 11 that generates the use signal and the measurement unit 12 that measures each effective resistance value of the membrane resistance and the reaction resistance,
Each effective resistance value of the membrane resistance and the reaction resistance can be measured at the same time. Therefore, since the time required for measurement can be shortened, the effective resistance of the fuel cell BT can be efficiently measured. Further, since the determination unit 13 is provided, it is possible to automatically diagnose the quality of the fuel cell. Furthermore, by providing the display unit 14, the measurer can visually and surely recognize the determination result and can easily confirm the measured value.

【0025】なお、本発明は、上述した本発明の実施の
形態に限定されない。例えば、上記した診断装置1で
は、固定周波数の信号を生成する発振器21,22を備
えて信号生成部11を構成した例について説明したが、
周波数を任意に設定可能なDDSやPLL回路を備えて
信号生成部を構成することもできる。また、診断装置1
を測定対象の燃料電池に組み込むこともできる。この場
合、例えば、測定開始時間を計測するタイマを備えるこ
とにより、定期的かつ自動的に燃料電池BTの自己診断
を行うこともできる。また、測定値を記録する記録装置
を備えることにより、測定値の推移の把握やこれによる
燃料電池の寿命の予測を行うこともできる。
The present invention is not limited to the above-described embodiments of the present invention. For example, in the diagnostic device 1 described above, the example in which the signal generation unit 11 is configured by including the oscillators 21 and 22 that generate a signal of a fixed frequency has been described.
The signal generation unit can also be configured by including a DDS or PLL circuit whose frequency can be set arbitrarily. In addition, the diagnostic device 1
Can also be incorporated into the fuel cell to be measured. In this case, for example, a self-diagnosis of the fuel cell BT can be performed periodically and automatically by providing a timer for measuring the measurement start time. Further, by providing a recording device for recording the measured value, it is possible to grasp the transition of the measured value and predict the life of the fuel cell based on this.

【0026】[0026]

【発明の効果】以上のように、請求項1記載の抵抗測定
装置によれば、膜抵抗を測定するための第1測定用交流
信号と反応抵抗を測定するための第2測定用交流信号と
を含む測定用信号を生成する測定用信号生成部と、膜抵
抗を流れる第1測定用交流信号の電流値および膜抵抗に
発生する電圧に基づいて膜抵抗の抵抗値を求めると共に
反応抵抗を流れる第2測定用交流信号の電流値および反
応抵抗に発生する電圧に基づいて反応抵抗の抵抗値を求
める測定部とを備えたことにより、膜抵抗および反応抵
抗の各実効抵抗値を同時に測定することができるため、
短時間で燃料電池の実効抵抗値を効率よく測定すること
ができる。
As described above, according to the resistance measuring device of the first aspect, the first measuring AC signal for measuring the membrane resistance and the second measuring AC signal for measuring the reaction resistance are used. And a resistance value of the membrane resistance based on the current value of the first measurement AC signal flowing through the membrane resistance and the voltage generated at the membrane resistance and the reaction resistance flowing through the reaction resistance. A second measuring alternating current signal and a measuring unit for determining the resistance value of the reaction resistance based on the voltage generated in the reaction resistance, so that the effective resistance values of the membrane resistance and the reaction resistance are simultaneously measured. Because you can
The effective resistance value of the fuel cell can be efficiently measured in a short time.

【0027】また、請求項2記載の抵抗測定装置によれ
ば、第1バンドパスフィルタ、第2バンドパスフィル
タ、第1同期整流回路、第2同期整流回路、第1除算器
および第2除算器を備えて測定部を構成したことによ
り、膜抵抗および反応抵抗の各実効抵抗値を同時にしか
も正確に測定することができる。
According to the resistance measuring device of the second aspect, the first bandpass filter, the second bandpass filter, the first synchronous rectifying circuit, the second synchronous rectifying circuit, the first divider and the second divider. By configuring the measuring unit with the above, it is possible to measure each effective resistance value of the membrane resistance and the reaction resistance simultaneously and accurately.

【0028】また、請求項3,4記載の診断装置によれ
ば、抵抗測定装置と、膜抵抗の実効抵抗値が所定範囲内
か否かを判定すると共に反応抵抗の実効抵抗値が所定の
上限値以下か否かを判定する判定部とを備えたことによ
り、燃料電池の良否を効率よく、しかも自動診断させる
ことができる。
According to the diagnostic device of the present invention, the resistance measuring device determines whether the effective resistance value of the membrane resistance is within a predetermined range, and the effective resistance value of the reaction resistance is a predetermined upper limit. Since the determination unit that determines whether the value is less than or equal to the value is provided, the quality of the fuel cell can be efficiently and automatically diagnosed.

【0029】また、請求項5記載の測定装置によれば、
判定部の判定結果を表示する表示部を備えたことによ
り、測定者に対して燃料電池の良否を確実に報知するこ
とができる。
According to the measuring device of claim 5,
Since the display unit that displays the determination result of the determination unit is provided, it is possible to reliably notify the measurer of the quality of the fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る診断装置1および燃
料電池BTの構成を示す回路図である。
FIG. 1 is a circuit diagram showing configurations of a diagnostic device 1 and a fuel cell BT according to an embodiment of the present invention.

【図2】一般的な燃料電池の内部抵抗を表すコール・コ
ール・プロット図であって、実線は良品の燃料電池BT
におけるコール・コール・プロット図を示し、破線は不
良品の燃料電池BTにおけるコール・コール・プロット
図を示す。
FIG. 2 is a Cole-Cole plot diagram showing the internal resistance of a general fuel cell, in which the solid line is a non-defective fuel cell BT.
Shows a Cole-Cole plot diagram in Figure 3, and the broken line shows a Cole-Cole plot diagram in the defective fuel cell BT.

【図3】従来の抵抗測定装置61および燃料電池BTの
構成を示す回路図である。
FIG. 3 is a circuit diagram showing configurations of a conventional resistance measuring device 61 and a fuel cell BT.

【符号の説明】[Explanation of symbols]

1 診断装置 2 負荷 11 信号生成部 12 測定部 13 判定部 14 表示部 21,22 発振器 31,41 バンドパスフィルタ 32,42 同期検波回路 34,44 除算器 35,45 コンパレータ 38 下限判定用電源 39,48 上限判定用電源 BT 燃料電池BT CT 電流検出センサ R1,R3 膜抵抗 R2,R4 反応抵抗 1 Diagnostic device 2 load 11 Signal generator 12 Measuring section 13 Judgment section 14 Display 21,22 oscillator 31,41 bandpass filter 32,42 Synchronous detection circuit 34,44 divider 35, 45 comparator 38 Lower limit power supply 39,48 Power supply for upper limit judgment BT Fuel cell BT CT current detection sensor R1, R3 Membrane resistance R2, R4 reaction resistance

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G028 AA02 BE04 CG02 DH05 DH11 DH14 DH16 FK01 FK02 FK08 GL03 HN11 HN16 2G036 AA03 AA27 BB08 CA06 5H026 AA06 CX05 5H027 AA06 KK51    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G028 AA02 BE04 CG02 DH05 DH11                       DH14 DH16 FK01 FK02 FK08                       GL03 HN11 HN16                 2G036 AA03 AA27 BB08 CA06                 5H026 AA06 CX05                 5H027 AA06 KK51

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池の実効抵抗を測定する測定装置
であって、 前記実効抵抗の一部を形成する膜抵抗を測定するための
第1測定用交流信号と当該実効抵抗の一部を形成する反
応抵抗を測定するための第2測定用交流信号とを含む測
定用信号を生成する測定用信号生成部と、前記測定用信
号を前記燃料電池に印加した状態において前記膜抵抗を
流れる前記第1測定用交流信号の電流値および当該膜抵
抗に発生する電圧に基づいて当該膜抵抗の抵抗値を求め
ると共に前記反応抵抗を流れる前記第2測定用交流信号
の電流値および当該反応抵抗に発生する電圧に基づいて
当該反応抵抗の抵抗値を求める測定部とを備えている抵
抗測定装置。
1. A measuring device for measuring an effective resistance of a fuel cell, comprising: a first measuring AC signal for measuring a membrane resistance forming a part of the effective resistance; and a part of the effective resistance. Measuring signal generating section for generating a measuring signal including a second measuring AC signal for measuring a reaction resistance, and the first signal flowing through the membrane resistance in a state where the measuring signal is applied to the fuel cell. 1 The resistance value of the membrane resistance is obtained based on the current value of the measurement AC signal and the voltage generated in the membrane resistance, and the current value of the second measurement AC signal flowing through the reaction resistance and the resistance value of the second measurement AC signal are generated in the reaction resistance. A resistance measuring device comprising: a measuring unit that obtains a resistance value of the reaction resistance based on a voltage.
【請求項2】 前記測定部は、前記燃料電池を流れる前
記測定用信号の電流値に応じた電圧を入力したときに前
記膜抵抗を流れる前記第1測定用交流信号の電流値に応
じた電圧を出力する第1バンドパスフィルタと、前記燃
料電池の両電極間に発生する電圧と前記第1測定用交流
信号の電流値に応じた電圧とで同期検波して前記膜抵抗
に発生する電圧を検出する第1同期整流回路と、当該第
1同期整流回路によって検出された電圧を前記第1測定
用交流信号の電流値に応じた電圧で除算することによっ
て前記膜抵抗の抵抗値を求める第1除算器と、前記燃料
電池を流れる前記測定用信号の電流値に応じた電圧を入
力して前記反応抵抗を流れる前記第2測定用交流信号の
電流値に応じた電圧を出力する第2バンドパスフィルタ
と、前記燃料電池の前記両電極間に発生する電圧と前記
第2測定用交流信号の電流値に応じた電圧とで同期検波
して前記反応抵抗に発生する電圧を検出する第2同期整
流回路と、当該第2同期整流回路によって検出された電
圧を前記第2測定用交流信号の電流値に応じた電圧で除
算することによって前記反応抵抗の抵抗値を求める第2
除算器とを備えて構成されている請求項1記載の抵抗測
定装置。
2. The measurement unit, when a voltage corresponding to a current value of the measurement signal flowing through the fuel cell is input, a voltage corresponding to a current value of the first measurement AC signal flowing through the membrane resistance. A first band-pass filter for outputting the voltage, a voltage generated between both electrodes of the fuel cell, and a voltage corresponding to the current value of the first measurement AC signal, and a voltage generated in the membrane resistance is detected synchronously. A first synchronous rectification circuit for detecting, and a first value for obtaining a resistance value of the membrane resistance by dividing a voltage detected by the first synchronous rectification circuit by a voltage according to a current value of the first measurement AC signal. A divider and a second bandpass for inputting a voltage corresponding to the current value of the measuring signal flowing through the fuel cell and outputting a voltage corresponding to the current value of the second measuring AC signal flowing through the reaction resistance. Filter and the fuel cell A second synchronous rectification circuit that synchronously detects a voltage generated between the electrodes and a voltage corresponding to a current value of the second measurement AC signal to detect a voltage generated in the reaction resistance; A second method for obtaining the resistance value of the reaction resistance by dividing the voltage detected by the rectifier circuit by a voltage corresponding to the current value of the second measuring AC signal.
The resistance measuring device according to claim 1, further comprising a divider.
【請求項3】 燃料電池の良否を診断する診断装置であ
って、請求項1または2記載の抵抗測定装置と、前記膜
抵抗の抵抗値が所定範囲内か否かを判定すると共に前記
反応抵抗の抵抗値が所定の上限値以下か否かを判定する
判定部とを備えている診断装置。
3. A diagnostic device for diagnosing the quality of a fuel cell, wherein the resistance measuring device according to claim 1 or 2 is used to determine whether or not the resistance value of the membrane resistance is within a predetermined range, and the reaction resistance. And a determination unit that determines whether or not the resistance value of is less than or equal to a predetermined upper limit value.
【請求項4】 前記判定部は、前記膜抵抗の抵抗値が前
記所定範囲を外れているとき、または前記反応抵抗の抵
抗値が前記所定の上限値を超えているときに、診断対象
の前記燃料電池を不良と判定する請求項3記載の診断装
置。
4. The determination unit, when the resistance value of the membrane resistance is out of the predetermined range or when the resistance value of the reaction resistance exceeds the predetermined upper limit value, the diagnosis target The diagnostic device according to claim 3, wherein the fuel cell is determined to be defective.
【請求項5】 前記判定部の判定結果を表示する表示部
を備えている請求項3または4記載の診断装置。
5. The diagnostic device according to claim 3, further comprising a display unit that displays a determination result of the determination unit.
JP2002022730A 2002-01-31 2002-01-31 Resistance measuring device and diagnostic device Expired - Fee Related JP4025080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002022730A JP4025080B2 (en) 2002-01-31 2002-01-31 Resistance measuring device and diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002022730A JP4025080B2 (en) 2002-01-31 2002-01-31 Resistance measuring device and diagnostic device

Publications (2)

Publication Number Publication Date
JP2003223918A true JP2003223918A (en) 2003-08-08
JP4025080B2 JP4025080B2 (en) 2007-12-19

Family

ID=27745648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002022730A Expired - Fee Related JP4025080B2 (en) 2002-01-31 2002-01-31 Resistance measuring device and diagnostic device

Country Status (1)

Country Link
JP (1) JP4025080B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332702A (en) * 2004-05-20 2005-12-02 Nissan Motor Co Ltd Fuel cell diagnosis device and fuel cell diagnosis method
AT500968B1 (en) * 2004-10-07 2006-05-15 Avl List Gmbh METHOD FOR MONITORING THE OPERATING STATUS OF A FUEL CELL STACK
WO2007110970A1 (en) * 2006-03-29 2007-10-04 The Tokyo Electric Power Company, Incorporated Method for calculating interface resistance
US7626353B2 (en) 2004-10-19 2009-12-01 Hitachi, Ltd. Mobile type information terminal and self diagnosis method and operation method thereof
JP2009283173A (en) * 2008-05-20 2009-12-03 Yokogawa Electric Corp Impedance characteristics evaluation method and impedance characteristics evaluation device
WO2010128555A1 (en) * 2009-05-08 2010-11-11 トヨタ自動車株式会社 Fuel cell hydrogen concentration estimation device and fuel cell system
JP2012518781A (en) * 2009-02-24 2012-08-16 エリオン Method for measuring condition of electrochemical device
CN102759671A (en) * 2011-04-26 2012-10-31 通用汽车环球科技运作有限责任公司 Algorithm for in-situ quantification of PEMFC membrane health over its life
WO2013018641A1 (en) * 2011-08-01 2013-02-07 アルプス・グリーンデバイス株式会社 Battery device temperature measurement method
EP2908149A4 (en) * 2012-10-09 2015-11-04 Nissan Motor Device for measuring impedance of laminated battery
JP2016014634A (en) * 2014-07-03 2016-01-28 日産自動車株式会社 Impedance measuring device
WO2016092618A1 (en) * 2014-12-08 2016-06-16 日産自動車株式会社 Impedance measurement device and impedance measurement method
JP2018523814A (en) * 2015-07-01 2018-08-23 バテル エナジー アライアンス,エルエルシー Energy storage cell impedance measuring apparatus, method and related system
US10345384B2 (en) 2016-03-03 2019-07-09 Battelle Energy Alliance, Llc Device, system, and method for measuring internal impedance of a test battery using frequency response
US10379168B2 (en) 2007-07-05 2019-08-13 Battelle Energy Alliance, Llc Apparatuses and methods for testing electrochemical cells by measuring frequency response
US11054481B2 (en) 2019-03-19 2021-07-06 Battelle Energy Alliance, Llc Multispectral impedance determination under dynamic load conditions
US11422102B2 (en) 2020-01-10 2022-08-23 Dynexus Technology, Inc. Multispectral impedance measurements across strings of interconnected cells
US11519969B2 (en) 2020-01-29 2022-12-06 Dynexus Technology, Inc. Cross spectral impedance assessment for cell qualification
US11709219B2 (en) 2016-04-25 2023-07-25 Dynexus Technology, Inc. Method of calibrating impedance measurements of a battery
US11971456B2 (en) 2021-04-07 2024-04-30 Battelle Energy Alliance, Llc Multispectral impedance determination under dynamic load conditions

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332702A (en) * 2004-05-20 2005-12-02 Nissan Motor Co Ltd Fuel cell diagnosis device and fuel cell diagnosis method
JP4720105B2 (en) * 2004-05-20 2011-07-13 日産自動車株式会社 Fuel cell diagnostic device and fuel cell diagnostic method
AT500968B1 (en) * 2004-10-07 2006-05-15 Avl List Gmbh METHOD FOR MONITORING THE OPERATING STATUS OF A FUEL CELL STACK
US7626353B2 (en) 2004-10-19 2009-12-01 Hitachi, Ltd. Mobile type information terminal and self diagnosis method and operation method thereof
JP5007963B2 (en) * 2006-03-29 2012-08-22 東京電力株式会社 Calculation method of interface resistance
WO2007110970A1 (en) * 2006-03-29 2007-10-04 The Tokyo Electric Power Company, Incorporated Method for calculating interface resistance
US10379168B2 (en) 2007-07-05 2019-08-13 Battelle Energy Alliance, Llc Apparatuses and methods for testing electrochemical cells by measuring frequency response
JP2009283173A (en) * 2008-05-20 2009-12-03 Yokogawa Electric Corp Impedance characteristics evaluation method and impedance characteristics evaluation device
JP2012518781A (en) * 2009-02-24 2012-08-16 エリオン Method for measuring condition of electrochemical device
US8542026B2 (en) 2009-05-08 2013-09-24 Toyota Jidosha Kabushiki Kaisha Apparatus for estimating fuel-cell hydrogen concentration and fuel cell system
JP5338903B2 (en) * 2009-05-08 2013-11-13 トヨタ自動車株式会社 Fuel cell hydrogen concentration estimation device, fuel cell system
WO2010128555A1 (en) * 2009-05-08 2010-11-11 トヨタ自動車株式会社 Fuel cell hydrogen concentration estimation device and fuel cell system
CN102759671A (en) * 2011-04-26 2012-10-31 通用汽车环球科技运作有限责任公司 Algorithm for in-situ quantification of PEMFC membrane health over its life
WO2013018641A1 (en) * 2011-08-01 2013-02-07 アルプス・グリーンデバイス株式会社 Battery device temperature measurement method
JP5261622B1 (en) * 2011-08-01 2013-08-14 アルプス・グリーンデバイス株式会社 Power storage device temperature measurement method
US9229061B2 (en) 2011-08-01 2016-01-05 Alps Green Devices Co., Ltd. Electrical storage device temperature measuring method
EP2908149A4 (en) * 2012-10-09 2015-11-04 Nissan Motor Device for measuring impedance of laminated battery
US10901044B2 (en) 2013-06-04 2021-01-26 Battelle Energy Alliance, Llc Apparatuses and methods for testing electrochemical cells by measuring frequency response
JP2016014634A (en) * 2014-07-03 2016-01-28 日産自動車株式会社 Impedance measuring device
WO2016092618A1 (en) * 2014-12-08 2016-06-16 日産自動車株式会社 Impedance measurement device and impedance measurement method
JP2018523814A (en) * 2015-07-01 2018-08-23 バテル エナジー アライアンス,エルエルシー Energy storage cell impedance measuring apparatus, method and related system
US10345384B2 (en) 2016-03-03 2019-07-09 Battelle Energy Alliance, Llc Device, system, and method for measuring internal impedance of a test battery using frequency response
US11709219B2 (en) 2016-04-25 2023-07-25 Dynexus Technology, Inc. Method of calibrating impedance measurements of a battery
US11054481B2 (en) 2019-03-19 2021-07-06 Battelle Energy Alliance, Llc Multispectral impedance determination under dynamic load conditions
US11422102B2 (en) 2020-01-10 2022-08-23 Dynexus Technology, Inc. Multispectral impedance measurements across strings of interconnected cells
US11519969B2 (en) 2020-01-29 2022-12-06 Dynexus Technology, Inc. Cross spectral impedance assessment for cell qualification
US11933856B2 (en) 2020-01-29 2024-03-19 Dynexus Technology, Inc. Cross spectral impedance assessment for cell qualification
US11971456B2 (en) 2021-04-07 2024-04-30 Battelle Energy Alliance, Llc Multispectral impedance determination under dynamic load conditions

Also Published As

Publication number Publication date
JP4025080B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JP4025080B2 (en) Resistance measuring device and diagnostic device
JP4648322B2 (en) Method and apparatus for determining the state of charge of a battery
TWI286218B (en) Method for determining state-of-health of batteries
US8217659B2 (en) Method for on-line measurement of battery internal resistance, current operational module, and on-line measurement instrument for battery internal resistance
JP3953087B2 (en) Insulation inspection device and insulation inspection method
JP2004191373A (en) Electronic battery tester
KR101966573B1 (en) Method of manufacturing power storage device, inspection device of structure
JP5348428B2 (en) Method and apparatus for off-line test of electric motor
JP5620297B2 (en) Impedance measuring device
JP2007333494A (en) Deterioration diagnosis method of storage battery, and deterioration diagnosis device thereof
JP2008107168A (en) Method and device for detecting battery property
JP2008157838A (en) Insulation monitoring device
JP2009198188A (en) Ground resistance meter
JPH11174136A (en) Method and device for judging deterioration of battery pack
JP2009002857A (en) Circuit element measuring apparatus
JP2011149959A (en) Insulation monitoring device
JP2005180927A (en) Impedance-measuring instrument
JPH08179017A (en) Monitor device for battery impedance
JP2007139797A (en) Insulation inspecting device and insulation inspecting method
JP4739710B2 (en) Battery characteristic measuring device
KR100550360B1 (en) Apparatus for diagnosing status of electric power converter
JP3577912B2 (en) Electronic circuit inspection equipment
JPH11295363A (en) Impedance measuring apparatus
JPH11295362A (en) Impedance measuring apparatus
JPS5819492Y2 (en) Piezoelectric sensor tester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

R150 Certificate of patent or registration of utility model

Ref document number: 4025080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141012

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees