JP2003217599A - Solid polymer type fuel cell - Google Patents

Solid polymer type fuel cell

Info

Publication number
JP2003217599A
JP2003217599A JP2002014115A JP2002014115A JP2003217599A JP 2003217599 A JP2003217599 A JP 2003217599A JP 2002014115 A JP2002014115 A JP 2002014115A JP 2002014115 A JP2002014115 A JP 2002014115A JP 2003217599 A JP2003217599 A JP 2003217599A
Authority
JP
Japan
Prior art keywords
fuel cell
layer
polymer electrolyte
electrode layer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002014115A
Other languages
Japanese (ja)
Inventor
Hiroaki Ishio
博明 石尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002014115A priority Critical patent/JP2003217599A/en
Publication of JP2003217599A publication Critical patent/JP2003217599A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer type fuel cell, which can achieve long life and high current supply, by controlling the concentration of a water repellency agent within an electrode layer in a thickness-wise direction of the layer and within the surface thereof to attain high efficiency and evenness of gas diffusion. <P>SOLUTION: For the solid polymer type fuel cell obtained by arranging a solid polymer electrolyte layer 1 between a pair of electrode layers 3, 3, a recessed portion 5 is formed in a surface on the side of the electrolyte layer 1 of each electrode layer 3 to control the concentration of a water repellency agent in the electrode layer 3 in a thickness-wise direction of the layer and within the surface thereof. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は空気電極と燃料電極
等となる一対の電極層の間に高分子電解質層を配置した
固体高分子型燃料電池に関し、特に電極層内での撥水濃
度を層の厚み方向及び表面内で制御した固体高分子型燃
料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell in which a polymer electrolyte layer is arranged between a pair of electrode layers such as an air electrode and a fuel electrode. The present invention relates to a polymer electrolyte fuel cell in which the layer thickness direction and the surface are controlled.

【0002】[0002]

【従来の技術】固体高分子型燃料電池は、イオン伝導性
樹脂膜等の固体高分子電解質層を挟むように正極と負極
の一対の電極層を配置し、例えば正極に空気、負極に水
素を供給することで電気化学反応により発電を行うもの
である。
2. Description of the Related Art A polymer electrolyte fuel cell has a pair of electrode layers, a positive electrode and a negative electrode, sandwiching a solid polymer electrolyte layer such as an ion conductive resin membrane. For example, air is used for the positive electrode and hydrogen is used for the negative electrode. When supplied, electricity is generated by an electrochemical reaction.

【0003】従来、このような燃料電池を構成する電極
層は、電気導電性のあるシート状のカーボンペーパにて
構成され、かつポリテトラフルオロエチレン系のディス
パージョンを撥水材として用いて撥水化処理したものが
用いられている。撥水化処理方法としては、上記撥水材
にカーボンペーパを含浸させ、空気中または真空低圧下
で、水平または垂直の気流にて乾燥させることにより溶
媒の蒸発または除去を行う方法が一般的である。
Conventionally, the electrode layer constituting such a fuel cell is made of electrically conductive sheet-like carbon paper, and is made water-repellent by using a polytetrafluoroethylene-based dispersion as a water-repellent material. What has been processed is used. As a water-repellent treatment method, a method of impregnating the water-repellent material with carbon paper and drying it in a horizontal or vertical air stream in air or under a low pressure to vaporize or remove the solvent is generally used. is there.

【0004】また、特開平5−251086号公報に
は、電極層内部でガス拡散を効率的に行う方法として、
電解質側の撥水性が強く、通称セパレータと称される電
子導電体側の撥水性を弱くなるように撥水剤の濃度勾配
を持たせることが開示されている。このように、電極層
の撥水性を高めることにより電極層内のガスの拡散性を
上げて燃料電池の高寿命化及び大電流化を図ることが行
われている。
Further, Japanese Laid-Open Patent Publication No. 5-25086 discloses a method for efficiently diffusing gas inside an electrode layer.
It is disclosed that the water repellent on the side of the electrolyte is strong and the water repellent on the side of the electronic conductor, which is commonly called a separator, is weakened so as to have a concentration gradient of the water repellent. In this way, by increasing the water repellency of the electrode layer, the diffusibility of gas in the electrode layer is increased, and the life of the fuel cell is increased and the current is increased.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記従来の
構成では、多層から成る発電部をもつ燃料電池におい
て、多層の電極層における個々の電極層間における撥水
性の均一化が困難で、かつ電極層表面内での撥水濃度を
均一にするための撥水性制御が困難であった。
However, with the above-mentioned conventional structure, in a fuel cell having a power generation part composed of multiple layers, it is difficult to make the water repellency uniform among the individual electrode layers in the multilayer electrode layers, and It was difficult to control the water repellency to make the water repellency on the surface uniform.

【0006】このように例えば電極層の積層数が大きい
場合、例えば正極だけで数えて200層を越えるような
大規模な燃料電池になればなるほど、個々の電極層間で
の撥水性の強いものと弱いもののばらつきが大きくな
り、また一対の電極層と高分子電解質層とからなる各発
電部においても個々の層間での発電特性にばらつきが生
じ易く、また電極層の過剰な水濡れに起因する電池性能
の低下を起こすという問題があった。さらに、フラッデ
ィング等の故障を発生しても、故障箇所の特定が困難
で、メンテナンス性が悪いという問題があった。
In this way, for example, when the number of stacked electrode layers is large, for example, the larger the number of positive electrode cells exceeds 200 layers, the more the water repellency between the individual electrode layers becomes stronger. The variation of the weak one becomes large, and the power generation characteristics between the individual layers are likely to vary even in each power generation section including the pair of electrode layers and the polymer electrolyte layer, and the battery is caused by excessive water wetting of the electrode layers. There was a problem that performance was degraded. Further, even if a failure such as flooding occurs, it is difficult to identify the failure location, and the maintainability is poor.

【0007】本発明は、上記従来の問題点に鑑み、電極
層内での撥水濃度を層の厚み方向及び表面内で制御して
ガス拡散の高効率化と均一化を行い、高寿命化と大電流
化を達成できる固体高分子型燃料電池を提供することを
目的としている。
In view of the above-mentioned conventional problems, the present invention controls the water repellent concentration in the electrode layer in the thickness direction of the layer and in the surface thereof to make gas diffusion highly efficient and uniform, thereby extending the service life. It is an object of the present invention to provide a polymer electrolyte fuel cell capable of achieving a large current.

【0008】[0008]

【課題を解決するための手段】本発明の固体高分子型燃
料電池は、一対の電極層の間に固体高分子電解質層を配
置してなる固体高分子型燃料電池において、電極層の電
解質層側の表面に凹部を形成し、電極層における撥水剤
濃度を層の厚み方向及び表面内で制御したものであり、
電極層の電解質層側の界面近傍の撥水剤濃度を高くし、
反対側の電子導電体側の撥水剤濃度を低くするような撥
水剤の濃度勾配をつけかつその濃度分布を制御すること
ができるので、電極層内部でガス拡散を高効率に行うこ
とができ、多層積層する場合でも電極層間における撥水
特性のばらつきを無くして均一にでき、燃料電池の信頼
性向上並びに高寿命化と大電流化を達成することができ
る。
The solid polymer type fuel cell of the present invention is a solid polymer type fuel cell in which a solid polymer electrolyte layer is arranged between a pair of electrode layers. A concave portion is formed on the surface on the side, and the water repellent concentration in the electrode layer is controlled in the thickness direction of the layer and within the surface,
Increase the water repellent concentration near the interface of the electrode layer on the electrolyte layer side,
Since it is possible to form a concentration gradient of the water repellent agent that lowers the concentration of the water repellent agent on the opposite side of the electron conductor and to control the concentration distribution, it is possible to efficiently diffuse gas inside the electrode layer. Even in the case of stacking multiple layers, the water-repellent property between the electrode layers can be made uniform without any variation, and the reliability of the fuel cell can be improved, and the life and current can be increased.

【0009】凹部の深さを電極層の厚さの10〜50%
とし、凹部の面積割合を0.2〜40%の範囲とするの
が好適である。
The depth of the recess is 10 to 50% of the thickness of the electrode layer.
Therefore, it is preferable that the area ratio of the recesses be in the range of 0.2 to 40%.

【0010】また、電極層は、ガス拡散性のあるカーボ
ン繊維からなるシート状体又は可撓性を有するシート状
成形体に、撥水剤の分散溶液を含浸させ溶媒を蒸発、除
去した撥水性処理を施したものが好適である。
The electrode layer is water repellent obtained by impregnating a sheet-like body made of carbon fiber having gas diffusion property or a flexible sheet-like body with a dispersion solution of a water repellent and evaporating and removing the solvent. Those that have been treated are preferable.

【0011】さらに、電極層の電解質層側の表面近傍部
分に、撥水性樹脂からなる固体又は撥水性樹脂を被覆し
た繊維を混合させていると、電極層における撥水剤濃度
分布を一層容易かつ確実に制御することができて望まし
い。
Further, if a solid or water-repellent resin-coated fiber made of a water-repellent resin is mixed in the vicinity of the surface of the electrode layer on the side of the electrolyte layer, the water-repellent agent concentration distribution in the electrode layer can be further improved. It is desirable because it can be surely controlled.

【0012】また、一対の電極層の間に固体高分子電解
質層を配置してなる固体高分子型燃料電池において、電
極層の電解質層側の表面近傍部分に、撥水性樹脂からな
る固体又は撥水性樹脂を被覆した繊維を混合させ、電極
層における撥水剤濃度を層の厚み方向及び表面内で制御
しても、撥水剤の濃度勾配をつけかつその濃度分布を制
御することができ、上記と同様に燃料電池の信頼性向上
並びに高寿命化と大電流化を達成することができる。
Further, in a solid polymer electrolyte fuel cell in which a solid polymer electrolyte layer is arranged between a pair of electrode layers, a solid or hydrophobic resin made of a water-repellent resin is provided in the vicinity of the surface of the electrode layer on the electrolyte layer side. By mixing fibers coated with an aqueous resin and controlling the concentration of the water repellent in the electrode layer in the thickness direction of the layer and within the surface, a concentration gradient of the water repellent and its concentration distribution can be controlled. Similar to the above, the reliability of the fuel cell can be improved, the life can be extended, and the current can be increased.

【0013】上記撥水性樹脂材料としては、4フッ化エ
チレン、4フッ化エチレンと6フッ化プロピレンの共重
合体、4フッ化エチレンとパーフルオロビニルエーテル
の共重合体の単体又は混合物を含むものを用いるのが好
適である。
As the water-repellent resin material, those containing a simple substance or a mixture of tetrafluoroethylene, a copolymer of ethylene tetrafluoride and propylene hexafluoride, a copolymer of ethylene tetrafluoride and a perfluorovinyl ether. It is preferably used.

【0014】また、固体高分子電解質層の両面に触媒層
を挟んで一対の電極層をそれぞれ対向配置して構成され
た発電部と、電極層にガスを供給するガス供給流路及び
電極層からガスを排出するガス排出流路とを備えた導電
性の電子伝導体が交互に積層され、発電部を2層以上有
する固体高分子型燃料電池において、上記構成を適用す
るとその効果が特に大きく発揮される。
In addition, a power generating section constituted by arranging a pair of electrode layers facing each other with a catalyst layer sandwiched between both sides of the solid polymer electrolyte layer, a gas supply channel for supplying gas to the electrode layer and an electrode layer. In a polymer electrolyte fuel cell in which conductive electron conductors having gas discharge channels for discharging gas are alternately stacked and which has two or more layers of power generation sections, the effect is particularly exerted when the above configuration is applied. To be done.

【0015】[0015]

【発明の実施の形態】以下、本発明の固体高分子型燃料
電池の一実施形態について、図1〜図5を参照して説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the polymer electrolyte fuel cell of the present invention will be described below with reference to FIGS.

【0016】本実施形態の燃料電池の基本構成を示す図
1において、1は固体高分子電解質層で、水素イオン伝
導性を有する固体高分子材料にて構成されている。この
電解質層1を挟んで一対の電極層3が配置され、さらに
その外側に電極層3にガスを供給するガス供給流路及び
電極層3からガスを排出するガス排出流路を備えた導電
性の電子導電体4が配置されている。電解質層1と電極
層3との界面にはカーボン粉末に貴金属成分等からなる
触媒を担持させた触媒層2が介装され、この触媒層2を
介して電解質層1と電極層3が接合され、発電部が構成
されている。
In FIG. 1 showing the basic structure of the fuel cell of this embodiment, 1 is a solid polymer electrolyte layer, which is made of a solid polymer material having hydrogen ion conductivity. A pair of electrode layers 3 are arranged with the electrolyte layer 1 sandwiched between them, and a gas supply channel for supplying gas to the electrode layer 3 and a gas discharge channel for discharging gas from the electrode layer 3 are provided outside the electroconductive layer 3. The electronic conductor 4 of is arranged. At the interface between the electrolyte layer 1 and the electrode layer 3, a catalyst layer 2 in which carbon powder carries a catalyst composed of a noble metal component or the like is interposed, and the electrolyte layer 1 and the electrode layer 3 are bonded via this catalyst layer 2. , A power generation unit is configured.

【0017】電極層3は、厚みが約400μm、気孔率
38%のカーボンペーパにて構成されるとともに、その
電解質層1側の表面のほぼ全面に均等に分散して多数の
微小な凹部5が形成されている。そして、この凹部5を
形成したカーボンペーパの表面上に、撥水作用のある4
フッ化エチレンを主成分とし、蒸留水で12倍に希釈し
た溶液または懸濁液を塗布し、反対側面を吸湿性の木綿
布またはポリエチレン製のフェルト状シートの上に置
き、6時間ほど大気中で放置した後、乾燥炉で60℃空
気中で30分間乾燥させ、その後焼成炉で350℃で3
時間熱処理し、撥水剤をカーボンペーパの繊維質に熱溶
融させることによって、所定の気孔率を有してガス透過
性のある撥水性カーボンペーパからなる電極層3が構成
されている。なお、撥水剤の塗布方法として、カーボン
ペーパを撥水剤の溶液中に浸漬してもよい。
The electrode layer 3 is made of carbon paper having a thickness of about 400 μm and a porosity of 38%, and a large number of minute recesses 5 are evenly distributed over substantially the entire surface of the electrolyte layer 1 side. Has been formed. Then, on the surface of the carbon paper on which the recess 5 is formed, there is a water-repellent effect 4
Apply a solution or suspension of fluorinated ethylene as the main component, which is diluted 12 times with distilled water, and place the opposite side on a hygroscopic cotton cloth or polyethylene felt sheet and let it stand in the air for about 6 hours. After leaving it in the oven, it is dried in a drying oven at 60 ° C in air for 30 minutes and then in a baking oven at 350 ° C for 3 minutes.
The electrode layer 3 made of water-repellent carbon paper having a predetermined porosity and gas permeability is formed by heat-treating for a period of time and heat-melting the water-repellent agent into the fibrous material of carbon paper. As a method of applying the water repellent, carbon paper may be dipped in a solution of the water repellent.

【0018】電極層3の表面の凹部5は、炭酸ガスレー
ザやYAGレーザ等により形成することができ、また機
械的にローラ等で押圧成形することもできる。また、凹
部5の形状は、図4に示すように、直径Ddが0.00
5〜0.5mmの円形とするのが好適であるが、同図に
示すように、三角形や四角形、楕円形等であってもよい
ことはいうまでもない。また、場合によっては断続又は
連続した線状の凹部に形成してもよい。
The recess 5 on the surface of the electrode layer 3 can be formed by a carbon dioxide gas laser, a YAG laser, or the like, or can be mechanically pressed by a roller or the like. Further, the shape of the recess 5 has a diameter Dd of 0.00, as shown in FIG.
A circular shape of 5 to 0.5 mm is preferable, but needless to say, a triangular shape, a quadrangular shape, an elliptical shape, or the like may be used as shown in FIG. Further, in some cases, it may be formed in a linear concave portion which is intermittent or continuous.

【0019】このように電極層3の電解質層1側の表面
のほぼ全面に均等に分散して凹部5を形成したことで、
電極層3の厚み方向に図1に示すような撥水剤の濃度分
布Aが得られた。凹部5の深さをTd、電極層3の厚さ
をTsとして、Td/Tsを変化させた時の凹部5によ
る電極層3の厚み方向での撥水剤の濃度分布を図2に示
す。凹部5の深さTdを電極層3の厚さTsの10〜5
0%とした実験の結果、より望ましくは15〜25%の
範囲において、最大の電流密度が得られた。Td/Ts
が10%以下では、電流密度が限界電流密度300mA
/cm2 より低下し、また電極との接触抵抗が大きくな
り電池特性が低下する傾向を示した。
By forming the recesses 5 evenly over the entire surface of the electrode layer 3 on the side of the electrolyte layer 1 as described above,
A water repellent concentration distribution A as shown in FIG. 1 was obtained in the thickness direction of the electrode layer 3. FIG. 2 shows the concentration distribution of the water repellent agent in the thickness direction of the electrode layer 3 by the recess 5 when Td / Ts is changed, where Td is the depth of the recess 5 and Ts is the thickness of the electrode layer 3. The depth Td of the recess 5 is set to be 10 to 5 of the thickness Ts of the electrode layer 3.
As a result of the experiment with 0%, the maximum current density was more desirably obtained in the range of 15 to 25%. Td / Ts
Is 10% or less, the current density is 300 mA.
/ Cm 2 and the contact resistance with the electrode was increased, tending to deteriorate the battery characteristics.

【0020】また、図3、図4において、Adは電極層
3の表面に付与した凹部5の総面積、Asは電極層3を
構成するカーボンペーパの電解質層1側の表面の全面積
である。図3に示すように、Ad/Asの値を0.2〜
40%の範囲にすることで、電極層3の長さ方向での撥
水剤の濃度分布が曲線Bに示すように、長さ方向に対し
て均一な安定した濃度分布が得られた。このように電極
層3の大部分の面積において一定の撥水剤濃度が得られ
ることにより、燃料電池の長時間運転期間の運転時や、
大電流出力時においても、電極層3が過剰に水濡れする
のを効果的に防止でき、水濡れに起因する電池性能の低
下を防止でき、燃料電池の高寿命化及び大電流化を達成
することができる。
In FIGS. 3 and 4, Ad is the total area of the recesses 5 formed on the surface of the electrode layer 3, and As is the total area of the surface of the carbon paper forming the electrode layer 3 on the electrolyte layer 1 side. . As shown in FIG. 3, the value of Ad / As is 0.2 to
By setting the range to 40%, the concentration distribution of the water repellent agent in the length direction of the electrode layer 3 was uniform and stable in the length direction as shown by the curve B. In this way, a constant water repellent concentration is obtained over most of the area of the electrode layer 3, so that when the fuel cell is in operation for a long period of time,
Even when a large current is output, it is possible to effectively prevent the electrode layer 3 from getting wet with water excessively, prevent deterioration of cell performance due to water getting wet, and achieve a long life of the fuel cell and a large current. be able to.

【0021】実験でも、Ad/Asの値を0.2〜40
%の範囲とすることで、限界電流密度300mA/cm
2 を保持した状態で、1000時間以上の長期間にわた
って安定した出力で稼働した。
Also in the experiment, the value of Ad / As was 0.2 to 40.
%, The limiting current density is 300 mA / cm
With the value of 2 kept, it operated with a stable output for a long period of 1000 hours or more.

【0022】一方、Ad/Asの値が0.2未満、また
は40%を越えたところでは、300mA/cm2 の一
定電流密度を保持している寿命時間が急速に低下する傾
向性が見られた。
On the other hand, when the value of Ad / As is less than 0.2 or exceeds 40%, there is a tendency that the life time of maintaining a constant current density of 300 mA / cm 2 is rapidly reduced. It was

【0023】また、従来の方法、つまり表面が何も加工
していない平面状のカーボンペーパを撥水剤に浸漬した
後、そのカーボンペーパを垂直置きにして乾燥した場合
には、図3に示す撥水剤濃度曲線Cのように、撥水剤濃
度が一方で高く、他方で低くなるような不均一な濃度分
布となる。
FIG. 3 shows a conventional method, that is, a case where a flat carbon paper whose surface is not processed is dipped in a water repellent and then the carbon paper is placed vertically and dried. As shown by the water repellent concentration curve C, the water repellent concentration is high on one side and low on the other side, resulting in a non-uniform concentration distribution.

【0024】以上の説明では、電極層3として気孔率3
8%のカーボンペーパを使用した例を示したが、電極層
3として気孔率55%のカーボンクロスにおいても、上
記と同様の凹部5を付与することで、過剰な水濡れに起
因する電池性能の低下を防止でき、燃料電池の高寿命化
及び大電流化を達成することができた。また、電極層3
の他の材料として、多孔質の黒鉛並びに炭素系焼結体、
及びシート状導電性繊維体及び導電性カーボン繊維質で
あってもよい。
In the above description, the porosity of 3 is used as the electrode layer 3.
Although an example in which 8% carbon paper is used is shown, even in the case of carbon cloth having a porosity of 55% as the electrode layer 3, by providing the concave portion 5 similar to the above, it is possible to improve the battery performance due to excessive water wetting. It was possible to prevent the deterioration, and it was possible to achieve a long life of the fuel cell and a large current. In addition, the electrode layer 3
As other materials, porous graphite and carbon-based sintered body,
The sheet-like conductive fiber body and the conductive carbon fiber material may be used.

【0025】また、撥水剤として4フッ化エチレン水溶
液を用いた例を示したが、4フッ化エチレンと6フッ化
プロピレンの共重合体、4フッ化エチレンとパーフルオ
ロビニルエーテルの共重合体の単体又は混合物において
も、上記と同様の撥水剤の濃度分布が得られ、同様の効
果が得られた。
Further, an example in which an aqueous solution of tetrafluoroethylene was used as a water repellent was shown, but a copolymer of ethylene tetrafluoride and propylene hexafluoride was prepared and a copolymer of ethylene tetrafluoride and perfluorovinyl ether was used. The same concentration distribution of the water repellent as described above was obtained also in the simple substance or the mixture, and the same effect was obtained.

【0026】以上の説明では、燃料電池の基本構成を説
明するため、図1のように、1層の電解質層1とその両
側の一対の電極層3とそれらの間の界面に設けられた触
媒層2からなる単一層の発電部とそれらの外側に電子導
電体4を配設した例について説明したが、実際の燃料電
池では、図5に示すように、複数層の電解質層1
(a)、1(b)・・1(n)・・と、各電解質層1の
両側の電極層3(a)、3(b)・・3(n)・・と、
それらの間の界面に設けられた触媒層2(a)、2
(b)・・3(n)・・からなる複数層の発電部を、そ
れらの外側及びそれらの間に電子導電体4(a)、4
(b)・・4(n)、4(n+1)・・を配置した状態
で積層して構成されている。そして、電極層3を上記の
ように構成することで、例えば、電解質層1が50層か
ら成る燃料電池において、約1500時間以上の期間の
長時間連続運転で、電流密度が250mA/cm2 の高
電流出力運転を安定して行うことが可能であった。
In the above description, in order to explain the basic structure of the fuel cell, as shown in FIG. 1, one electrolyte layer 1, a pair of electrode layers 3 on both sides of the electrolyte layer 1, and a catalyst provided at the interface between them. Although an example in which a single-layer power generation section composed of the layer 2 and the electron conductor 4 are arranged outside the single-layer power generation section has been described, in an actual fuel cell, as shown in FIG.
(A), 1 (b) .. 1 (n) .., and electrode layers 3 (a), 3 (b) .. 3 (n) ... on both sides of each electrolyte layer 1,
Catalyst layers 2 (a), 2 provided at the interface between them
(B) .. 3 (n) ..
(B) .. 4 (n), 4 (n + 1) .. By configuring the electrode layer 3 as described above, for example, in a fuel cell in which the electrolyte layer 1 is composed of 50 layers, the current density is 250 mA / cm 2 in a long continuous operation of about 1500 hours or more. It was possible to stably perform high current output operation.

【0027】次に、本発明の他の実施形態の固体高分子
型燃料電池について、図6を参照して説明する。なお、
上記実施形態と同一の構成要素については同一参照符号
を付して説明を省略し、相違点のみを説明する。
Next, a polymer electrolyte fuel cell according to another embodiment of the present invention will be described with reference to FIG. In addition,
The same components as those of the above-described embodiment are designated by the same reference numerals, description thereof will be omitted, and only different points will be described.

【0028】上記実施形態では、電極層3の電解質層1
側の表面に凹部5を形成して撥水剤濃度分布を制御する
例を示したが、本実施形態では、凹部5を形成するとと
もに、電極層3の電解質層1側の表面に近い部分に、撥
水性樹脂からなる繊維6などの固体又は撥水性樹脂を被
覆した繊維を混合させている。
In the above embodiment, the electrolyte layer 1 of the electrode layer 3 is used.
Although an example in which the concave portion 5 is formed on the side surface to control the water repellent concentration distribution has been described, in the present embodiment, the concave portion 5 is formed, and the portion near the surface of the electrode layer 3 on the electrolyte layer 1 side is formed. A fiber coated with a solid or water-repellent resin such as a fiber 6 made of a water-repellent resin is mixed.

【0029】その撥水性樹脂としては、4フッ化エチレ
ンと6フッ化プロピレンの共重合体、4フッ化エチレン
とパーフルオロビニルエーテルの共重合体の単体又は混
合物にて構成されている。
The water-repellent resin is composed of a copolymer of ethylene tetrafluoride and hexafluoropropylene, or a mixture of the copolymer of ethylene tetrafluoride and perfluorovinyl ether.

【0030】本実施形態においては、電解質層1側の撥
水性がより高く、電子導電体4側の撥水性がより弱くな
るように、撥水剤の濃度を制御することができ、より大
きな作用効果を奏することができる。
In this embodiment, the concentration of the water repellent agent can be controlled so that the water repellency on the side of the electrolyte layer 1 is higher and the water repellency on the side of the electronic conductor 4 is weaker. It is possible to exert an effect.

【0031】なお、本実施形態では、凹部5の形成と撥
水性樹脂からなる固体や被覆繊維の混合を併用した例を
示したが、撥水性樹脂からなる固体や被覆繊維の混合を
単独で実施しても同様の作用効果を奏することができ
る。
In the present embodiment, an example in which the formation of the recessed portion 5 and the mixing of the solid or the coated fiber made of the water-repellent resin is used together is shown. Even if it does, the same effect can be produced.

【0032】[0032]

【発明の効果】本発明の固体高分子型燃料電池によれ
ば、以上の説明から明らかなように、電極層の表面に凹
部を形成し、または撥水性樹脂からなる固体又は撥水性
樹脂を被覆した繊維を混合させて、電極層における撥水
剤濃度を膜の厚み方向及び表面内で制御したので、電解
質層側の撥水性を高く、電子導電体側の撥水性を弱くし
て電極層内部でのガス拡散を高効率に行うことができ、
多層積層する場合でも電極層間個々の撥水特性のばらつ
きを無くして均一にでき、燃料電池の信頼性向上並びに
高寿命化と大電流化を達成することができる。
According to the polymer electrolyte fuel cell of the present invention, as is apparent from the above description, the surface of the electrode layer is provided with a recess or is coated with a solid or water-repellent resin made of a water-repellent resin. Since the water repellent concentration in the electrode layer was controlled in the film thickness direction and in the surface by mixing the fibers, the water repellency on the electrolyte layer side was high and the water repellency on the electronic conductor side was weakened to reduce the water repellent inside the electrode layer. Gas can be diffused with high efficiency,
Even in the case of stacking multiple layers, the water repellency of each electrode layer can be made uniform without any variation, and the reliability of the fuel cell can be improved and the life and current can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体高分子型燃料電池の一実施形態に
おける基本構成を示す断面図である。
FIG. 1 is a cross-sectional view showing the basic configuration of an embodiment of a polymer electrolyte fuel cell of the present invention.

【図2】同実施形態における電極層の厚さ方向の撥水剤
濃度の分布図である。
FIG. 2 is a distribution diagram of the water repellent concentration in the thickness direction of the electrode layer in the same embodiment.

【図3】同実施形態における電極層の表面方向の撥水剤
濃度の分布図である。
FIG. 3 is a distribution diagram of the water repellent concentration in the surface direction of the electrode layer in the same embodiment.

【図4】同実施形態における電極層表面に形成される凹
部形状の説明図である。
FIG. 4 is an explanatory diagram of a recess shape formed on the surface of the electrode layer in the same embodiment.

【図5】同実施形態における燃料電池の概略構成を示す
断面図である。
FIG. 5 is a cross-sectional view showing a schematic configuration of a fuel cell according to the same embodiment.

【図6】本発明の固体高分子型燃料電池の他の実施形態
における基本構成を示す断面図である。
FIG. 6 is a cross-sectional view showing the basic configuration of another embodiment of the polymer electrolyte fuel cell of the present invention.

【符号の説明】[Explanation of symbols]

1 固体高分子電解質層 3 電極層 5 凹部 6 撥水性樹脂からなる繊維 1 Solid polymer electrolyte layer 3 electrode layers 5 recess 6 Fibers made of water-repellent resin

フロントページの続き Fターム(参考) 5H018 AA06 AS01 BB05 BB06 BB08 BB12 CC06 DD05 DD06 DD08 EE05 EE19 HH00 HH02 5H026 AA06 BB03 BB04 BB08 CC03 CX02 CX03 CX04 CX05 EE05 EE19 HH00 HH02 HH03 Continued front page    F-term (reference) 5H018 AA06 AS01 BB05 BB06 BB08                       BB12 CC06 DD05 DD06 DD08                       EE05 EE19 HH00 HH02                 5H026 AA06 BB03 BB04 BB08 CC03                       CX02 CX03 CX04 CX05 EE05                       EE19 HH00 HH02 HH03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極層の間に固体高分子電解質層
を配置してなる固体高分子型燃料電池において、電極層
の電解質層側の表面に凹部を形成し、電極層における撥
水剤濃度を層の厚み方向及び表面内で制御したことを特
徴とする固体高分子型燃料電池。
1. A solid polymer electrolyte fuel cell comprising a solid polymer electrolyte layer disposed between a pair of electrode layers, wherein a recess is formed on the surface of the electrode layer on the electrolyte layer side, and a water repellent agent in the electrode layer is formed. A polymer electrolyte fuel cell, characterized in that the concentration is controlled in the thickness direction of the layer and in the surface.
【請求項2】 凹部の深さを電極層の厚さの10〜50
%とし、凹部の面積割合を0.2〜40%の範囲とした
ことを特徴とする請求項1記載の固体高分子型燃料電
池。
2. The depth of the recess is set to be 10 to 50 of the thickness of the electrode layer.
%, And the area ratio of the recesses is in the range of 0.2 to 40%. 3. The polymer electrolyte fuel cell according to claim 1, wherein
【請求項3】 電極層は、ガス拡散性のあるカーボン繊
維からなるシート状体又は可撓性を有するシート状成形
体に、撥水剤の分散溶液を含浸させ溶媒を蒸発、除去し
た撥水性処理を施したものであることを特徴とする請求
項1記載の固体高分子型燃料電池。
3. The electrode layer is water-repellent obtained by impregnating a sheet-like body made of carbon fiber having gas diffusion property or a sheet-like molded body having flexibility with a dispersion solution of a water repellent to evaporate and remove the solvent. The polymer electrolyte fuel cell according to claim 1, wherein the polymer electrolyte fuel cell is treated.
【請求項4】 電極層の電解質層側の表面近傍部分に、
撥水性樹脂からなる固体又は撥水性樹脂を被覆した繊維
を混合させたことを特徴とする請求項1〜3の何れかに
記載の固体高分子型燃料電池。
4. A portion near the surface of the electrode layer on the electrolyte layer side,
The polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein solid or water-repellent resin-coated fibers are mixed.
【請求項5】 一対の電極層の間に固体高分子電解質層
を配置してなる固体高分子型燃料電池において、電極層
の電解質層側の表面近傍部分に、撥水性樹脂からなる固
体又は撥水性樹脂を被覆した繊維を混合させ、電極層に
おける撥水剤濃度を層の厚み方向及び表面内で制御した
ことを特徴とする固体高分子型燃料電池。
5. A solid polymer electrolyte fuel cell having a solid polymer electrolyte layer disposed between a pair of electrode layers. A polymer electrolyte fuel cell, characterized in that fibers coated with an aqueous resin are mixed and the concentration of the water repellent agent in the electrode layer is controlled in the layer thickness direction and in the surface.
【請求項6】 撥水性樹脂材料は、4フッ化エチレン、
4フッ化エチレンと6フッ化プロピレンの共重合体、4
フッ化エチレンとパーフルオロビニルエーテルの共重合
体の単体又は混合物を含むことを特徴とする請求項4又
は5記載の固体高分子型燃料電池。
6. The water-repellent resin material is tetrafluoroethylene,
Copolymer of tetrafluoroethylene and propylene hexafluoride, 4
The polymer electrolyte fuel cell according to claim 4 or 5, comprising a simple substance or a mixture of a copolymer of fluorinated ethylene and perfluorovinyl ether.
【請求項7】 固体高分子電解質層の両面に触媒層を挟
んで一対の電極層をそれぞれ対向配置して構成された発
電部と、電極層にガスを供給するガス供給流路及び電極
層からガスを排出するガス排出流路とを備えた導電性の
電子伝導体が交互に積層され、発電部を2層以上有する
ことを特徴とする請求項1〜6の何れかに記載の固体高
分子型燃料電池。
7. A power generation section comprising a pair of electrode layers facing each other with a catalyst layer sandwiched between both sides of a solid polymer electrolyte layer, a gas supply channel for supplying gas to the electrode layer, and an electrode layer. 7. The solid polymer according to claim 1, wherein electrically conductive electronic conductors having gas discharge channels for discharging gas are alternately laminated and have two or more power generation sections. Type fuel cell.
JP2002014115A 2002-01-23 2002-01-23 Solid polymer type fuel cell Pending JP2003217599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002014115A JP2003217599A (en) 2002-01-23 2002-01-23 Solid polymer type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002014115A JP2003217599A (en) 2002-01-23 2002-01-23 Solid polymer type fuel cell

Publications (1)

Publication Number Publication Date
JP2003217599A true JP2003217599A (en) 2003-07-31

Family

ID=27650887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014115A Pending JP2003217599A (en) 2002-01-23 2002-01-23 Solid polymer type fuel cell

Country Status (1)

Country Link
JP (1) JP2003217599A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174564A (en) * 2003-12-08 2005-06-30 Hitachi Ltd Polyelectrolyte membrane/electrode junction for fuel cell, fuel cell using it, electronic equipment mounting fuel cell
WO2005124903A1 (en) * 2004-06-21 2005-12-29 Nissan Motor Co., Ltd. Gas diffusion electrode and solid-state high-molecular electrolyte type fuel cell
JP2006500734A (en) * 2002-03-07 2006-01-05 ヒューレット・パッカード・カンパニー Ion exchange system structure having a microstructured surface, method for making and using the same
JP2006164575A (en) * 2004-12-02 2006-06-22 Dainippon Printing Co Ltd Water-repellent electrode catalyst layer for solid polymer fuel cell, catalyst layer transfer sheet, and catalyst layer/electrolyte assembly
JP2007123197A (en) * 2005-10-31 2007-05-17 Canon Inc Gas diffusion electrode for fuel cell and method of manufacturing the same, and polymer electrolyte fuel cell
JP2008117624A (en) * 2006-11-02 2008-05-22 Canon Inc Membrane electrode assembly for solid polymer fuel cell, and solid polymer electrolyte fuel cell
JP2008147145A (en) * 2006-12-13 2008-06-26 Toyota Motor Corp Fuel cell, and manufacturing method of this fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500734A (en) * 2002-03-07 2006-01-05 ヒューレット・パッカード・カンパニー Ion exchange system structure having a microstructured surface, method for making and using the same
JP2005174564A (en) * 2003-12-08 2005-06-30 Hitachi Ltd Polyelectrolyte membrane/electrode junction for fuel cell, fuel cell using it, electronic equipment mounting fuel cell
WO2005124903A1 (en) * 2004-06-21 2005-12-29 Nissan Motor Co., Ltd. Gas diffusion electrode and solid-state high-molecular electrolyte type fuel cell
US7749639B2 (en) 2004-06-21 2010-07-06 Nissan Motor Co., Ltd. Gas diffusion electrode and solid polymer electrolyte fuel cell
JP2006164575A (en) * 2004-12-02 2006-06-22 Dainippon Printing Co Ltd Water-repellent electrode catalyst layer for solid polymer fuel cell, catalyst layer transfer sheet, and catalyst layer/electrolyte assembly
JP2007123197A (en) * 2005-10-31 2007-05-17 Canon Inc Gas diffusion electrode for fuel cell and method of manufacturing the same, and polymer electrolyte fuel cell
JP2008117624A (en) * 2006-11-02 2008-05-22 Canon Inc Membrane electrode assembly for solid polymer fuel cell, and solid polymer electrolyte fuel cell
JP2008147145A (en) * 2006-12-13 2008-06-26 Toyota Motor Corp Fuel cell, and manufacturing method of this fuel cell

Similar Documents

Publication Publication Date Title
JP3773325B2 (en) Gas diffusion layer material for polymer electrolyte fuel cell and its joined body
JP3954793B2 (en) Gas diffusion layer for fuel cell and process for producing the same
JP4083784B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
JP5034172B2 (en) Gas diffusion layer for fuel cell and fuel cell using the same
JP2006324104A (en) Gas diffusion layer for fuel cell and fuel cell using this
US7625661B2 (en) Diffusion media with continuous micro-porous layers incorporating non-uniformity
WO2018186293A1 (en) Method for producing gas diffusion electrode substrate, and fuel cell
JP5079195B2 (en) Gas diffusion electrode for fuel cell and manufacturing method thereof
JP2002056851A (en) Method of manufacturing gas diffusion electrode for polymer electrolyte fuel cell
JP2003217599A (en) Solid polymer type fuel cell
JP5328407B2 (en) Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
JP3843838B2 (en) Fuel cell
JP2006331786A (en) Electrode material for fuel cell, and manufacturing method thereof
JP2001102059A (en) Proton-exchange membrane fuel cell system
JP2001057217A (en) Polymer electrolyte type fuel cell
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JP5339261B2 (en) Fuel cell
JP2011076739A (en) Gas diffusion layer for solid polymer fuel cell, and manufacturing method thereof
WO2022210069A1 (en) Electrode base material and method for producing same
JP2007149454A (en) Gas diffusion layer, gas diffusion electrode, membrane electrode assembly and polymer electrolyte fuel cell
JP2022082646A (en) Porous electrode base material, gas diffusion layer, gas diffusion electrode, and manufacturing method thereof
JPH07176307A (en) Fuel cell
JP6973209B2 (en) Manufacturing method of gas diffusion layer for fuel cell
JP2006079938A (en) Gas diffusion layer and fuel cell using it