JP2003217959A - METHOD OF MANUFACTURING MnAlC MAGNET - Google Patents

METHOD OF MANUFACTURING MnAlC MAGNET

Info

Publication number
JP2003217959A
JP2003217959A JP2002012681A JP2002012681A JP2003217959A JP 2003217959 A JP2003217959 A JP 2003217959A JP 2002012681 A JP2002012681 A JP 2002012681A JP 2002012681 A JP2002012681 A JP 2002012681A JP 2003217959 A JP2003217959 A JP 2003217959A
Authority
JP
Japan
Prior art keywords
mnalc
magnet
powder
extrusion
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002012681A
Other languages
Japanese (ja)
Inventor
Masatoshi Yamamoto
正敏 山本
Yoshikazu Aikawa
芳和 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2002012681A priority Critical patent/JP2003217959A/en
Publication of JP2003217959A publication Critical patent/JP2003217959A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of the MnAlC magnet, to realize the magnetic characteristic which is similar to that of the conventional manufacturing method, introducing the capsulated powder sealing/extruding method in the MnAlC- system alloy magnet, in which the magnetic characteristics are improved with the extruding method. <P>SOLUTION: In the method of manufacturing the MnAlC-system alloy magnet, the powder of MnAlC-system alloy is sintered for 1 to 10 hrs at 1,323 to 1,473K and thereafter the sintered powder is molded at the warm extruding temperature in the range of 933 to 1,023K. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、MnAlC系合金
磁石を製造する方法に関するものである。 【0002】 【従来の技術】従来、Mn−Al−C系合金磁石は、主
として強磁性相である面心正方晶の結晶組織で構成さ
れ、Cを必須構成元素として含むもので、不純物以外に
添加元素を含まない3元素系および少数の添加元素を含
む4元素以上の多元素系合金磁石が知られており、これ
らを総称するものである。また、希土類金属元素やCo
などの稀少元素は含まない。この磁石は主として軸異方
性あるいは径異方性のいわゆる異方性磁石として使用さ
れている。この磁石は比重が5.1g/cm3 と通常の
同体積の金属磁石と比較して約70%と軽量で、大気中
で錆びることがない耐候性を備え、機械的強度が高い永
久磁石である。 【0003】この磁石は古くは鋳造法によりインゴット
を作製し、1000℃近傍で溶体化処理した後、約70
0℃で熱間押出しすることにより異方性化させ、所望の
磁気特性を発現させている。また、この鋳造法を改良し
た方法として粉体工法による製造方法も実施されてい
る。この粉体工法は、鋳造法によるインゴットの作製や
それに続く溶体化処理をとらない工法で、真空溶解炉で
目的の組織の溶融合金を溶製した後、アルゴンガスある
いは窒素ガスなどのいわゆる不活性ガスを用いたガスア
トマイズ法により平均粒径1mm以下の粉末を作製し、
金属製の容器に粉末を充填し、700℃近傍に加熱した
後、所望の歪み速度で押出すことにより棒状形状に成形
されている。押出された棒状表面をセンタレス加工によ
り粉末充填時に使用した容器材を除去し、所望の長さお
よび形状に切断、加工して供されている。 【0004】一方、粉末法による多結晶の異方性MnA
lC系合金磁石の製造方法として、例えば特開平1−7
9305号公報に開示されているように、MnAlC系
合金の粉末を可塑性のある薄肉の容器に充填後、冷間静
水圧縮により形成し、さらに530〜780℃の温度範
囲で温間塑性加工する方法が提案されている。これはア
トマイズ等の粉末作製時に急冷処理がされているため、
鋳造−押出法の場合に必要とされていた熱処理を省略す
ることが可能となり、また、鋳造−押出法と比較して同
一の押出し比でも高い磁気特性を有する磁石が製造可能
である。 【0005】 【発明が解決しようとする課題】しかしながら、上述し
た粉末を押出し成形するためには、押出しに寸法に合わ
せたカプセルがその都度必要となる。また、カプセルは
消耗品であることから、製造コストが大きくなるという
問題がある。 【0006】 【課題を解決するための手段】上述したような問題を解
消するために、発明者らは、鋭意開発を進めた結果、押
出し工法によって磁気特性が向上するMnAlC系合金
磁石において、従来の粉末カプセル封入−押出工法によ
る製造法と同等の磁気特性を、さらに低コストで作製す
るための製造方法を提供するものである。その発明の要
旨とするところは、MnAlC系合金磁石を製造する方
法において、該MnAlC系合金からなる粉末を焼結温
度1323〜1473Kで焼結時間1〜10hrにて焼
結した後、押出温度933〜1023Kなる条件で温間
押出にて成形したことを特徴とするMnAlC磁石の製
造方法である。 【0007】 【発明の実施の形態】以下、本発明について詳細に説明
する。本発明において材料とする粉末を製造するための
手段としては、水またはガスアトマイズ法が一般的であ
りいずれも使用し得るが、不活性ガスアトマイズ法が、
球状粉末になること、表面酸化がないこと、生産性が高
いことなどで有利である。本発明に係るMnAlC系合
金磁石の成分組成については、特に限定されるものでは
ないが、主として軸異方性あるいは径異方性のいわゆる
異方性磁石を対象とする場合には、その成分組成は、M
n:68〜73mass%、C:0.2〜2.1mas
s%を含有し、残部AlよりなるMn−Al−C系磁石
が良い。 【0008】本発明においては、上述したアトマイズ法
によって製造されたMnAlC系合金粉末を金型等によ
り焼結し、その粉末を押出し成形するものであり、その
ために、成形用のカプセルは不要となり、また、焼結用
の金型はカプセルと比較すると、一つの金型で複数個も
可能であり、かつ、押出しサイズに合わせた加工も容易
である点で優れている。しかも、繰り返し使用可能であ
るため量産性も良く、生産性を大幅に高めることが可能
である。 【0009】本発明に係る焼結温度を1323〜147
3Kとした理由は、1323K未満では、十分に焼結が
進まずハンドリングが困難であり、また、1473Kを
超える温度では、非磁性相の析出が多くなり十分な磁気
特性が確保できない。従って、より好ましくは1373
〜1450Kである。さらに、焼結時間を1〜10hr
とした理由は、1hr未満では十分に焼結が進まずハン
ドリングが困難であり、また、10hrを超えると非磁
性相の析出が多くなり十分な磁気特性が確保できない。
従って、より好ましくは、3〜7hrである。さらに、
温間押出温度を933〜1023Kとした理由は、焼結
後の試料を押出しする際の最適温度を検討した結果、9
33K未満では変形抵抗が大きく健全な押出しが困難で
あり、また1023Kを超える温度であると非磁性相の
析出が大きく磁気特性の劣化につながるので、その範囲
を933〜1023Kとした。 【0010】 【実施例】以下、本発明について実施例によって具体的
に説明する。アルゴンガスアトマイズにより、Mn:6
8.8mass%、C:0.44mass%、Ni:
0.8mass%、残部Alの組成のMnAlC系合金
粉末を製造した後、−1000μmに分級して粉末を得
た。この粉末をアルゴンガス雰囲気中で焼結温度132
3〜1473K、焼結時間1〜10hrで焼結し、焼結
体寸法φ14mm×20mmのものを得、この焼結体を
押出し温度933〜1023Kの条件で、入り口側寸法
φ15mm、出口側寸法φ7mm、歪速度0.05/s
で温間押出し成形した。その後、φ7×L50mmから
φ5×L10mmのセンタレス加工、エメリー切断して
製品を得た。その結果を表1に示す。評価項目として
は、焼結体のハンドリング性、押出し材の磁気特性(B
Hmax/kJ/m3 )である。磁気特性はBHトレー
サーを用いて評価し、印加磁場は1.5Tとした。ま
た、焼結体のハンドリング性については、ハンドリング
に問題なし:○、ハンドリング不能:×として表示し
た。 【0011】 【表1】 【0012】表1に示すように、No.1〜9は本発明
であり、No.10〜16は比較例である。比較例N
o.10は焼結温度が低いために、十分な焼結が進ま
ず、そのために焼結体のハンドリング性が不能である。
一方、比較例No.11は焼結温度が高いために、十分
な高い磁気特性が得られない。また、比較例No.12
は焼結時間が長いために、また、No.11と同様に十
分な磁気特性が得られない。また、比較例No.13は
焼結時間が短いために焼結体のハンドリング性が不能で
ある。 【0013】また、比較例No.14は押出し温度が低
いため、押出しが不能である。また、比較例No.15
は押出し温度が高いために、十分な高い磁気特性が得ら
れない。さらに、比較例No.16は焼結処理のないカ
プセル封入によるもので、高い磁気特性は得られるもの
のコスト的に高くなるという問題がある。これに対し、
本発明であるNo.1〜9のいずれも焼結体のハンドリ
ング性は良好であり、かつ、磁気特性も優れたものが得
られることが判る。 【0014】 【発明の効果】以上述べたように、本発明により、従来
の粉末カプセル封入−押出工法による製造法と同等以上
の磁気特性をもつMnAlC磁石を、低コストで、しか
も複数個製造可能な工程費用の削減を図ることが出来る
工業的に極めて優れた効果を奏するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a MnAlC-based alloy magnet. [0002] Conventionally, Mn-Al-C alloy magnets are mainly composed of a face-centered tetragonal crystal structure, which is a ferromagnetic phase, and contain C as an essential constituent element. There are known three-element magnets containing no additional elements and multi-element alloy magnets of four or more elements containing a small number of additional elements, and these are generic names. In addition, rare earth metal elements and Co
It does not include rare elements such as This magnet is mainly used as a so-called anisotropic magnet having axial or radial anisotropy. This magnet is a permanent magnet that has a specific gravity of 5.1 g / cm 3 , about 70% lighter than ordinary metal magnets of the same volume, has weather resistance that does not rust in the atmosphere, and has high mechanical strength. is there. [0003] In the past, this magnet was manufactured by casting an ingot and subjected to a solution treatment at about 1000 ° C.
The material is anisotropic by hot extrusion at 0 ° C. to exhibit desired magnetic properties. Further, as a method of improving this casting method, a manufacturing method by a powder method is also being implemented. This powder method is a method that does not require the production of an ingot by a casting method and subsequent solution treatment.After melting a molten alloy having the target structure in a vacuum melting furnace, the powder method is called inert gas such as argon gas or nitrogen gas. A powder having an average particle size of 1 mm or less is produced by a gas atomizing method using a gas,
A metal container is filled with powder, heated to around 700 ° C., and extruded at a desired strain rate to form a rod-like shape. The extruded rod-shaped surface is provided by removing the container material used at the time of powder filling by centerless processing, cutting and processing into a desired length and shape. On the other hand, polycrystalline anisotropic MnA prepared by a powder method
For example, Japanese Patent Application Laid-Open No.
As disclosed in Japanese Patent No. 9305, a method in which a powder of a MnAlC-based alloy is filled into a thin plastic container, formed by cold isostatic pressing, and further subjected to warm plastic working in a temperature range of 530 to 780 ° C. Has been proposed. This is because quenching process is performed at the time of powder production such as atomization,
The heat treatment required in the case of the casting-extrusion method can be omitted, and a magnet having high magnetic properties can be manufactured even at the same extrusion ratio as compared with the casting-extrusion method. [0005] However, in order to extrude the above-mentioned powder, a capsule which is dimensioned for the extrusion is required each time. In addition, since capsules are consumables, there is a problem that manufacturing costs increase. Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive developments, and as a result, in a MnAlC-based alloy magnet whose magnetic properties are improved by an extrusion method, a conventional method has been proposed. It is intended to provide a production method for producing magnetic properties equivalent to the production method by the powder encapsulation-extrusion method at a lower cost. The gist of the invention is that in a method of manufacturing a MnAlC-based alloy magnet, a powder made of the MnAlC-based alloy is sintered at a sintering temperature of 1323 to 1473 K for a sintering time of 1 to 10 hours, and then an extrusion temperature of 933 is used. A method for producing a MnAlC magnet, wherein the magnet is formed by warm extrusion under the conditions of な る 1023 K. Hereinafter, the present invention will be described in detail. As a means for producing powder as a material in the present invention, water or gas atomization method is generally used and any of them can be used, but an inert gas atomization method is used.
It is advantageous because it becomes a spherical powder, there is no surface oxidation, and the productivity is high. The component composition of the MnAlC-based alloy magnet according to the present invention is not particularly limited. Is M
n: 68 to 73 mass%, C: 0.2 to 2.1 mas
A Mn-Al-C-based magnet containing s% and the balance being Al is preferred. In the present invention, the MnAlC-based alloy powder produced by the above-mentioned atomizing method is sintered by a mold or the like, and the powder is extruded. Therefore, a capsule for molding is not required. In addition, compared with capsules, a mold for sintering is excellent in that a plurality of molds can be formed with one mold and processing according to the extrusion size is easy. Moreover, since it can be used repeatedly, mass productivity is good and productivity can be greatly increased. According to the present invention, the sintering temperature is set to 1323 to 147.
The reason why the temperature is set to 3K is that if the temperature is lower than 1323K, sintering does not proceed sufficiently and handling is difficult, and if the temperature is higher than 1473K, precipitation of a nonmagnetic phase increases and sufficient magnetic properties cannot be secured. Therefore, more preferably 1373
141450K. Further, the sintering time is 1 to 10 hours.
The reason is that if it is less than 1 hr, sintering does not proceed sufficiently and handling is difficult, and if it exceeds 10 hr, precipitation of non-magnetic phase increases and sufficient magnetic properties cannot be secured.
Therefore, it is more preferably 3 to 7 hours. further,
The reason why the warm extrusion temperature was set to 933 to 1023K was that the optimum temperature for extruding the sintered sample was examined.
If the temperature is lower than 33K, the deformation resistance is large and sound extrusion is difficult. If the temperature is higher than 1023K, the precipitation of the non-magnetic phase is large and leads to the deterioration of the magnetic properties. Hereinafter, the present invention will be described specifically with reference to examples. Mn: 6 by argon gas atomization
8.8 mass%, C: 0.44 mass%, Ni:
After producing a MnAlC-based alloy powder having a composition of 0.8 mass% and a balance of Al, the powder was classified to −1000 μm to obtain a powder. This powder was sintered in an argon gas atmosphere at a sintering temperature of 132.
Sintering is carried out at 3-1473 K for a sintering time of 1 to 10 hr to obtain a sintered body having a size of 14 mm × 20 mm, and the sintered body is extruded under conditions of an extrusion temperature of 933 to 1023 K at an inlet side diameter of 15 mm and an outlet side diameter of 7 mm. , Strain rate 0.05 / s
For warm extrusion. Thereafter, a centerless processing of φ7 × L50 mm to φ5 × L10 mm and emery cutting were performed to obtain a product. Table 1 shows the results. The evaluation items were the handling properties of the sintered body and the magnetic properties of the extruded material (B
Hmax / kJ / m 3 ). The magnetic properties were evaluated using a BH tracer, and the applied magnetic field was 1.5T. Regarding the handling property of the sintered body, there was no problem in handling: ○, and handling was impossible: ×. [Table 1] As shown in Table 1, as shown in FIG. Nos. 1 to 9 are the present invention. 10 to 16 are comparative examples. Comparative Example N
o. In No. 10, since the sintering temperature is low, sufficient sintering does not proceed, and therefore, the handling of the sintered body is impossible.
On the other hand, in Comparative Example No. No. 11 cannot obtain sufficiently high magnetic properties because of the high sintering temperature. In Comparative Example No. 12
No. 2 has a long sintering time. As in the case of No. 11, sufficient magnetic properties cannot be obtained. In Comparative Example No. In No. 13, the sintering time is short, so that the sintered body cannot be handled easily. In Comparative Example No. No. 14 cannot be extruded because the extrusion temperature is low. In Comparative Example No. Fifteen
Cannot obtain sufficiently high magnetic properties because of high extrusion temperature. Further, in Comparative Example No. No. 16 is obtained by encapsulation without sintering, and has a problem in that high magnetic properties can be obtained but the cost becomes high. In contrast,
No. 1 of the present invention. It can be seen that any one of Nos. 1 to 9 has good handleability of the sintered body and also has excellent magnetic properties. As described above, according to the present invention, it is possible to manufacture a plurality of MnAlC magnets having magnetic properties equivalent to or higher than those of the conventional manufacturing method by the powder encapsulation-extrusion method at a low cost and at the same time. This is an industrially excellent effect that can reduce the cost of the process.

フロントページの続き Fターム(参考) 4K018 AA40 BA20 DA11 DA21 EA31 KA45 5E040 AA09 BD01 CA01 HB03 NN01 NN06 NN18 5E062 CC05 CD04 CE03 CG02 CG03Continuation of front page    F term (reference) 4K018 AA40 BA20 DA11 DA21 EA31                       KA45                 5E040 AA09 BD01 CA01 HB03 NN01                       NN06 NN18                 5E062 CC05 CD04 CE03 CG02 CG03

Claims (1)

【特許請求の範囲】 【請求項1】 MnAlC系合金磁石を製造する方法に
おいて、該MnAlC系合金からなる粉末を焼結温度1
323〜1473Kで焼結時間1〜10hrにて焼結し
た後、押出温度933〜1023Kなる条件で温間押出
にて成形したことを特徴とするMnAlC磁石の製造方
法。
Claims: 1. A method for producing a MnAlC-based alloy magnet, comprising the steps of:
A method for producing a MnAlC magnet, comprising sintering at 323 to 1473 K for a sintering time of 1 to 10 hr, and then molding by warm extrusion at an extrusion temperature of 933 to 1023 K.
JP2002012681A 2002-01-22 2002-01-22 METHOD OF MANUFACTURING MnAlC MAGNET Withdrawn JP2003217959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002012681A JP2003217959A (en) 2002-01-22 2002-01-22 METHOD OF MANUFACTURING MnAlC MAGNET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002012681A JP2003217959A (en) 2002-01-22 2002-01-22 METHOD OF MANUFACTURING MnAlC MAGNET

Publications (1)

Publication Number Publication Date
JP2003217959A true JP2003217959A (en) 2003-07-31

Family

ID=27649825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002012681A Withdrawn JP2003217959A (en) 2002-01-22 2002-01-22 METHOD OF MANUFACTURING MnAlC MAGNET

Country Status (1)

Country Link
JP (1) JP2003217959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174056A (en) * 2019-08-01 2022-03-11 贝恩多夫创新与技术有限公司 Method for manufacturing endless belt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174056A (en) * 2019-08-01 2022-03-11 贝恩多夫创新与技术有限公司 Method for manufacturing endless belt

Similar Documents

Publication Publication Date Title
JPH0421744A (en) Rare earth magnetic alloy excellent in hot workability
JP2693601B2 (en) Permanent magnet and permanent magnet raw material
JP6613730B2 (en) Rare earth magnet manufacturing method
JPH05209210A (en) Production of magnet alloy particle
JP2003217959A (en) METHOD OF MANUFACTURING MnAlC MAGNET
JPS62203302A (en) Cast rare earth element-iron system permanent magnet
JP2002356703A (en) Method for producing longitudinal anisotropic magnet material
JPH04134804A (en) Manufacture of rare earth permanent magnet
JP2730284B2 (en) Manufacturing method of Al-Si alloy sintered forged parts
JPH09263913A (en) Hard magnetic alloy compacted body and its production
JP2002516925A (en) Method for producing magnetic material and magnetic powder by forging
JPH1171645A (en) Hard magnetic alloy sintered compact and its production
JP2804423B2 (en) Method for producing Mn-Al-C alloy magnetic material
JPH06224018A (en) Manufacture of r-fe-b-based sintered magnet
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JPS61208809A (en) Manufacture of sintered magnet
KR920005184B1 (en) Making method of permanent magnet
KR100198358B1 (en) Method for manufacturing high energy permanent magnet in rare earth system
JP4120035B2 (en) Magnet alloy
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPH11269502A (en) Manganese-aluminum-carbon alloy powder, production of anisotropic manganese-aluminum-carbon magnet using this powder, and anisotropic manganese-aluminum-carbon magnet
JP2783287B2 (en) Method for producing iron-cobalt soft magnetic material
RU2048690C1 (en) Process of manufacture of anisotropic permanent magnets based on alloy &#34;rare earth metal-iron-boron&#34;
JP2980254B2 (en) Anisotropic permanent magnet and manufacturing method thereof
JPS62213207A (en) Manufacture of rare earth magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405