JP2003222660A - Remaining capacity measuring device of battery - Google Patents

Remaining capacity measuring device of battery

Info

Publication number
JP2003222660A
JP2003222660A JP2002368003A JP2002368003A JP2003222660A JP 2003222660 A JP2003222660 A JP 2003222660A JP 2002368003 A JP2002368003 A JP 2002368003A JP 2002368003 A JP2002368003 A JP 2002368003A JP 2003222660 A JP2003222660 A JP 2003222660A
Authority
JP
Japan
Prior art keywords
battery
transfer function
pole
signal
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002368003A
Other languages
Japanese (ja)
Other versions
JP3695444B2 (en
Inventor
Kazuhiko Tamesue
和彦 爲末
Shinichiro Hatta
真一郎 八田
Taketoshi Nakao
武寿 中尾
Yoshinori Kumamoto
義則 熊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002368003A priority Critical patent/JP3695444B2/en
Publication of JP2003222660A publication Critical patent/JP2003222660A/en
Application granted granted Critical
Publication of JP3695444B2 publication Critical patent/JP3695444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device of state analysis of battery capable of accurately analyzing the state of battery such as remaining capacity at low cost. <P>SOLUTION: In the state impressing alternating current signal output from a pseudo random noise generation means 12 to an analysis object battery 11 via an impedance element 13, the alternating voltage VB and alternating current iB of the battery 11 are sampled with an analog/digital converter 14. A transfer function of a discrete system consisting of a battery 11 and an impedance element 13 is calculated for estimation with a transfer function operation means 15 using the obtained data, and pole of the transfer function of the alternating current equivalent circuit of the battery 11 is calculated with a pole calculation means 16 using the transfer function of the discrete system. A state judgment means 17 judges the condition of the battery 11 using a correlation to the pole in the transfer function of the alternating current equivalent circuit. As this treats transfer function of discrete system, analog signal processing is unnecessary, and each means can be realized by a microcomputer, for example. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車、パソ
コン、又は携帯電話等の携帯機器に搭載される電池の残
量等の状態を解析し検知するための電池の状態解析方法
及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery state analysis method and apparatus for analyzing and detecting the state of the remaining battery level of a mobile device such as an electric vehicle, a personal computer, or a mobile phone. It is a thing.

【0002】[0002]

【従来の技術】電池の残量等の状態を解析する従来の方
法としては、第1に、電池の電圧及び電流を測定する容
量試験による方法があり、また第2に、電池の交流イン
ピーダンスを測定し、予め求めておいた交流インピーダ
ンスと電池の残量等の状態との相関から電池の状態を判
定する方法がある。
2. Description of the Related Art As a conventional method for analyzing the state of a battery such as the remaining amount, firstly, there is a method by a capacity test for measuring the voltage and current of the battery, and secondly, the AC impedance of the battery. There is a method of determining the state of the battery from the correlation between the measured and previously obtained AC impedance and the state of the remaining amount of the battery.

【0003】[0003]

【発明が解決しようとする課題】ところが第1の方法に
よると、電池の状態の検知精度は良い反面、長時間の測
定を要し、また電池の電流電圧測定のためにアナログ信
号処理回路が必要になので、電池の状態解析装置として
装置化する場合にはコストがかかるという問題がある。
However, according to the first method, although the detection accuracy of the state of the battery is good, it requires a long time measurement, and an analog signal processing circuit is required for measuring the current and voltage of the battery. Therefore, there is a problem in that cost is required when the battery condition analyzer is implemented as a device.

【0004】また第2の方法によると、第1の方法すな
わち容量試験法と比べて測定が短時間で行うことができ
るという長所があるが、アナログ信号を用いて振幅と位
相を測定するため、第1の方法と同様にアナログ信号処
理回路が必要になり、装置化する場合にはコストがかか
るとという問題があり、また雑音に弱いという問題もあ
る。
The second method has an advantage that the measurement can be performed in a shorter time than the first method, that is, the capacitance test method. However, since the amplitude and the phase are measured using an analog signal, Similar to the first method, an analog signal processing circuit is required, and there is a problem that the cost is high when the device is used, and there is a problem that it is weak against noise.

【0005】我々の将来的な狙いは、電気自動車、パソ
コン、又は携帯電話等の携帯機器のような電池が搭載さ
れる機器に電池の状態解析装置を組み込んで、搭載され
ている電池の状態をリアルタイムで検知できるようにす
ることなので、低コストかつ高精度な電池の状態解析装
置が望まれる。
Our future aim is to incorporate a battery condition analysis device into a device such as an electric vehicle, a personal computer, or a portable device such as a mobile phone in which a battery condition is incorporated to determine the condition of the installed battery condition. Since it is possible to detect in real time, a low cost and highly accurate battery state analysis device is desired.

【0006】前記のような問題に鑑み、本発明は、電池
の残量等の状態を、デジタル信号処理を用いて、低コス
トかつ精度良く解析することができる電池の状態解析方
法及びその方法を用いた装置を提供することを課題とす
る。
In view of the above problems, the present invention provides a battery state analysis method and method capable of accurately analyzing the state of the remaining battery level and the like using digital signal processing at low cost. An object is to provide a device used.

【0007】[0007]

【課題を解決するための手段】前記の課題を解決するた
め、本発明は、電池の交流等価回路の伝達関数における
極の推移と電池の残量との間に相関があることに着目
し、まず電池を含む系の離散系の伝達関数を推定演算に
よって求めた上で、この伝達関数から電池の交流等価回
路の伝達関数における極を求め、これにより電池の状態
を検知するものである。離散系の伝達関数の推定演算は
デジタル信号処理によって行うことができるので、本発
明ではアナログ信号処理は不要になる。
In order to solve the above problems, the present invention focuses on the fact that there is a correlation between the transition of the poles in the transfer function of the AC equivalent circuit of a battery and the remaining amount of the battery, First, the transfer function of the discrete system of the system including the battery is obtained by an estimation operation, and then the pole in the transfer function of the AC equivalent circuit of the battery is obtained from this transfer function to detect the state of the battery. Since the estimation operation of the transfer function of the discrete system can be performed by digital signal processing, analog signal processing is unnecessary in the present invention.

【0008】本願記載の発明が講じた解決手段は、電池
の残量等の状態を解析する電池の状態解析方法として、
前記電池にかかる交流電圧及び前記電池に流れる交流電
流の時系列データから前記電池を含む系の離散系の伝達
関数を推定演算し、この離散系の伝達関数を用いて前記
電池の状態を解析するものである。
The solution means taken by the invention described in the present application is as a battery state analysis method for analyzing the state of the remaining battery level,
The transfer function of the discrete system of the system including the battery is estimated and calculated from the time series data of the AC voltage applied to the battery and the AC current flowing in the battery, and the state of the battery is analyzed using the transfer function of the discrete system. It is a thing.

【0009】本願記載の発明によると、電池にかかる交
流電圧及び電池に流れる交流電流の時系列データから電
池を含む系の離散系の伝達関数を推定演算するために
は、アナログ信号処理は不要であり全てデジタル信号処
理によって行うことができるので、ワンチップマイコン
やDSP等によるLSI化が可能になり、装置化した場
合のコストが低くなると共に雑音に強くなる。また、離
散系の伝達関数からは、例えば電池の交流等価回路の伝
達関数における極を求め、電池の交流等価回路の伝達関
数における極と電池の状態との間の相関関係を用いて、
電池の状態を解析することができる。
According to the invention described in the present application, analog signal processing is not necessary for estimating and calculating a transfer function of a discrete system of a system including a battery from time series data of an AC voltage applied to the battery and an AC current flowing through the battery. Since all can be performed by digital signal processing, it becomes possible to form an LSI by a one-chip microcomputer, DSP, etc., and when the device is implemented, the cost is reduced and the noise is strong. Further, from the transfer function of the discrete system, for example, the pole in the transfer function of the AC equivalent circuit of the battery is obtained, and by using the correlation between the pole in the transfer function of the AC equivalent circuit of the battery and the state of the battery,
The state of the battery can be analyzed.

【0010】また、本願記載の発明は、前項の発明をさ
らに具体化したものであって、電池の残量等の状態を解
析する電池の状態解析方法として、解析対象の電池に交
流信号を印加し、前記電池に交流信号を印加した状態に
おいて、前記電池にかかる交流電圧及び前記電池に流れ
る交流電流をサンプリングする第1の工程と、前記電池
を含む系の離散系の伝達関数を、前記第1の工程でサン
プリングした交流電圧及び交流電流を時系列データとし
て用いて推定演算する第2の工程とを備え、前記第2の
工程において推定演算により求めた離散系の伝達関数を
用いて、前記電池の状態を解析するものである。
The invention described in the present application is a further embodiment of the invention described in the preceding paragraph, which is a method for analyzing the state of a battery such as the remaining battery level, in which an AC signal is applied to the battery to be analyzed. Then, in a state where an AC signal is applied to the battery, a first step of sampling an AC voltage applied to the battery and an AC current flowing in the battery, and a transfer function of a discrete system of a system including the battery are described as follows. A second step of performing an estimation calculation using the alternating voltage and the alternating current sampled in the first step as time series data, and using the transfer function of the discrete system obtained by the estimation calculation in the second step, It analyzes the state of the battery.

【0011】そして、本願記載の発明では、前項の電池
の状態解析方法における第1の工程は、交流信号源から
発生出力された交流信号をインピーダンス素子を介して
解析対象の電池に印加するものとする。
In the invention described in the present application, the first step in the battery state analysis method of the preceding paragraph is to apply the AC signal generated and output from the AC signal source to the battery to be analyzed through the impedance element. To do.

【0012】本願記載の発明によると、インピーダンス
素子によって電池と交流信号源との間に直流パスが形成
されるのを防ぐことができる。
According to the invention described in the present application, it is possible to prevent a DC path from being formed between the battery and the AC signal source by the impedance element.

【0013】さらに、本願記載の発明では、前項の電池
の状態解析方法における第1の工程は、擬似ランダム雑
音信号を発生出力する雑音源を前記交流信号源として用
いるものとする。
Further, in the invention described in the present application, in the first step in the battery state analysis method of the preceding paragraph, a noise source for generating and outputting a pseudo random noise signal is used as the AC signal source.

【0014】本願記載の発明によると、擬似ランダム雑
音信号を電池に印加することにより、電池の交流等価回
路の連続系の伝達関数における極の周波数を全て含む帯
域を有するような信号が電池に印加されることになるの
で、周波数掃引が不要になる。
According to the invention described in the present application, by applying a pseudo-random noise signal to a battery, a signal having a band including all pole frequencies in the transfer function of the continuous system of the AC equivalent circuit of the battery is applied to the battery. Therefore, the frequency sweep becomes unnecessary.

【0015】また、本願記載の発明では、前項の電池の
状態解析方法における第1の工程は、電圧オフセット交
流信号源から発生出力された直流オフセット電圧を有す
る交流信号を解析対象の電池に直接印加するものとす
る。
Further, in the invention described in the present application, the first step in the battery state analyzing method of the preceding paragraph is to directly apply the AC signal having the DC offset voltage generated and output from the voltage offset AC signal source to the battery to be analyzed. It shall be.

【0016】本願記載の発明によると、直流オフセット
電圧を電池の直流電圧に合わせることによって電池と電
圧オフセット交流信号源との間に直流パスが形成される
のを防ぐことができるので、インピーダンス素子が不要
になる。
According to the invention described in the present application, it is possible to prevent the formation of a DC path between the battery and the voltage offset AC signal source by adjusting the DC offset voltage to the DC voltage of the battery. It becomes unnecessary.

【0017】さらに、本願記載の発明では、前項の電池
の状態解析方法における第1の工程は、直流オフセット
電圧を有する擬似ランダム雑音信号を発生出力する雑音
源を前記電圧オフセット交流信号源として用いるものと
する。
Further, in the invention described in the present application, in the first step in the battery state analysis method of the preceding paragraph, a noise source for generating and outputting a pseudo random noise signal having a DC offset voltage is used as the voltage offset AC signal source. And

【0018】本願記載の発明によると、擬似ランダム雑
音信号を電池に印加することにより、電池の交流等価回
路の連続系の伝達関数における極の周波数を全て含む帯
域を有するような信号が電池に印加されることになるの
で、周波数掃引が不要になる。
According to the invention described in the present application, by applying the pseudo random noise signal to the battery, a signal having a band including all the frequencies of the poles in the transfer function of the continuous system of the AC equivalent circuit of the battery is applied to the battery. Therefore, the frequency sweep becomes unnecessary.

【0019】そして、本願記載の発明では、前出の電池
の状態解析方法における雑音源は、M系列符号あるいは
Gold符号を用いた雑音源であるものとする。
In the invention described in the present application, the noise source in the above-mentioned battery state analysis method is assumed to be a noise source using the M-sequence code or the Gold code.

【0020】そして、本願記載の発明では、前出の電池
の状態解析方法における第2の工程は、前記電池の離散
系の伝達関数における極の次数は、前記電池の交流等価
回路の連続系の伝達関数における極の次数よりも高次で
あるものとして、前記電池を含む系の離散系の伝達関数
の推定演算を行うものとする。
In the invention described in the present application, the second step in the above-mentioned battery state analysis method is that the order of poles in the transfer function of the discrete system of the battery is the continuous system of the AC equivalent circuit of the battery. It is assumed that the transfer function of the discrete system of the system including the battery is estimated as a higher order than the order of the poles in the transfer function.

【0021】また、本願記載の発明では、前出の電池の
状態解析方法における第2の工程は、前記電池を含む系
の離散系の伝達関数の係数パラメータに前記電池の交流
等価回路から定めた初期値を与え、推定演算の収束性を
高めるものとする。
Further, in the invention described in the present application, in the second step in the above-mentioned battery state analysis method, the coefficient parameter of the transfer function of the discrete system of the system including the battery is determined from the AC equivalent circuit of the battery. An initial value is given to improve the convergence of the estimation calculation.

【0022】また、本願記載の発明では、前出の電池の
状態解析方法において、前記第2の工程において求めた
離散系の伝達関数から、この離散系の伝達関数における
極を求めた後、求めた極を前記電池の交流等価回路の連
続系の伝達関数における極に変換する第3の工程を備
え、前記第3の工程において求めた前記電池の交流等価
回路の連続系の伝達関数における極を用いて、前記電池
の状態を解析するものとする。
Further, in the invention described in the present application, in the above-described battery state analysis method, the poles in the discrete system transfer function are obtained from the discrete system transfer function obtained in the second step and then obtained. A third step of converting the poles into the poles in the transfer function of the continuous system of the AC equivalent circuit of the battery, and the poles in the transfer function of the continuous system of the AC equivalent circuit of the battery obtained in the third step. It shall be used to analyze the state of the battery.

【0023】そして、本願記載の発明では、前項の電池
の状態解析方法において、前記第1の工程は、交流信号
源から発生出力された交流信号をインピーダンス素子を
介して解析対象の電池に印加するものであり、前記第3
の工程は、前記電池を含む系の離散系の伝達関数の分母
の多項式から、前記電池の交流等価回路の連続系の伝達
関数における極の次数と前記インピーダンス素子のイン
ピーダンスにおける極の次数との和よりも高い次数の項
を切り捨てた後、前記離散系の伝達関数における極を求
めるものとする。
In the invention described in the present application, in the battery state analyzing method of the preceding paragraph, in the first step, the AC signal generated and output from the AC signal source is applied to the battery to be analyzed through the impedance element. And the third
The step of is, from the polynomial of the denominator of the transfer function of the discrete system of the system including the battery, the sum of the order of the pole in the transfer function of the continuous system of the AC equivalent circuit of the battery and the order of the pole in the impedance of the impedance element. After truncating higher order terms, the poles in the transfer function of the discrete system are obtained.

【0024】また、本願記載の発明では、前出の電池の
状態解析方法において、前記第1の工程は、交流信号源
から発生出力された交流信号を解析対象の電池に直接印
加するものであり、前記第3の工程は、前記電池を含む
系の離散系の伝達関数の分母の多項式から、前記電池の
交流等価回路の連続系の伝達関数における極の次数より
も高い次数の項を切り捨てた後、前記離散系の伝達関数
における極を求めるものとする。
Further, in the invention described in the present application, in the above-mentioned battery state analysis method, in the first step, the AC signal generated and output from the AC signal source is directly applied to the battery to be analyzed. In the third step, a term having a higher order than a pole order in the transfer function of the continuous system of the AC equivalent circuit of the battery is truncated from the polynomial of the denominator of the transfer function of the discrete system of the system including the battery. After that, the poles in the transfer function of the discrete system are obtained.

【0025】そして、本願記載発明では、前出の電池の
状態解析方法において、前記第3の工程は、前記電池の
交流等価回路の連続系の伝達関数における極を求めた
後、求めた極を前記電池の周囲温度にしたがって補正す
るものとする。
In the invention described in the present application, in the above-described battery state analysis method, in the third step, after obtaining the pole in the transfer function of the continuous system of the AC equivalent circuit of the battery, the obtained pole is obtained. Correction shall be made according to the ambient temperature of the battery.

【0026】また、本願記載の発明では、前出の電池の
状態解析方法において、予め求めていた,前記電池の交
流等価回路の連続系の伝達関数における極と前記電池の
残量との相関関係にしたがって、前記第3の工程におい
て求めた,前記電池の交流等価回路の連続系の伝達関数
における極を用いて前記電池の残量を判定する第4の工
程を備えているものとする。
Further, in the invention described in the present application, in the battery state analysis method described above, the correlation between the pole in the transfer function of the continuous system of the AC equivalent circuit of the battery and the remaining amount of the battery, which is obtained in advance. Accordingly, a fourth step of determining the remaining amount of the battery using the pole in the transfer function of the continuous system of the AC equivalent circuit of the battery obtained in the third step is provided.

【0027】また、本願記載の発明が講じた解決手段
は、電池の残量等の状態を解析する電池の状態解析装置
として、前記電池にかかる交流電圧及び前記電池に流れ
る交流電流の時系列データから前記電池を含む系の離散
系の伝達関数を推定演算する手段を備え、この手段によ
り推定演算した離散系の伝達関数に基づいて前記電池の
状態を解析するものである。
Further, the solution means taken by the invention described in the present application is a time-series data of an AC voltage applied to the battery and an AC current flowing in the battery as a battery state analysis device for analyzing the state of the battery such as the remaining amount. From the above, a means for estimating and calculating the transfer function of the discrete system of the system including the battery is provided, and the state of the battery is analyzed based on the transfer function of the discrete system estimated and calculated by this means.

【0028】本願記載の発明によると、離散系の伝達関
数の推定演算にはアナログ信号処理は不要であり全てデ
ジタル信号処理によって行うことができるため、電池に
かかる交流電圧及び電池に流れる交流電流の時系列デー
タから電池を含む系の離散系の伝達関数を推定演算する
手段は、ワンチップマイコンやDSP等によって実現可
能になり、装置化した場合のコストが低くなると共に雑
音に強くなる。また、前記手段によって求めた離散系の
伝達関数からは、例えば電池の交流等価回路の伝達関数
における極を求め、電池の交流等価回路の伝達関数にお
ける極と電池の状態との間の相関関係を用いて、電池の
状態を解析することができる。
According to the invention described in the present application, the analog signal processing is not necessary for the estimation calculation of the transfer function of the discrete system, and all can be performed by the digital signal processing. Therefore, the AC voltage applied to the battery and the AC current flowing in the battery are The means for estimating and calculating the transfer function of the discrete system of the system including the battery from the time series data can be realized by a one-chip microcomputer, DSP, etc., which reduces the cost when implemented as a device and is resistant to noise. Further, from the transfer function of the discrete system obtained by the means, for example, the pole in the transfer function of the AC equivalent circuit of the battery is obtained, and the correlation between the pole in the transfer function of the AC equivalent circuit of the battery and the state of the battery is calculated. It can be used to analyze the state of the battery.

【0029】また、本願記載の発明は、前項の発明を具
体化したものであって、電池の残量等の状態を解析する
電池の状態解析装置として、解析対象の電池に交流信号
を印加する交流信号印加手段と、前記交流信号印加手段
によって前記電池に交流信号が印加されたとき、前記電
池にかかる交流電圧及び前記電池に流れる交流電流をサ
ンプリングするサンプリング手段と、前記サンプリング
手段によってサンプリングされた交流電圧及び交流電流
の時系列データから前記電池を含む系の離散系の伝達関
数を推定演算する伝達関数演算手段とを備えているもの
である。
The invention described in the present application embodies the invention of the preceding paragraph, and applies an AC signal to a battery to be analyzed as a battery condition analyzer for analyzing the condition of the remaining battery level and the like. AC signal applying means, sampling means for sampling the AC voltage applied to the battery and the AC current flowing in the battery when the AC signal is applied to the battery by the AC signal applying means, and the sampling means. And a transfer function calculating means for estimating and calculating a transfer function of a discrete system including the battery from time series data of AC voltage and AC current.

【0030】そして、本願記載の発明では、前項の電池
の状態解析装置における交流信号印加手段は、交流信号
を発生出力する交流信号源と、インピーダンス素子とを
有しており、前記交流信号源から発生出力された交流信
号を前記インピーダンス素子を介して解析対象の電池に
印加するものとする。
In the invention described in the present application, the AC signal applying means in the battery state analyzing device of the preceding paragraph has an AC signal source for generating and outputting an AC signal and an impedance element, and the AC signal source The generated and output AC signal is applied to the battery to be analyzed via the impedance element.

【0031】本願記載の発明によると、インピーダンス
素子によって電池と交流信号源との間に直流パスが形成
されるのを防ぐことができる。
According to the invention described in the present application, it is possible to prevent a DC path from being formed between the battery and the AC signal source by the impedance element.

【0032】さらに、本願記載の発明では、前項の電池
の状態解析装置における交流信号源は、擬似ランダム雑
音信号を発生出力する雑音源であるものとする。
Further, in the invention described in the present application, the AC signal source in the battery state analysis device of the preceding paragraph is a noise source for generating and outputting a pseudo random noise signal.

【0033】本願記載の発明によると、擬似ランダム雑
音信号を電池に印加することにより、電池の交流等価回
路の連続系の伝達関数における極の周波数を全て含む帯
域を有するような信号が電池に印加されることになるの
で、周波数掃引が不要になる。
According to the invention described in the present application, by applying the pseudo random noise signal to the battery, a signal having a band including all the frequencies of the poles in the transfer function of the continuous system of the AC equivalent circuit of the battery is applied to the battery. Therefore, the frequency sweep becomes unnecessary.

【0034】そして、本願記載の発明では、前出の電池
の状態解析装置における交流信号印加手段は、直流オフ
セット電圧を有する交流信号を発生出力する電圧オフセ
ット交流信号源を有しており、前記電圧オフセット交流
信号源から発生出力された交流信号を解析対象の電池に
印加するものとする。
Further, in the invention described in the present application, the AC signal applying means in the above-mentioned battery state analyzing apparatus has a voltage offset AC signal source for generating and outputting an AC signal having a DC offset voltage, The AC signal generated and output from the offset AC signal source is applied to the battery to be analyzed.

【0035】本願記載の発明によると、直流オフセット
電圧を電池の直流電圧に合わせることによって電池と電
圧オフセット交流信号源との間に直流パスが形成される
のを防ぐことができるので、インピーダンス素子が不要
になる。
According to the invention described in the present application, it is possible to prevent the formation of a DC path between the battery and the voltage offset AC signal source by adjusting the DC offset voltage to the DC voltage of the battery. It becomes unnecessary.

【0036】さらに、本願記載の発明では、前項の電池
の状態解析装置における電圧オフセット交流信号源は、
直流オフセット電圧を有する擬似ランダム雑音信号を発
生出力する雑音源であるものとする。
Further, in the invention described in the present application, the voltage offset AC signal source in the battery state analysis device of the preceding paragraph is:
It shall be a noise source that generates and outputs a pseudo random noise signal having a DC offset voltage.

【0037】本願記載の発明によると、擬似ランダム雑
音信号を電池に印加することにより、電池の交流等価回
路の連続系の伝達関数における極の周波数を全て含む帯
域を有するような信号が電池に印加されることになるの
で、周波数掃引が不要になる。
According to the invention described in the present application, by applying the pseudo random noise signal to the battery, a signal having a band including all the frequencies of the poles in the transfer function of the continuous system of the AC equivalent circuit of the battery is applied to the battery. Therefore, the frequency sweep becomes unnecessary.

【0038】そして、本願記載の発明では、前出の電池
の状態解析装置における雑音源は、M系列符号あるいは
Gold符号を用いた雑音源であるものとする。
Further, in the invention described in the present application, the noise source in the above-mentioned battery state analyzing apparatus is assumed to be a noise source using the M-sequence code or the Gold code.

【0039】そして、本願記載の発明では、前出の電池
の状態解析装置において、前記伝達関数演算手段によっ
て求められた前記電池を含む系の離散系の伝達関数から
この離散系の伝達関数における極を求めると共に、求め
た極を前記電池の交流等価回路の連続系の伝達関数にお
ける極に変換する極算出手段を備え、前記極算出手段に
よって求めた前記連続系の伝達関数における極に基づい
て、前記電池の状態を解析するものとする。
Further, in the invention described in the present application, in the above-mentioned battery state analyzing apparatus, the transfer function of the discrete system of the system including the battery, which is obtained by the transfer function calculating means, is converted into the pole in the transfer function of the discrete system. Along with determining the pole, the obtained pole is provided with a pole calculating means for converting into a pole in the transfer function of the continuous system of the AC equivalent circuit of the battery, based on the pole in the transfer function of the continuous system obtained by the pole calculating means, The state of the battery shall be analyzed.

【0040】さらに、本願記載の発明では、前出の電池
の状態解析装置における極算出手段は、前記電池を含む
系の離散系の伝達関数の分母の多項式を因数分解して、
前記離散系の伝達関数における極の複素解を求める因数
分解演算手段と、前記因数分解演算手段によって求めた
極の複素解から虚数部を切り捨て、残りの実数部から、
前記電池の正極及び負極に対応する前記離散系の伝達関
数における極を特定する極演算手段と、前記極演算手段
によって特定した前記電池の正極及び負極に対応する前
記離散系の伝達関数における極を、前記サンプリング手
段によるサンプリング周期に基づいて、前記電池の交流
等価回路の連続系の伝達関数における極に変換する極変
換演算手段とを備えているものとする。
Further, in the invention described in the present application, the pole calculating means in the above-mentioned battery state analyzing apparatus factorizes the denominator polynomial of the transfer function of the discrete system of the system including the battery,
Factoring operation means for obtaining a complex solution of poles in the transfer function of the discrete system, and truncating an imaginary part from the complex solution of poles obtained by the factoring operation means, from the remaining real number part,
Pole calculating means for specifying poles in the transfer function of the discrete system corresponding to the positive electrode and the negative electrode of the battery, and poles in the transfer function of the discrete system corresponding to the positive electrode and the negative electrode of the battery specified by the pole calculating means. Pole conversion calculation means for converting into a pole in the transfer function of the continuous system of the AC equivalent circuit of the battery based on the sampling cycle by the sampling means.

【0041】そして、本願記載の発明では、前項の電池
の状態解析装置において、前記交流信号印加手段は、交
流信号を発生出力する交流信号源と、インピーダンス素
子とを有しており、前記交流信号源から発生出力された
交流信号を前記インピーダンス素子を介して解析対象の
電池に印加するものであり、前記因数分解演算手段は、
前記電池を含む系の離散系の伝達関数の分母の多項式
を、前記電池の交流等価回路の連続系の伝達関数におけ
る極の次数と前記インピーダンス素子のインピーダンス
における極の次数との和よりも高い次数の項を切り捨て
た上で因数分解を行い、前記離散系の伝達関数における
極を求めるものとする。
Further, in the invention described in the present application, in the battery state analyzing apparatus of the preceding paragraph, the AC signal applying means has an AC signal source for generating and outputting an AC signal, and an impedance element, and the AC signal An AC signal generated and output from a source is applied to the battery to be analyzed through the impedance element, and the factorization calculation means is
The polynomial of the denominator of the transfer function of the discrete system of the system including the battery, the order higher than the sum of the order of the pole in the transfer function of the continuous system of the AC equivalent circuit of the battery and the order of the pole in the impedance of the impedance element It is assumed that the term is truncated and the factorization is performed to find the poles in the transfer function of the discrete system.

【0042】また、本願記載の発明では、前出の電池の
状態解析装置において、前記交流信号印加手段は、直流
オフセット電圧を有する交流信号を発生出力する交流信
号源を有しており、前記交流信号源から発生出力された
交流信号を解析対象の電池に直接印加するものであり、
前記因数分解演算手段は、前記電池を含む系の離散系の
伝達関数の分母の多項式を、前記電池の交流等価回路の
連続系の伝達関数における極の次数よりも高い次数の項
を切り捨てた上で因数分解を行い、前記離散系の伝達関
数における極を求めるものとする。
Further, in the invention described in the present application, in the above-described battery state analyzing apparatus, the AC signal applying means has an AC signal source for generating and outputting an AC signal having a DC offset voltage. The AC signal generated and output from the signal source is directly applied to the battery to be analyzed,
The factorization calculation means discards the polynomial of the denominator of the transfer function of the discrete system of the system including the battery, rounding down terms having a higher order than the order of the pole in the transfer function of the continuous system of the AC equivalent circuit of the battery. It is assumed that the factorization is performed to find the pole in the transfer function of the discrete system.

【0043】また、本願記載の発明では、前出の電池の
状態解析装置において、前記電池の周囲温度を計測する
温度計測手段を備え、前記極算出手段は、求めた前記電
池の交流等価回路の連続系の伝達関数における極を、前
記温度計測手段によって計測した前記電池の周囲温度に
したがって補正する極温度補正手段を備えているものと
する。
Further, in the invention described in the present application, in the above-mentioned battery state analyzing apparatus, a temperature measuring means for measuring the ambient temperature of the battery is provided, and the pole calculating means is provided for the obtained AC equivalent circuit of the battery. It is assumed that a pole in the transfer function of the continuous system is provided with a pole temperature correction means for correcting the pole according to the ambient temperature of the battery measured by the temperature measurement means.

【0044】そして、本願記載の発明では、前出の電池
の状態解析装置において、予め求めていた,前記電池の
交流等価回路の連続系の伝達関数における極と前記電池
の残量との相関関係にしたがって、前記極算出手段によ
って求めた前記電池の交流等価回路の連続系の伝達関数
における極に基づいて、前記電池の残量を判定する状態
判定手段を備えているものとする。
Further, in the invention described in the present application, the correlation between the pole in the transfer function of the continuous system of the AC equivalent circuit of the battery and the remaining amount of the battery, which is obtained in advance in the battery state analysis device described above. According to the above, it is assumed that the state determination means for determining the remaining capacity of the battery is provided based on the pole in the transfer function of the continuous system of the AC equivalent circuit of the battery obtained by the pole calculation means.

【0045】ここで、交流信号には複数の周波数成分を
含んだ交流信号を含む。さらに、交流信号として、パル
ス波、及びデューティー比の異なったパルス波の合成波
も含む。また、ここでいう極とは特異点を意味し、極と
その逆数関係にある零点とは本質的に同義である。ま
た、ここでは交流信号源の一手段として擬似ランダム雑
音発生手段を用いている。
Here, the AC signal includes an AC signal containing a plurality of frequency components. Further, the AC signal includes a pulse wave and a composite wave of pulse waves having different duty ratios. Further, the pole here means a singular point, and the pole and the zero point having the reciprocal relation thereof are essentially synonymous. Further, here, pseudo random noise generating means is used as one means of the AC signal source.

【0046】[0046]

【発明の実施の形態】まず、本発明の基本的な原理につ
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION First, the basic principle of the present invention will be described.

【0047】(1)電池伝達関数の定義 電池の交流インピーダンス測定において、直流電圧に重
畳した振幅10mV以下程度の微小交流信号によって電池
の電極及び電解液の界面を分極すると、界面をほとんど
乱すことはなく、得られる交流信号は直流電位近傍の変
化とみなすことができる。
(1) Definition of Battery Transfer Function In measuring the AC impedance of the battery, if the interface between the electrode and the electrolyte of the battery is polarized by a minute AC signal having an amplitude of about 10 mV or less superimposed on the DC voltage, the interface is hardly disturbed. Therefore, the obtained AC signal can be regarded as a change in the vicinity of the DC potential.

【0048】微小交流信号を与えたときの電池の交流等
価回路は図1のようになる。電極と電解液との接触によ
るインピーダンスは、電極界面と電解液界面との間に生
成される電気2重層の容量とファラデーインピーダンス
との並列接続によって表すことができる。ここで電極反
応は電荷移動過程が律速であると仮定すると、ファラデ
ーインピーダンスは電極の分極抵抗(電荷移動抵抗)と
電極の容量成分との直列接続で表される。図1におい
て、31p,31nは正極及び負極の分極抵抗、32p
は正極における電気2重層容量、32nは負極における
電気2重層容量、33p,33nは正極及び負極の容量
成分、34は電解液の抵抗であり、正極のインピーダン
スは分極抵抗31p及び容量成分33pからなるファラ
デーインピーダンスと電気2重層容量32pとの並列接
続によって表されており、負極のインピーダンスは分極
抵抗31n及び容量成分33nからなるファラデーイン
ピーダンスと電気2重層容量32nとの並列接続によっ
て表されている。
The AC equivalent circuit of the battery when a minute AC signal is applied is as shown in FIG. The impedance due to the contact between the electrode and the electrolytic solution can be represented by the parallel connection of the capacitance of the electric double layer generated between the electrode interface and the electrolytic solution interface and the Faraday impedance. Assuming that the charge transfer process is rate-determining in the electrode reaction, the Faraday impedance is expressed by the polarization resistance (charge transfer resistance) of the electrode and the capacitance component of the electrode connected in series. In FIG. 1, 31p and 31n are polarization resistances of positive and negative electrodes, and 32p
Is an electric double layer capacity in the positive electrode, 32n is an electric double layer capacity in the negative electrode, 33p and 33n are capacity components of the positive electrode and the negative electrode, 34 is resistance of the electrolytic solution, and impedance of the positive electrode is composed of polarization resistance 31p and capacity component 33p The Faraday impedance and the electric double layer capacitance 32p are connected in parallel, and the negative impedance is represented by the Faraday impedance composed of the polarization resistance 31n and the capacitance component 33n and the electric double layer capacitance 32n.

【0049】ここで、分極抵抗31pの抵抗値をRp 、
分極抵抗31nの抵抗値をRn とすると、
Here, the resistance value of the polarization resistor 31p is Rp,
If the resistance value of the polarization resistor 31n is Rn,

【0050】[0050]

【数1】 [Equation 1]

【0051】と表される。式(1),(2)において、
Rはボルツマン定数、Tは絶対温度、nは電極反応の電
荷数、Fはファラデー定数、iopは正極の交換電流、i
onは負極の交換電流を示す。また図1において、Cdpは
正極における電気2重層容量32pの容量値、Cdnは負
極における電気2重層容量32nの容量値、Relは電解
液の抵抗34の抵抗値である。
It is expressed as In equations (1) and (2),
R is the Boltzmann constant, T is the absolute temperature, n is the number of charges in the electrode reaction, F is the Faraday constant, iop is the exchange current of the positive electrode, i
on indicates the exchange current of the negative electrode. In FIG. 1, Cdp is the capacitance value of the electric double layer capacitance 32p in the positive electrode, Cdn is the capacitance value of the electric double layer capacitance 32n in the negative electrode, and Rel is the resistance value of the resistor 34 of the electrolytic solution.

【0052】交流信号の周波数が比較的高く、電極の容
量成分33p,33nが電池のインピーダンスに与える
影響を無視できる場合には、電池の交流等価回路は、図
1から容量成分33p,33nを削除して図2のように
みなすことができる。
When the frequency of the AC signal is relatively high and the effect of the electrode capacitance components 33p and 33n on the battery impedance can be ignored, the AC equivalent circuit of the battery eliminates the capacitance components 33p and 33n from FIG. Then, it can be regarded as shown in FIG.

【0053】交流分極中の電池を時不変の線形システム
と仮定すると、図2に示す交流等価回路における電池伝
達関数HB(s)は、
Assuming that the battery during AC polarization is a time-invariant linear system, the battery transfer function HB (s) in the AC equivalent circuit shown in FIG.

【0054】[0054]

【数2】 [Equation 2]

【0055】となる。また、電池の交流インピーダンス
測定に用いるインピーダンス素子のインピーダンスをH
I(s)とすると、電池及びインピーダンス素子からな
る系の全伝達関数G(s)は次のように定義される。
It becomes In addition, the impedance of the impedance element used for measuring the AC impedance of the battery is set to H
Let I (s) be the total transfer function G (s) of the system consisting of the battery and the impedance element is defined as follows.

【0056】[0056]

【数3】 [Equation 3]

【0057】ここで、vB は交流インピーダンス測定時
において電池に印加される電圧、iB は交流インピーダ
ンス測定時において電池を流れる電流である。全伝達関
数G(s)の極の次数は、インピーダンス素子のインピ
ーダンスHI(s)における極の次数と電池伝達関数HB
(s)における極の次数との和となる。
Here, vB is the voltage applied to the battery during the AC impedance measurement, and iB is the current flowing through the battery during the AC impedance measurement. The pole order of the total transfer function G (s) is determined by the pole order in the impedance HI (s) of the impedance element and the battery transfer function HB.
It is the sum of the order of the poles in (s).

【0058】図3は式(3)に示すような電池伝達関数
HB(s)を有する電池の複素インピーダンスプロット
である。図3に示すように、電池の複素インピーダンス
は、交流信号の角周波数ωの増加に伴い、負極による半
円軌跡及び正極による半円軌跡を経て、ω=∞のときに
電解液抵抗34の抵抗値Relになる。第1極s1及び第
2極s2における角周波数をそれぞれω1,ω2とする
と、 ω1=−1/Rn Cdn [rad/s ] …(5) ω2=−1/Rp Cdp [rad/s ] …(6) で与えられる。
FIG. 3 is a complex impedance plot of a battery having a battery transfer function HB (s) as shown in equation (3). As shown in FIG. 3, the complex impedance of the battery goes through the semicircular locus of the negative electrode and the semicircular locus of the positive electrode as the angular frequency ω of the AC signal increases, and the resistance of the electrolyte resistance 34 at ω = ∞. The value becomes Rel. When the angular frequencies at the first pole s1 and the second pole s2 are ω1 and ω2, respectively, ω1 = -1 / Rn Cdn [rad / s] (5) ω2 = -1 / Rp Cdp [rad / s] ( 6) is given in.

【0059】(2)伝達関数の推定演算 本発明では、電池を時不変の線形システムであると仮定
して、式(4)で表される全伝達関数G(s)を、次の
ような形の離散系における一般的な伝達関数として与え
る。
(2) Estimating calculation of transfer function In the present invention, assuming that the battery is a time-invariant linear system, the total transfer function G (s) expressed by the equation (4) is calculated as follows. It is given as a general transfer function in the discrete system of shape.

【0060】[0060]

【数4】 [Equation 4]

【0061】電池の入出力信号に基づいて式(7)の係
数を決定することによって、伝達関数G(z,θ)を推
定する。一般に、入出力データに基づいてシステムの伝
達関数を推定する方法をシステム同定という。図4はシ
ステム同定に用いるモデルを表す図であり、雑音の伝達
関数Hn(z,θ)を、 Hn(z,θ)=1/A(z) …(8) で表すとき、このモデルは外部入力をもつ自己回帰(A
RX)モデルとなる。図4に示すように出力信号y
(t)が入力信号u(t)及び雑音信号e(t)の1次
結合で与えられるとすると、出力応答は、 A(z)y(t)=B(z)u(t)+e(t) …(9) となる。
The transfer function G (z, θ) is estimated by determining the coefficient of the equation (7) based on the input / output signal of the battery. Generally, a method of estimating a transfer function of a system based on input / output data is called system identification. FIG. 4 is a diagram showing a model used for system identification. When the noise transfer function Hn (z, θ) is represented by Hn (z, θ) = 1 / A (z) (8), this model is Autoregressive with external input (A
RX) model. As shown in FIG. 4, the output signal y
Given that (t) is given by a linear combination of the input signal u (t) and the noise signal e (t), the output response is: A (z) y (t) = B (z) u (t) + e ( t) (9)

【0062】推定する伝達関数G(z,θ)の係数パラ
メータθ、入出力データ系列による回帰ベクトルφ
(t)を、
Coefficient parameter θ of transfer function G (z, θ) to be estimated, regression vector φ based on input / output data series
(T)

【0063】[0063]

【数5】 [Equation 5]

【0064】とすると、式(9)は、 y(t)=φT θ+e(t) …(12) と表され、式(12)の行列演算を例えばRLS逐次法
で解くと、係数パラメータθ(t)は、
Then, the equation (9) is expressed as y (t) = φT θ + e (t) (12). When the matrix operation of the equation (12) is solved by, for example, the RLS iterative method, the coefficient parameter θ ( t) is

【0065】[0065]

【数6】 [Equation 6]

【0066】で与えられる。この係数パラメータθ
(t)は所定回数の繰り返し演算後、収束する。
Is given by This coefficient parameter θ
(T) converges after a predetermined number of repeated calculations.

【0067】なお演算の初期値は、一般的には、 θ(0)=0,P(0)=αId …(14) とするが、例えば Rp =0.001〜10 [Ω] Rn =0.001〜10 [Ω] Cdp=10-6〜10-2[F] Cdn=10-6〜10-2[F] …(15) の範囲内の初期値を用いると収束までの繰り返し演算を
減らすことができる。
The initial value of the calculation is generally θ (0) = 0, P (0) = αId (14), but for example Rp = 0.001 to 10 [Ω] Rn = 0 .001 to 10 [Ω] Cdp = 10 −6 to 10 −2 [F] Cdn = 10 −6 to 10 −2 [F] (15) If an initial value within the range is used, iterative calculation until convergence is performed. Can be reduced.

【0068】(3)離散系の極の算出 離散系と連続系の極の数を一致させる場合について説明
する。
(3) Calculation of Discrete System Poles The case where the number of discrete system poles and the number of continuous system poles are made equal will be described.

【0069】(3−1)インピーダンス素子が純抵抗の
場合 インピーダンス素子が純抵抗のとき式(4)に示す全伝
達関数G(s)における極の次数は2次になるので、式
(7)に示す離散系の伝達関数G(z,θ)における極
の次数も2次であるとしてシステム同定を行う。すなわ
ち式(7)は、
(3-1) When the impedance element is a pure resistance When the impedance element is a pure resistance, the order of the poles in the total transfer function G (s) shown in the expression (4) is quadratic, so that the expression (7) The system identification is performed on the assumption that the pole order in the discrete system transfer function G (z, θ) is also quadratic. That is, the equation (7) is

【0070】[0070]

【数7】 [Equation 7]

【0071】となる。ここで式(16)において各パラ
メータθは収束しているものとすると式(16)に示す
離散系の伝達関数G(z,θ)における極は、
It becomes Here, assuming that each parameter θ is converged in Expression (16), the pole in the transfer function G (z, θ) of the discrete system shown in Expression (16) is

【0072】[0072]

【数8】 [Equation 8]

【0073】に示すようなzの二次方程式の解で与えら
れる。ここで式(17)の係数を、
It is given by the solution of the quadratic equation of z as shown in. Here, the coefficient of equation (17) is

【0074】[0074]

【数9】 [Equation 9]

【0075】とおくと、解の公式により2つの極が求ま
る。
If we put that, two poles can be obtained from the solution formula.

【0076】[0076]

【数10】 [Equation 10]

【0077】この解は一般的に次のような複素解で与え
られる。 z1=σ1+jβ1 z2=σ2+jβ2 …(20) さらに、本来求めたい連続系の全伝達関数G(s)にお
ける2つの極はs平面上の実軸上に存在するので、離散
系の伝達関数G(z,θ)においても2つの極はz平面
の実軸上にあるとの根拠から、式(20)の虚数成分を
切り捨てた、 z1=σ1 z2=σ2 …(21) を離散系における電池伝達関数G(z,θ)の極とす
る。
This solution is generally given by the following complex solution. z1 = σ1 + jβ1 z2 = σ2 + jβ2 (20) Further, since the two poles in the total transfer function G (s) of the continuous system to be originally obtained exist on the real axis on the s plane, the transfer function G (z of the discrete system is obtained. , Θ) also has two poles on the real axis of the z-plane, the imaginary number component of the equation (20) is truncated, and z1 = σ1 z2 = σ2 (21) is a battery transfer function in a discrete system. The pole is G (z, θ).

【0078】|z2|<|z1| …(22) にしたがって極z1とz2との絶対値を大小比較し、式
(22)が真のときは極z1は電池の負極に対応する
極、極z2は電池の正極に対応する極となり、式(2
2)が偽のときは極z1は電池の正極に対応する極、極
z2は電池の負極に対応する極となる。
The absolute values of the poles z1 and z2 are compared according to | z2 | <| z1 | (22), and when the expression (22) is true, the pole z1 corresponds to the negative pole of the battery, z2 becomes the pole corresponding to the positive electrode of the battery, and
When 2) is false, the pole z1 corresponds to the positive electrode of the battery and the pole z2 corresponds to the negative electrode of the battery.

【0079】(3−2)インピーダンス素子が純容量を
含む場合 インピーダンス素子が純容量を含むとき、式(4)に示
す全伝達関数G(s)におけるの極の次数は3次になる
ので式(7)に示す離散系の伝達関数G(z,θ)にお
ける極の次数も3次であるとしてシステム同定を行う。
すなわち式(7)は、
(3-2) When the impedance element includes a pure capacitance When the impedance element includes a pure capacitance, the order of the poles in the total transfer function G (s) shown in the equation (4) becomes the third order. System identification is performed assuming that the pole order in the discrete system transfer function G (z, θ) shown in (7) is also cubic.
That is, the equation (7) is

【0080】[0080]

【数11】 [Equation 11]

【0081】となる。式(23)に示す伝達関数G
(z,θ)の極は、
It becomes Transfer function G shown in equation (23)
The pole of (z, θ) is

【0082】[0082]

【数12】 [Equation 12]

【0083】に示すようなzの三次方程式の解で与えら
れる。そして3つの極z1,z2,z3は、
It is given by the solution of the cubic equation of z as shown in. And the three poles z1, z2, z3 are

【0084】[0084]

【数13】 [Equation 13]

【0085】この解は一般的には次のような複素解で与
えられる。 z0=σ0+jβ0 z1=σ1+jβ1 z2=σ2+jβ2 …(26) さらに、本来求めたい連続系の全伝達関数G(s)の3
つの極はs平面上の実軸上に存在するので、離散系の伝
達関数G(z,θ)においても極はz平面の実軸上にあ
るとの根拠から、式(26)の虚数成分を切り捨てる。
その絶対値の大きい順にz0,z1,z2は、 z0=σ0 z1=σ1 z2=σ2 …(27) として求まる。このうち絶対値の最も大きい極z0はz
=1となるべきインピーダンス素子の極として除き、残
りの極z1、z2を、 |z2|<|z1| …(28) にしたがってその絶対値を大小比較する。式(28)が
真のときは極z1は電池の負極に対応する極、極z2は
電池の正極に対応する極となり、式(28)が偽のとき
は極z1は電池の正極に対応する極、極z2は電池の負
極に対応する極となる。
This solution is generally given by the following complex solution. z0 = σ0 + jβ0 z1 = σ1 + jβ1 z2 = σ2 + jβ2 (26) Furthermore, 3 of the total transfer function G (s) of the continuous system originally desired to be obtained.
Since the two poles are on the real axis on the s-plane, the poles are also on the real axis on the z-plane in the transfer function G (z, θ) of the discrete system. Truncate.
Z0, z1, and z2 are calculated as z0 = σ0 z1 = σ1 z2 = σ2 (27) in descending order of their absolute values. Of these, the pole z0 with the largest absolute value is z
The remaining poles z1 and z2 are excluded as the poles of the impedance element that should be = 1 and their absolute values are compared according to | z2 | <| z1 | (28). When formula (28) is true, the pole z1 corresponds to the negative electrode of the battery, and pole z2 corresponds to the positive electrode of the battery. When formula (28) is false, the pole z1 corresponds to the positive electrode of the battery. The pole and the pole z2 are the poles corresponding to the negative electrode of the battery.

【0086】(4)離散系から連続系への極の変換 図5はz平面からs平面上への写像を表す図である。図
5に示すような写像によって、離散系における極z1,
z2から式(5),(6)に示すような連続系における
極s1,s2が求められる。離散系におけるサンプリン
グ時間をT[s]とすると、z平面からs平面への極の
写像は、
(4) Transformation of poles from discrete system to continuous system FIG. 5 is a diagram showing mapping from the z plane to the s plane. By the mapping as shown in FIG. 5, the pole z1, in the discrete system is
From z2, the poles s1 and s2 in the continuous system as shown in equations (5) and (6) are obtained. If the sampling time in a discrete system is T [s], the mapping of poles from the z plane to the s plane is

【0087】[0087]

【数14】 [Equation 14]

【0088】にしたがって行われる。 (5)電池の状態と極の推移の相関 電池の状態は、例えば残量によって評価することができ
る。残量とは電池に充電された電気量の残りのことをい
う。電池伝達関数における極の推移と、電池の残量との
間には相関がある。
It is performed according to. (5) Correlation between battery state and pole transition The battery state can be evaluated by, for example, the remaining amount. The remaining amount means the remaining amount of electricity charged in the battery. There is a correlation between the transition of the pole in the battery transfer function and the remaining battery level.

【0089】図6はリチウムイオン電池の複素インピー
ダンスプロットを示す図であり、電池の残量の変化に伴
う複素インピーダンスプロットの変化を示す図である。
同図中、(a)、(b)、(c)、及び(d)はそれぞ
れ残量が100%、50%、10%及び0%の場合であ
る。図2に示す分極抵抗31p,31nそれぞれの抵抗
値Rp ,Rn は、電池の充放電に伴う正極及び負極の化
学反応に起因する交換電流密度iop,ionの変化に応じ
て変化する。このため、電池の残量の変化に伴って分極
抵抗31p,31nの抵抗値Rp ,Rn が変化するの
で、図6に示すように、複素インピーダンスプロットも
また電池の残量の変化に伴って変化する。したがって、
極の角周波数もまた電池の残量の変化に伴い変化する。
FIG. 6 is a diagram showing a complex impedance plot of a lithium ion battery, and is a diagram showing a change in the complex impedance plot with a change in the remaining amount of the battery.
In the figure, (a), (b), (c), and (d) are cases where the remaining amount is 100%, 50%, 10%, and 0%, respectively. The resistance values Rp and Rn of the polarization resistors 31p and 31n shown in FIG. 2 change according to changes in the exchange current densities iop and ion caused by the chemical reaction of the positive electrode and the negative electrode due to charging and discharging of the battery. For this reason, the resistance values Rp and Rn of the polarization resistors 31p and 31n change with the change of the remaining amount of the battery, so that the complex impedance plot also changes with the change of the remaining amount of the battery as shown in FIG. To do. Therefore,
The angular frequency of the pole also changes as the battery level changes.

【0090】図7は電池の残量と電池伝達関数における
極の角周波数ωとの相関を示すグラフであり、同図中、
(a)及び(b)はそれぞれ第1極及び第2極のもので
ある。図7に示すように、極の角周波数ωが高いほど電
池の残量は多く、極の角周波数ωが低いほど電池の残量
は少なくなる。
FIG. 7 is a graph showing the correlation between the remaining amount of the battery and the angular frequency ω of the pole in the battery transfer function.
(A) and (b) are a 1st pole and a 2nd pole, respectively. As shown in FIG. 7, the higher the angular frequency ω of the pole, the larger the remaining amount of the battery, and the lower the angular frequency ω of the pole, the smaller the remaining amount of the battery.

【0091】(実施の形態)以下、本発明の一実施形態
について図面を参照しながら説明する。図8は本発明の
実施形態に係る電池の状態解析装置の構成を示す図であ
り、同図中、(a)は電池に交流信号を印加する系を示
す図、(b)は電池の状態解析を行う部分の構成を示す
ブロック図である。図8に示す本実施形態に係る電池の
状態解析装置は、解析対象の電池11の状態例えば残量
の度合を推定評価するものである。図8において、11
は解析対象の電池、12は電池11に印加する交流信号
を出力する擬似ランダム雑音発生手段、13は電池11
と擬似ランダム雑音発生手段12との間に設けられたイ
ンピーダンス素子、14は電池11にかかる交流電圧v
B 及び電池11に流れる交流電流iB をサンプリングし
てアナログ値からデジタル値へ変換するサンプリング手
段としてのアナログ/デジタル変換器である。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings. FIG. 8 is a diagram showing a configuration of a battery state analysis device according to an embodiment of the present invention, in which FIG. 8A is a diagram showing a system for applying an AC signal to the battery, and FIG. 8B is a state of the battery. It is a block diagram which shows the structure of the part which analyzes. The battery state analyzing apparatus according to the present embodiment shown in FIG. 8 estimates and evaluates the state of the battery 11 to be analyzed, for example, the degree of remaining capacity. In FIG. 8, 11
Is a battery to be analyzed, 12 is pseudo random noise generating means for outputting an AC signal applied to the battery 11, and 13 is the battery 11
, An impedance element provided between the pseudo random noise generating means 12 and the pseudo random noise generating means 12, and 14 is an AC voltage v applied to the battery 11.
It is an analog / digital converter as a sampling means for sampling the AC current iB flowing in B and the battery 11 and converting the analog value into a digital value.

【0092】また15はアナログ/デジタル変換器14
の出力データを基にして電池11及びインピーダンス素
子13からなる系の特性を表す離散系の伝達関数を推定
演算する伝達関数演算手段、16は伝達関数演算手段1
5によって推定演算された離散系の伝達関数から電池1
1の連続系の伝達関数における極を算出する極算出手
段、17は極算出手段16によって算出された極を基に
して電池の状態を判定する状態判定手段、18は電池1
1の周囲温度を計測して極算出手段16に出力する温度
計測手段としての温度センサである。伝達関数演算手段
15,極算出手段16及び状態判定手段17は本実施形
態ではマイクロコンピュータ20によって実現されてい
る。
Reference numeral 15 is an analog / digital converter 14
Transfer function calculating means for estimating and calculating a transfer function of a discrete system representing the characteristics of the system composed of the battery 11 and the impedance element 13 based on the output data of the transfer function calculating means 1
From the transfer function of the discrete system estimated by 5 to the battery 1
1, a pole calculating means for calculating the pole in the transfer function of the continuous system 1, 17 is state determining means for determining the state of the battery based on the pole calculated by the pole calculating means 16, and 18 is the battery 1
1 is a temperature sensor as a temperature measuring unit that measures the ambient temperature of No. 1 and outputs it to the pole calculating unit 16. The transfer function calculating means 15, the pole calculating means 16, and the state determining means 17 are realized by the microcomputer 20 in this embodiment.

【0093】図9は図8に示す本実施形態に係る電池の
状態解析装置の動作を示すフローチャートである。以
下、図9を参照して図8に示す本実施形態に係る電池の
状態解析装置の動作について説明する。
FIG. 9 is a flow chart showing the operation of the battery state analyzing apparatus according to this embodiment shown in FIG. The operation of the battery state analysis device according to the present embodiment shown in FIG. 8 will be described below with reference to FIG.

【0094】まずステップS1において、解析対象とな
る電池11に交流信号を印加する。このとき周波数が可
変である擬似ランダム雑音発生手段を用いて電池11の
伝達関数における極の周波数を含むよう周波数掃引して
もよいが、解析を効率よく行うことができるように、本
実施形態では擬似ランダム雑音発生手段12は電池11
の伝達関数における極の周波数を十分包含する周波数帯
域の交流信号を出力するものとしている。
First, in step S1, an AC signal is applied to the battery 11 to be analyzed. At this time, the frequency may be swept so as to include the frequency of the pole in the transfer function of the battery 11 using the pseudo random noise generating means, but in the present embodiment, the analysis can be performed efficiently. The pseudo random noise generating means 12 is a battery 11
It is assumed that an AC signal in a frequency band sufficiently including the frequency of the pole in the transfer function of is output.

【0095】図10は擬似ランダム雑音発生手段12の
周波数特性の一例を示すグラフであり、横軸は周波数
[Hz]、縦軸は振幅[dB]である。図10に示すよ
うに、擬似ランダム雑音発生手段12から出力される交
流信号の周波数帯域は、電池11の伝達関数の第1極S
1における角周波数ω1及び第2極S2における角周波
数ω2の成分を含んでいる必要がある。このような擬似
ランダム雑音発生手段12を用いることにより、周波数
掃引が不要になる。また擬似ランダム雑音発生手段12
から出力される交流信号の振幅は電極界面の乱れの影響
を無視できる程度以下であり、10mV程度以下であ
る。
FIG. 10 is a graph showing an example of frequency characteristics of the pseudo random noise generating means 12, where the horizontal axis represents frequency [Hz] and the vertical axis represents amplitude [dB]. As shown in FIG. 10, the frequency band of the AC signal output from the pseudo random noise generating means 12 is the first pole S of the transfer function of the battery 11.
It is necessary to include the components of the angular frequency ω1 at 1 and the angular frequency ω2 at the second pole S2. By using such a pseudo random noise generating means 12, frequency sweep becomes unnecessary. Also, the pseudo random noise generating means 12
The amplitude of the AC signal output from the device is below a level where the influence of the disturbance at the electrode interface can be ignored, and is below about 10 mV.

【0096】擬似ランダム雑音発生手段12は例えば白
色雑音のような雑音信号を発生する雑音源を用いて構成
すればよい。また、図11に示すようなM系列符号を用
いた雑音源のような、擬似ランダム符号を用いた擬似雑
音信号発生手段を用いてもよい。図11において、41
は所定の遅延時間を有する遅延演算子としてのフリップ
フロップ、42は排他的論理和演算器である。なお図1
1では、擬似雑音信号発生手段をフリップフロップと排
他的論理和演算器を用いたハードウェアによって実現し
ているが、マイクロプロセッサのメモリに擬似ランダム
符号パターンを記憶して出力させる等のソフトウェアを
用いて実現する方法もある。
The pseudo random noise generating means 12 may be constituted by using a noise source which generates a noise signal such as white noise. Further, a pseudo noise signal generating means using a pseudo random code such as a noise source using an M sequence code as shown in FIG. 11 may be used. In FIG. 11, 41
Is a flip-flop as a delay operator having a predetermined delay time, and 42 is an exclusive OR calculator. Figure 1
In 1, the pseudo noise signal generating means is realized by hardware using a flip-flop and an exclusive OR calculator, but software such as storing and outputting the pseudo random code pattern in the memory of the microprocessor is used. There is also a method to realize it.

【0097】またインピーダンス素子13は、電池11
に交流信号を印加する際に電池11と擬似ランダム雑音
発生手段12との間に直流パスが形成されるのを防ぐも
のであり、図8に示す本実施形態に係る電池の状態解析
装置では、容量が十分大きく、かつ容量値が既知である
コンデンサをインピーダンス素子13として用いてい
る。
The impedance element 13 is the battery 11
It is intended to prevent a DC path from being formed between the battery 11 and the pseudo random noise generating means 12 when an AC signal is applied to the battery, and the battery state analyzing apparatus according to the present embodiment shown in FIG. A capacitor having a sufficiently large capacitance and a known capacitance value is used as the impedance element 13.

【0098】次にステップS2において、電池11にか
かる交流電圧vB 及び電池11に流れる交流電流iB を
サンプリングして、離散系の伝達関数の推定演算に用い
る時系列入出力データを求める。ステップS2はアナロ
グ/デジタル変換器14によって行われる。電池11に
かかる交流電圧vB 及び電池11に流れる交流電流iB
はそれぞれ、図4に示すARXモデルにおける入力信号
u(t)及び出力信号y(t)に相当し、したがってア
ナログ/デジタル変換器14によって所定の時間間隔で
サンプリングされたデジタル値から、式(11)に示す
ような入出力データ系列による回帰ベクトルφ(t)が
求められる。言い換えると、電池11にかかる交流電圧
vB 及び電池11に流れる交流電流iB は、サンプリン
グ手段としてのアナログ/デジタル変換器14を介し
て、離散系の伝達関数の推定演算に用いられる時系列入
出力データとなる。
Next, in step S2, the AC voltage vB applied to the battery 11 and the AC current iB flowing in the battery 11 are sampled to obtain the time series input / output data used for the estimation calculation of the transfer function of the discrete system. Step S2 is performed by the analog / digital converter 14. AC voltage vB applied to the battery 11 and AC current iB flowing in the battery 11
Respectively correspond to the input signal u (t) and the output signal y (t) in the ARX model shown in FIG. 4, and thus from the digital values sampled by the analog-to-digital converter 14 at predetermined time intervals, equation (11) ), The regression vector φ (t) based on the input / output data series is obtained. In other words, the AC voltage vB applied to the battery 11 and the AC current iB flowing in the battery 11 are time-series input / output data used for the estimation calculation of the transfer function of the discrete system via the analog / digital converter 14 as the sampling means. Becomes

【0099】次にステップS3において、ステップS2
で求めた時系列入出力データを用いて離散系の伝達関数
を推定演算する。ステップS3は伝達関数演算手段15
によって、本発明の基本的な原理における(2)電池伝
達関数の推定演算の項で説明した手順にしたがって行わ
れる。すなわち、伝達関数演算手段15は、アナログ/
デジタル変換器14によってサンプリングされた交流電
圧vB ,交流電流iB を時系列入出力データu(t),
y(t)として式(11)の回帰ベクトルψ(t)を求
め、式(14)又は(15)で与えられる初期値を用い
て式(13)に示すような伝達関数推定演算を行い、式
(10)の係数パラメータθ(t)を求めて、式(7)
に示すような離散系の伝達関数を求める。
Next, in step S3, step S2
The transfer function of the discrete system is estimated and calculated using the time-series input / output data obtained in. Step S3 is the transfer function calculation means 15.
According to the procedure described in (2) Battery transfer function estimation calculation in the basic principle of the present invention. That is, the transfer function calculating means 15 is
AC voltage vB and AC current iB sampled by the digital converter 14 are converted into time series input / output data u (t),
The regression vector ψ (t) of the equation (11) is obtained as y (t), and the transfer function estimation calculation shown in the equation (13) is performed using the initial value given by the equation (14) or (15). The coefficient parameter θ (t) of the equation (10) is calculated to obtain the equation (7)
Find the transfer function of the discrete system as shown in.

【0100】次にステップS4において、ステップS3
で求めた離散系の伝達関数から連続系の伝達関数におけ
る極を算出する。ステップS4は、極算出手段16によ
って、本発明の基本的な原理における(3)離散系の極
の算出、及び(4)離散系から連続系への極の変換の項
で説明した手順にしたがって行われる。
Next, in step S4, step S3
The poles in the transfer function of the continuous system are calculated from the transfer function of the discrete system obtained in. Step S4 is performed by the pole calculating means 16 according to the procedure described in the paragraphs (3) calculation of the poles of the discrete system and (4) conversion of the poles from the discrete system to the continuous system in the basic principle of the present invention. Done.

【0101】図12は極算出手段16の構成を示すブロ
ック図である。まず、因数分解演算手段16aは、ステ
ップS3で伝達関数演算手段15によって推定された離
散系の伝達関数の分母である有理多項式を因数分解す
る。本実施形態ではインピーダンス素子13として純容
量が与えられているので、本発明の基本的な原理におけ
る(3−2)で説明したように、推定された式(7)に
示すような伝達関数の分母である多項式A(z)を、3
次より高次の項を切り捨てた上で式(23)から式(2
5)にしたがって因数分解する。
FIG. 12 is a block diagram showing the structure of the pole calculating means 16. First, the factorization calculation means 16a factorizes the rational polynomial that is the denominator of the transfer function of the discrete system estimated by the transfer function calculation means 15 in step S3. In this embodiment, since a pure capacitance is given as the impedance element 13, as described in (3-2) in the basic principle of the present invention, the transfer function of the estimated expression (7) is obtained. The polynomial A (z) that is the denominator is 3
After truncating higher-order terms, the expressions (23) to (2
Factor according to 5).

【0102】極演算手段16bは、式(27)に示すよ
うに、式(25)から得られる複素解から虚数部を切り
捨てて実数部のみとし、更に式(28)に従って大小比
較を行って電池11の正極及び負極に対応する極を決定
する。
As shown in the equation (27), the pole calculating means 16b truncates the imaginary part from the complex solution obtained from the equation (25) to leave only the real number part, and further compares the magnitude according to the equation (28) to determine the battery. Determine the poles corresponding to 11 positive and negative electrodes.

【0103】極変換演算手段16dは、式(29)に従
ってサンプリング周期Tを用いてz領域からs領域への
極の変換を行う。因数分解演算手段16a、極演算手段
16b及び極変換演算手段16cによって、離散系の伝
達関数から式(3)で与えられる連続系の電池伝達関数
HB (s)における極が求められる。
The pole transformation calculating means 16d transforms the poles from the z domain to the s domain using the sampling period T according to the equation (29). The factorization calculation means 16a, the pole calculation means 16b, and the pole conversion calculation means 16c determine the poles in the battery transfer function HB (s) of the continuous system given by the equation (3) from the transfer function of the discrete system.

【0104】本実施形態における極算出手段16は極温
度補正手段16dをさらに備えており、因数分解演算手
段16a、極演算手段16b及び極変換演算手段16c
によって求められた,連続系の電池伝達関数HB (s)
における極を、温度センサ18によって計測された電池
の周囲温度によって補正している。
The pole calculating means 16 in this embodiment is further provided with a pole temperature correcting means 16d, and the factorization calculating means 16a, the pole calculating means 16b and the pole conversion calculating means 16c.
Battery transfer function HB (s) of continuous system obtained by
The pole at is corrected by the ambient temperature of the battery measured by the temperature sensor 18.

【0105】極の温度補正は以下のように行う。温度セ
ンサ18は電池11の表面温度又は周囲温度を計測す
る。式(1),(2)に示すように、正極の分極抵抗3
1pの抵抗値Rp 及び負極の分極抵抗31nの抵抗値R
n は共に絶対温度Tに比例するので、式(5),(6)
によって示される極の角周波数は絶対温度に反比例す
る。ここで、電池11内部の温度は温度センサ18によ
って計測した温度と等しいと仮定する。基準温度(極と
電池の状態との相関を得た実験温度)をTa [K]、温
度センサ18によって計測した温度をTd [K]とする
と、基準温度Ta における分極抵抗の抵抗値Rp ,Rn
と温度Td における分極抵抗の抵抗値Rp',Rn'との関
係は式(1),(2)から、
The pole temperature correction is performed as follows. The temperature sensor 18 measures the surface temperature or the ambient temperature of the battery 11. As shown in equations (1) and (2), the polarization resistance 3 of the positive electrode
The resistance value Rp of 1p and the resistance value R of the polarization resistance 31n of the negative electrode
Since both n are proportional to the absolute temperature T, equations (5) and (6)
The angular frequency of the pole indicated by is inversely proportional to absolute temperature. Here, it is assumed that the temperature inside the battery 11 is equal to the temperature measured by the temperature sensor 18. Let Ta [K] be the reference temperature (experimental temperature that obtains the correlation between the state of the electrode and the battery) and Td [K] be the temperature measured by the temperature sensor 18. Resistance values Rp and Rn of the polarization resistance at the reference temperature Ta.
And the relationship between the resistance values Rp 'and Rn' of the polarization resistance at the temperature Td are as follows from equations (1) and (2)

【0106】[0106]

【数15】 [Equation 15]

【0107】のようになる。式(30),(31)か
ら、基準温度Ta における極の角周波数ω1,ω2は、
温度Td における極の角周波数ω1´,ω2´を次式の
ように補正して求められる。
It becomes as follows. From equations (30) and (31), the angular frequencies ω1 and ω2 of the poles at the reference temperature Ta are
It is determined by correcting the polar angular frequencies ω1 ′ and ω2 ′ at the temperature Td according to the following equation.

【0108】[0108]

【数16】 [Equation 16]

【0109】となる。極温度補正手段16dは、極変換
演算手段16cによって求められた連続系の電池伝達関
数HB (s)における極の角周波数を式(32),(3
3)にしたがって温度補正して出力する。
It becomes: The polar temperature correction means 16d expresses the angular frequency of the pole in the battery transfer function HB (s) of the continuous system obtained by the polar conversion calculation means 16c by the equations (32) and (3).
According to 3), the temperature is corrected and output.

【0110】最後にステップS5において、ステップS
4で求められた極の角周波数を基にして、電池の残量を
判定する。ステップS5は状態判定手段17によって、
本発明の基本的な原理における(5)電池の状態と極の
推移との相関の項で説明した手順にしたがって行われ
る。
Finally, in step S5, step S
The remaining battery level is determined based on the polar angular frequency obtained in 4. In step S5, the state determination means 17
This is performed according to the procedure described in the section (5) Correlation between battery state and pole transition in the basic principle of the present invention.

【0111】なお、擬似ランダム雑音発生手段12が電
池11と等しい直流オフセット電圧を持つ場合には、イ
ンピーダンス素子13を省略することが可能である。図
13はインピーダンス素子を介さずに電池11に交流信
号を印加する電池の状態解析装置の構成を示す図であ
り、交流信号を電池11に印加する系のみを示してい
る。図13において、12Aは電池11と等しい直流オ
フセット電圧を持つ電圧オフセット擬似ランダム雑音発
生手段である。電圧オフセット擬似ランダム雑音発生手
段12Aは、図8に示す擬似ランダム雑音発生手段12
と同様に、雑音信号を発生する電圧オフセット雑音源に
よって構成してもよい。
When the pseudo random noise generating means 12 has the same DC offset voltage as the battery 11, the impedance element 13 can be omitted. FIG. 13 is a diagram showing a configuration of a battery state analyzing device that applies an AC signal to the battery 11 without passing through an impedance element, and shows only a system that applies an AC signal to the battery 11. In FIG. 13, 12A is a voltage offset pseudo-random noise generating means having a DC offset voltage equal to that of the battery 11. The voltage offset pseudo random noise generating means 12A is the pseudo random noise generating means 12 shown in FIG.
Similarly, a voltage offset noise source that generates a noise signal may be used.

【0112】図13の電池の状態解析装置も図8に示す
電池の状態解析装置と同様に、電池11にかかる交流電
圧vB 及び電池11に流れる交流電流iB をサンプリン
グして離散系の伝達関数を演算することによって、電池
11の状態を判定することができる。ただし図13の電
池の状態解析装置の場合、本発明の基本的な原理におけ
る(3−1)インピーダンス素子が純抵抗の場合に該当
するので、極算出手段16を構成する因数分解演算手段
16aは、伝達関数演算手段15によって推定された離
散系の伝達関数の分母である有理多項式A(z)を、2
次より高次の項を切り捨てた上で式(17)から式(1
9)にしたがって因数分解する。
Similarly to the battery state analyzing apparatus shown in FIG. 8, the battery state analyzing apparatus shown in FIG. 13 samples the AC voltage vB applied to the battery 11 and the AC current iB flowing in the battery 11 to obtain a discrete system transfer function. The state of the battery 11 can be determined by calculation. However, in the case of the battery state analysis device of FIG. 13, since the (3-1) impedance element in the basic principle of the present invention corresponds to a pure resistance, the factorization calculation means 16a constituting the pole calculation means 16 is , The rational polynomial A (z) that is the denominator of the transfer function of the discrete system estimated by the transfer function calculating means 15 is 2
After truncating higher-order terms, the equations (17) to (1
Factor 9 according to 9).

【0113】なお、伝達関数演算手段15に対して、解
析対象の電池11の電極の分極抵抗や容量成分を基にし
て予め計算した初期値を与える構成としてもよい。これ
により、離散系の伝達関数の推定演算の収束性を高める
ことができる。
The transfer function calculating means 15 may be provided with an initial value calculated in advance based on the polarization resistance and capacitance components of the electrodes of the battery 11 to be analyzed. Thereby, the convergence of the estimation operation of the transfer function of the discrete system can be improved.

【0114】なお、極算出手段16において、極温度補
正手段16dは必須の構成要素では、なくてもかまわな
い。この場合には温度センサ18は不要になる。
In the pole calculating means 16, the pole temperature correcting means 16d may not be an essential component. In this case, the temperature sensor 18 becomes unnecessary.

【0115】また、伝達関数演算手段15によって求め
られた離散系の伝達関数から、残量以外の電池の状態を
判定する電池の状態解析装置も考えられる。例えば離散
系の伝達関数から電池の安全性や劣化具合を判定する等
が考えられる。
Further, a battery state analyzing device for judging the state of the battery other than the remaining amount from the transfer function of the discrete system obtained by the transfer function calculating means 15 is also conceivable. For example, it is conceivable to judge the safety and deterioration of the battery from the transfer function of the discrete system.

【0116】なお本実施形態とは別の方法として、推定
する離散系の伝達関数の極の次数は任意とし、その極の
推移をそのまま電池の残量に対して相関付ける方法も考
えられる。例えば、推定演算する離散系の伝達関数の極
の次数を、電池11に対して予め定めた交流等価回路の
連続系の伝達関数における極の次数に比べて高次のもの
と仮定する。ここでは、伝達関数の極の次数を30次と
仮定すると、伝達関数G(z,θ)は次のような式で表
される。
As a method different from the present embodiment, a method may be considered in which the order of poles of the transfer function of the discrete system to be estimated is arbitrary and the transition of the poles is directly correlated with the remaining battery level. For example, it is assumed that the order of the poles of the transfer function of the discrete system to be estimated and calculated is higher than the order of the poles of the transfer function of the continuous system of the AC equivalent circuit that is predetermined for the battery 11. Here, assuming that the pole order of the transfer function is the 30th order, the transfer function G (z, θ) is expressed by the following equation.

【0117】[0117]

【数17】 [Equation 17]

【0118】係数パラメータθの収束後、吐き出し法ア
ルゴリズムを用いた演算によって得られた伝達関数G
(z,θ)の30個の極を求める。図14は30次の極
のz平面における位置の例を示すグラフである。図14
に示すように、電池11及びインピーダンス素子12に
関連する極を全て抽出しその中の特定の極の推移を解析
することによって、電池11の状態の解析を行う。残量
の判定は、予め実験等によって残量と相関があると特定
された極を観察することによって、行うことができる。
After the coefficient parameter θ converges, the transfer function G obtained by the calculation using the discharge method algorithm
Find 30 poles of (z, θ). FIG. 14 is a graph showing an example of the position of the 30th pole in the z plane. 14
As shown in, the state of the battery 11 is analyzed by extracting all the poles associated with the battery 11 and the impedance element 12 and analyzing the transition of a specific pole among them. The determination of the remaining amount can be performed by observing a pole that is previously identified as having a correlation with the remaining amount by an experiment or the like.

【0119】[0119]

【発明の効果】以上のように本発明によると、まず電池
を含む系の離散系の伝達関数を推定演算によって求め、
この離散系の伝達関数から電池の交流等価回路の連続系
の伝達関数における極を求めた上で、電池の交流等価回
路の伝達関数における極と電池の残量等の状態との間の
相関関係を用いて、電池の状態を解析するので、電池の
状態を確実にかつ定量的に行うことができる。
As described above, according to the present invention, the transfer function of the discrete system of the system including the battery is first obtained by the estimation operation,
After obtaining the poles in the transfer function of the continuous system of the AC equivalent circuit of the battery from the transfer function of this discrete system, the correlation between the poles in the transfer function of the AC equivalent circuit of the battery and the states such as the remaining capacity of the battery Since the state of the battery is analyzed by using, it is possible to perform the state of the battery reliably and quantitatively.

【0120】また、離散系の伝達関数を推定演算するた
めには、アナログ信号処理は不要であり全てデジタル信
号処理によって行うことができるので、ワンチップマイ
コンやDSP等によるLSI化が可能になり、低コスト
かつ高精度の電池の状態解析装置を実現することができ
る。
Further, in order to estimate and calculate the transfer function of the discrete system, analog signal processing is not necessary and all can be performed by digital signal processing, so that it is possible to realize an LSI by a one-chip microcomputer or DSP, It is possible to realize a low-cost and high-accuracy battery state analysis device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明するための図であり、電池
の交流等価回路を示す回路図
FIG. 1 is a diagram for explaining the principle of the present invention and is a circuit diagram showing an AC equivalent circuit of a battery.

【図2】本発明の原理を説明するための図であり、交流
信号の周波数が比較的高いときの電池の交流等価回路を
示す回路図
FIG. 2 is a diagram for explaining the principle of the present invention and is a circuit diagram showing an AC equivalent circuit of a battery when the frequency of an AC signal is relatively high.

【図3】本発明の原理を説明するための図であり、電池
の複素インピーダンスプロットを示すグラフ
FIG. 3 is a diagram for explaining the principle of the present invention, and is a graph showing a complex impedance plot of a battery.

【図4】本発明の原理を説明するための図であり、シス
テム同定に用いるARX(自己回帰)モデルを表す図
FIG. 4 is a diagram for explaining the principle of the present invention and is a diagram showing an ARX (autoregressive) model used for system identification.

【図5】本発明の原理を説明するための図であり、電池
の離散系の伝達関数から求めた極を連続系の伝達関数に
おける極に変換するためのz平面からs平面への写像を
表す図
FIG. 5 is a diagram for explaining the principle of the present invention, showing a mapping from the z plane to the s plane for converting the poles obtained from the transfer function of the discrete system of the battery into the poles in the transfer function of the continuous system. Figure

【図6】本発明の原理を説明するための図であり、電池
の残量の変化に伴う複素インピーダンスプロットの変化
を示す図 (a)残量100%の場合を示す図 (b)残量50%の場合を示す図 (c)残量10%の場合を示す図 (d)残量0%の場合にそれぞれわけて示した図
FIG. 6 is a diagram for explaining the principle of the present invention, showing a change in the complex impedance plot with a change in the remaining amount of the battery (a) a diagram showing a case where the remaining amount is 100% (b) a remaining amount Figure showing the case of 50% (c) Figure showing the case of the remaining amount of 10% (d) Figure showing the case of the remaining amount of 0%

【図7】本発明の原理を説明するための図であり、電池
の残量と電池の伝達関数における極の角周波数との相関
を示す図 (a)第1極の場合を示す図 (b)第2極の場合にそれぞれわけて示したグラフ
FIG. 7 is a diagram for explaining the principle of the present invention, showing the correlation between the remaining amount of the battery and the angular frequency of the pole in the transfer function of the battery (a) showing the case of the first pole (b) ) Graph for the second pole

【図8】本発明の一実施形態に係る電池の状態解析装置
の構成を示す図 (a)は電池に交流信号を印加する系を示す図 (b)は電池の状態解析を行う部分の構成を示すブロッ
ク図
FIG. 8 is a diagram showing a configuration of a battery state analysis apparatus according to an embodiment of the present invention, FIG. 8A is a diagram showing a system for applying an AC signal to the battery, and FIG. 8B is a configuration of a portion for performing battery state analysis. Block diagram showing

【図9】図8に示す本発明の一実施形態に係る電池の状
態解析装置の動作を示すフローチャート
9 is a flowchart showing the operation of the battery state analysis device according to the embodiment of the present invention shown in FIG.

【図10】本発明の一実施形態において用いる擬似ラン
ダム雑音発生手段の周波数特性の一例を示すグラフ
FIG. 10 is a graph showing an example of frequency characteristics of the pseudo random noise generating means used in the embodiment of the present invention.

【図11】本発明の一実施形態において擬似ランダム雑
音発生手段として用いる、M系列符号を用いた雑音源の
構成を示す図
FIG. 11 is a diagram showing a configuration of a noise source using an M-sequence code, which is used as a pseudo-random noise generating means in the embodiment of the present invention.

【図12】本発明の一実施形態に係る電池の状態解析装
置における極算出手段の構成を示すブロック図
FIG. 12 is a block diagram showing a configuration of a pole calculating means in the battery state analyzing device according to the embodiment of the present invention.

【図13】本発明の一実施形態に係る電池の状態解析装
置であってインピーダンス素子を介さずに電池に交流信
号を印加するものの構成を示す図であり、交流信号を電
池に印加する系のみを示す図
FIG. 13 is a diagram showing a configuration of a battery state analyzing device according to an embodiment of the present invention for applying an AC signal to the battery without passing through an impedance element, and only a system for applying the AC signal to the battery. Showing

【図14】電池の伝達関数における極の次数が30次で
あるときの、z平面における極の位置の例を示すグラフ
FIG. 14 is a graph showing an example of the position of the pole in the z plane when the order of the pole in the transfer function of the battery is the 30th order.

【符号の説明】[Explanation of symbols]

VB 電池にかかる交流電圧 iB 電池に流れる交流電流 11 電池 12 擬似ランダム雑音発生手段 12A 電圧オフセット擬似ランダム雑音発生手段 13 インピーダンス素子 14 アナログ/デジタル変換器(サンプリング手段) 15 伝達関数演算手段 16 極算出手段 16a 因数分解演算手段 16b 極演算手段 16c 極変換演算手段 16d 極温度補正手段 17 状態判定手段 18 温度センサ(温度計測手段) AC voltage applied to VB battery AC current flowing in iB battery 11 batteries 12 Pseudo-random noise generating means 12A voltage offset pseudo-random noise generating means 13 Impedance element 14 Analog / digital converter (sampling means) 15 Transfer function calculation means 16 pole calculation means 16a Factorization operation means 16b Pole calculation means 16c Pole conversion calculation means 16d extreme temperature correction means 17 State determination means 18 Temperature sensor (temperature measuring means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中尾 武寿 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 熊本 義則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G016 CB12 CC01 CC04 CC09 CC13 CC16 CC24 CC27 CD14 CF06 5H030 AS08 AS14 FF41 FF42 FF43 FF44    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Taketoshi Nakao             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yoshinori Kumamoto             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 2G016 CB12 CC01 CC04 CC09 CC13                       CC16 CC24 CC27 CD14 CF06                 5H030 AS08 AS14 FF41 FF42 FF43                       FF44

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電池に印加する交流信号を出力する擬似
ランダム雑音発生手段と、前記電池にかかる交流電圧ま
たは前記電池に流れる交流電流をサンプリングして、離
散系の伝達関数の推定演算に用いる時系列データを求め
るサンプリング手段と、推定演算された離散系の伝達関
数から電池の連続系における極を算出する伝達関数演算
手段と、得られた前記極を基に前記電池の残量を判定す
る状態判定手段とを有することを特徴とする電池の残存
容量測定装置。
1. A pseudo random noise generating means for outputting an alternating current signal applied to a battery, and an alternating voltage applied to the battery or an alternating current flowing through the battery is sampled and used for estimation calculation of a transfer function of a discrete system. Sampling means for obtaining series data, transfer function calculating means for calculating a pole in a continuous system of a battery from an estimated transfer function of a discrete system, and a state for determining the remaining amount of the battery based on the obtained pole A remaining capacity measuring device for a battery, comprising: a determining means.
【請求項2】 擬似ランダム雑音発生手段は周波数が可
変であることを特徴とする請求項1に記載の電池の残存
容量測定装置。
2. The battery residual capacity measuring device according to claim 1, wherein the pseudo random noise generating means has a variable frequency.
【請求項3】 擬似ランダム雑音発生手段により出力さ
れる交流信号の周波数帯域は電池の伝達関数の極の成分
を含むことを特徴とする請求項1記載の残存容量測定装
置。
3. The state-of-charge measuring device according to claim 1, wherein the frequency band of the AC signal output by the pseudo random noise generating means includes a pole component of the transfer function of the battery.
【請求項4】 擬似ランダム雑音発生手段はM系列符号
あるいはGold符号を用いた雑音または白色雑音であ
ることを特徴とする請求項1から3いずれかに記載の電
池の残存容量測定装置。
4. The battery residual capacity measuring device according to claim 1, wherein the pseudo-random noise generating means is noise using M-sequence code or Gold code or white noise.
【請求項5】 擬似ランダム雑音発生手段は電圧オフセ
ット擬似ランダム雑音であることを特徴とする請求項1
〜4いずれかに記載の電池の残存容量測定装置。
5. The pseudo random noise generating means is voltage offset pseudo random noise.
The battery residual capacity measuring device according to any one of to 4.
【請求項6】 交流信号印加手段は交流信号を発生出力
する交流信号源と、インピーダンス素子を介して電池に
印加する手段を備えることを特徴とする請求項1〜5い
ずれかに記載の電池の残存容量測定装置。
6. The battery according to claim 1, wherein the AC signal applying means comprises an AC signal source for generating and outputting an AC signal, and means for applying the AC signal to the battery via an impedance element. Remaining capacity measuring device.
【請求項7】 サンプリング手段は交流電圧と前記電池
に流れる交流電流の時系列データをサンプリングするこ
とと、前記サンプリング手段から得たアナログ値をデジ
タル値へ変換するアナログ/デジタル変換手段からなる
ことを特徴とする請求項1〜6いずれかに記載の電池の
残存容量測定装置。
7. The sampling means comprises: time-series data of an alternating voltage and an alternating current flowing through the battery; and an analog / digital converting means for converting an analog value obtained from the sampling means into a digital value. The battery residual capacity measuring device according to any one of claims 1 to 6, which is characterized in that.
JP2002368003A 1996-12-17 2002-12-19 Battery remaining capacity measuring device Expired - Fee Related JP3695444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368003A JP3695444B2 (en) 1996-12-17 2002-12-19 Battery remaining capacity measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-337088 1996-12-17
JP33708896 1996-12-17
JP2002368003A JP3695444B2 (en) 1996-12-17 2002-12-19 Battery remaining capacity measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP34616097A Division JP3402167B2 (en) 1996-12-17 1997-12-16 Battery condition analyzer

Publications (2)

Publication Number Publication Date
JP2003222660A true JP2003222660A (en) 2003-08-08
JP3695444B2 JP3695444B2 (en) 2005-09-14

Family

ID=27758984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368003A Expired - Fee Related JP3695444B2 (en) 1996-12-17 2002-12-19 Battery remaining capacity measuring device

Country Status (1)

Country Link
JP (1) JP3695444B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162283A (en) * 2004-12-02 2006-06-22 Mitsubishi Chemicals Corp Method, apparatus, and program for evaluating frequency characteristics and protecting apparatus
CN100361404C (en) * 2004-09-20 2008-01-09 乐金电子(中国)研究开发中心有限公司 Voltage drop repairing circuit for mobile communication terminal and method thereof
WO2012095913A1 (en) * 2011-01-14 2012-07-19 パナソニック株式会社 Method for evaluating deterioration of lithium ion secondary cell, and cell pack
US8378688B2 (en) 2009-08-07 2013-02-19 Sanyo Electric Co., Ltd. Capacity maintenance ratio determination device, battery system and electric vehicle
JP2015094726A (en) * 2013-11-13 2015-05-18 学校法人東海大学 Battery-state determination device and battery-state determination method
JP2016065832A (en) * 2014-09-25 2016-04-28 プライムアースEvエナジー株式会社 Battery state determination method and battery state determination device
WO2024166301A1 (en) * 2023-02-09 2024-08-15 株式会社 東芝 Measurement device, power storage system and measurement method
WO2024189905A1 (en) * 2023-03-16 2024-09-19 株式会社 東芝 Storage cell diagnostic device, diagnostics system, and diagnostic method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896855A (en) * 1994-09-27 1996-04-12 Yamaha Motor Co Ltd Constitution method for secondary battery
JPH08179017A (en) * 1994-12-26 1996-07-12 Bridgestone Corp Monitor device for battery impedance
JPH08220197A (en) * 1995-02-14 1996-08-30 Hitachi Ltd Motor load characteristic identifying device
JPH08254573A (en) * 1995-03-15 1996-10-01 Omron Corp Battery measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896855A (en) * 1994-09-27 1996-04-12 Yamaha Motor Co Ltd Constitution method for secondary battery
JPH08179017A (en) * 1994-12-26 1996-07-12 Bridgestone Corp Monitor device for battery impedance
JPH08220197A (en) * 1995-02-14 1996-08-30 Hitachi Ltd Motor load characteristic identifying device
JPH08254573A (en) * 1995-03-15 1996-10-01 Omron Corp Battery measuring apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100361404C (en) * 2004-09-20 2008-01-09 乐金电子(中国)研究开发中心有限公司 Voltage drop repairing circuit for mobile communication terminal and method thereof
JP2006162283A (en) * 2004-12-02 2006-06-22 Mitsubishi Chemicals Corp Method, apparatus, and program for evaluating frequency characteristics and protecting apparatus
US8378688B2 (en) 2009-08-07 2013-02-19 Sanyo Electric Co., Ltd. Capacity maintenance ratio determination device, battery system and electric vehicle
WO2012095913A1 (en) * 2011-01-14 2012-07-19 パナソニック株式会社 Method for evaluating deterioration of lithium ion secondary cell, and cell pack
JP2015094726A (en) * 2013-11-13 2015-05-18 学校法人東海大学 Battery-state determination device and battery-state determination method
JP2016065832A (en) * 2014-09-25 2016-04-28 プライムアースEvエナジー株式会社 Battery state determination method and battery state determination device
WO2024166301A1 (en) * 2023-02-09 2024-08-15 株式会社 東芝 Measurement device, power storage system and measurement method
WO2024189905A1 (en) * 2023-03-16 2024-09-19 株式会社 東芝 Storage cell diagnostic device, diagnostics system, and diagnostic method

Also Published As

Publication number Publication date
JP3695444B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
JP3402167B2 (en) Battery condition analyzer
Waag et al. Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination
JP5842421B2 (en) Battery state estimation device
JP3162030B2 (en) Battery capacity measuring method and battery capacity measuring device using voltage response signal of pulse current
JP5058814B2 (en) Battery state and parameter estimation system and method
RU2328753C2 (en) Device and method for evaluating state of charge of battery with use of neutral network
JP3069346B1 (en) Method and apparatus for measuring Laplace transform impedance
US6534954B1 (en) Method and apparatus for a battery state of charge estimator
Vasebi et al. Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended Kalman filter
US9880061B2 (en) Methods and apparatus for sensing the internal temperature of an electrochemical device
Al Nazer et al. Broadband identification of battery electrical impedance for HEVs
Remmlinger et al. State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation
EP1088240B1 (en) Method of and apparatus for measuring battery capacity
EP1555537A1 (en) Battery remaining capacity measuring apparatus
JP2969534B2 (en) Sensor configuration and method for detecting measured values using the sensor configuration
JP5924617B2 (en) Equivalent circuit synthesis method and apparatus, and circuit diagnostic method
Hossain et al. A parameter extraction method for the Thevenin equivalent circuit model of Li-ion batteries
CN104204823B (en) For estimating the method and system of the insulation resistance between battery and electrically grounded pole
CN109633452B (en) Battery health degree detection method and detection device
CN112698215B (en) Estimating battery state from electrical impedance measurements using convolutional neural network device
KR100878123B1 (en) Method and system for battery state and parameter estimation
US9417290B1 (en) Methods and apparatus for dynamic characterization of electrochemical systems
Klintberg et al. Theoretical bounds on the accuracy of state and parameter estimation for batteries
JP2003222660A (en) Remaining capacity measuring device of battery
JP4638194B2 (en) Remaining capacity calculation device for power storage device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees