JP2003218430A5 - - Google Patents

Download PDF

Info

Publication number
JP2003218430A5
JP2003218430A5 JP2002278935A JP2002278935A JP2003218430A5 JP 2003218430 A5 JP2003218430 A5 JP 2003218430A5 JP 2002278935 A JP2002278935 A JP 2002278935A JP 2002278935 A JP2002278935 A JP 2002278935A JP 2003218430 A5 JP2003218430 A5 JP 2003218430A5
Authority
JP
Japan
Prior art keywords
magnetization vector
reset
pinned layer
layer
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002278935A
Other languages
Japanese (ja)
Other versions
JP4456805B2 (en
JP2003218430A (en
Filing date
Publication date
Priority claimed from US09/971,347 external-priority patent/US6649423B2/en
Application filed filed Critical
Publication of JP2003218430A publication Critical patent/JP2003218430A/en
Publication of JP2003218430A5 publication Critical patent/JP2003218430A5/ja
Application granted granted Critical
Publication of JP4456805B2 publication Critical patent/JP4456805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Claims (31)

ピン止め層およびセンス層を含む磁気トンネル接合を形成するステップと、
前記層の少なくとも1つの磁化ベクトルを再設定するステップ
を含む、方法。
Forming a magnetic tunnel junction including a pinned layer and a sense layer;
Resetting at least one magnetization vector of the layer.
前記接合をアニールしながら、対象とする方向に磁界を印加することにより、磁化ベクトルが再設定される、請求項1の方法。  The method of claim 1, wherein the magnetization vector is reset by applying a magnetic field in a direction of interest while annealing the junction. 前記ピン止め層に対して、対象とする方向に磁界を印加しながら、前記ピン止め層のブロッキング温度より高い温度でアニールすることにより、前記ピン止め層磁化ベクトルが再設定される、請求項1の方法。  The pinned layer magnetization vector is reset by annealing the pinned layer at a temperature higher than the blocking temperature of the pinned layer while applying a magnetic field in a target direction. the method of. 前記センス層に対して、対象とする方向に磁界を印加しながら、前記センス層の容易軸を回転させるための閾値温度より高い温度に前記接合を加熱することにより、前記センス層の磁化の角度が再設定される、請求項1の方法。  The magnetization angle of the sense layer by heating the junction to a temperature higher than a threshold temperature for rotating the easy axis of the sense layer while applying a magnetic field to the sense layer in a target direction. The method of claim 1, wherein is reset. 前記接合の切替え特性を検査するステップと、
検査結果にしたがって少なくとも1つの磁化ベクトルを再設定するステップ
をさらに含む、請求項1の方法。
Inspecting the switching characteristics of the joint;
The method of claim 1, further comprising resetting at least one magnetization vector according to the inspection result.
前記センス層磁化ベクトルおよび前記ピン止め層磁化ベクトルはいずれも、再アニールすることにより再設定される、請求項1の方法。  The method of claim 1, wherein both the sense layer magnetization vector and the pinned layer magnetization vector are reset by reannealing. 前記磁化ベクトルが、切替え曲線の対称性を改善するように再設定される、請求項6の方法。  The method of claim 6, wherein the magnetization vector is reset to improve the symmetry of the switching curve. 前記磁化ベクトルが、クリティカルな切替え磁界を低減するように再設定される、請求項6の方法。  The method of claim 6, wherein the magnetization vector is reset to reduce critical switching fields. 前記磁化ベクトルが、同じ方向を向くように再設定される、請求項6の方法。  The method of claim 6, wherein the magnetization vectors are reset to point in the same direction. 前記ピン止め層磁化ベクトルは、強い強磁性結合および弱い反強磁性結合を補償するように再設定される、請求項1の方法。  The method of claim 1, wherein the pinned layer magnetization vector is reset to compensate for strong ferromagnetic coupling and weak antiferromagnetic coupling. 前記ピン止め層磁化ベクトルは、前記センス層磁化ベクトルから離れるように動かされる、請求項10の方法。   The method of claim 10, wherein the pinned layer magnetization vector is moved away from the sense layer magnetization vector. 前記ピン止め層磁化ベクトルは、切替え曲線の対称性を改善するように再設定される、請求項10の方法。  The method of claim 10, wherein the pinned layer magnetization vector is reset to improve the symmetry of the switching curve. 前記ピン止め層磁化ベクトルは、クリティカルな切替え磁界を低減するように再設定される、請求項10の方法。  11. The method of claim 10, wherein the pinned layer magnetization vector is reset to reduce critical switching fields. センス層の磁化の角度が、ピン止め層の磁化の角度とは無関係に変えられる、請求項1の方法。  The method of claim 1, wherein the angle of magnetization of the sense layer is varied independent of the angle of magnetization of the pinned layer. ピン止め層およびセンス層を含む磁気トンネル接合を形成するステップと、
前記接合についての所望の切替え曲線を決定するステップと、
前記層の少なくとも1つの層の磁化ベクトルを再設定するステップ
を含む、方法。
Forming a magnetic tunnel junction including a pinned layer and a sense layer;
Determining a desired switching curve for the joint;
Resetting the magnetization vector of at least one of the layers.
前記センス層磁化ベクトルおよび前記ピン止め層磁化ベクトルはいずれも、再アニールすることにより再設定される、請求項15の方法。  The method of claim 15, wherein both the sense layer magnetization vector and the pinned layer magnetization vector are reset by re-annealing. 前記磁化ベクトルが、切替え曲線の対称性を改善するように再設定される、請求項16の方法。  The method of claim 16, wherein the magnetization vector is reset to improve the symmetry of the switching curve. 前記磁化ベクトルが、クリティカルな切替え磁界を低減するように再設定される、請求項16の方法。  The method of claim 16, wherein the magnetization vector is reset to reduce critical switching fields. 前記ピン止め層とセンス層の容易軸が同じ方向を向くように、前記磁化ベクトルを再設定する、請求項16の方法。  The method of claim 16, wherein the magnetization vector is reset such that the easy axes of the pinned layer and the sense layer are in the same direction. 前記ピン止め層磁化ベクトルが、再アニールすることによってのみ再設定される、請求項15の方法。  The method of claim 15, wherein the pinned layer magnetization vector is reset only by reannealing. 前記ピン止め層磁化ベクトルは、前記センス層磁化ベクトルから離れるように動かされる、請求項20の方法。  21. The method of claim 20, wherein the pinned layer magnetization vector is moved away from the sense layer magnetization vector. 前記ピン止め層磁化ベクトルが、切替え曲線の対称性を改善するように再設定される、請求項20の方法。  21. The method of claim 20, wherein the pinned layer magnetization vector is reset to improve the symmetry of the switching curve. 前記ピン止め層磁化ベクトルが、クリティカルな切替え磁界を低減するように再設定される、請求項20の方法。  21. The method of claim 20, wherein the pinned layer magnetization vector is reset to reduce critical switching fields. 前記センス層の磁化の角度が、ピン止め層の磁化の角度とは無関係に変えられる、請求項20の方法。  21. The method of claim 20, wherein the angle of magnetization of the sense layer is varied independent of the angle of magnetization of the pinned layer. 磁気トンネル接合において、
ピン止め層であって、該ピン止め層の面に存在する第1の磁化ベクトルを有する、ピン止め層と、
センス層であって、該センス層の面に存在する第2の磁化ベクトルを有するセンス層
を有し、
前記第1の磁化ベクトルと第2の磁化ベクトルの少なくとも1つが、異なる角度に再設定されており、前記異なる角度は、前記接合の所望の切替え曲線に対応することからなる、磁気トンネル接合。
In magnetic tunnel junctions,
A pinned layer having a first magnetization vector present on a surface of the pinned layer;
A sense layer, comprising a sense layer having a second magnetization vector present on a surface of the sense layer;
A magnetic tunnel junction, wherein at least one of the first magnetization vector and the second magnetization vector is reset to a different angle, the different angle corresponding to a desired switching curve of the junction.
前記接合が強い強磁性結合と反強磁性結合を有し、前記第1のベクトル及び第2のベクトルの両方が再設定されている、請求項25の磁気トンネル接合。  26. The magnetic tunnel junction of claim 25, wherein the junction has strong and antiferromagnetic coupling, and both the first and second vectors are reset. 前記両方のベクトルが同じ方向を向く、請求項26の磁気トンネル接合。  27. The magnetic tunnel junction of claim 26, wherein both vectors are in the same direction. 前記接合が強い強磁性結合と弱い反強磁性結合を有し、前記第1のベクトルのみが再設定されている、請求項25の磁気トンネル接合。  26. The magnetic tunnel junction of claim 25, wherein the junction has strong ferromagnetic coupling and weak antiferromagnetic coupling, and only the first vector is reset. 前記第1のベクトルが、前記第2のベクトルと異なる角度を有する、請求項25の磁気トンネル接合。  26. The magnetic tunnel junction of claim 25, wherein the first vector has a different angle than the second vector. 前記磁気トンネル接合が強い強磁性結合を有し、前記切替え曲線の少なくとも半分が対称性を有する、請求項25の磁気トンネル接合。  26. The magnetic tunnel junction of claim 25, wherein the magnetic tunnel junction has strong ferromagnetic coupling and at least half of the switching curve is symmetric. 前記磁気トンネル接合が強い反強磁性結合を有する、請求項30の磁気トンネル接合。  The magnetic tunnel junction of claim 30, wherein the magnetic tunnel junction has strong antiferromagnetic coupling.
JP2002278935A 2001-10-04 2002-09-25 Manufacturing method of magnetic tunnel junction Expired - Fee Related JP4456805B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/971,347 US6649423B2 (en) 2001-10-04 2001-10-04 Method for modifying switching field characteristics of magnetic tunnel junctions
US09/971347 2001-10-04

Publications (3)

Publication Number Publication Date
JP2003218430A JP2003218430A (en) 2003-07-31
JP2003218430A5 true JP2003218430A5 (en) 2005-04-14
JP4456805B2 JP4456805B2 (en) 2010-04-28

Family

ID=25518254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278935A Expired - Fee Related JP4456805B2 (en) 2001-10-04 2002-09-25 Manufacturing method of magnetic tunnel junction

Country Status (7)

Country Link
US (2) US6649423B2 (en)
EP (1) EP1300853B1 (en)
JP (1) JP4456805B2 (en)
KR (1) KR100923772B1 (en)
CN (1) CN100336239C (en)
DE (1) DE60203677T2 (en)
TW (1) TWI222063B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100407907B1 (en) * 2001-05-15 2003-12-03 한국과학기술연구원 Thermal anneal method of magnetic tunnel junction, and magnetic tunneling junction fabricated by the method
US6717194B2 (en) * 2001-10-30 2004-04-06 Micron Technology, Inc. Magneto-resistive bit structure and method of manufacture therefor
FR2832542B1 (en) * 2001-11-16 2005-05-06 Commissariat Energie Atomique MAGNETIC DEVICE WITH MAGNETIC TUNNEL JUNCTION, MEMORY AND METHODS OF WRITING AND READING USING THE DEVICE
US6744651B2 (en) * 2002-09-20 2004-06-01 Taiwan Semiconductor Manufacturing Company Local thermal enhancement of magnetic memory cell during programming
US20040085463A1 (en) * 2002-11-06 2004-05-06 Manish Sharma Imaging system with non-volatile memory
US7189583B2 (en) * 2003-07-02 2007-03-13 Micron Technology, Inc. Method for production of MRAM elements
US7473656B2 (en) 2003-10-23 2009-01-06 International Business Machines Corporation Method for fast and local anneal of anti-ferromagnetic (AF) exchange-biased magnetic stacks
US20050237676A1 (en) * 2004-04-26 2005-10-27 Hitachi Global Storage Technologies Fe seeded self-pinned sensor
JP2007207919A (en) 2006-01-31 2007-08-16 Toshiba Corp Magnetoresistance effect element and magnetic memory
US7646569B2 (en) * 2006-07-20 2010-01-12 Hitachi Global Storage Technologies Netherlands B.V. Pinned layer in magnetoresistive sensor
US20090218645A1 (en) * 2007-02-12 2009-09-03 Yadav Technology Inc. multi-state spin-torque transfer magnetic random access memory
US7834410B2 (en) * 2009-04-13 2010-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. Spin torque transfer magnetic tunnel junction structure
US20100315869A1 (en) * 2009-06-15 2010-12-16 Magic Technologies, Inc. Spin torque transfer MRAM design with low switching current
CN104766924A (en) * 2014-01-08 2015-07-08 上海矽睿科技有限公司 Annealing process of magnetic material
KR101661275B1 (en) * 2014-04-18 2016-09-29 한양대학교 산학협력단 Memory device
CN105280214B (en) * 2015-09-10 2018-02-27 中国科学院物理研究所 Current drive-type MAGNETIC RANDOM ACCESS MEMORY and spin logical device
CN112289922B (en) * 2019-07-22 2023-05-30 中电海康集团有限公司 Magnetic sensor and method for manufacturing the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650958A (en) * 1996-03-18 1997-07-22 International Business Machines Corporation Magnetic tunnel junctions with controlled magnetic response
JP3219713B2 (en) * 1997-02-07 2001-10-15 アルプス電気株式会社 Method of manufacturing magnetoresistive element
US6048739A (en) * 1997-12-18 2000-04-11 Honeywell Inc. Method of manufacturing a high density magnetic memory device
US6114719A (en) * 1998-05-29 2000-09-05 International Business Machines Corporation Magnetic tunnel junction memory cell with in-stack biasing of the free ferromagnetic layer and memory array using the cell
US6081446A (en) * 1998-06-03 2000-06-27 Hewlett-Packard Company Multiple bit magnetic memory cell
US5982660A (en) 1998-08-27 1999-11-09 Hewlett-Packard Company Magnetic memory cell with off-axis reference layer orientation for improved response
US6166948A (en) * 1999-09-03 2000-12-26 International Business Machines Corporation Magnetic memory array with magnetic tunnel junction memory cells having flux-closed free layers
US6326637B1 (en) * 1999-10-18 2001-12-04 International Business Machines Corporation Antiferromagnetically exchange-coupled structure for magnetic tunnel junction device
US6285581B1 (en) * 1999-12-13 2001-09-04 Motorola, Inc. MRAM having semiconductor device integrated therein
JP2001196658A (en) * 2000-01-07 2001-07-19 Fujitsu Ltd Magnetic element and magnetic memory device
US6172904B1 (en) * 2000-01-27 2001-01-09 Hewlett-Packard Company Magnetic memory cell with symmetric switching characteristics
US6727105B1 (en) * 2000-02-28 2004-04-27 Hewlett-Packard Development Company, L.P. Method of fabricating an MRAM device including spin dependent tunneling junction memory cells
JP3550533B2 (en) * 2000-07-06 2004-08-04 株式会社日立製作所 Magnetic field sensor, magnetic head, magnetic recording / reproducing device, and magnetic storage element
US6541316B2 (en) * 2000-12-22 2003-04-01 The Regents Of The University Of California Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction
US6744086B2 (en) * 2001-05-15 2004-06-01 Nve Corporation Current switched magnetoresistive memory cell
US6430084B1 (en) * 2001-08-27 2002-08-06 Motorola, Inc. Magnetic random access memory having digit lines and bit lines with a ferromagnetic cladding layer
US6430085B1 (en) * 2001-08-27 2002-08-06 Motorola, Inc. Magnetic random access memory having digit lines and bit lines with shape and induced anisotropy ferromagnetic cladding layer and method of manufacture
US6741496B2 (en) * 2001-09-27 2004-05-25 Intel Corporation Electron spin mechanisms for inducing magnetic-polarization reversal
US7190611B2 (en) * 2003-01-07 2007-03-13 Grandis, Inc. Spin-transfer multilayer stack containing magnetic layers with resettable magnetization

Similar Documents

Publication Publication Date Title
JP2003218430A5 (en)
CN104776794B (en) A kind of high-intensity magnetic field magneto-resistor angular transducer singly encapsulated
TWI233199B (en) Magnetic memory device having yoke layer and its manufacturing method
US8237437B2 (en) Two-axis magnetic field sensor with multiple pinning directions
Smith et al. Magnetic microhelix coil structures
JP4630544B2 (en) A method of orienting the magnetization direction of a magnetic layer of a selected magnetic element out of a plurality of magnetic elements constituting a bridge structure in a direction opposite to the magnetization direction of a magnetic layer of another magnetic element
GB2388701A (en) Tunnel junction and charge prependicular-to-plane magnetic recording sensors and method of manufacture
TW200638358A (en) Magnetoresistive structures and fabrication methods
CN204739999U (en) High -intensity magnetic field magneto resistor angle sensor of single encapsulation
Wan et al. Fabrication of magnetic tunnel junctions connected through a continuous free layer to enable spin logic devices
JP2003218430A (en) Method of changing characteristic of switching magnetic field of magnetic tunnel junction
Zhao et al. L10-MnGa based magnetic tunnel junction for high magnetic field sensor
Avdeev et al. Current switches based on asymmetric ferromagnet-superconductor nanostructures with allowance for a triplet channel in an external magnetic field
Miyazaki et al. Spin tunneling in Ni–Fe/Al2O3/Co junction devices
EP3923013A1 (en) Dual double-pinned spin valve element having magnet bias with increased linear range
CN107076809A (en) Self-reference mram cell and the magnetic field sensor for including the self-reference mram cell
JP6639509B2 (en) Magnetic logic unit (MLU) cell for detecting a magnetic field with improved programmability and low read power consumption
Chechenin et al. Asymmetry of magnetization reversal of pinned layer in NiFe/Cu/NiFe/IrMn spin-valve structure
Rodionova et al. Enhancement of exchange bias in NiFe/IrM, IrMn/NiFe AND NiFe/IrMn/NiFe structures with different thickness of antiferromagnetic layer
Liu et al. Micromagnetic simulation for tunnel junctions with synthetic antiferromagnetic pinned layers annealed at different external fields
TW201329990A (en) Method of pinning domain walls in a nanowire magnetic memory device
Gorobets et al. Class of exact three dimensional solutions of Landau–Lifshitz equations in simply connected specimens of ferromagnets and antiferromagnets of arbitrary shape with uniaxial magnetic anisotropy
Garifullin et al. The superconducting spin valve and triplet superconductivity
Milyaev et al. Uniaxial anisotropy variations and the reduction of free layer coercivity in MnIr-based top spin valves
US20240255269A1 (en) Method of manufacturing angle sensors including magnetoresistance elements including different types of antiferromagnetic materials