JP2003222459A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2003222459A
JP2003222459A JP2002022992A JP2002022992A JP2003222459A JP 2003222459 A JP2003222459 A JP 2003222459A JP 2002022992 A JP2002022992 A JP 2002022992A JP 2002022992 A JP2002022992 A JP 2002022992A JP 2003222459 A JP2003222459 A JP 2003222459A
Authority
JP
Japan
Prior art keywords
condenser
refrigerator
outside air
cooling fan
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002022992A
Other languages
Japanese (ja)
Other versions
JP3726756B2 (en
Inventor
Atsushi Mochizuki
厚志 望月
Satoru Hirakuni
悟 平國
Akira Nishizawa
章 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002022992A priority Critical patent/JP3726756B2/en
Publication of JP2003222459A publication Critical patent/JP2003222459A/en
Application granted granted Critical
Publication of JP3726756B2 publication Critical patent/JP3726756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00264Details for cooling refrigerating machinery characterised by the incoming air flow through the front bottom part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00266Details for cooling refrigerating machinery characterised by the incoming air flow through the bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0027Details for cooling refrigerating machinery characterised by the out-flowing air
    • F25D2323/00271Details for cooling refrigerating machinery characterised by the out-flowing air from the back bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat exchange efficiency of a condenser by sufficiently securing wind velocity of outside air for performing a heat exchange with the condenser installed at the bottom part of the refrigerator. <P>SOLUTION: The condenser 6 is installed so that a suction surface 6b of the condenser may be directed to the bottom surface of a main body of the refrigerator and a blow-off surface 6c of the condenser may be communicated with a machine chamber 4. By a cooling fan 2 provided in the machine chamber 4, outside air is sucked from the surrounding of the bottom surface of the main body of the refrigerator, and the condenser 6 and a compressor 1 are cooled in this order. By separating a portion from the gas blow-off surface 6c of the condenser up to an entrance 11 of the machine chamber 4 from the surrounding of the bottom surface of the main body of the refrigerator, outside air sucked from a space between the main body of the refrigerator and a floor surface is sucked from the suction surface 6b of the condenser. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、冷蔵庫における
凝縮器の放熱効率向上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving heat dissipation efficiency of a condenser in a refrigerator.

【0002】[0002]

【従来の技術】冷凍サイクルを構成する凝縮器を冷蔵庫
本体の底部に設置した従来の冷蔵庫として、特開200
0−310473号公報に掲載されたものがある。 図
29は従来の冷蔵庫の構造を示す要部の横断平面図で、
図30は要部の縦断側面図である。冷蔵庫本体の下部奥
側に機械室4が、仕切壁18と背面カバー19で設けら
れている。前記機械室4には、圧縮機1と、蒸発皿20
と、冷却ファン2が設置されている。
2. Description of the Related Art As a conventional refrigerator in which a condenser constituting a refrigeration cycle is installed at the bottom of a refrigerator body, a conventional refrigerator has been disclosed.
There is one disclosed in Japanese Patent Publication No. 0-310473. FIG. 29 is a cross-sectional plan view of an essential part showing the structure of a conventional refrigerator,
FIG. 30 is a vertical sectional side view of a main part. The machine room 4 is provided in the lower part rear side of the refrigerator main body by a partition wall 18 and a back cover 19. The machine room 4 includes a compressor 1 and an evaporation dish 20.
And the cooling fan 2 is installed.

【0003】吸気ダクト21は、冷蔵庫本体の底面,両
側面,仕切壁18とに囲まれた空間により形成されてお
り、冷蔵庫本体前面部には吸込口22、機械室4側には
吐出口26を開口している。吸気ダクト21内には、ス
パイラルチューブ式である凝縮器24を設置しており、
吸気ダクト21と凝縮器24の隙間25a,25bは、
凝縮器24のフィンピッチより狭くしている。冷却ファ
ン2を運転することで吸込口22から取り入れた外気
は、吸気ダクト21内の凝縮器24を冷却し、吐出口2
6から機械室4に流入し、蒸発皿20上部,冷却ファン
2を経て圧縮機1を冷却し排出口23より冷蔵庫外へ吐
出される。吸気ダクト21内の外気の流れは、凝縮器2
4との隙間25a,25bが、凝縮器24のフィンピッ
チより狭くしているので、隙間25a,25bに偏流す
ることなく凝縮器24内を流れる。
The intake duct 21 is formed by a space surrounded by the bottom surface, both side surfaces and the partition wall 18 of the refrigerator main body. The inlet 22 is provided on the front surface of the refrigerator main body and the outlet 26 is provided on the machine room 4 side. Is open. Inside the intake duct 21, a spiral tube type condenser 24 is installed,
The gaps 25a and 25b between the intake duct 21 and the condenser 24 are
It is narrower than the fin pitch of the condenser 24. The outside air taken in from the suction port 22 by operating the cooling fan 2 cools the condenser 24 in the intake duct 21 and the discharge port 2
6 flows into the machine room 4, passes through the upper part of the evaporating dish 20 and the cooling fan 2, cools the compressor 1, and is discharged from the outlet 23 to the outside of the refrigerator. The flow of outside air in the intake duct 21 is the condenser 2
Since the gaps 25a and 25b with respect to 4 are made narrower than the fin pitch of the condenser 24, they flow in the condenser 24 without being biased into the gaps 25a and 25b.

【0004】[0004]

【発明が解決しようとする課題】従来の冷蔵庫は以上の
ように構成されており、前面からの外気が凝縮器24の
ほぼ全ての冷媒配管と交差するように流れる構成なの
で、外気が凝縮器24を流れる時の流動抵抗が大きくな
る。このため、凝縮器24にあたる風の風速を十分に確
保できなくなり、凝縮器24の熱交換量を低下させてし
まうという問題点があった。また、凝縮器24の機械室
側の部分では、前部の凝縮器24で熱交換され暖められ
た空気が流れるので、冷媒配管を流れる冷媒の温度との
温度差が小さくなり、やはり凝縮器24の熱交換量を低
下させてしまうという問題があった。
The conventional refrigerator is constructed as described above, and since the outside air from the front surface flows so as to intersect with almost all the refrigerant pipes of the condenser 24, the outside air is condensed by the condenser 24. The flow resistance when flowing through becomes large. Therefore, there is a problem in that the wind speed of the wind hitting the condenser 24 cannot be sufficiently secured, and the heat exchange amount of the condenser 24 is reduced. Further, in the machine room side portion of the condenser 24, the air that has been heat-exchanged and warmed in the front condenser 24 flows, so that the temperature difference between the temperature of the refrigerant flowing through the refrigerant pipe and the condenser 24 is reduced. There was a problem that the amount of heat exchange was reduced.

【0005】この発明は、上記のような問題点を解消す
るためになされたもので、凝縮器で効率良く熱交換でき
るように外気の風路を構成して凝縮器の放熱性能を向上
し、使用エネルギーを省力化できる冷蔵庫を得ることを
目的とする。
The present invention has been made in order to solve the above problems, and improves the heat radiation performance of the condenser by forming an air passage for the outside air so that the condenser can efficiently exchange heat. The purpose is to obtain a refrigerator that can save energy consumption.

【0006】[0006]

【課題を解決するための手段】この発明の請求項1に係
る冷蔵庫は、機械室に設置され冷蔵庫本体の底部周囲か
ら外気を吸込む冷却ファンと、吹出面が前記機械室に連
通し吸込面が床面に向くように設けた凝縮器と、前記冷
却ファンによって前記冷蔵庫本体の底面と床面の間から
吸込まれる外気を前記凝縮器の吸込面から吸込むよう
に、前記凝縮器の吹出面から前記機械室の入口までを前
記周囲と仕切る仕切手段と、を備えたことを特徴とす
る。
A refrigerator according to claim 1 of the present invention has a cooling fan installed in a machine room for sucking outside air from the periphery of the bottom of the refrigerator body, and a blower surface communicating with the machine room. A condenser provided so as to face the floor surface, so that the outside air sucked from between the bottom surface and the floor surface of the refrigerator main body by the cooling fan is sucked from the suction surface of the condenser, Partitioning means for partitioning the surroundings up to the entrance of the machine room.

【0007】また、この発明の請求項2に係る冷蔵庫の
凝縮器は、プレートフィン熱交換器であることを特徴と
するものである。
The condenser of the refrigerator according to the second aspect of the present invention is characterized in that it is a plate fin heat exchanger.

【0008】また、この発明の請求項3に係る冷蔵庫の
仕切手段は、前記凝縮器の側面からも外気を吸込むよう
に構成されていることを特徴とするものである。
Further, the partitioning means of the refrigerator according to the third aspect of the present invention is characterized in that it is constructed so as to suck the outside air also from the side surface of the condenser.

【0009】また、この発明の請求項4に係る冷蔵庫
は、凝縮器を、前記冷却ファンの気体吸込面に近い部分
が下方になるように傾けて設置したことを特徴とするも
のである。
Further, the refrigerator according to the fourth aspect of the present invention is characterized in that the condenser is installed so as to be inclined such that a portion near the gas suction surface of the cooling fan is downward.

【0010】また、この発明の請求項5に係る冷蔵庫
は、前記機械室に格納される圧縮機を備え、冷却ファン
を、気体吸込面が前記機械室の入口側に向き、気体吹出
面が前記圧縮機側に向くように前記機械室内に配設され
ると共に、前記気体吹出面と前記冷蔵庫本体の前面との
なす角度(Θ)が、45度≦Θ≦90度となるように配
設することを特徴とするものである。
According to a fifth aspect of the present invention, a refrigerator is provided with a compressor housed in the machine room, and the cooling fan has a gas suction surface directed toward an inlet side of the machine room and a gas discharge surface described above. It is arranged in the machine room so as to face the compressor side, and is arranged so that the angle (Θ) formed by the gas blowing surface and the front surface of the refrigerator body is 45 ° ≦ θ ≦ 90 °. It is characterized by that.

【0011】また、この発明の請求項6に係る冷蔵庫
は、前記機械室の入口に近い部分の前記凝縮器の吸込面
に吸込まれる外気に抵抗を付加する抵抗体を備えたこと
を特徴とするものである。
Further, the refrigerator according to claim 6 of the present invention is provided with a resistor for adding resistance to the outside air sucked into the suction surface of the condenser at a portion near the inlet of the machine room. To do.

【0012】また、この発明の請求項7に係る冷蔵庫
は、前記凝縮器の吸込面の下側に、前記凝縮器の下側を
流れる外気を前記凝縮器の吸込面に導く整流板を備えた
ことを特徴とするものである。
Further, a refrigerator according to a seventh aspect of the present invention is provided with a straightening plate below the suction surface of the condenser for guiding outside air flowing under the condenser to the suction surface of the condenser. It is characterized by that.

【0013】また、この発明の請求項8に係る冷蔵庫
は、少なくとも前記機械室の入口側の前記凝縮器を、複
数段に重ねて構成したことを特徴とするものである。
Further, the refrigerator according to the eighth aspect of the present invention is characterized in that at least the condenser on the inlet side of the machine room is formed in a plurality of layers.

【0014】また、この発明の請求項9に係る冷蔵庫
は、前記凝縮器の吹出面から吹出す気体を複数の風路に
分割して前記機械室の入口へ導く仕切板を備えたことを
特徴とするものである。
A refrigerator according to a ninth aspect of the present invention includes a partition plate which divides the gas blown from the blowing surface of the condenser into a plurality of air passages and guides the gas to the inlet of the machine room. It is what

【0015】また、この発明の請求項10に係る冷蔵庫
は、前記機械室の入口に近い部分の前記凝縮器のフィン
ピッチを、前記機械室の入口から遠い部分のフィンピッ
チよりも狭くしたことを特徴とするものである。
In the refrigerator according to the tenth aspect of the present invention, the fin pitch of the condenser near the inlet of the machine chamber is made narrower than the fin pitch of the portion far from the inlet of the machine chamber. It is a feature.

【0016】また、この発明の請求項11に係る冷蔵庫
は、前記凝縮器を複数に分割し、隣りあう前記凝縮器の
冷媒配管の積み方向が異なるように配設したことを特徴
とするものである。
The refrigerator according to an eleventh aspect of the present invention is characterized in that the condenser is divided into a plurality of pieces and the refrigerant pipes of the adjacent condensers are arranged so that the stacking directions thereof are different. is there.

【0017】[0017]

【発明の実施の形態】実施の形態1.図1、図2は実施
の形態1による冷蔵庫に係り、図1は冷蔵庫底部の平面
構成図、図2は冷蔵庫底部の凝縮器側面を開放して示す
側面図である。図において、1は圧縮機、2は冷却ファ
ン、2aは冷却ファン2の気体吸込面、2bは冷却ファ
ン2の気体吹出面、3はファンダクトであり、これらは
機械室4内に格納されている。4aは機械室4の気体の
出口で例えば排気口、5は仕切手段、6は凝縮器、6a
は凝縮器6の冷媒配管、6bは凝縮器6の吸込面でここ
では気体吸込面、6cは凝縮器6の吹出面でここでは気
体吹出面、7は冷蔵庫周囲の外気の吸込口、7aは冷蔵
庫の下面開口、8はダクト天板、9は吸込んだ外気の風
路であるダクト、10は凝縮器の気体吹出面6cとダク
ト天板8との間で構成される風路、11は機械室4の気
体の入口で例えば吐出口、15aは下面開口7aと床面
の間の隙間、16aは冷蔵庫本体の前面、16bは冷蔵
庫本体の下面である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. 1 and 2 relate to a refrigerator according to Embodiment 1, FIG. 1 is a plan configuration diagram of a refrigerator bottom, and FIG. 2 is a side view showing a side of a condenser at the bottom of the refrigerator with an open side. In the figure, 1 is a compressor, 2 is a cooling fan, 2a is a gas suction surface of the cooling fan 2, 2b is a gas blowing surface of the cooling fan 2, 3 is a fan duct, and these are stored in the machine room 4. There is. 4a is a gas outlet of the machine room 4, for example, an exhaust port, 5 is a partitioning means, 6 is a condenser, 6a
Is a refrigerant pipe of the condenser 6, 6b is a suction surface of the condenser 6 here, a gas suction surface here, 6c is a blowing surface of the condenser 6 here, a gas discharge surface here, 7 is a suction port of outside air around the refrigerator, and 7a is The lower surface opening of the refrigerator, 8 is a duct top plate, 9 is a duct for sucking outside air, 10 is an air passage formed between the gas outlet surface 6c of the condenser and the duct top plate 8, and 11 is a machine. The gas inlet of the chamber 4 is, for example, a discharge port, 15a is a gap between the lower surface opening 7a and the floor surface, 16a is the front surface of the refrigerator main body, and 16b is the lower surface of the refrigerator main body.

【0018】ダクト9は、例えば仕切手段5とダクト天
板8で囲まれて構成される風路である。凝縮器6は冷蔵
庫本体の底部に形成されたダクト9内に設置されてお
り、例えば冷蔵庫本体の下面16bの機械室4を除いた
部分の面積のほぼ全体に広がり、冷媒配管6aの積み方
向が、例えば冷蔵庫の前方から後方になるように設置さ
れている。このため、冷媒は、主に冷蔵庫本体の下面1
6bに沿う方向に流れ、冷蔵庫本体の前面側から見る
と、左右に流れながら前方から後方へ流れる。そして、
床面に向くように配置される凝縮器6の面6bを吸込
面、ここでは気体吸込面6bと称し、吐出口11を介し
て機械室4と連通する面6cを吹出面、ここでは気体吹
出面6cと称する。
The duct 9 is an air passage surrounded by, for example, the partition means 5 and the duct top plate 8. The condenser 6 is installed in a duct 9 formed at the bottom of the refrigerator main body, and spreads over almost the entire area of the lower surface 16b of the refrigerator main body except the machine room 4, and the stacking direction of the refrigerant pipes 6a is , For example, the refrigerator is installed from the front to the back. Therefore, the refrigerant is mainly the lower surface 1 of the refrigerator body.
It flows in the direction along 6b, and when viewed from the front side of the refrigerator body, it flows from the front to the rear while flowing from side to side. And
The surface 6b of the condenser 6 arranged so as to face the floor is referred to as a suction surface, here, a gas suction surface 6b, and a surface 6c communicating with the machine chamber 4 through the discharge port 11 is a blow surface, here a gas blow surface. It is referred to as surface 6c.

【0019】仕切手段5の斜視図の一例を図3に示す。
仕切手段5はプラスチックや金属などで構成され、冷却
ファン2によって冷蔵庫本体の底部周囲から吸込まれる
外気と凝縮器6とを熱交換させるように導くものであ
る。即ち、仕切手段5によって凝縮器の気体吹出面6c
から吐出口11までの風路10と冷蔵庫本体の底部周囲
とを仕切ることにより、冷蔵庫本体と床面との間の吸込
口7から吸込まれる外気は、凝縮器の気体吸込面6bか
ら吸込まれるように導かれ、さらに気体吹出面6cから
機械室4へと流れる。具体的には、冷蔵庫本体の下面1
6bから凝縮器の気体吸込面6b以外の部分に流れる外
気を阻止する仕切手段5として、機械室側仕切手段5
a、側部仕切手段5b,5d、前部仕切手段5cを備
え、凝縮器の気体吸込面6bの部分には開口7aが形成
されている。さらに、冷蔵庫本体の前面16aから凝縮
器の気体吸込面6b以外の部分に流れる外気を阻止する
仕切手段5としては、凝縮器前面仕切手段5fを備え、
冷蔵庫本体の側面から凝縮器の気体吸込面6b以外の部
分に流れる外気を阻止する仕切手段5としては、凝縮器
側面仕切手段5e、5gを備える。従って、実際には図
2に示した側面図の凝縮器6は凝縮器側面仕切手段5e
に覆われる。
An example of a perspective view of the partition means 5 is shown in FIG.
The partitioning means 5 is made of plastic, metal, or the like, and serves to guide the outside air sucked from around the bottom of the refrigerator main body by the cooling fan 2 and the condenser 6 so as to exchange heat with each other. That is, the gas blowing surface 6c of the condenser by the partitioning means 5
By separating the air passage 10 from the discharge port 11 to the periphery of the bottom of the refrigerator body, the outside air sucked from the suction port 7 between the refrigerator body and the floor surface is sucked from the gas suction surface 6b of the condenser. Then, the gas flows from the gas outlet surface 6c to the machine room 4. Specifically, the lower surface 1 of the refrigerator body
Machine room side partitioning means 5 is used as partitioning means 5 for blocking outside air flowing from 6b to a portion other than the gas suction surface 6b of the condenser.
a, side partitioning means 5b and 5d, and front partitioning means 5c, and an opening 7a is formed in the gas suction surface 6b of the condenser. Further, as the partitioning means 5 for blocking the outside air flowing from the front surface 16a of the refrigerator body to the portion other than the gas suction surface 6b of the condenser, a condenser front surface partitioning means 5f is provided,
The partitioning means 5 for blocking outside air flowing from the side surface of the refrigerator main body to a portion other than the gas suction surface 6b of the condenser includes condenser side surface partitioning means 5e and 5g. Therefore, the condenser 6 of the side view shown in FIG. 2 is actually the condenser side partitioning means 5e.
Covered in.

【0020】凝縮器6が設けられているダクト9は、吐
出口11を介して機械室4と連通している。凝縮器の気
体吹出面6cから機械室4への連通路となる風路10
は、ダクト天板8が上側に設けられ、冷蔵庫の冷蔵室や
冷凍室を構成する部分と仕切られている。ここで、凝縮
器6の下で冷蔵庫本体の下面16bに開口する下面開口
7aの大きさは、対面して設置されている凝縮器の気体
吸込面6bとほぼ同程度である
The duct 9 provided with the condenser 6 communicates with the machine chamber 4 via the discharge port 11. An air passage 10 serving as a communication passage from the gas blowing surface 6c of the condenser to the machine room 4.
Is provided with a duct top plate 8 on the upper side, and is partitioned from a portion forming a refrigerating room or a freezing room of a refrigerator. Here, the size of the lower surface opening 7a opening to the lower surface 16b of the refrigerator body under the condenser 6 is approximately the same as the gas suction surface 6b of the condenser installed facing each other.

【0021】さらに、冷蔵庫本体の下面16bと、冷蔵
庫を設置する場所の床面との間には、周囲の吸込口7か
ら外気を吸込むため、外気の通路となる隙間15aが必
要であるが、通常、冷蔵庫本体底部にはキャスターなど
の移動手段や固定用の脚がある。このため、冷蔵庫本体
の下面16bと床面の間には数cm程度隙間があり、こ
の程度の隙間で十分である。冷蔵庫本体の下部の前面1
6aは、前からの見た目などから内部構造を覆う前面カ
バーが床面に当たらない範囲で設けられている。同様
に、冷蔵庫本体下部の側面は例えば冷蔵庫本体の下面1
6bまで側壁面に覆われており、冷蔵庫本体の下面16
bと床面との間に形成されるキャスター分の隙間15a
を通って周囲の外気が下面開口7aへ導入される。
Further, between the lower surface 16b of the refrigerator main body and the floor surface of the place where the refrigerator is installed, since the outside air is sucked through the suction port 7 in the surroundings, a gap 15a which is a passage for the outside air is required. Usually, at the bottom of the refrigerator body, there are moving means such as casters and fixing legs. Therefore, there is a gap of about several cm between the lower surface 16b of the refrigerator body and the floor surface, and this gap is sufficient. Front 1 of the bottom of the refrigerator body
6a is provided in such a range that the front cover that covers the internal structure does not hit the floor surface from the appearance from the front. Similarly, the side surface of the lower part of the refrigerator body is, for example, the lower surface 1 of the refrigerator body.
The lower surface 16 of the refrigerator body is covered by the side wall surface up to 6b.
Caster-like clearance 15a formed between b and the floor surface
The ambient outside air is introduced into the lower surface opening 7a through the.

【0022】また、凝縮器6は水平、または冷却ファン
2の気体吸込面2aに近い部分である吐出口11側が冷
蔵庫前面16a側よりも下になるように角度をつけて設
置されている。
Further, the condenser 6 is installed horizontally or at an angle so that the discharge port 11 side, which is a portion close to the gas suction surface 2a of the cooling fan 2, is lower than the refrigerator front surface 16a side.

【0023】また、冷却ファン2は機械室4内に設置さ
れ、冷却ファン2の気体吸込面2aが機械室4の入口で
ある吐出口11側に向き、気体吹出面2bが圧縮機1側
に向くように固定されている。さらに、冷蔵庫本体の前
面16aに対して、冷却ファン2の気体吹出面2bが圧
縮機1の方向に45°から90°の間の角度を成す位置
に配設する。即ち、この構成では機械室4の横方向が冷
蔵庫本体の前面16aと平行なので、図1に示すよう
に、45°≦Θ≦90°である。また、吐出口11はダ
クト9から冷却ファン2が設けられている機械室4へ外
気が流れる通路であり、凝縮器6との間に障害物がない
ように最大限の高さが取れるように配置する。
Further, the cooling fan 2 is installed in the machine room 4, the gas suction surface 2a of the cooling fan 2 faces the discharge port 11 side which is the inlet of the machine room 4, and the gas blowing surface 2b faces the compressor 1 side. It is fixed to face. Further, with respect to the front surface 16a of the refrigerator main body, the gas blowing surface 2b of the cooling fan 2 is arranged at a position forming an angle of 45 ° to 90 ° in the direction of the compressor 1. That is, in this configuration, since the lateral direction of the machine room 4 is parallel to the front surface 16a of the refrigerator body, 45 ° ≦ Θ ≦ 90 °, as shown in FIG. Further, the discharge port 11 is a passage through which the outside air flows from the duct 9 to the machine room 4 in which the cooling fan 2 is provided, and the maximum height can be obtained without any obstacle between the discharge port 11 and the condenser 6. Deploy.

【0024】次に動作について説明する。圧縮機1から
出た高圧ガス冷媒は凝縮器6に入る。そして凝縮器6の
冷媒配管6a内を流れる間に下面開口7aから吸込まれ
た外気と熱交換し、熱が放熱される。この後、冷凍サイ
クルを循環する冷媒は蒸発器(図示せず)で蒸発して冷
蔵庫内を冷却し、圧縮機1に戻る。一方、冷却ファン2
によって、冷蔵庫本体の底部周囲にある外気が、冷蔵庫
本体の前面カバーまたは仕切手段5と床面との間の隙間
で形成される吸込口7を通って冷蔵庫本体の下面16b
の下側に取り込まれる。さらに下面開口7aのみが開口
し他の部分は仕切手段5で仕切られているため、ここか
らダクト9内に取り込まれ、凝縮器6を冷却した後、吐
出口11から機械室4へ流れる。さらにその気体は圧縮
機1に吹き付けられ、圧縮機1を冷やすことで温度は上
昇した状態で排気口4aから排出される。
Next, the operation will be described. The high-pressure gas refrigerant discharged from the compressor 1 enters the condenser 6. While flowing through the refrigerant pipe 6a of the condenser 6, heat is exchanged with the outside air sucked from the lower surface opening 7a, and the heat is radiated. After that, the refrigerant circulating in the refrigeration cycle evaporates in the evaporator (not shown) to cool the inside of the refrigerator and returns to the compressor 1. On the other hand, the cooling fan 2
As a result, the outside air around the bottom of the refrigerator body passes through the suction port 7 formed in the gap between the front cover of the refrigerator body or the partition means 5 and the floor surface, and the lower surface 16b of the refrigerator body.
Is captured on the lower side of. Further, since only the lower surface opening 7a is opened and the other portion is partitioned by the partitioning means 5, it is taken into the duct 9 from here, cools the condenser 6, and then flows from the discharge port 11 to the machine chamber 4. Further, the gas is blown to the compressor 1, and when the compressor 1 is cooled, the temperature is raised and the gas is discharged from the exhaust port 4a.

【0025】凝縮器6は、冷媒が冷蔵庫本体の下面16
bに沿う方向に流れるように冷媒配管6aが積まれてい
る。下面開口7aは凝縮器の気体吸込面6bに対面する
ように冷蔵庫本体の下面16bに開口し、その大きさ
は、凝縮器6の面の熱交換に寄与する部分の大きさとほ
ぼ同程度である。具体的には、中央部に下面開口7aと
なる開口が形成された周囲のみの四角い枠板5a〜5d
に凝縮器6を固定し、これを冷蔵庫の下面に、風路10
が存在するように隙間をあけてダクト天板8に固定して
いる。冷蔵庫本体の周囲から吸込んだ外気の全ては下面
開口7aからダクト9に導かれる。この下面開口7aは
凝縮器の気体吸込面6bと対面するように位置をほぼ一
致させて開口しているため、下面開口7aからダクト9
に流入した外気は、凝縮器の気体吸込面6bから冷媒の
流れる方向と交わる方向に通過して凝縮器の気体吹出面
6cに通りぬける。外気が凝縮器の気体吸込面6bから
凝縮器の気体吹出面6cへ流れる間に、凝縮器の冷媒配
管6aやフィンと熱交換することで凝縮器6を冷却し、
少し温度が上昇して凝縮器6とダクト天板8に囲まれた
風路10を流れ、吐出口11へと流れる。このように、
外気は凝縮器の気体吸込面6bから気体吹出面6cへ流
れるので、冷蔵庫本体の前面に吸込口を設けた従来装置
に比べ、外気の流動抵抗が少なくなり、凝縮器6を通過
する外気の速度が速くなり、凝縮器6の熱交換効率を上
げることができる。
In the condenser 6, the refrigerant is the lower surface 16 of the refrigerator body.
The refrigerant pipes 6a are stacked so as to flow in the direction along b. The lower surface opening 7a opens to the lower surface 16b of the refrigerator main body so as to face the gas suction surface 6b of the condenser, and the size thereof is approximately the same as the size of the portion of the surface of the condenser 6 that contributes to heat exchange. . Specifically, the rectangular frame plates 5a to 5d only around the periphery of which an opening to be the lower surface opening 7a is formed in the central portion.
The condenser 6 is fixed to the bottom of the refrigerator, and the air passage 10
Are fixed to the duct top plate 8 with a gap so that there exists. All the outside air sucked from around the refrigerator body is guided to the duct 9 through the lower surface opening 7a. Since the lower surface opening 7a is opened at substantially the same position so as to face the gas suction surface 6b of the condenser, the lower surface opening 7a extends from the lower surface opening 7a to the duct 9
The outside air that has flowed into the air passes through the gas suction surface 6b of the condenser in a direction intersecting with the flowing direction of the refrigerant and passes through the gas discharge surface 6c of the condenser. While the outside air flows from the gas suction surface 6b of the condenser to the gas discharge surface 6c of the condenser, the condenser 6 is cooled by exchanging heat with the refrigerant pipes 6a and fins of the condenser,
The temperature rises slightly, flows through the air passage 10 surrounded by the condenser 6 and the duct top plate 8, and flows to the discharge port 11. in this way,
Since the outside air flows from the gas suction surface 6b of the condenser to the gas outlet surface 6c, the flow resistance of the outside air is smaller than that of a conventional device having a suction port on the front surface of the refrigerator body, and the speed of the outside air passing through the condenser 6 is small. Is faster, and the heat exchange efficiency of the condenser 6 can be increased.

【0026】下面開口7aと凝縮器6の面の大きさに関
し、この実施の形態では下面開口7aの大きさは、仕切
手段5を構成する枠板5a〜5dに凝縮器6を固定する
場合には、実際には凝縮器の気体吸込面6bよりも周囲
の分だけ小さいことになる。このように、凝縮器6の熱
交換に寄与する部分の面と下面開口7aをほぼ同程度の
大きさにすることで、下面開口7aから導入した外気に
よって凝縮器6が十分に冷却される。ただし、下面開口
7aの大きさを凝縮器6の面よりも大きく構成すること
もできる。例えば、凝縮器6を側面の三辺で枠板に固定
し、一辺の方向には下面開口7aを広げると、下面開口
7aを凝縮器6の面よりも大きくすることができる。こ
の時、大きくする方向は、冷却ファン2から遠い部分、
例えば下面の前部仕切手段5cの部分へ伸ばすようにす
ると、外気を吸込みにくい方向からの外気の吸込量が増
えるので、凝縮器6の熱交換効率を上げることができ
る。凝縮器6の固定方法の一例として、凝縮器6の下側
に配置される仕切手段5に固着したが、凝縮器6の横に
配置される仕切手段5や、凝縮器6の後側に配置される
機械室4との隔壁面などに固着されていてもよい。ま
た、凝縮器6の上側に配置されるダクト天板8に治具等
で釣り下げるように固定されていてもよい。
Regarding the size of the lower surface opening 7a and the surface of the condenser 6, in the present embodiment, the size of the lower surface opening 7a is set so that the condenser 6 is fixed to the frame plates 5a to 5d constituting the partition means 5. Is actually smaller than the gas suction surface 6b of the condenser by the amount of the surroundings. In this way, by making the surface of the portion of the condenser 6 that contributes to heat exchange and the lower surface opening 7a approximately the same size, the condenser 6 is sufficiently cooled by the outside air introduced from the lower surface opening 7a. However, the size of the lower surface opening 7a may be larger than the surface of the condenser 6. For example, when the condenser 6 is fixed to the frame plate on three sides of the side surface and the lower surface opening 7a is widened in the direction of one side, the lower surface opening 7a can be made larger than the surface of the condenser 6. At this time, the direction of increasing the size is a part far from the cooling fan 2,
For example, if it is extended to the portion of the front partitioning means 5c on the lower surface, the amount of intake of the outside air from the direction in which it is difficult to suck the outside air increases, so the heat exchange efficiency of the condenser 6 can be increased. As an example of a method of fixing the condenser 6, the partition means 5 arranged on the lower side of the condenser 6 is fixed, but it is arranged on the side of the condenser 6 or on the rear side of the condenser 6. It may be fixed to a partition surface with the machine room 4 to be formed. Further, it may be fixed to the duct top plate 8 arranged on the upper side of the condenser 6 so as to be hung by a jig or the like.

【0027】また、例えば凝縮器6はプレートフィン熱
交換器を使用すると、伝熱面積が多くとれ、凝縮器6の
放熱性能が向上でき、効率がよく使用エネルギーを省力
化できる冷蔵庫が得られる。プレートフィンの一例とし
ては、アルミニウム、アルミニウム合金、または銅製の
フィン、フィン厚を0.1mmから0.2mm、フィン
ピッチを2〜10mmとし、パイプは銅、アルミニウ
ム、またはアルミニウム合金製であり、外径をφ3から
φ7mmを使用し、1列あるいはそれ以上を使用する。
If a plate fin heat exchanger is used for the condenser 6, for example, a large heat transfer area can be obtained, the heat dissipation performance of the condenser 6 can be improved, and a refrigerator can be obtained which is efficient and saves energy. As an example of the plate fin, a fin made of aluminum, an aluminum alloy, or copper, the fin thickness is 0.1 mm to 0.2 mm, the fin pitch is 2 to 10 mm, and the pipe is made of copper, aluminum, or an aluminum alloy. Use diameters of φ3 to φ7 mm and use one row or more.

【0028】また、冷却ファン2の気体吹出面2bが、
例えば冷蔵庫本体の前面16aに対して、圧縮機1の方
向、45°から90°の間の角度で設置することによ
り、外気を下面開口7aから吸込んで凝縮器6および圧
縮機1に順次スムーズに流すことができる。このため、
凝縮器6および圧縮機1を通過する外気の速度が上が
り、凝縮器6および圧縮機1を効率よく冷却できる。
Further, the gas blowing surface 2b of the cooling fan 2 is
For example, by installing it at an angle between 45 ° and 90 ° in the direction of the compressor 1 with respect to the front surface 16a of the refrigerator main body, the outside air is sucked in through the lower surface opening 7a, and the condenser 6 and the compressor 1 are smoothly moved in order. Can be flushed. For this reason,
The speed of the outside air passing through the condenser 6 and the compressor 1 is increased, and the condenser 6 and the compressor 1 can be efficiently cooled.

【0029】図4は横軸に冷却ファン2の取付角度
(°)、縦軸に凝縮器6が設けられているダクト9内を
流れる風量を示すグラフであり、実験による測定値を示
している。図で明らかなように、ほぼ45°で風量が最
大を示し、さらに取付角度を増加して90°に向かうに
つれて風量は減少する。冷却ファン2は外気を取り込ん
で凝縮器6と熱交換させる作用を有すると共に、圧縮機
1にその気体を送って圧縮機1を冷却する作用を有す
る。このため、冷却ファン2の取付角度は気体吹出面2
bが圧縮機1になるべく対向することが必要になる。こ
のことから、冷蔵庫本体の前面16aを基準とし、圧縮
機1側への傾き角(Θ)を、45°≦Θ≦90°の間の
角度で冷却ファン2を取り付けるとよい。図4に示した
グラフから、45°に近い値である方が好ましい。
FIG. 4 is a graph showing the installation angle (°) of the cooling fan 2 on the horizontal axis and the air flow rate in the duct 9 in which the condenser 6 is provided on the vertical axis, and shows measured values by experiments. . As is apparent from the figure, the air volume reaches its maximum at about 45 °, and the air volume decreases as the mounting angle is further increased to 90 °. The cooling fan 2 has a function of taking in outside air and exchanging heat with the condenser 6, and a function of sending the gas to the compressor 1 to cool the compressor 1. For this reason, the mounting angle of the cooling fan 2 is set to the gas blowing surface 2
It is necessary for b to face the compressor 1 as much as possible. From this, it is advisable to attach the cooling fan 2 at an inclination angle (Θ) toward the compressor 1 side with respect to the front surface 16a of the refrigerator main body at an angle of 45 ° ≦ Θ ≦ 90 °. From the graph shown in FIG. 4, it is preferable that the value is close to 45 °.

【0030】また、凝縮器6の機械室4側を冷蔵庫前面
16a側よりも下になるように、凝縮器6を傾けること
により、凝縮器6を水平に配置した時に比べて、凝縮器
の気体吹出面6cと冷却ファン2の気体吸込面2aとの
角度が平行に近づく。このため、凝縮器6で熱交換され
た外気が風路10を通って冷却ファン2に吸込まれやす
くなる。特に凝縮器6の冷却ファン2から離れている部
分でも外気がスムーズに吸込まれやすくなるため、凝縮
器6に均一に外気を通過させることができ、凝縮器の熱
交換効率を向上できる。また、機械室4への入口である
吐出口11に最も近い凝縮器6の部分の隅を下側に傾
け、その対角線側の隅を上側に傾けて、傾斜させてもよ
い。凝縮器6の一辺を下側、これに対向する辺を上側に
傾ける構成に比べ、さらに冷却ファン2の気体吸込面2
aと凝縮器の気体吹出面6cが対向することになり、外
気の流れをスムーズにでき、凝縮器6の熱交換効率を向
上できる。
Further, by tilting the condenser 6 so that the machine room 4 side of the condenser 6 is lower than the refrigerator front surface 16a side, the gas of the condenser 6 can be compared with that when the condenser 6 is horizontally arranged. The angle between the blowout surface 6c and the gas suction surface 2a of the cooling fan 2 approaches parallel. Therefore, the outside air that has undergone heat exchange in the condenser 6 is easily sucked into the cooling fan 2 through the air passage 10. In particular, since the outside air is easily sucked in even in the part of the condenser 6 that is away from the cooling fan 2, the outside air can be uniformly passed through the condenser 6, and the heat exchange efficiency of the condenser can be improved. Further, the corner of the portion of the condenser 6 closest to the discharge port 11 which is the inlet to the machine chamber 4 may be tilted downward, and the corner on the diagonal side may be tilted upward so as to be tilted. Compared with the configuration in which one side of the condenser 6 is inclined downward and the side opposite thereto is inclined upward, the gas suction surface 2 of the cooling fan 2 is further increased.
Since a and the gas outlet surface 6c of the condenser face each other, the flow of the outside air can be made smooth, and the heat exchange efficiency of the condenser 6 can be improved.

【0031】この仕切手段5の材質は特に制限されず、
外気を通過させないものならなんでもよいが、凝縮器側
面仕切手段5e,5gを金属板などの強度のある材質を
使用すれば、冷蔵庫の移動の時などの振動や衝撃から凝
縮器6を保護できる。図3に示した仕切手段5は、凝縮
器6の傾きに合わせ、気体吸込面6bと平行になるよう
に下面開口7aを床面に傾斜させたが、これに限るもの
ではない。例えば下面開口7aを床面に平行になるよう
に構成してもよい。
The material of the partition means 5 is not particularly limited,
Any material that does not allow outside air to pass through may be used, but if the condenser side partitioning means 5e, 5g are made of a strong material such as a metal plate, the condenser 6 can be protected from vibration and shock when the refrigerator is moved. In the partitioning means 5 shown in FIG. 3, the lower surface opening 7a is inclined to the floor so as to be parallel to the gas suction surface 6b according to the inclination of the condenser 6, but the invention is not limited to this. For example, the lower surface opening 7a may be configured to be parallel to the floor surface.

【0032】冷却ファン2の気体吸込面2aと凝縮器6
とが図1、図2に示すように配置されている場合、基本
的には凝縮器6の下側が気体吸込面となり、凝縮器6の
上側が気体吹出面となる。ただし、気体吸込面を大きく
とることを考慮すると、凝縮器6の厚み分である側面も
気体吸込部分とすることができる。即ち、図1、図2の
構成では、冷蔵庫本体の前面16aに対面する凝縮器側
面および冷蔵庫本体の両側面に対面する凝縮器側面は、
気体吸込部分として構成でき、冷却ファン4の気体吸込
口2aに近い機械室4側に対面する凝縮器側面は気体吹
出部分を構成する。
The gas suction surface 2a of the cooling fan 2 and the condenser 6
When and are arranged as shown in FIGS. 1 and 2, basically, the lower side of the condenser 6 is the gas suction surface and the upper side of the condenser 6 is the gas blowing surface. However, considering that the gas suction surface is large, the side surface corresponding to the thickness of the condenser 6 can also be the gas suction portion. That is, in the configuration of FIGS. 1 and 2, the condenser side surface facing the front surface 16a of the refrigerator body and the condenser side surface facing both side surfaces of the refrigerator body are
It can be configured as a gas suction portion, and the side surface of the condenser facing the machine chamber 4 side near the gas suction port 2a of the cooling fan 4 constitutes a gas blowing portion.

【0033】そこで、凝縮器側面仕切手段5e、5g
は、例えば、凝縮器の気体吹出面6c側の風路10に外
気が流れ込まない範囲で、凝縮器側面に当る部分には設
けずに開口させ、冷蔵庫本体の底部周囲の外部と連通す
る様に構成してもよい。この構成では、凝縮器6は凝縮
器側面から流入する外気とも熱交換することができ、さ
らに凝縮器6を冷却する効果は増して凝縮器6の熱交換
効率を向上できる。
Therefore, the condenser side partitioning means 5e, 5g
Is, for example, in a range where outside air does not flow into the air passage 10 on the gas outlet surface 6c side of the condenser, and is opened without being provided in a portion that contacts the side surface of the condenser so as to communicate with the outside around the bottom of the refrigerator main body. You may comprise. With this configuration, the condenser 6 can also exchange heat with the outside air flowing in from the side surface of the condenser, and further, the effect of cooling the condenser 6 can be increased and the heat exchange efficiency of the condenser 6 can be improved.

【0034】また、図5、図6に示す様に冷蔵庫本体の
前面16aに下面開口7aを通さずにダクト9に接続す
る開口17を設けてもよい。実際には、凝縮器6の厚み
分である側面から吸込んだ外気は、凝縮器の冷媒配管6
aの周囲をある程度流れた後、流動抵抗の小さい部分で
ある風路10に流れる。この冷媒配管6aの周囲を流れ
る間に熱交換可能である。このため、凝縮器前面仕切手
段5fおよび前面カバーの全部、あるいはその一部を開
口17とすることで、凝縮器6の前面の厚み部分、即ち
冷蔵庫本体の前面16aに対向する凝縮器6の側面から
も外気を吸込んで、凝縮器6と熱交換するように構成で
きる。
Further, as shown in FIGS. 5 and 6, an opening 17 for connecting to the duct 9 may be provided in the front surface 16a of the refrigerator body without passing through the lower surface opening 7a. Actually, the outside air sucked from the side surface corresponding to the thickness of the condenser 6 is the refrigerant pipe 6 of the condenser.
After flowing to some extent around a, it flows to the air passage 10 which is a portion having a small flow resistance. Heat can be exchanged while flowing around the refrigerant pipe 6a. For this reason, the whole or a part of the condenser front partitioning means 5f and the front cover are formed as the openings 17, so that the thickness portion of the front surface of the condenser 6, that is, the side surface of the condenser 6 facing the front surface 16a of the refrigerator body. It can be configured such that the outside air is also sucked in and the heat is exchanged with the condenser 6.

【0035】冷却ファン2の気体吸込面2aに近い部分
では風量が大きく、凝縮器6の前面側と後方側で風量の
差が生じていた。そこで風量の小さい前面側の凝縮器側
面からも外気を吸込むことで、凝縮器6の前面側と後面
側で風量の差を少なくでき凝縮器6の各部分に、より均
一に外気を流すことができるので熱交換量が増す。この
開口17はスリットで構成してもよい。
The air volume is large near the gas suction surface 2a of the cooling fan 2, and there is a difference in air volume between the front side and the rear side of the condenser 6. Therefore, by sucking the outside air also from the front side of the condenser having a small air volume, the difference in the air volume between the front side and the rear side of the condenser 6 can be reduced, and the outside air can flow more uniformly to each part of the condenser 6. As a result, the amount of heat exchange increases. The opening 17 may be a slit.

【0036】また、冷蔵庫本体を室内の隅や壁面に沿っ
て設置する場合、冷蔵庫本体の側面及び後面の吐出口1
1に近い部分に、機械室の出口である排気口4aから排
出された気体が再び凝縮器の気体吸込面6bに入りこま
ないように、防止壁を設けてもよい。排気口4aから排
出された気体は温められているので温度が高く、この気
体が吸込口7から下面開口7aを通って凝縮器の気体吸
込面6bに入ってくるのを防止することで、凝縮器6を
冷却する機能が低下するのを防ぐことができる。
When the refrigerator body is installed along a corner or wall surface in the room, the discharge port 1 on the side surface and the rear surface of the refrigerator body
A portion near 1 may be provided with a prevention wall so that the gas discharged from the exhaust port 4a, which is the outlet of the machine room, does not enter the gas suction surface 6b of the condenser again. Since the gas discharged from the exhaust port 4a has been warmed, the temperature is high, and by preventing this gas from entering the gas suction surface 6b of the condenser from the suction port 7 through the lower surface opening 7a, It is possible to prevent the function of cooling the container 6 from being deteriorated.

【0037】また、従来装置では凝縮器6での放熱が十
分でないため、冷蔵庫本体の側面内側に放熱パイプを設
置し、側面からも放熱するように構成することもあっ
た。しかしこの実施の形態のように構成することによ
り、冷蔵庫を構成している冷凍サイクルで必要な放熱を
凝縮器6でまかなうことが可能なため、従来の冷蔵庫本
体の側面内側に設けられた放熱パイプが不要となる。そ
のため、放熱パイプからの熱が冷蔵庫庫内に進入するこ
とがなくなり、冷蔵庫熱負荷が減り、少ない冷凍能力で
冷蔵庫内を冷却することができる。従って、圧縮機1の
容量(ストロークボリューム)を小さくすることがで
き、圧縮機1を駆動する電力を削減できるため、省エネ
ルギーとなる。また、夏場等の冷蔵庫の周囲温度が高い
場合には凝縮器6の温度が上昇するため、冷蔵庫本体の
側面内側に設置した放熱パイプでは、冷蔵庫庫内に進入
する熱が多くなり、必要以上に熱負荷を与えることにな
る。これに対し、この実施の形態による冷蔵庫では放熱
パイプを設ける必要がなく、庫内への熱負荷が必要以上
に増加しないため、夏場等の気温が高い場合の高負荷時
に、食品保存に対する信頼性も向上する。
Further, in the conventional apparatus, since the heat dissipation in the condenser 6 is not sufficient, the heat dissipation pipe may be installed inside the side surface of the refrigerator main body so that the heat is also dissipated from the side surface. However, by configuring as in this embodiment, the heat dissipation required in the refrigeration cycle that constitutes the refrigerator can be covered by the condenser 6, so that the heat dissipation pipe provided inside the side surface of the conventional refrigerator body. Is unnecessary. Therefore, heat from the heat radiation pipe does not enter the refrigerator, the heat load on the refrigerator is reduced, and the refrigerator can be cooled with a small refrigerating capacity. Therefore, the capacity (stroke volume) of the compressor 1 can be reduced and the power for driving the compressor 1 can be reduced, resulting in energy saving. Further, when the ambient temperature of the refrigerator is high in summer, etc., the temperature of the condenser 6 rises. Therefore, the heat radiating pipe installed on the inside of the side surface of the refrigerator body has a large amount of heat entering the refrigerator compartment, which is more than necessary. It will give a heat load. On the other hand, in the refrigerator according to this embodiment, there is no need to provide a heat radiation pipe, and the heat load to the inside of the refrigerator does not increase more than necessary. Also improves.

【0038】またこの実施の形態のように構成すると、
従来の凝縮器及び冷蔵庫本体の側面内側に設置した放熱
パイプと比較して、2倍以上の放熱性能を得ることがで
きる。従来の凝縮器及び放熱パイプによる放熱を、この
実施の形態による凝縮器6でまかなうように考慮する
と、凝縮器6の冷媒配管6aである伝熱パイプを、少な
くとも従来の凝縮器の伝熱パイプ及び放熱パイプの1/
2程度とすることが可能となり、同一放熱性能を維持す
る場合、凝縮器の冷媒充填量を約1/2程度にすること
が可能となる。具体的には伝熱パイプ6aの内径は従来
と同じで、伝熱パイプ6aの長さを従来の1/2とし
て、容積を1/2、伝熱面積を1/2としても、同一の
放熱性能が得られる。また伝熱パイプ8aの長さは従来
と同じで、伝熱パイプ6aの内径を従来の70%程度と
し、凝縮器6のフィンピッチを倍にして、容積を1/
2、伝熱面積を1/2としても、同一の放熱性能が得ら
れる。冷蔵庫の冷凍サイクルを構成する要素で、凝縮器
6が全体に占める冷媒充填量の割合は20〜50%程度
であるので、上記のように凝縮器6の容積を従来の1/
2程度に小さくすることで、冷蔵庫全体の冷媒充填量を
10〜25%程度に削減できる。特に可燃性冷媒である
HCを使用する場合、冷媒量を減らしても必要な性能が
でるため、より安全性が増す。
Further, when configured as in this embodiment,
It is possible to obtain heat dissipation performance more than twice that of the conventional heat dissipation pipe installed inside the condenser and the refrigerator body. Considering that the heat dissipation by the conventional condenser and the heat dissipation pipe is covered by the condenser 6 according to this embodiment, the heat transfer pipe which is the refrigerant pipe 6a of the condenser 6 is at least the heat transfer pipe of the conventional condenser and the heat transfer pipe of the conventional condenser. 1 / of heat dissipation pipe
It is possible to reduce the amount of refrigerant to about 2, and it is possible to reduce the amount of refrigerant charged in the condenser to about 1/2 when maintaining the same heat radiation performance. Specifically, the inner diameter of the heat transfer pipe 6a is the same as the conventional one, and even if the length of the heat transfer pipe 6a is 1/2, the volume is 1/2, and the heat transfer area is 1/2, the same heat radiation is performed. Performance is obtained. The length of the heat transfer pipe 8a is the same as the conventional one, the inner diameter of the heat transfer pipe 6a is set to about 70% of that of the conventional one, and the fin pitch of the condenser 6 is doubled to reduce the volume to 1 /.
2. Even if the heat transfer area is halved, the same heat dissipation performance can be obtained. Since the refrigerant filling amount of the condenser 6 is about 20 to 50%, which is an element constituting the refrigerating cycle of the refrigerator, the volume of the condenser 6 is reduced to 1 / th of the conventional volume as described above.
By reducing it to about 2, the refrigerant filling amount of the entire refrigerator can be reduced to about 10 to 25%. In particular, when HC, which is a flammable refrigerant, is used, the required performance is obtained even if the amount of the refrigerant is reduced, so that the safety is further increased.

【0039】以下、この発明のさらに他の構成例につい
て説明する。図7は冷蔵庫底部の平面構成図であり、図
8は冷蔵庫底部の凝縮器側面を開放して示す側面図であ
る。図において、6dは主凝縮器、6eは補助凝縮器で
ある。他の各部において、図1,図2と同一符号は、同
一、または相当部分を示す。風路となるダクト9の内部
に凝縮器となる主凝縮器6dが設置されており、凝縮器
の気体吸込口6bの下側には外気を吸込む下面開口7a
を備え、上部にはダクト天板8との間に凝縮器の気体吹
出面6cと機械室4とを連通する風路10を設ける。さ
らに風路10内で、冷却ファン2の気体吸込面2aに近
い部分にある吐出口11の近くに補助凝縮器6eを設置
し、凝縮器の一部としている。即ち、吐出口11側の凝
縮器6を主凝縮器6dと補助凝縮器6eの複数段、例え
ば2段に重ねて構成する。
Another configuration example of the present invention will be described below. FIG. 7 is a plan view of the bottom of the refrigerator, and FIG. 8 is a side view showing the side of the condenser at the bottom of the refrigerator open. In the figure, 6d is a main condenser and 6e is an auxiliary condenser. In other parts, the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts. A main condenser 6d that serves as a condenser is installed inside a duct 9 that serves as an air passage, and a lower surface opening 7a that sucks outside air is provided below a gas suction port 6b of the condenser.
An air passage 10 that connects the gas blowing surface 6c of the condenser and the machine room 4 is provided between the upper surface of the duct and the duct top plate 8. Further, in the air passage 10, an auxiliary condenser 6e is installed near the discharge port 11 near the gas suction surface 2a of the cooling fan 2 to form a part of the condenser. That is, the condenser 6 on the discharge port 11 side is formed by stacking a plurality of stages, for example, two stages of the main condenser 6d and the auxiliary condenser 6e.

【0040】次に動作について説明する。圧縮機1から
出た高圧ガス冷媒は、主凝縮器6dおよび補助凝縮器6
eに入る。そして凝縮器6d,6eの冷媒配管6a内を
流れる間に下面開口7aから吸込まれた外気と熱交換
し、熱が放熱される。下面開口7aからダクト9に吸込
む外気において、冷却ファン2の気体吸込面2aに近い
部分は、外気が流れやすい傾向にある。このため、外気
の流れやすい部分に補助凝縮器6eを設置して、伝熱面
積を増やすことにより、凝縮器6d,6e全体の放熱量
を増やすことができる。
Next, the operation will be described. The high-pressure gas refrigerant discharged from the compressor 1 is used as the main condenser 6d and the auxiliary condenser 6
Enter e. Then, while flowing through the refrigerant pipes 6a of the condensers 6d and 6e, heat is exchanged with the outside air sucked from the lower surface opening 7a, and the heat is radiated. In the outside air sucked into the duct 9 through the lower surface opening 7a, the portion of the cooling fan 2 near the gas suction surface 2a tends to easily flow. Therefore, by installing the auxiliary condenser 6e in a portion where the outside air easily flows and increasing the heat transfer area, it is possible to increase the heat radiation amount of the condensers 6d and 6e as a whole.

【0041】この場合、外気が流れにくい部分である冷
却ファン2から離れた部分の熱交換器の一部を吐出口1
1の近くに配置して補助凝縮器6eとしてもよいし、主
凝縮器6dの大きさをそのままにして、補助凝縮器6e
を追加して構成してもよい。前者の場合は、補助凝縮器
6e+主凝縮器6dが同じ大きさのため、材料費等コス
トを増やすことなく、凝縮器6d,6eの放熱量を増す
効果がある。また後者の場合は、伝熱面積が大きくなる
ため、前者よりもより凝縮器6d,6eの放熱量を上げ
る効果がある。
In this case, a part of the heat exchanger in a portion away from the cooling fan 2 which is a portion where the outside air does not easily flow is connected to the discharge port 1.
The auxiliary condenser 6e may be arranged near 1 or the size of the main condenser 6d may be left unchanged and the auxiliary condenser 6e
May be added and configured. In the former case, since the auxiliary condenser 6e + the main condenser 6d have the same size, there is an effect of increasing the heat radiation amount of the condensers 6d and 6e without increasing costs such as material costs. Further, in the latter case, the heat transfer area becomes large, so that it has an effect of increasing the heat radiation amount of the condensers 6d and 6e more than in the former case.

【0042】また、前者の場合、下面開口7aに対面す
る面の大きさは図1に示したものよりも小さくなるの
で、下面開口7aもこれに応じて小さくしてもよい。た
だし、下面開口7aを図1のままの大きさにしておく
と、小さくするよりも多くの外気を吸込むことができ
る。また、主凝縮器6dと補助凝縮器6eの冷媒配管に
並列に冷媒が流れるようにしてもよいし、直列に冷媒が
流れるようにしてもよい。
In the former case, since the size of the surface facing the lower surface opening 7a is smaller than that shown in FIG. 1, the lower surface opening 7a may be made smaller accordingly. However, if the size of the lower surface opening 7a is kept as it is in FIG. 1, more outside air can be sucked in than if it is made smaller. Further, the refrigerant may flow in parallel to the refrigerant pipes of the main condenser 6d and the auxiliary condenser 6e, or the refrigerant may flow in series.

【0043】また、凝縮器の気体吸込面6bの大きさ
は、冷蔵庫本体の下面16bの機械室4を除いた部分の
ほぼ全体に広がっている構成について記載した。しか
し、凝縮器6の大きさは、冷蔵庫に必要な冷凍サイクル
を考慮して決定されるので、下面16bのほぼ全体に広
がるような大きさでなくてもいい場合もある。その様な
場合にも、下面開口7aの大きさは、それと対面する凝
縮器の気体吸込面6bと同程度、または同程度よりも大
きくなるように構成すればよい。
The size of the gas suction surface 6b of the condenser has been described as being spread over almost the entire lower surface 16b of the refrigerator main body except the machine chamber 4. However, since the size of the condenser 6 is determined in consideration of the refrigeration cycle required for the refrigerator, there is a case where it does not have to be a size that spreads over almost the entire lower surface 16b. In such a case as well, the size of the lower surface opening 7a may be configured to be approximately the same as or larger than the gas suction surface 6b of the condenser facing the lower surface opening 7a.

【0044】実施の形態2.図9、図10は、実施の形
態2による冷蔵庫に係り、図9は冷蔵庫底部の平面構成
図であり、図10は冷蔵庫底部の凝縮器側面を開放して
示す側面図である。図において、12は抵抗体で、例え
ばプラスチックまたは金属の板にスリットまたは穴を多
数あけたものである。ここでは抵抗体12は、例えば一
部分で機械室4側の仕切手段5を構成する枠板に固定さ
れ、冷却ファン2に近い部分の下面開口7aに、外気の
流入を遮るような方向に取り付けられている。また、抵
抗体12の大きさは、例えば下面開口7aの機械室4側
である後ろ半分程度を覆うように設けている。これによ
り、冷蔵庫本体の下面16bの下側から下面開口7aを
通って凝縮器の気体吸込面6bへ吸込まれる外気のう
ち、機械室の気体入口である吐出口11近傍で気体吸込
面6bへ吸込まれる外気に抵抗が付加される。他の各部
において、図1、図2と同一符号は、同一、または相当
部分を示す。
Embodiment 2. 9 and 10 relate to a refrigerator according to Embodiment 2, FIG. 9 is a plan configuration diagram of a refrigerator bottom portion, and FIG. 10 is a side view showing a side surface of a condenser at the refrigerator bottom portion open. In the figure, reference numeral 12 is a resistor, which is, for example, a plastic or metal plate having a large number of slits or holes. Here, the resistor 12 is, for example, partially fixed to a frame plate that constitutes the partitioning means 5 on the machine room 4 side, and is attached to a lower surface opening 7a near the cooling fan 2 in a direction that blocks the inflow of outside air. ing. The size of the resistor 12 is provided so as to cover, for example, the rear half of the lower surface opening 7a on the machine room 4 side. As a result, of the outside air sucked into the gas suction surface 6b of the condenser from the lower side of the lower surface 16b of the refrigerator body to the gas suction surface 6b in the vicinity of the discharge port 11 which is the gas inlet of the machine chamber. Resistance is added to the outside air that is drawn in. In other parts, the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts.

【0045】次に動作について説明する。圧縮機1から
出た高圧ガス冷媒は凝縮器6に流入し、冷却ファン2に
よって下面開口7aからダクト9に吸込まれた外気と熱
交換する。これにより凝縮器6の熱が外気に放熱されて
凝縮器6は冷却される。吸気口7からダクト9に吸込む
外気の流れにおいて、冷却ファン2の気体吸込面2aか
ら遠い部分と近い部分では凝縮器6を通過する風路損失
が異なる。このため、冷却ファン2に近い部分で風速が
速く、遠い部分では風速が遅いというように分布ができ
る。この実施の形態では抵抗体12を冷却ファン2に近
い部分の下面開口7aに設置し、冷却ファン2から遠い
部分と近い部分での風路損失を均一化する。このため、
凝縮器6に均一に外気が流れるようになり、凝縮器6の
放熱量を増加できる。
Next, the operation will be described. The high-pressure gas refrigerant discharged from the compressor 1 flows into the condenser 6 and exchanges heat with the outside air sucked into the duct 9 from the lower surface opening 7a by the cooling fan 2. As a result, the heat of the condenser 6 is radiated to the outside air and the condenser 6 is cooled. In the flow of the outside air sucked into the duct 9 from the intake port 7, the air passage loss passing through the condenser 6 is different between the portion far from the gas suction surface 2a of the cooling fan 2 and the portion close thereto. Therefore, the wind velocity is high in the portion close to the cooling fan 2 and slow in the portion far from the cooling fan 2. In this embodiment, the resistor 12 is installed in the lower surface opening 7a near the cooling fan 2 to equalize the air passage loss in the portion far from the cooling fan 2 and in the portion near. For this reason,
The outside air is allowed to flow evenly through the condenser 6, and the heat radiation amount of the condenser 6 can be increased.

【0046】なお、抵抗体12は、図9に向かって下側
の冷却ファン2に近い部分だけに設けられていてもよ
い。このように構成することで、凝縮器6に均一に外気
が流れるようになり、凝縮器6の放熱量を増加して熱交
換効率を向上できる。また、抵抗体12の形や材質は上
記にこだわるものではなく、冷却ファン2の気体吸込面
2aに近い部分の下面開口7aに、即ち下面開口7aの
吐出口11近傍に設けられ、この部分の凝縮器の気体吸
込面6bに吸込まれる外気の流れに抵抗を付加するよう
な作用をするものであれば、どのようなものでもよい。
また、仕切手段5を構成する枠板5a〜5dと抵抗体1
2を一体で構成してもよい。
The resistor 12 may be provided only in a portion near the cooling fan 2 on the lower side in FIG. With such a configuration, the outside air can flow uniformly through the condenser 6, and the heat radiation amount of the condenser 6 can be increased to improve the heat exchange efficiency. Further, the shape and material of the resistor 12 are not limited to the above, but it is provided in the lower surface opening 7a in the portion close to the gas suction surface 2a of the cooling fan 2, that is, in the vicinity of the discharge port 11 of the lower surface opening 7a. Any material may be used as long as it acts to add resistance to the flow of the outside air sucked into the gas suction surface 6b of the condenser.
Further, the frame plates 5a to 5d and the resistor 1 which constitute the partitioning means 5
The two may be integrally formed.

【0047】実施の形態3.図11、図12は、実施の
形態3による冷蔵庫に係り、図11は冷蔵庫底部の平面
構成図であり、図12は冷蔵庫底部の凝縮器側面を開放
して示す側面図である。図において、13は、例えばゴ
ムなどの弾性体で構成した整流板で、下面開口7aと床
面との間で、下面開口7aの前面側と後面側の中間部分
に、冷蔵庫本体の前面16aに平行に設置する。ここで
は、例えば板状で、その下端を前面側に傾斜させ、凝縮
器の気体吸込面6bの下側を流れる外気を凝縮器の気体
吸込面6bにスムーズに導くように構成している。この
整流板13は例えばその一部分で仕切手段5に固定され
ている。他の各部において、図1,図2と同一符号は、
同一、または相当部分を示す。
Embodiment 3. 11 and 12 relate to the refrigerator according to the third embodiment, and FIG. 11 is a plan configuration diagram of the refrigerator bottom portion, and FIG. 12 is a side view showing the condenser side surface of the refrigerator bottom portion open. In the figure, 13 is a rectifying plate made of an elastic material such as rubber, and is provided between the lower surface opening 7a and the floor surface, at an intermediate portion between the front surface side and the rear surface side of the lower surface opening 7a, and on the front surface 16a of the refrigerator body. Install in parallel. Here, for example, it has a plate shape, and its lower end is inclined toward the front side so that the outside air flowing under the gas suction surface 6b of the condenser is smoothly guided to the gas suction surface 6b of the condenser. The current plate 13 is fixed to the partition means 5 at a part thereof, for example. In other parts, the same reference numerals as those in FIGS.
The same or corresponding part is shown.

【0048】次に動作について説明する。圧縮機1から
出た高圧ガス冷媒は凝縮器6に流入し、冷却ファン2に
よって下面開口7aからダクト9に吸込まれた外気と熱
交換する。これにより凝縮器6の熱が外気に放熱されて
凝縮器6は冷却される。下面開口7aからダクト9内に
吸込む外気の流れにおいて、冷却ファン2の気体吸込面
2aから遠い部分と近い部分では凝縮器6を通過する風
路損失が異なる。この場合、外気は風路損失の小さい方
に流れようとする。この流れの説明を図13に示す。即
ち、冷却ファン2より遠い部分からの外気の一部は、凝
縮器の気体吸込面6bに流入せずに、凝縮器6の下側と
床15の間の隙間15aを這っていき、冷却ファン2に
近い部分にきたときに気体吸込面6bに導入される。
Next, the operation will be described. The high-pressure gas refrigerant discharged from the compressor 1 flows into the condenser 6 and exchanges heat with the outside air sucked into the duct 9 from the lower surface opening 7a by the cooling fan 2. As a result, the heat of the condenser 6 is radiated to the outside air and the condenser 6 is cooled. In the flow of the outside air sucked into the duct 9 from the lower surface opening 7a, the air passage loss passing through the condenser 6 is different between the portion far from the gas suction surface 2a of the cooling fan 2 and the portion close thereto. In this case, the outside air tries to flow to the one with the smaller wind path loss. An explanation of this flow is shown in FIG. That is, a part of the outside air from a portion farther from the cooling fan 2 does not flow into the gas suction surface 6b of the condenser, but crawls the gap 15a between the lower side of the condenser 6 and the floor 15 to cool the cooling fan. When it reaches a portion close to 2, it is introduced into the gas suction surface 6b.

【0049】図11,図12に示す構成では、この外気
の流れを遮るように下面開口7aの中間部分に整流板1
3を設置している。凝縮器6の下側と床15の間を這っ
て流れる外気を整流板13によって強制的に凝縮器の気
体吸込面6bに導くことで、外気の流れは図14に示す
ようになる。そのため、凝縮器6に均一に外気が流れる
ようになり、凝縮器6の放熱量を増加して熱交換効率を
向上できる効果がある。
In the structure shown in FIGS. 11 and 12, the current plate 1 is provided in the middle portion of the lower surface opening 7a so as to block the flow of the outside air.
3 are installed. The outside air flowing between the lower side of the condenser 6 and the floor 15 is forcibly guided to the gas suction surface 6b of the condenser by the straightening vanes 13, so that the flow of the outside air becomes as shown in FIG. Therefore, the outside air can flow evenly through the condenser 6, and the amount of heat released from the condenser 6 can be increased, and the heat exchange efficiency can be improved.

【0050】なお、整流板13の材質や構成は上記に限
るものではないが、冷蔵庫の底部から、床面側に突出し
た構成になるため、設置場所に馴染みやすいように変形
可能な材質であるのが好ましい。
Although the material and structure of the current plate 13 are not limited to those described above, the current plate 13 is a material that can be deformed so that it fits easily in the installation place because it has a structure protruding from the bottom of the refrigerator to the floor side. Is preferred.

【0051】図11,図12に示した整流板13は、冷
蔵庫本体の前面16a側の風路損失の高い部分で冷蔵庫
の下側を流れてしまう外気を凝縮器6に導く構成であ
る。これに対し、図15,図16に示した整流板13
は、冷蔵庫本体の前面に向かって冷却ファン2の気体吸
込面2aから遠い部分である右側の風路損失の高い部分
で、冷蔵庫の下側を流れてしまう外気を凝縮器の気体吸
込面6bに導く構成である。整流板13を下面開口7a
の中間部分に、機械室4の横方向に垂直に設けている。
The rectifying plate 13 shown in FIGS. 11 and 12 has a structure in which the outside air flowing under the refrigerator at the portion of the front surface 16a of the refrigerator main body where the air passage loss is high is guided to the condenser 6. On the other hand, the straightening plate 13 shown in FIGS.
Is a part of the right side of the refrigerator main body, which is far from the gas suction surface 2a of the cooling fan 2 toward the front surface of the refrigerator body, where the air passage loss is high, and the outside air flowing under the refrigerator is discharged to the gas suction surface 6b of the condenser. It is a configuration that leads. Set the rectifying plate 13 to the bottom opening 7a.
Is provided vertically in the lateral direction of the machine room 4.

【0052】図17は、ダクト9における外気の流れを
示す説明図である。A,Bで示した冷却ファン2の気体
吸込面2aから遠い部分と、Cで示した近い部分では、
凝縮器6を通過する風路損失が異なる。そのため図17
で示す冷却ファン2より遠い部分(図17のA,B部
分)から流入する外気の一部は、図13で示したように
凝縮器の気体吸込面6bに導入されずに凝縮器6の下側
と床15の間を這うように流れる。そして、冷却ファン
2に近い部分にきたとき、凝縮器の気体吸込面6bに導
入される。図15,図16では下面開口7aの中間部分
に、機械室4の横方向に対して垂直に整流板13を設置
しているので、凝縮器6の下側と床15の間を這って流
れる外気を強制的に凝縮器の気体吸込面6bに導くこと
ができる。このように整流板13を設けることで、凝縮
器6に均一に外気が流れるようになり、凝縮器6の放熱
量を増加することができる。また、図18,図19に示
すように、機械室4の横方向に対し、平行及び垂直に整
流板13を設ければ、凝縮器6により均一に外気を通過
させることができ、凝縮器6の熱交換効率をさらに向上
できる。このように、整流板13は1つに限るものでは
なく、複数設けてもよい。
FIG. 17 is an explanatory view showing the flow of outside air in the duct 9. In the portion farther from the gas suction surface 2a of the cooling fan 2 shown by A and B and the closer portion shown by C,
The air passage loss passing through the condenser 6 is different. Therefore, FIG.
A part of the outside air flowing in from a part farther from the cooling fan 2 (portions A and B in FIG. 17) is not introduced into the gas suction surface 6b of the condenser as shown in FIG. It crawls between the side and the floor 15. Then, when it reaches a portion near the cooling fan 2, it is introduced into the gas suction surface 6b of the condenser. In FIG. 15 and FIG. 16, since the rectifying plate 13 is installed in the middle portion of the lower surface opening 7a perpendicularly to the lateral direction of the machine room 4, it flows between the lower side of the condenser 6 and the floor 15. The outside air can be forcibly guided to the gas suction surface 6b of the condenser. By providing the rectifying plate 13 in this way, the outside air can flow uniformly through the condenser 6, and the amount of heat released from the condenser 6 can be increased. Further, as shown in FIGS. 18 and 19, if the straightening vanes 13 are provided in parallel and perpendicular to the lateral direction of the machine chamber 4, the outside air can be uniformly passed by the condenser 6, and the condenser 6 The heat exchange efficiency of can be further improved. As described above, the number of the current plate 13 is not limited to one, and a plurality of current plates may be provided.

【0053】また、整流板13を直線的に設けなくても
よく、図20に示すように曲線的に設けてもよい。冷却
ファン2の気体吸込面2aの位置や方向と、凝縮器6の
構成から考慮して、風路損失の高い部分の風路で、凝縮
器6を通らないで流れる外気を凝縮器の気体吸込面6c
に導くように配置すればよい。
Further, the straightening vane 13 need not be linearly provided, but may be curvedly provided as shown in FIG. Considering the position and direction of the gas suction surface 2a of the cooling fan 2 and the configuration of the condenser 6, the outside air flowing without passing through the condenser 6 is sucked into the condenser in the air passage where the air passage loss is high. Surface 6c
It should be arranged so as to lead to.

【0054】図11,図12の構成では、冷蔵庫本体の
下側の風路損失の低い部分を流れる外気を、整流板13
で凝縮器の気体吸込面6bに導くことで凝縮器6の熱交
換効率を向上した。これに対し、図21,図22では、
整流板13によって凝縮器6の下側を流れる外気を凝縮
器の気体吸込面6bに導くばかりでなく、風路10を第
1風路10aと第2風路10bとに分割し、凝縮器6を
通りぬけて気体吹出面6cから吹出す外気を、例えば2
つに分けて流すように構成している。図21は冷蔵庫底
部の平面構成図であり、図22は冷蔵庫底部の凝縮器側
面を開放して示す側面図である。図において、14は、
ダクト天板8と凝縮器の気体吹出面6cとの隙間で構成
される風路10に設けた仕切板である。また、下面開口
7aの中間部分に、機械室4の横方向に平行に整流板1
3を設置する。他の各部において、図1,図2と同一符
号は、同一、または相当部分を示す。
In the configurations of FIGS. 11 and 12, the outside air flowing through the portion of the lower side of the refrigerator main body where the air passage loss is low is rectified by the rectifying plate 13.
The heat exchange efficiency of the condenser 6 is improved by introducing it to the gas suction surface 6b of the condenser. On the other hand, in FIGS.
Not only the outside air flowing under the condenser 6 is guided to the gas suction surface 6b of the condenser by the rectifying plate 13, but also the air passage 10 is divided into the first air passage 10a and the second air passage 10b. The outside air that passes through the air and blows off from the gas blowing surface 6c is, for example, 2
It is configured to flow in two. 21 is a plan view of the bottom of the refrigerator, and FIG. 22 is a side view of the bottom of the refrigerator with the side of the condenser open. In the figure, 14 is
It is a partition plate provided in the air passage 10 formed by a gap between the duct top plate 8 and the gas outlet surface 6c of the condenser. In addition, in the middle portion of the lower surface opening 7a, the straightening plate 1 is provided in parallel with the lateral direction of the machine room 4.
Install 3. In other parts, the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts.

【0055】風路10を第1,第2風路10a,10b
に分割する仕切板14は、冷蔵庫下面16bにほぼ平行
に風路10内に設けられ、整流板13を設けた位置から
機械室への入口である吐出口11まで延びる構成であ
る。図11,図12に示す構成において、冷却ファン2
の気体吸込面2aから遠い部分の凝縮器6を通過する風
路損失は、冷却ファン2から近い部分の凝縮器6を通過
する風路損失よりも大きい。このため、整流板13の上
流側で凝縮器の気体吸込面6bに導かれる外気量が下流
側の外気量よりも少なくなり、凝縮器6の熱交換効率を
それほど向上できない。これに対し、図21,図22に
示すように構成し、さらに凝縮器6の熱交換効率の向上
を図る。この構成における外気の流れについて説明す
る。冷却ファン2による外気の流れにより整流板13の
上流側で凝縮器の気体吸込面6bに導かれた外気の大部
分は、そのまま凝縮器の気体吹出面6cに通りぬけて、
第1風路10aを流れ、吐出口11から機械室4に流入
する。一方、整流板13の下流側で凝縮器の気体吸込面
6bに導かれた外気は、凝縮器の気体吹出面6cに通り
ぬけて第2風路10bを流れ、吐出口11から機械室4
に流入する。
The air passage 10 is replaced by the first and second air passages 10a and 10b.
The partition plate 14 that is divided into 2 is provided in the air passage 10 substantially parallel to the lower surface 16b of the refrigerator, and extends from the position where the straightening plate 13 is provided to the discharge port 11 that is an inlet to the machine chamber. In the configuration shown in FIGS. 11 and 12, the cooling fan 2
The air passage loss passing through the condenser 6 in the portion far from the gas suction surface 2a is larger than the air passage loss passing through the condenser 6 in the portion closer to the cooling fan 2. Therefore, the amount of outside air guided to the gas suction surface 6b of the condenser on the upstream side of the flow regulating plate 13 becomes smaller than the amount of outside air on the downstream side, and the heat exchange efficiency of the condenser 6 cannot be improved so much. On the other hand, the heat exchange efficiency of the condenser 6 is further improved by configuring as shown in FIGS. The flow of outside air in this configuration will be described. Most of the outside air guided to the gas suction surface 6b of the condenser on the upstream side of the straightening vane 13 by the flow of the outside air by the cooling fan 2 passes through the gas discharge surface 6c of the condenser as it is,
It flows through the first air passage 10 a and flows into the machine room 4 from the discharge port 11. On the other hand, the outside air guided to the gas suction surface 6b of the condenser on the downstream side of the straightening vane 13 passes through the gas discharge surface 6c of the condenser, flows through the second air passage 10b, and is discharged from the discharge port 11 to the machine chamber 4
Flow into.

【0056】仕切板14によって冷却ファン2から遠い
部分の外気が凝縮器6と熱交換した後、第1風路10a
へ流れるように風路を確保し、同時に冷却ファン2に近
い部分の外気が凝縮器6と熱交換した後、第2風路10
bへ流れるように風路を確保している。これにより、冷
却ファン2の気体吸込面から遠い部分と近い部分とでの
外気の流れの不均一を解消でき、熱交換器6に外気が均
一に流れるようになり、凝縮器6の熱交換効率を向上で
きる。
After the partition plate 14 exchanges heat with the outside of the portion far from the cooling fan 2 with the condenser 6, the first air passage 10a.
The second air passage 10 is provided after the air passage is secured so as to flow to the second air passage, and at the same time, the outside air near the cooling fan 2 exchanges heat with the condenser 6.
An air passage is secured so that it can flow to b. As a result, it is possible to eliminate the unevenness of the flow of the outside air between the portion far from the gas suction surface of the cooling fan 2 and the portion near the gas suction surface, so that the outside air can flow uniformly to the heat exchanger 6 and the heat exchange efficiency of the condenser 6 Can be improved.

【0057】なお、仕切板14は2枚以上の複数枚設け
て凝縮器の気体吹出面6cから吹出される外気が通る風
路を3以上の複数に分割して確保してもよい。また、こ
こでは仕切板14と整流板13を設けた構成例について
説明したが、整流板13を設けずに仕切板14のみを設
けても、外気の流れをある程度均一化でき、効果を奏す
る。また、図21,図22に示した仕切板14の構成
は、整流板13が図11,図12に示すように機械室4
の横方向に平行に設けた場合であり、これに限るもので
はない。仕切板14は、整流板13が設けられたあたり
の位置から、冷却ファン2が設けられている場所までの
風路10を上下方向に分離するように設ければよい。ま
た、仕切板14を水平に設けたが、これに限るものでは
なく、凝縮器6の傾きや外気の導入方向に合わせて斜め
に設けてもよい。また、板状のものに限らず、湾曲した
仕切壁で構成してもよい。凝縮器の気体吹出面6cから
吹出した外気を吐出口11へ導く風路10を複数の風路
に分割して、冷却ファン2からの距離に係らず、凝縮器
6に外気が均一に流れるように構成すればよい。
It should be noted that two or more partition plates 14 may be provided to secure the air passage through which the outside air blown from the gas blowing surface 6c of the condenser is divided into three or more. Further, here, the configuration example in which the partition plate 14 and the rectifying plate 13 are provided has been described, but even if only the partition plate 14 is provided without providing the rectifying plate 13, the flow of outside air can be made uniform to some extent, which is effective. In addition, in the configuration of the partition plate 14 shown in FIGS. 21 and 22, the straightening vane 13 has a structure as shown in FIGS.
Is provided in parallel to the lateral direction of, and is not limited to this. The partition plate 14 may be provided so as to vertically separate the air passage 10 from the position where the flow straightening plate 13 is provided to the place where the cooling fan 2 is provided. Further, although the partition plate 14 is provided horizontally, the invention is not limited to this, and the partition plate 14 may be provided obliquely according to the inclination of the condenser 6 and the introduction direction of the outside air. Further, the partition wall is not limited to the plate-like one, and may be a curved partition wall. The air passage 10 that guides the outside air blown out from the gas blowing surface 6c of the condenser to the discharge port 11 is divided into a plurality of air passages so that the outside air flows uniformly to the condenser 6 regardless of the distance from the cooling fan 2. Can be configured as.

【0058】図15,図16,図18〜図20に示す構
成の風路10にも仕切板14を設ければ、凝縮器6の熱
交換効率をさらに向上できる。さらに、整流板13が設
けられていない構成にも仕切板14を設け、風路10を
上下方向に複数に分割するように構成することで、凝縮
器6に均一に外気を流すことができ、凝縮器6の熱交換
効率を向上できる。
The heat exchange efficiency of the condenser 6 can be further improved by providing the partition plate 14 also in the air passage 10 having the structure shown in FIGS. 15, 16 and 18 to 20. Further, the partition plate 14 is provided even in the configuration in which the rectifying plate 13 is not provided, and the air passage 10 is divided into a plurality of parts in the vertical direction, whereby the outside air can be evenly flowed to the condenser 6, The heat exchange efficiency of the condenser 6 can be improved.

【0059】実施の形態4.図23、図24は、実施の
形態4による冷蔵庫に係り、図23は冷蔵庫底部の平面
構成図であり、図24は冷蔵庫底部の凝縮器側面を開放
して示す側面図である。この構成では、例えば、機械室
4の入口である吐出口11に近い部分の凝縮器6のフィ
ンピッチを遠い部分よりも狭く構成している。他の各部
において、図1,図2と同一符号は、同一、または相当
部分を示す。
Fourth Embodiment 23 and 24 relate to a refrigerator according to Embodiment 4, FIG. 23 is a plan configuration diagram of a refrigerator bottom portion, and FIG. 24 is a side view showing a condenser side surface of the refrigerator bottom portion open. In this configuration, for example, the fin pitch of the condenser 6 in the portion near the discharge port 11 which is the inlet of the machine chamber 4 is configured to be narrower than in the far portion. In other parts, the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts.

【0060】次に動作について説明する。圧縮機1から
出た高圧ガス冷媒は凝縮器6に流入し、冷却ファン2に
よって下面開口7aから凝縮器の気体吸込面6bに吸込
まれた外気と熱交換する。これにより凝縮器6の熱が外
気に放熱されて冷却される。下面開口7aから凝縮器の
気体吸込面6bに吸込む外気の流れにおいて、冷却ファ
ン2の気体吸込面2aから遠い部分と近い部分では凝縮
器6を通過する風路損失が異なる。このため、機械室4
の入口である吐出口11に近い部分と遠い部分とでは風
速に分布ができ、冷却ファン2に近い部分では風速が速
く、遠い部分では風速が遅い。この構成では、吐出口1
1に近い部分の凝縮器6のフィンピッチを狭くして風路
損失を高めることで、冷却ファン2から遠い部分と近い
部分の風路損失を均一化する。これにより、凝縮器6に
均一に外気が流れるようになり、凝縮器6の熱交換効率
を向上できる。
Next, the operation will be described. The high-pressure gas refrigerant discharged from the compressor 1 flows into the condenser 6 and exchanges heat with the outside air sucked by the cooling fan 2 from the lower surface opening 7a to the gas suction surface 6b of the condenser. Thereby, the heat of the condenser 6 is radiated to the outside air and cooled. In the flow of the outside air sucked into the gas suction surface 6b of the condenser from the lower surface opening 7a, the air passage loss passing through the condenser 6 differs between the portion far from the gas suction surface 2a of the cooling fan 2 and the portion near the portion. Therefore, the machine room 4
The wind velocity is distributed in a portion near the discharge port 11 which is the inlet of the cooling fan and a portion far from it, and the wind velocity is high in the portion close to the cooling fan 2 and slow in the portion far. In this configuration, the discharge port 1
By narrowing the fin pitch of the condenser 6 near 1 to increase the air passage loss, the air passage loss in the portion far from the cooling fan 2 and the portion close to the cooling fan 2 is made uniform. As a result, the outside air can flow evenly through the condenser 6, and the heat exchange efficiency of the condenser 6 can be improved.

【0061】冷却ファン2からの距離に応じて凝縮器6
のフィンピッチの幅を変更することで風路損失を均一化
するため、図23に示した構成では、機械室4に近い後
方の半分のフィンピッチを、前方のフィンピッチのほぼ
半分にした。ただしこの構成に限るものではなく、ダク
ト9内の風路損失を高くしたい部分のフィンピッチを狭
く構成すればよい。例えば、吐出口11の周囲だけ、フ
ィンピッチの幅を狭くしてもよい。
According to the distance from the cooling fan 2, the condenser 6
In order to make the air passage loss uniform by changing the width of the fin pitch of No. 2, in the configuration shown in FIG. 23, the fin pitch of the rear half close to the machine room 4 is made almost half of the front fin pitch. However, the configuration is not limited to this, and the fin pitch of the portion in the duct 9 where the air passage loss is desired to be increased may be narrowed. For example, the width of the fin pitch may be narrowed only around the ejection port 11.

【0062】図25、図26は、この実施の形態の別の
構成の冷蔵庫に係り、冷蔵庫底部の平面構成図であり、
図26は冷蔵庫底部の凝縮器側面を開放して示す側面図
である。この構成では、凝縮器6を2つの領域に分割
し、例えば冷却ファン2の気体吸込面2aに近い部分の
凝縮器6fとこの凝縮器6fに隣り合う冷蔵庫前面側の
凝縮器6gの冷媒配管6aの積み方向の向きを変えて異
なるように構成している。他の各部において、図1,図
2と同一符号は、同一、または相当部分を示す。
FIG. 25 and FIG. 26 relate to a refrigerator having another structure according to this embodiment, and are plan views of the bottom of the refrigerator.
FIG. 26 is a side view showing the side of the condenser at the bottom of the refrigerator open. In this configuration, the condenser 6 is divided into two regions, for example, the condenser 6f in the portion near the gas suction surface 2a of the cooling fan 2 and the refrigerant pipe 6a of the condenser 6g on the front side of the refrigerator adjacent to the condenser 6f. The stacking direction is changed to be different. In other parts, the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts.

【0063】次に動作について説明する。凝縮器6f,
6gの冷媒配管6a内を流れる高圧ガス冷媒は、冷却フ
ァン2によって下面開口7aから凝縮器の気体吸込面6
bに吸込まれた外気と熱交換する。これにより凝縮器6
f,6gの熱が外気に放熱されて凝縮器6f,6gは冷
却される。下面開口7aから凝縮器の気体吸込面6bに
流入した外気の流れにおいて、この構成では、冷却ファ
ン2の気体吸込み面2aに近い部分の凝縮器6fの積み
方向を、外気の流れに対してフィンの向きが交わるよう
に配置している。これにより、凝縮器6fを流れる外気
に対して抵抗をつける。この結果、冷却ファン2から遠
い部分と近い部分の風路損失を均一化でき、凝縮器6
f,6gに均一に外気が流れるようになり、凝縮器6
f,6gの熱交換効率を向上できる。ここで、凝縮器6
f,6gとダクト天板8との間に形成されている風路1
0は冷蔵庫本体の底部周囲と仕切り、凝縮器6f,6g
の側面は開放した構成にしてもよい。例えば、仕切手段
5の一部を構成している凝縮機側面仕切手段5e,5g
に開口を設ければよい。凝縮器6fの側面端部のプレー
トフィンは、冷蔵庫本体の前面16aに平行な方向であ
り、凝縮器側面も気体吸込部分として機能させると、フ
ィン間からも外気を取り込むことができ、さらに凝縮器
6f,6gの熱交換効率を向上できる。
Next, the operation will be described. Condenser 6f,
The high-pressure gas refrigerant flowing in 6 g of the refrigerant pipe 6a is cooled by the cooling fan 2 from the lower surface opening 7a to the gas suction surface 6 of the condenser.
Exchanges heat with the outside air sucked into b. This allows the condenser 6
The heat of f, 6g is radiated to the outside air and the condensers 6f, 6g are cooled. In the flow of the outside air flowing into the gas suction surface 6b of the condenser from the lower surface opening 7a, in this configuration, the stacking direction of the condenser 6f near the gas suction surface 2a of the cooling fan 2 is set to the fins with respect to the flow of the outside air. It is arranged so that the directions of the two intersect. As a result, resistance is given to the outside air flowing through the condenser 6f. As a result, the air passage loss can be made uniform in the part far from the cooling fan 2 and the part near the cooling fan 2.
The outside air comes to flow evenly to f and 6g, and the condenser 6
The heat exchange efficiency of f and 6 g can be improved. Where the condenser 6
Air passage 1 formed between f and 6g and the duct top plate 8
0 is a partition around the bottom of the refrigerator body, condensers 6f, 6g
The side surface of the may be opened. For example, condenser side partitioning means 5e, 5g forming part of the partitioning means 5
An opening may be provided in the. The plate fins at the end of the side surface of the condenser 6f are parallel to the front surface 16a of the refrigerator body. When the side surface of the condenser also functions as a gas suction portion, outside air can be taken in from between the fins, and The heat exchange efficiency of 6f and 6g can be improved.

【0064】また、図27,図28のように、冷蔵庫本
体の前面16aに対して、凝縮器6の面を左右の領域に
分割して凝縮器6h,6iとし、凝縮器6h,6iで冷
媒配管6aの積み方向を異なるように構成してもよく、
同様の効果を奏する。この時も冷却ファン2に遠い方の
凝縮器6hのフィンの向きを、外気が凝縮器の気体吸込
面6bに導入しやすいように考慮すればよい。また、こ
の構成でも、凝縮器6h,6iとダクト天板8との間に
形成されている風路10は冷蔵庫本体の底部周囲と仕切
り、凝縮器6h,6iの側面は開放した構成にしてもよ
い。凝縮器6hの側面からはフィン間を通って外気をダ
クト9に取り込むことができ、凝縮器6iの側面からは
フィンに遮られて外気はダクト9に流れ込まない。この
ため、冷却ファン2から遠いところの凝縮器6hに外気
を多く導入でき、さらに凝縮器6h,6iの熱交換効率
を向上できる。
Also, as shown in FIGS. 27 and 28, the surface of the condenser 6 is divided into left and right regions with respect to the front surface 16a of the refrigerator main body to form condensers 6h and 6i, and the refrigerant is condensed by the condensers 6h and 6i. The piping 6a may be configured so that the stacking direction is different,
Has the same effect. Also at this time, the direction of the fins of the condenser 6h farther from the cooling fan 2 may be taken into consideration so that the outside air can be easily introduced into the gas suction surface 6b of the condenser. Also in this configuration, the air passage 10 formed between the condensers 6h and 6i and the duct top plate 8 is partitioned from the periphery of the bottom of the refrigerator main body, and the side surfaces of the condensers 6h and 6i are open. Good. The outside air can be taken into the duct 9 from the side surface of the condenser 6h through the fins, and the outside air does not flow into the duct 9 from the side surface of the condenser 6i because it is blocked by the fins. Therefore, a large amount of outside air can be introduced into the condenser 6h far from the cooling fan 2, and the heat exchange efficiency of the condensers 6h and 6i can be improved.

【0065】また、以下の点においては実施の形態2〜
実施の形態4のそれぞれでは説明を省略したが、記載以
外の構成、動作は実施の形態1と同様であり、実施の形
態1と同様の作用効果を奏する。即ち、凝縮器の吹出面
6cから機械室4の入口である吐出口11へ連通する風
路10と冷蔵庫本体の底部周囲との間を仕切るように仕
切手段5を備えている。このため、冷蔵庫本体と床面と
の間の吸込口7から吸込まれる外気は、凝縮器の気体吸
込面6bから吸込まれ、気体吹出面6cから吹出され
る。従って吸込む外気を有効に利用して凝縮器6を放熱
させることができ、凝縮器の放熱性能を向上でき、効率
がよく省エネルギーの冷蔵庫が得られる。また、凝縮器
6と外気との熱交換において、下面開口7aはほぼ凝縮
器6と同程度以上の大きさであり、多量の外気を凝縮器
6の平面に対して交わる方向に通過させる。このため、
外気の流動抵抗が少なく、従来装置に比べ、凝縮器6を
通過する外気の速度が速くなり、凝縮器6の熱交換効率
を上げることができる。
Further, in the following points, Embodiments 2 to 2 will be described.
Although the description is omitted in each of the fourth embodiment, the configuration and the operation other than those described are the same as those of the first embodiment, and the same operational effects as those of the first embodiment are achieved. That is, the partition means 5 is provided so as to partition between the air passage 10 communicating from the outlet surface 6c of the condenser to the outlet 11 which is the inlet of the machine chamber 4 and the periphery of the bottom of the refrigerator body. Therefore, the outside air sucked from the suction port 7 between the refrigerator body and the floor surface is sucked from the gas suction surface 6b of the condenser and blown from the gas blowing surface 6c. Therefore, the outside air to be sucked in can be effectively used to radiate heat from the condenser 6, the heat radiation performance of the condenser can be improved, and an efficient and energy-saving refrigerator can be obtained. Further, in heat exchange between the condenser 6 and the outside air, the lower surface opening 7a has a size substantially equal to or larger than that of the condenser 6, and allows a large amount of outside air to pass in a direction intersecting the plane of the condenser 6. For this reason,
The flow resistance of the outside air is small, the speed of the outside air passing through the condenser 6 is higher than that in the conventional device, and the heat exchange efficiency of the condenser 6 can be increased.

【0066】さらにまた、例えば冷却ファン2の吹出し
方向を、冷蔵庫本体の前面に対して、圧縮機1の方向に
45°から90°の間の角度で設置する。これにより、
下面開口7aから吸込まれた空気が凝縮器6および圧縮
機1に順次スムーズに流れるため、凝縮器6を通過する
外気の速度が速くなり、凝縮器6の熱交換効率を向上で
きる。熱交換効率を向上することで、省エネルギーの冷
蔵庫を得ることができる。
Furthermore, for example, the blowing direction of the cooling fan 2 is set at an angle of 45 ° to 90 ° in the direction of the compressor 1 with respect to the front surface of the refrigerator body. This allows
Since the air sucked from the lower surface opening 7a sequentially and smoothly flows to the condenser 6 and the compressor 1, the speed of the outside air passing through the condenser 6 is increased, and the heat exchange efficiency of the condenser 6 can be improved. By improving the heat exchange efficiency, an energy-saving refrigerator can be obtained.

【0067】さらにまた、例えば冷却ファン2の気体吸
込面2aに近い部分の凝縮器6を下に傾けることによ
り、水平に配置するよりも冷却ファン2の気体吸込面2
aと凝縮器の気体吹出面6cとが対向するように構成で
きる。このため、ダクト9の冷却ファン2から離れてい
る部分からも外気がスムーズに導入され、凝縮器6にさ
らに均一に外気を通過させることができ、凝縮器の熱交
換効率を向上できる。
Furthermore, for example, by tilting the condenser 6 near the gas suction surface 2a of the cooling fan 2 downward, the gas suction surface 2 of the cooling fan 2 can be arranged rather than horizontally.
It can be configured such that a and the gas outlet surface 6c of the condenser face each other. Therefore, the outside air is smoothly introduced also from the portion of the duct 9 which is distant from the cooling fan 2, and the outside air can pass through the condenser 6 more uniformly, and the heat exchange efficiency of the condenser can be improved.

【0068】さらにまた、例えば凝縮器にプレートフィ
ン熱交換器を使用する。これにより凝縮器6の放熱性能
があがり、効率がよく省エネルギーの冷蔵庫を得ること
ができる。プレートフィンの一例としては、アルミニウ
ム、アルミニウム合金、または銅製のフィン、フィン厚
を0.1mmから0.2mm、フィンピッチを2〜10
mm、とし、パイプは銅、アルミニウム、またはアルミ
ニウム合金製であり、外径をφ3からφ7mmを使用
し、1列あるいはそれ以上を使用する。
Furthermore, a plate fin heat exchanger is used for the condenser, for example. Thereby, the heat dissipation performance of the condenser 6 is improved, and a highly efficient and energy-saving refrigerator can be obtained. As an example of the plate fin, a fin made of aluminum, an aluminum alloy, or copper, the fin thickness is 0.1 mm to 0.2 mm, and the fin pitch is 2 to 10
mm, the pipe is made of copper, aluminum, or an aluminum alloy, the outer diameter is φ3 to φ7 mm, and one row or more is used.

【0069】さらにまた、例えば冷蔵庫本体の前面16
aまたは側面の少なくとも一部の仕切手段5に開口を設
け、凝縮器の側面に外気を吸込むように構成する。これ
により、外気をより多く凝縮器6に導入でき、凝縮器6
の放熱性能を向上でき、効率がよく省エネルギーの冷蔵
庫を得ることができる。
Furthermore, for example, the front surface 16 of the refrigerator main body
An opening is provided in at least a part of the partitioning means 5 of a or the side surface so that the side surface of the condenser sucks the outside air. As a result, more outside air can be introduced into the condenser 6, and the condenser 6
The heat dissipation performance can be improved, and an efficient and energy-saving refrigerator can be obtained.

【0070】さらにまた、例えば風路10の吐出口11
側の凝縮器6を、複数段に重ねて構成する。これによ
り、外気の流れやすい部分の伝熱面積を増やして凝縮器
6の放熱量を増やすことができ、効率がよく省エネルギ
ーの冷蔵庫を得ることができる。
Furthermore, for example, the discharge port 11 of the air passage 10
The condenser 6 on the side is formed by stacking in a plurality of stages. As a result, the heat transfer area of the portion where the outside air easily flows can be increased to increase the heat radiation amount of the condenser 6, and a highly efficient and energy-saving refrigerator can be obtained.

【0071】なお、実施の形態1〜実施の形態4では、
冷媒が1パスで流れる凝縮器6を用いて説明したが、こ
れに限るものではない。凝縮器6の冷媒入口で、複数に
分岐して冷媒配管6aを流れ、凝縮器6の冷媒出口で再
び冷媒を合流して、冷凍サイクルを循環するように構成
しても、上記と同様の効果がある。
In the first to fourth embodiments,
Although the description has been given using the condenser 6 in which the refrigerant flows in one pass, the present invention is not limited to this. Even when the refrigerant inlet of the condenser 6 is branched into a plurality of parts to flow through the refrigerant pipe 6a, and the refrigerant outlet of the condenser 6 joins the refrigerant again to circulate the refrigeration cycle, the same effect as above. There is.

【0072】[0072]

【発明の効果】以上のように、請求項1に係る発明によ
れば、機械室に設置され冷蔵庫本体の底部周囲から外気
を吸込む冷却ファンと、吹出面が前記機械室に連通し吸
込面が床面に向くように設けた凝縮器と、前記冷却ファ
ンによって前記冷蔵庫本体の底面と床面の間から吸込ま
れる外気を前記凝縮器の吸込面から吸込むように、前記
凝縮器の吹出面から前記機械室の入口までを前記周囲と
仕切る仕切手段と、を備えたことにより、凝縮器の放熱
性能を向上でき、効率がよく省エネルギーの冷蔵庫が得
られる。
As described above, according to the first aspect of the present invention, the cooling fan installed in the machine room for sucking the outside air from the periphery of the bottom of the refrigerator main body and the blowing surface communicating with the machine room have the suction surface. A condenser provided so as to face the floor surface, so that the outside air sucked from between the bottom surface and the floor surface of the refrigerator main body by the cooling fan is sucked from the suction surface of the condenser, By providing the partitioning means for partitioning the inlet to the machine room from the surroundings, the heat dissipation performance of the condenser can be improved, and a highly efficient and energy-saving refrigerator can be obtained.

【0073】また、請求項2に係る発明によれば、凝縮
器はプレートフィン熱交換器であることにより、凝縮器
の放熱性能を向上でき、効率がよく省エネルギーの冷蔵
庫が得られる。
According to the second aspect of the invention, since the condenser is the plate fin heat exchanger, the heat dissipation performance of the condenser can be improved, and an efficient and energy-saving refrigerator can be obtained.

【0074】また、請求項3に係る発明によれば、仕切
手段は、前記凝縮器の側面からも外気を吸込むように構
成されていることにより、外気をより多くダクトに導入
でき、凝縮器の放熱性能を向上でき、効率がよく省エネ
ルギーの冷蔵庫が得られる。
According to the third aspect of the invention, since the partition means is constructed so as to suck the outside air also from the side surface of the condenser, more outside air can be introduced into the duct, and the heat radiation of the condenser can be improved. A refrigerator with improved performance and efficiency and energy saving can be obtained.

【0075】また、請求項4に係る発明によれば、前記
凝縮器を、前記冷却ファンの気体吸込面に近い部分が下
方になるように傾けて設置したことにより、冷却ファン
から離れている部分の吸込口からも外気をダクトにスム
ーズに導入でき、凝縮器に均一に外気を通過させること
ができ、凝縮器の熱交換効率を向上できる冷蔵庫が得ら
れる。
Further, according to the invention of claim 4, since the condenser is installed so as to be inclined so that a portion close to the gas suction surface of the cooling fan is downward, a portion apart from the cooling fan is provided. The outside air can be smoothly introduced into the duct through the suction port, the outside air can be evenly passed through the condenser, and the refrigerator having the improved heat exchange efficiency of the condenser can be obtained.

【0076】また、請求項5に係る発明によれば、機械
室に格納される圧縮機を備え、前記冷却ファンは、気体
吸込面が前記機械室の入口側に向き、気体吹出面が前記
圧縮機側に向くように前記機械室内に配設されると共
に、前記気体吹出面と前記冷蔵庫本体の前面とのなす角
度(Θ)が、45度≦Θ≦90度となるように配設され
るので、吸込口から吸込まれた空気が凝縮器にスムーズ
に流れるため、凝縮器を通過する外気の速度が速くな
り、凝縮器の熱交換効率を向上できる冷蔵庫が得られ
る。
Further, according to the invention of claim 5, the compressor is provided with the compressor housed in the machine room, and in the cooling fan, the gas suction surface faces the inlet side of the machine room and the gas discharge surface is the compression side. It is arranged in the machine room so as to face the machine side, and is arranged so that an angle (Θ) formed by the gas blowing surface and the front surface of the refrigerator body is 45 ° ≦ θ ≦ 90 °. Therefore, since the air sucked from the suction port smoothly flows into the condenser, the speed of the outside air passing through the condenser is increased, and the refrigerator in which the heat exchange efficiency of the condenser can be improved can be obtained.

【0077】また、請求項6に係る発明によれば、前記
機械室の入口に近い部分の前記凝縮器の吸込面に吸込ま
れる外気に抵抗を付加する抵抗体を備えたので、冷却フ
ァンから遠い部分と近い部分での風路損失を均一化し、
凝縮器の放熱量を増加して熱交換効率を向上できる冷蔵
庫が得られる。
Further, according to the invention of claim 6, since the resistor for adding the resistance to the outside air sucked into the suction surface of the condenser near the inlet of the machine room is provided, Uniformize the air passage loss in the distant part and near part,
It is possible to obtain a refrigerator in which the heat radiation efficiency of the condenser can be increased to improve the heat exchange efficiency.

【0078】また、請求項7に係る発明によれば、前記
凝縮器の吸込面の下側に、前記凝縮器の下側を流れる外
気を前記凝縮器の吸込面に導く整流板を備えたので、凝
縮器の下側を流れる外気を凝縮器に導き、凝縮器の放熱
量を増加して熱交換効率を向上できる冷蔵庫が得られ
る。
Further, according to the invention of claim 7, a straightening plate for guiding the outside air flowing under the condenser to the suction surface of the condenser is provided under the suction surface of the condenser. A refrigerator can be obtained in which the outside air flowing under the condenser is guided to the condenser to increase the heat radiation amount of the condenser and improve the heat exchange efficiency.

【0079】また、請求項8に係る発明によれば、少な
くとも前記機械室の入口側の前記凝縮器を、複数段に重
ねて構成したので、外気の流れやすい部分の凝縮器の放
熱量を増加して熱交換効率を向上できる冷蔵庫が得られ
る。
Further, according to the invention of claim 8, at least the condenser on the inlet side of the machine chamber is formed by stacking in a plurality of stages, so that the heat radiation amount of the condenser in the portion where the outside air easily flows is increased. As a result, a refrigerator having improved heat exchange efficiency can be obtained.

【0080】また、請求項9に係る発明によれば、前記
凝縮器の吹出面から吹出す気体を複数の風路に分割して
前記機械室の気体入口へ導く仕切板を備えたので、風路
損失を均一化でき、凝縮器の放熱量を増加して熱交換効
率を向上できる冷蔵庫が得られる。
According to the ninth aspect of the invention, since the gas blown from the blowout surface of the condenser is divided into a plurality of air passages and is guided to the gas inlet of the machine room, the windshield is provided. It is possible to obtain a refrigerator in which the path loss can be made uniform and the heat radiation amount of the condenser can be increased to improve the heat exchange efficiency.

【0081】また、請求項10に係る発明によれば、前
記機械室の入口に近い部分の前記凝縮器のフィンピッチ
を、前記機械室の入口から遠い部分のフィンピッチより
も狭くしたので、風路損失を均一化でき、凝縮器の放熱
量を増加して熱交換効率を向上できる冷蔵庫が得られ
る。
According to the tenth aspect of the invention, the fin pitch of the condenser near the inlet of the machine chamber is made narrower than the fin pitch of the portion far from the inlet of the machine chamber. It is possible to obtain a refrigerator in which the path loss can be made uniform and the heat radiation amount of the condenser can be increased to improve the heat exchange efficiency.

【0082】また、請求項11に係る発明によれば、前
記凝縮器を複数に分割し、隣りあう前記凝縮器の冷媒配
管の積み方向が異なるように配設したので、凝縮器の放
熱量を増加して熱交換効率を向上できる冷蔵庫が得られ
る。
According to the eleventh aspect of the present invention, the condenser is divided into a plurality of parts, and the refrigerant pipes of the adjacent condensers are arranged so that the stacking directions are different. A refrigerator that can increase the heat exchange efficiency can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1による冷蔵庫に係
り、冷蔵庫底部の平面構成図である。
FIG. 1 is a plan configuration diagram of a refrigerator bottom portion according to a refrigerator according to Embodiment 1 of the present invention.

【図2】 実施の形態1による冷蔵庫底部の凝縮器側面
を開放して示す側面図である。
FIG. 2 is a side view showing an open side of a condenser at the bottom of the refrigerator according to the first embodiment.

【図3】 実施の形態1による仕切手段を示す斜視図で
ある。
FIG. 3 is a perspective view showing a partition means according to the first embodiment.

【図4】 実施の形態1による冷蔵庫の冷却ファンの角
度とこれに対するダクトの風量を示すグラフである。
FIG. 4 is a graph showing the angle of the cooling fan of the refrigerator according to the first embodiment and the air volume of the duct with respect to the angle.

【図5】 実施の形態1による冷蔵庫に係り、冷蔵庫底
部の平面構成図である。
FIG. 5 is a plan configuration diagram of a refrigerator bottom portion according to the refrigerator according to the first embodiment.

【図6】 実施の形態1による冷蔵庫底部の凝縮器側面
を開放して示す側面図である。
FIG. 6 is a side view showing an open side of the condenser at the bottom of the refrigerator according to the first embodiment.

【図7】 実施の形態1による冷蔵庫に係り、冷蔵庫底
部の平面構成図である。
FIG. 7 is a plan configuration diagram of a bottom portion of the refrigerator according to the refrigerator according to the first embodiment.

【図8】 実施の形態1による冷蔵庫底部の凝縮器側面
を開放して示す側面図である。
FIG. 8 is a side view showing an open side of the condenser at the bottom of the refrigerator according to the first embodiment.

【図9】 この発明の実施の形態2による冷蔵庫に係
り、冷蔵庫底部の平面構成図である。
FIG. 9 is a plan configuration diagram of a refrigerator bottom portion according to the refrigerator according to the second embodiment of the present invention.

【図10】 実施の形態2による冷蔵庫底部の凝縮器側
面を開放して示す側面図である。
FIG. 10 is a side view showing an open side of the condenser at the bottom of the refrigerator according to the second embodiment.

【図11】 この発明の実施の形態3による冷蔵庫に係
り、冷蔵庫底部の平面構成図である。
FIG. 11 is a plan configuration diagram of a refrigerator bottom portion according to the refrigerator according to the third embodiment of the present invention.

【図12】 実施の形態3による冷蔵庫底部の凝縮器側
面を開放して示す側面図である。
FIG. 12 is a side view showing an open side of the condenser at the bottom of the refrigerator according to the third embodiment.

【図13】 実施の形態3に係る冷蔵庫底部における外
気の流れを示す説明図である。
FIG. 13 is an explanatory diagram showing the flow of outside air at the bottom of the refrigerator according to the third embodiment.

【図14】 実施の形態3に係る冷蔵庫底部における外
気の流れを示す説明図である。
FIG. 14 is an explanatory diagram showing the flow of outside air at the bottom of the refrigerator according to the third embodiment.

【図15】 実施の形態3による冷蔵庫に係り、冷蔵庫
底部の平面構成図である。
FIG. 15 is a plan view of a bottom portion of the refrigerator according to the third embodiment.

【図16】 実施の形態3による冷蔵庫底部の凝縮器側
面を開放して示す側面図である。
FIG. 16 is a side view showing an open side of a condenser at the bottom of the refrigerator according to the third embodiment.

【図17】 実施の形態3による冷蔵庫に係り、冷蔵庫
底部の平面構成図である。
FIG. 17 is a plan view of a bottom portion of the refrigerator according to the third embodiment.

【図18】 実施の形態3による冷蔵庫底部の凝縮器側
面を開放して示す側面図である。
FIG. 18 is a side view showing an open side of the condenser at the bottom of the refrigerator according to the third embodiment.

【図19】 実施の形態3による冷蔵庫に係り、冷蔵庫
底部の平面構成図である。
FIG. 19 is a plan view of a bottom portion of the refrigerator according to the third embodiment.

【図20】 実施の形態3による冷蔵庫に係り、冷蔵庫
底部の平面構成図である。
FIG. 20 is a plan configuration diagram of a bottom portion of the refrigerator according to the refrigerator according to the third embodiment.

【図21】 この発明の実施の形態4による冷蔵庫に係
り、冷蔵庫底部の平面構成図である。
FIG. 21 is a plan configuration diagram of a refrigerator bottom portion according to the refrigerator according to the fourth embodiment of the present invention.

【図22】 実施の形態4による冷蔵庫底部の凝縮器側
面を開放して示す側面図である。
FIG. 22 is a side view showing an open side of the condenser at the bottom of the refrigerator according to the fourth embodiment.

【図23】 実施の形態4による冷蔵庫に係り、冷蔵庫
底部の平面構成図である。
FIG. 23 is a plan configuration diagram of a bottom portion of a refrigerator according to the fourth embodiment.

【図24】 実施の形態4による冷蔵庫底部の凝縮器側
面を開放して示す側面図である。
FIG. 24 is a side view showing an open side of the condenser at the bottom of the refrigerator according to the fourth embodiment.

【図25】 実施の形態4による冷蔵庫に係り、冷蔵庫
底部の平面構成図である。
FIG. 25 is a plan configuration diagram of the bottom of the refrigerator according to the refrigerator according to the fourth embodiment.

【図26】 実施の形態4による冷蔵庫底部の凝縮器側
面を開放して示す側面図である。
FIG. 26 is a side view showing an open side of the condenser at the bottom of the refrigerator according to the fourth embodiment.

【図27】 実施の形態4による冷蔵庫に係り、冷蔵庫
底部の平面構成図である。
FIG. 27 is a plan configuration diagram of a refrigerator bottom portion according to the refrigerator according to the fourth embodiment.

【図28】 実施の形態4による冷蔵庫底部の凝縮器側
面を開放して示す側面図である。
FIG. 28 is a side view showing an open side of the condenser at the bottom of the refrigerator according to the fourth embodiment.

【図29】 従来の冷蔵庫の構造を示す要部の横断平面
図である。
FIG. 29 is a cross-sectional plan view of essential parts showing the structure of a conventional refrigerator.

【図30】 従来の冷蔵庫の構造を示す要部の縦断側面
図である。
FIG. 30 is a vertical cross-sectional side view of essential parts showing the structure of a conventional refrigerator.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 冷却ファン、2a 気体吸込面、2b
気体吹出面、3 ファンダクト、4 機械室、4a
機械室の気体出口、5 仕切手段、6 凝縮器、6b
凝縮器の気体吸込面、6c 凝縮器の気体吹出面、7
吸込口、7a下面開口、9 ダクト、11 吐出口、1
2 抵抗体、13 整流板、14 仕切板、15a 隙
間、16a 冷蔵庫本体の前面、16b 冷蔵庫本体の
下面。
1 compressor, 2 cooling fan, 2a gas suction surface, 2b
Gas outlet surface, 3 fan duct, 4 machine room, 4a
Machine room gas outlet, 5 partitioning means, 6 condenser, 6b
Gas suction surface of condenser, 6c Gas blowing surface of condenser, 7
Suction port, 7a lower surface opening, 9 duct, 11 discharge port, 1
2 resistors, 13 straightening plates, 14 partition plates, 15a gaps, 16a front surface of refrigerator body, 16b lower surface of refrigerator body.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西澤 章 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akira Nishizawa             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 機械室に設置され冷蔵庫本体の底部周囲
から外気を吸込む冷却ファンと、吹出面が前記機械室に
連通し吸込面が床面に向くように設けた凝縮器と、前記
冷却ファンによって前記冷蔵庫本体の底面と床面の間か
ら吸込まれる外気を前記凝縮器の吸込面から吸込むよう
に、前記凝縮器の吹出面から前記機械室の入口までを前
記周囲と仕切る仕切手段と、を備えたことを特徴とする
冷蔵庫。
1. A cooling fan installed in a machine room for sucking outside air from the periphery of the bottom of a refrigerator main body, a condenser provided so that a blow surface communicates with the machine room and a suction surface faces the floor, and the cooling fan. By such a way that the outside air sucked from between the bottom surface and the floor surface of the refrigerator main body is sucked from the suction surface of the condenser, the partition means for partitioning from the blow surface of the condenser to the inlet of the machine room with the surroundings, A refrigerator characterized by being equipped.
【請求項2】 前記凝縮器は、プレートフィン熱交換器
であることを特徴とする請求項1記載の冷蔵庫。
2. The refrigerator according to claim 1, wherein the condenser is a plate fin heat exchanger.
【請求項3】 前記仕切手段は、前記凝縮器の側面から
も外気を吸込むように構成されていることを特徴とする
請求項1ないし請求項2のいずれか1項に記載の冷蔵
庫。
3. The refrigerator according to claim 1, wherein the partition means is configured to suck the outside air also from the side surface of the condenser.
【請求項4】 前記凝縮器を、前記冷却ファンの気体吸
込面に近い部分が下方になるように傾けて設置したこと
を特徴とする請求項1ないし請求項3のいずれか1項に
記載の冷蔵庫。
4. The condenser according to claim 1, wherein the condenser is installed so as to be inclined so that a portion near a gas suction surface of the cooling fan faces downward. refrigerator.
【請求項5】 前記機械室に格納される圧縮機を備え、
前記冷却ファンは、気体吸込面が前記機械室の入口側に
向き、気体吹出面が前記圧縮機側に向くように前記機械
室内に配設されると共に、前記気体吹出面と前記冷蔵庫
本体の前面とのなす角度(Θ)が、45度≦Θ≦90度
となるように配設されることを特徴とする請求項1ない
し請求項4のいずれか1項に記載の冷蔵庫。
5. A compressor housed in the machine room,
The cooling fan is disposed in the machine chamber so that a gas suction surface faces the inlet side of the machine room and a gas blowing surface faces the compressor side, and the gas blowing surface and the front surface of the refrigerator body are arranged. The refrigerator (1) according to any one of claims 1 to 4, wherein the refrigerator is arranged such that an angle (?) Formed by and is 45 degrees ??? 90 degrees.
【請求項6】 前記機械室の入口に近い部分の前記凝縮
器の吸込面に吸込まれる外気に抵抗を付加する抵抗体を
備えたことを特徴とする請求項1ないし請求項5のいず
れか1項に記載の冷蔵庫。
6. The resistor according to claim 1, further comprising a resistor for adding resistance to the outside air sucked into the suction surface of the condenser near the inlet of the machine room. The refrigerator according to item 1.
【請求項7】 前記凝縮器の吸込面の下側に、前記凝縮
器の下側を流れる外気を前記凝縮器の吸込面に導く整流
板を備えたことを特徴とする請求項1ないし請求項6の
いずれか1項に記載の冷蔵庫。
7. A straightening plate for guiding the outside air flowing under the condenser to the suction surface of the condenser below the suction surface of the condenser. The refrigerator according to any one of 6 above.
【請求項8】 少なくとも前記機械室の入口側の前記凝
縮器を、複数段に重ねて構成したことを特徴とする請求
項1ないし請求項7のいずれか1項に記載の冷蔵庫。
8. The refrigerator according to any one of claims 1 to 7, wherein at least the condenser on the inlet side of the machine room is formed by stacking it in a plurality of stages.
【請求項9】 前記凝縮器の吹出面から吹出す気体を複
数の風路に分割して前記機械室の入口へ導く仕切板を備
えたことを特徴とする請求項1ないし請求項8のいずれ
か1項に記載の冷蔵庫。
9. The partition plate according to claim 1, further comprising a partition plate that divides the gas blown from the blowing surface of the condenser into a plurality of air passages and guides the gas to the inlet of the machine chamber. The refrigerator according to item 1.
【請求項10】 前記機械室の入口に近い部分の前記凝
縮器のフィンピッチを、前記機械室の入口から遠い部分
のフィンピッチよりも狭くしたことを特徴とする請求項
1ないし請求項9のいずれか1項に記載の冷蔵庫。
10. The fin pitch of the condenser near the inlet of the machine room is made narrower than the fin pitch of the portion far from the entrance of the machine chamber. The refrigerator according to any one of items.
【請求項11】 前記凝縮器を複数に分割し、隣りあう
前記凝縮器の冷媒配管の積み方向が異なるように配設し
たことを特徴とする請求項1ないし請求項10のいずれ
か1項に記載の冷蔵庫。
11. The condenser according to claim 1, wherein the condenser is divided into a plurality of parts, and the refrigerant pipes of the adjacent condensers are arranged in different stacking directions. Refrigerator described.
JP2002022992A 2002-01-31 2002-01-31 refrigerator Expired - Fee Related JP3726756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002022992A JP3726756B2 (en) 2002-01-31 2002-01-31 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002022992A JP3726756B2 (en) 2002-01-31 2002-01-31 refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005192056A Division JP2005331238A (en) 2005-06-30 2005-06-30 Refrigerator

Publications (2)

Publication Number Publication Date
JP2003222459A true JP2003222459A (en) 2003-08-08
JP3726756B2 JP3726756B2 (en) 2005-12-14

Family

ID=27745823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002022992A Expired - Fee Related JP3726756B2 (en) 2002-01-31 2002-01-31 refrigerator

Country Status (1)

Country Link
JP (1) JP3726756B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202567A (en) * 2011-03-24 2012-10-22 Mitsubishi Electric Corp Refrigerator
JP2013019623A (en) * 2011-07-13 2013-01-31 Panasonic Corp Refrigerator
JP2017141975A (en) * 2016-02-08 2017-08-17 パナソニックIpマネジメント株式会社 refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202567A (en) * 2011-03-24 2012-10-22 Mitsubishi Electric Corp Refrigerator
JP2013019623A (en) * 2011-07-13 2013-01-31 Panasonic Corp Refrigerator
JP2017141975A (en) * 2016-02-08 2017-08-17 パナソニックIpマネジメント株式会社 refrigerator
WO2017138427A1 (en) * 2016-02-08 2017-08-17 パナソニックIpマネジメント株式会社 Refrigerator

Also Published As

Publication number Publication date
JP3726756B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
JP4663463B2 (en) Cooling air flow structure of cooling equipment
WO2022037719A1 (en) Refrigerator having condenser arranged in compressor cabin
WO2022037717A1 (en) Refrigerator having heat dissipation airflow channel formed in compressor cabin
WO2024002087A1 (en) Refrigerator
JP2000018646A (en) Outdoor unit of air conditioner
JP2003287342A (en) Refrigerator
WO2020157871A1 (en) Outdoor unit and air conditioner
JP2003222459A (en) Refrigerator
WO2022037382A1 (en) Embedded refrigerator
JPH0868587A (en) Machine room structure for refrigerator
KR100760128B1 (en) Ceiling type air conditioner
EP3926266B1 (en) Refrigerator having blower transversely disposed besides and downstream of evaporator
CN114526517A (en) Outdoor unit and heat pump system
JP2005331238A (en) Refrigerator
JP5627647B2 (en) Open showcase
KR100608128B1 (en) Air conditioner
KR100572594B1 (en) Air Conditioner
AU2020227335B2 (en) Refrigerator having air blower located upstream of transverse side of evaporator
WO2022037718A1 (en) Refrigerator having condenser arranged in compressor cabin
KR100557098B1 (en) Radiating apparatus of built-in refrigerator
JP3637300B2 (en) refrigerator
JPH0771859A (en) Refrigerator
KR101726223B1 (en) Refrigerator
JP3211551B2 (en) Freezer refrigerator
WO2023068023A1 (en) Refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

R151 Written notification of patent or utility model registration

Ref document number: 3726756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees