JP2003215826A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JP2003215826A
JP2003215826A JP2002019018A JP2002019018A JP2003215826A JP 2003215826 A JP2003215826 A JP 2003215826A JP 2002019018 A JP2002019018 A JP 2002019018A JP 2002019018 A JP2002019018 A JP 2002019018A JP 2003215826 A JP2003215826 A JP 2003215826A
Authority
JP
Japan
Prior art keywords
surface layer
thickness
layer
conductive substrate
kgf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002019018A
Other languages
Japanese (ja)
Inventor
Tetsuya Kawakami
哲哉 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002019018A priority Critical patent/JP2003215826A/en
Publication of JP2003215826A publication Critical patent/JP2003215826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent blade squaking under cleaning conditions under which the occurrence of a cleaning defect is averted even in the case the thickness of a conductive substrate is below 2.0 mm. <P>SOLUTION: The electrophotographic photoreceptor is formed by successively laminating a photoconductive layer 2, a first surface layer 3 which is regulated in dynamic indentation hardness to 220 to 400 kgf/mm<SP>2</SP>and a second surface layer 4 which is 0.95≤x<1.00 in an (x) value when an element ratio is expressed as composition formula a-Si<SB>1-</SB>XCX:H and is regulated in the dynamic indentation hardness on the free surface to 45 to 220 kgf/mm<SP>2</SP>on the conductive substrate 1 having a thickness of ≤2.0 mm. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は導電性基板上に光導
電層と水素化アモルファスシリコンカーバイドから成る
表面層とを積層した電子写真感光体に関するものであ
る。 【0002】 【従来の技術】電子写真方式の複写機やプリンタなどの
画像形成装置に搭載される電子写真感光体には、電子写
真特性、すなわち帯電性・光感度・残留電位などの電位
特性および画像濃度・解像度・コントラスト・階調性な
どの画像特性が良好であるとともに、それらの安定性な
らびに耐摩耗性・耐刷性・耐環境性・耐薬品性などの耐
久性に優れていることが求められる。このような優れた
特性を実現するためには、光導電層上に被覆形成される
表面層が大きな役割を果たしている。 【0003】この表面層には、従来から種々の材料およ
び層構成が提案されており、アモルファスシリコン系材
料、就中、カーボン(C)を含有させた水素化アモルフ
ァスシリコンカーバイド(以下、水素化アモルファスシ
リコンカーバイドをa−SiC:Hと略記する)を用い
た表面層が、優れた電気特性・光学的特性・画像特性・
高硬度に基づいて耐久性などを有している点で注目され
ている。さらにa−SiC表面層とアモルファスシリコ
ン系光導電層(以下、アモルファスシリコンをa−Si
と略記する)と組み合わせた電子写真感光体が、すでに
実用化されている。 【0004】上記a−SiC:Hを有する電子写真感光
体においては、電子写真装置に搭載され、とくに高湿環
境下で耐刷を行った場合には、しばしば画像流れと呼ば
れる画像不良が発生するという問題点があったが、ヒー
ターを用いて感光体を加熱して表面層に吸着した水分を
飛散させる技術や、特開平9−204056号公報にに
て提示されているように表面層におけるカーボンとシリ
コンの原子濃度・動的押し込み硬さ・表面粗さなどを所
定の範囲内に設定することによって、ヒーターを用いず
に低コストにて画像流れを防止する技術が提案され、実
用化されている。 【0005】 【発明が解決しようとする課題】上述したような特開平
9−204056号公報により提示された電子写真感光
体によれば、表面層のカーボンとシリコンの原子濃度・
動的押し込み硬さ・表面粗さなどが所定の範囲内で設定
されているが、それに用いる導電性基板については、厚
さが2.5〜5.0mmである。 【0006】しかしながら、そのように厚くなった基板
を用いることで、材料費が増大し、これによって感光体
自体が高コストになっていた。 【0007】また、a−Si系の感光体においては、厚
みのある基板を用いた感光体によって、熱容量が増加
し、これに起因する感光体の結露から、画像流れの原因
となる感光体表面への水分吸着の機会を招く原因にもな
っていた。 【0008】したがって、かかる課題を解消するため
に、たとえば、基板厚みを0.75〜2.0mmにまで
小さくした電子写真感光体を作製し、そして、電子写真
装置に搭載して使用したところ、クリーニングブレード
と感光体表面との摩擦が感光体自体と共鳴し、ブレード
鳴きと呼ばれる現象が発生していた。 【0009】このブレード鳴きは、導電性基板の厚さ
が、とくに1.0mm程度で、クリーニングブレードと
感光体表面の摩擦係数が大きい場合に発生し、そして、
電子写真装置の運転時に不快な音を発生させると共に、
クリーニング不良やクリーニングブレードの破損等、極
めて重大な問題を誘発させる場合もある。よって、従来
のa−Si系感光体においては、その導電性基板の厚さ
を2.5mm程度以上にしていた。 【0010】したがって本発明の目的は表面層とクリー
ニングブレードとの摩擦を減少させることによって、ブ
レード鳴きをなくし、さらに低コストかつ高耐久性の電
子写真感光体を提供することにある。 【0011】 【課題を解決するための手段】本発明の電子写真感光体
は、厚み2.0mm以下の導電性基板上に光導電層と水
素化アモルファスシリコンカーバイドから成る表面層と
を順次積層して成り、そして、この表面層は、動的押し
込み硬さを220〜400kgf/mm2に規定した第
1の表面層と、元素比率を組成式a−Si1-XX:Hと
表したときにx値が0.95≦x<1.00であり、か
つ自由表面の動的押し込み硬さを45〜220kgf/
mm2に規定した第2の表面層とを順次積層して成るこ
とを特徴とする。 【0012】 【発明の実施の形態】本発明の電子写真感光体の典型的
な層構成を図1と図2に示す。図1において、1は導電
性基板、2は光導電層、3は第1の表面層、4は第2の
表面層である。また、図2においては、さらに導電性基
板1上にa−Si系材料からなるキャリア注入阻止層5
を設けた層構成である。 【0013】本発明によれば、導電性基板1の厚さを
2.0mm以下としている。導電性基板1の厚さは、機
械的寸法精度から、0.75mm以上が望ましいが、基
板厚さの増大はそのままコストの増大につながり、ま
た、結露防止のために熱容量をさせる点で薄い方が好ま
しく、好適には0.75〜2.0mm、最適には1.0
〜1.5mmとするとよい。 【0014】前記導電性基板1にはアルミニウム(A
l)あるいはSUS・Zn・Cu・Fe・Ti・Ni・
Cr・Ta・Sn・Au・Agどの金属材料やそれらの
合金材料などの導電部材、もしくは樹脂やガラス・セラ
ミックなどの絶縁体の表面に上記金属やITO、SnO
2などの透明導電性材料による導電性膜を蒸着などによ
り形成して導電処理したものが用いられる。就中、Al
合金を用いると、低コストとなり、しかも、軽量化で
き、その上、光導電層2や後述するキャリア注入阻止層
にa−Si系材料を用いた場合にそれらの層との密着性
が高くなって信頼性が向上するという点で好適である。 【0015】前記光導電層2にはa−Si系もしくはa
−SeやSe−Te・As2Se3などのa−Se系、あ
るいはZnO・CdS・CdSeなどのII−VI族化合
物、さらに、これらを粒子化し、それに樹脂を分散させ
たもの、そして、OPC系などの感光体材料も用いるこ
とができる。就中、a−Siもしくはa−SiCにC・
N・O等を加えた合金のa−Si系材料を用いると、高
い光導電性特性・高速応答性・繰り返し安定性・耐熱性
・耐久性などの優れた電子写真特性が安定して得られ、
さらにa−Si:H表面層3、4との整合性に優れると
いう点で好ましい。 【0016】かかるa−Si系材料には、a−Si・a
−SiC・a−SiN・a−SiO・a−SiGe・a
−SiCN・a−SiNO・a−SiCO・a−SiC
NOなどが挙げられる。これらは、たとえばグロー放電
分解法・各種スパッタリング法・各種蒸着法・ECR法
・光CVD法・触媒CVD法・反応性蒸着法などにより
成膜形成し、その成膜形成に当たってダングリングボン
ド終端用に水素(H)やハロゲン元素(F・Cl)を膜
中に1〜40原子%含有させる。また、各層の暗導電率
や光導電率などの電気的特性および光学的バンドギャッ
プなどについて所望の特性を得るために、周期律表第II
Ia族元素(以下、IIIa族元素と略す)やVa族元素
(以下、Va族元素と略す)を含有させたり、C・N・
O等の元素の含有量を調整して上記諸特性を調整する。 【0017】上記IIIa族元素およびVa族元素とし
て、それぞれホウ素(B)およびリン(P)が共有結合
性に優れて半導体特性を敏感に変え得る点で、その上優
れた光感度が得られるという点で望ましい。そして、C
・N・O等の元素とともに含有させる場合、IIIa族元
素は0.1〜20,000ppmがよく、Va族元素は
0.1〜10,000ppmがよく、また、C・N・O
等の元素を含有させないか、または微量含有させる場合
は、IIIa族元素は0.01〜200ppm、Va族元
素は0.01〜100ppm含有させるのがよい。これ
らの元素は層厚方向にわたって勾配を設けてもよく、そ
の場合には層全体の平均含有量が上記範囲内であればよ
い。 【0018】また、a−Si系材料には、微結晶シリコ
ン(μc−Si)を含んでもよく、このμc−Siを含
んだ場合には、暗/光導電率を高めることができるの
で、光導電層2の設計自由度が増すという利点がある。
このようなμc−Siは、上記と同様の形成法を採用
し、その成膜条件を変えることによって形成することが
できる。たとえばグロー放電分解法では、基板温度およ
び高周波電力を高めに設定し、希釈ガスとしての水素流
量を増すことによって形成できる。また、μc−Siを
含む場合にも上記と同様の不純物元素を添加させてもよ
い。 【0019】上記光導電層2の厚みは使用する光導電性
材料および所望の電子写真特性により適宜設定するが、
a−Si系材料を用いた場合には、通常5〜100μ
m、好適には10〜80μmとする。 【0020】また、第1の表面層3はa−SiC:Hか
ら成り、かつ動的押し込み硬さが220〜400kgf
/mm2とし、第2の表面層4もa−SiC:Hからな
る。 【0021】第1の表面層3の動的押し込み硬さは、2
20〜400kgf/mm2、好適には250〜380
kgf/mm2、最適には300〜350kgf/mm2
にする。 【0022】第1の表面層3の動的押し込み硬さを40
0kgf/mm2以下にすることで、感光体表面とクリ
ーニングブレードの摩擦力を小さくすることができ、ブ
レードと感光体表面の摩擦と、感光体自身が共鳴するブ
レード鳴きと呼ばれる現象を防止する。他方、第1の表
面層3の動的押し込み硬さをを220kgf/mm2
上にすることで、第1の表面層における成膜速度の著し
い低下を防ぐことができる。 【0023】また、第1の表面層3の膜厚は0.5〜
1.0μmにするのが望ましく、これによって高い膜強
度が得られる。たとえば、0.8μmで設定にするとよ
い。 【0024】第1の表面層3の膜厚が0.5μm未満に
なると、膜強度が弱くなることで、膜ハガレ等が発生す
る可能性があり、1.0μmを越えると著しい残留電位
の増加を招くこと場合がある。しかし、本発明において
は、第1の表面層3の膜厚はについては、0.5〜1.
0μmに限定されるものではなく、その他の層構成によ
って、その範囲外であってもよいと考える。 【0025】第2の表面層4については、元素比率を組
成式a−Si1-XX:Hと表したときにx値が0.95
≦x<1.00であり、かつその自由表面の動的押し込
み硬さが45〜220kgf/mm2にしている。この
ような構成にしたことで、感光体加熱を行わない条件に
て、高湿環境化で耐刷を行っても画像流れを生じない電
子写真感光体を提供できる。 【0026】上記動的押し込み硬さは、膜厚が10μm
以下の薄膜を評価するために有効な硬度評価法であり、
薄膜の表面に三角錐状の圧子でもって試験加重を加え、
その際の圧子の押し込み深さを測定し、さらに算出して
求められる硬さである。本発明では島津製作所製の超微
少硬度計DUH−201を用いた。 【0027】かくして本発明の電子写真感光体によれ
ば、厚み2.0mm以下の導電性基板1の上に光導電層
2と動的押し込み硬さを220〜400kgf/mm2
に規定した第1の表面層3と、元素比率を組成式a−S
1-XX:Hと表したときにx値が0.95≦x<1.
00であり、かつ自由表面の動的押し込み硬さを45〜
220kgf/mm2に規定した第2の表面層4とを順
次積層したことで、クリーニングブレードとの摩擦を減
少させることによって、ブレード鳴きをなくし、さらに
低コストかつ高耐久性特性が得られた。 【0028】 【実施例】つぎに本発明の実施例を述べる。 【0029】(例1)導電性基板1としてアルミニウム
合金からなる外径30mm、長さ254mm、厚さ1.
5mmおよび1.0mmの引き抜き管の外周面を鏡面加
工して洗浄したものを用意し、これをグロー放電分解装
置にセットして、表1に示す成膜条件によりキャリア注
入阻止層5、光導電層2および第1の表面層3、第2の
表面層4を順次積層し、図1に示すような感光体A,
B、Cを作製した。 【0030】これら3種類の感光体A,B、Cは、表1
に示す如く、第1の表面層の成膜条件を変えたものであ
る。 【0031】また、比較例として、表1に示す如く、電
子写真感光体D(導電性基板厚さ2.5mm)、E(導
電性基板厚さ1.5mm)、F(導電性基板厚さ1.0
mm)を作製した。 【0032】 【表1】 【0033】そして、感光体A、B、Dについて、同条
件にて第1の表面層3のサンプルを作製し、その一部を
5mm角に切り出して、各成分をXPS分析(X線光電
子分光分析)により求め、さらに各サンプルについて、
動的押し込み硬さを、超微少硬度計(島津製作所製DU
H―201)を用いて測定したところ、表2に示す結果
が得られた。 【0034】 【表2】 【0035】つぎに前記の感光体A,B,C,D,E,
Fを摩擦評価装置にて、クリーニングブレードとの摩擦
力の評価を行ったところ、表3に示すような結果が得ら
れた。 【0036】摩擦評価装置は、電子写真装置において感
光体とクリーニングブレードのみを設置したものを用い
た。具体的には、電子写真プリンタ(京セラ製FS−1
750)において、一次帯電器、露光手段、現像器、転
写手段、クリーニングローラーを除いた装置において、
感光体の駆動モータ(直流24V定格)に外部より24
Vの一定電圧を印加し、モータに流入する電流を測定す
ることにより感光体を駆動するのに必要な電力、すなわ
ち、感光体とクリーニングブレードの摩擦力を測定し
た。 【0037】 【表3】 【0038】さらに前記の感光体A,B,C,D,E,
Fを電子写真プリンタ(京セラ製FS−1750)に搭
載してブレード鳴きの評価を行った。 【0039】この評価においては、ブレードの押し圧力
を、通常の従来の条件と、この条件に比べて強い場合、
弱い場合の3種類の条件にて行い、電子写真装置側の影
響も併せて評価した。また、ブレードの押し圧力を小さ
くしてクリーニング力を通常より弱くしたところ、ドラ
ム上のトナーを十分にクリーニングできないクリーニン
グ不良が発生したため、両者を合わせた評価結果を表3
に示す。 【0040】なお、ブレード鳴きおよびクリーニング性
の基準は、以下のとおりとした。 【0041】ブレード鳴きの評価基準については、3段
階に区分し、○印はブレード鳴きが発生しない場合、△
印は駆動開始時、停止時に若干のブレード鳴きが発生し
たが、実用上支障のない許容範囲である場合、×印は駆
動時にブレード鳴きが発生し、実用上支障がある場合で
ある。 【0042】クリーニング性の評価基準は2段階に区分
し、○印はクリーニング不良が発生しなかった場合であ
り、×印はクリーニング不良が発生した場合である。 【0043】 【表4】【0044】以上の結果から明らかなとおり、第1の表
面層3の動的押し込み硬さを400kgf/mm2以下
にすることで、感光体表面とクリーニングブレードの摩
擦力を小さくすることができ、導電性基板の厚さを1.
5mm、1.0mmとしても、厚さ2.5mmの場合と
同様にクリーニング不良を発生させないクリーニング条
件においてブレード鳴き現象を防止できた。 【0045】(例2)(例1)と同様に本発明の電子写
真感光体を作製するにあたって、導電性基板1の厚さを
1.5mmとし、第1の表面層3の成膜条件において、
表5に示すようにH2ガス流量を幾とおりにも変えて、
ガスの希釈を行うとともに、SiH4およびCH4の流量
を変更して動的押し込み硬さの異なる感光体G、H、
I、J、K、Lを作製し、(例1)と同様に各感光体G
〜Lとクリーニングブレードとの摩擦力を評価したとこ
ろ表5の結果が得られた。 【0046】また、(例1)と同様に、ブレード鳴きク
リーニング性の評価を行ったところ、表6の結果が得ら
れた。 【0047】 【表5】【0048】 【表6】 【0049】以上の結果から明らかなとおり、第1の表
面層3の動的押し込み硬さをを400kgf/mm2
下にすることで、感光体表面とクリーニングブレードの
摩擦力を小さくすることができ、クリーニング不良を発
生させないクリーニング条件においてブレード鳴き現象
を防止できた。 【0050】 【発明の効果】以上のとおり、本発明によれば、第1の
表面層の動的押し込み硬さをを400kgf/mm2
下にすることで、感光体表面とクリーニングブレードの
摩擦力を小さくすることができ、導電性基板の厚さ2.
0mm以下の場合においてもクリーニング不良を発生さ
せないクリーニング条件において、ブレード鳴き現象を
防止でき、さらに低コストかつ高耐久性の電子写真感光
体が提供できた。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member having a photoconductive layer and a surface layer made of hydrogenated amorphous silicon carbide laminated on a conductive substrate. . 2. Description of the Related Art An electrophotographic photosensitive member mounted on an image forming apparatus such as an electrophotographic copying machine or a printer has electrophotographic characteristics, that is, potential characteristics such as chargeability, photosensitivity, and residual potential. It has good image characteristics such as image density, resolution, contrast, gradation, etc., and also has excellent stability and durability such as abrasion resistance, printing durability, environmental resistance, and chemical resistance. Desired. In order to realize such excellent characteristics, the surface layer formed on the photoconductive layer plays a large role. Various materials and layer configurations have been proposed for the surface layer, and amorphous silicon-based materials, particularly hydrogenated amorphous silicon carbide containing carbon (C) (hereinafter referred to as hydrogenated amorphous silicon), have been proposed. The surface layer using silicon carbide (abbreviated as a-SiC: H) has excellent electrical characteristics, optical characteristics, image characteristics,
Attention has been paid to its durability and the like based on high hardness. Further, an a-SiC surface layer and an amorphous silicon-based photoconductive layer (hereinafter, amorphous silicon is referred to as a-Si
The electrophotographic photosensitive member in combination with the above has already been put to practical use. An electrophotographic photosensitive member having a-SiC: H is mounted on an electrophotographic apparatus, and particularly when printing is performed in a high humidity environment, an image defect often referred to as image deletion occurs. However, there is a problem in that a heater is used to heat the photoreceptor to disperse the moisture adsorbed on the surface layer, and that the carbon in the surface layer is disclosed in Japanese Patent Application Laid-Open No. 9-204056. By setting the atomic concentration, dynamic indentation hardness, surface roughness, etc. of silicon and silicon within predetermined ranges, a technology to prevent image deletion at low cost without using a heater has been proposed and put into practical use. I have. According to the electrophotographic photoreceptor disclosed in Japanese Patent Application Laid-Open No. 9-204056, the atomic concentration of carbon and silicon in the surface layer is determined.
The dynamic indentation hardness, surface roughness, and the like are set within a predetermined range, and the thickness of the conductive substrate used therein is 2.5 to 5.0 mm. [0006] However, the use of such a thickened substrate has increased the material cost, thereby increasing the cost of the photoreceptor itself. Further, in the a-Si type photoreceptor, the heat capacity of the photoreceptor using a thick substrate increases, and the dew condensation of the photoreceptor caused by the photoreceptor causes the surface of the photoreceptor to cause image deletion. This has also caused the opportunity for moisture adsorption to the surface. Therefore, in order to solve such a problem, for example, an electrophotographic photosensitive member having a substrate thickness reduced to 0.75 to 2.0 mm was manufactured and mounted on an electrophotographic apparatus. Friction between the cleaning blade and the photoreceptor surface resonates with the photoreceptor itself, and a phenomenon called blade squeal has occurred. This blade squeal occurs when the thickness of the conductive substrate is about 1.0 mm, and the coefficient of friction between the cleaning blade and the surface of the photoreceptor is large.
While generating an unpleasant sound when driving the electrophotographic device,
Very serious problems, such as poor cleaning or damage to the cleaning blade, may be induced. Therefore, in the conventional a-Si-based photoconductor, the thickness of the conductive substrate is set to about 2.5 mm or more. Accordingly, it is an object of the present invention to provide a low-cost and highly durable electrophotographic photoreceptor by reducing friction between a surface layer and a cleaning blade, thereby eliminating blade squeal. The electrophotographic photoreceptor of the present invention comprises a photoconductive layer and a surface layer made of hydrogenated amorphous silicon carbide which are sequentially laminated on a conductive substrate having a thickness of 2.0 mm or less. The surface layer was composed of a first surface layer having a dynamic indentation hardness of 220 to 400 kgf / mm 2 and an element ratio represented by a composition formula a-Si 1-X C X : H. Sometimes the x value is 0.95 ≦ x <1.00, and the dynamic indentation hardness of the free surface is 45-220 kgf /
It is characterized by being sequentially laminated with a second surface layer defined in mm 2 . DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical layer structure of an electrophotographic photoreceptor of the present invention is shown in FIGS. In FIG. 1, 1 is a conductive substrate, 2 is a photoconductive layer, 3 is a first surface layer, and 4 is a second surface layer. In FIG. 2, a carrier injection blocking layer 5 made of an a-Si-based material is further formed on conductive substrate 1.
Is provided. According to the present invention, the thickness of the conductive substrate 1 is 2.0 mm or less. The thickness of the conductive substrate 1 is desirably 0.75 mm or more from the viewpoint of mechanical dimensional accuracy. However, an increase in the thickness of the substrate directly leads to an increase in cost, and a thinner substrate in terms of providing a heat capacity to prevent dew condensation. Is preferable, preferably 0.75 to 2.0 mm, and most preferably 1.0 to 2.0 mm.
It is good to be 1.5 mm. The conductive substrate 1 is made of aluminum (A).
l) or SUS ・ Zn ・ Cu ・ Fe ・ Ti ・ Ni ・
Any of the above-mentioned metals, ITO, and SnO on the surface of a conductive member such as a metal material such as Cr, Ta, Sn, Au, or Ag or an alloy material thereof, or an insulator such as a resin, glass, or ceramic.
A conductive film formed of a transparent conductive material such as 2 by vapor deposition or the like and subjected to a conductive treatment is used. Above all, Al
When an alloy is used, the cost can be reduced and the weight can be reduced. In addition, when an a-Si-based material is used for the photoconductive layer 2 and a carrier injection blocking layer to be described later, the adhesion to those layers is increased. And the reliability is improved. The photoconductive layer 2 is made of a-Si or a
A-Se system, such as -Se or Se-Te · As 2 Se 3 , or Group II-VI compounds such as ZnO · CdS · CdSe, even more, they were granulated, it was dispersed resin, and, OPC A photoreceptor material such as a system can also be used. Above all, a-Si or a-SiC
When an a-Si material of an alloy to which N, O, etc. is added is used, excellent electrophotographic properties such as high photoconductive properties, high-speed response, repetition stability, heat resistance, and durability can be stably obtained. ,
Further, it is preferable in that it has excellent compatibility with the a-Si: H surface layers 3 and 4. Such a-Si-based materials include a-Si.a
-SiC.a-SiN.a-SiO.a-SiGe.a
-SiCN ・ a-SiNO ・ a-SiCO ・ a-SiC
NO and the like. These are formed by glow discharge decomposition method, various sputtering methods, various evaporation methods, ECR method, optical CVD method, catalytic CVD method, reactive evaporation method, and the like. Hydrogen (H) and a halogen element (F · Cl) are contained in the film in an amount of 1 to 40 atomic%. In addition, in order to obtain desired characteristics such as electrical properties such as dark conductivity and photoconductivity of each layer and optical band gaps, the periodic table II.
Group Ia elements (hereinafter abbreviated as IIIa elements) and Va group elements (hereinafter abbreviated as Va group elements), C.N.
The above properties are adjusted by adjusting the content of elements such as O. It is said that boron (B) and phosphorus (P), as the above-mentioned IIIa group element and Va group element, respectively, are excellent in covalent bondability and can change semiconductor characteristics sensitively, so that excellent photosensitivity can be obtained. Desirable in point. And C
When containing together with an element such as N.O, the group IIIa element is preferably 0.1 to 20,000 ppm, the group Va element is preferably 0.1 to 10,000 ppm, and C.N.O.
In the case where elements such as the above are not contained or are contained in trace amounts, it is preferred that the group IIIa element be contained in 0.01 to 200 ppm and the group Va element be contained in 0.01 to 100 ppm. These elements may be provided with a gradient in the thickness direction of the layer, in which case the average content of the entire layer may be within the above range. Further, the a-Si-based material may include microcrystalline silicon (μc-Si). When the a-Si-based material includes the μc-Si, the dark / photoconductivity can be increased. There is an advantage that the degree of freedom in designing the conductive layer 2 is increased.
Such μc-Si can be formed by employing the same forming method as described above and changing the film forming conditions. For example, in the glow discharge decomposition method, it can be formed by setting the substrate temperature and the high-frequency power to be higher and increasing the flow rate of hydrogen as a diluent gas. Further, even when μc-Si is contained, the same impurity element as described above may be added. The thickness of the photoconductive layer 2 is appropriately set according to the photoconductive material used and desired electrophotographic characteristics.
When an a-Si material is used, it is usually 5 to 100 μm.
m, preferably 10 to 80 μm. The first surface layer 3 is made of a-SiC: H and has a dynamic indentation hardness of 220 to 400 kgf.
/ Mm 2, and the second surface layer 4 is also made of a-SiC: H. The dynamic indentation hardness of the first surface layer 3 is 2
20 to 400 kgf / mm 2 , preferably 250 to 380
kgf / mm 2 , optimally 300-350 kgf / mm 2
To The dynamic indentation hardness of the first surface layer 3 is 40
By setting the pressure to 0 kgf / mm 2 or less, the frictional force between the surface of the photoconductor and the cleaning blade can be reduced, thereby preventing the friction between the blade and the surface of the photoconductor and a phenomenon called blade squealing in which the photoconductor itself resonates. On the other hand, by setting the dynamic indentation hardness of the first surface layer 3 to 220 kgf / mm 2 or more, it is possible to prevent a remarkable decrease in the film forming rate on the first surface layer. The thickness of the first surface layer 3 is 0.5 to
Desirably, the thickness is 1.0 μm, whereby a high film strength is obtained. For example, it may be set to 0.8 μm. When the film thickness of the first surface layer 3 is less than 0.5 μm, the film strength is weakened, and film peeling may occur. When the film thickness exceeds 1.0 μm, a remarkable increase in the residual potential is caused. May be invited. However, in the present invention, the thickness of the first surface layer 3 is set to 0.5 to 1.
The thickness is not limited to 0 μm, and may be outside the range depending on other layer configurations. The second surface layer 4 has an x value of 0.95 when the element ratio is represented by a composition formula a-Si 1 -x C x : H.
≦ x <1.00, and the dynamic indentation hardness of the free surface is in 45~220kgf / mm 2. With such a configuration, it is possible to provide an electrophotographic photoreceptor that does not cause image deletion even when printing is performed in a high-humidity environment under conditions in which the photoreceptor is not heated. The dynamic indentation hardness is such that the film thickness is 10 μm.
It is an effective hardness evaluation method for evaluating the following thin films,
A test weight is applied to the surface of the thin film with a triangular pyramid indenter,
The hardness is obtained by measuring the indentation depth of the indenter at that time and further calculating it. In the present invention, a micro hardness tester DUH-201 manufactured by Shimadzu Corporation was used. Thus, according to the electrophotographic photoreceptor of the present invention, a photoconductive layer 2 and a dynamic indentation hardness of 220 to 400 kgf / mm 2 are formed on a conductive substrate 1 having a thickness of 2.0 mm or less.
The first surface layer 3 defined in the formula (1) and the element ratio are defined by a composition formula aS
i 1-X C X : When expressed as H, the x value is 0.95 ≦ x <1.
00 and the dynamic indentation hardness of the free surface is 45-45.
By successively laminating the second surface layer 4 defined at 220 kgf / mm 2 , friction with the cleaning blade was reduced, thereby eliminating blade squeal and further achieving low cost and high durability characteristics. Next, embodiments of the present invention will be described. (Example 1) The conductive substrate 1 is made of an aluminum alloy and has an outer diameter of 30 mm, a length of 254 mm, and a thickness of 1.
5 mm and 1.0 mm drawn pipes were prepared by mirror-finishing the outer peripheral surfaces of the drawn pipes, and were set in a glow discharge decomposition apparatus. The carrier injection blocking layer 5 and the photoconductive layer were deposited under the film forming conditions shown in Table 1. The layer 2, the first surface layer 3, and the second surface layer 4 are sequentially laminated to form a photoconductor A, as shown in FIG.
B and C were produced. These three types of photoconductors A, B and C are shown in Table 1.
As shown in the figure, the conditions for forming the first surface layer were changed. As comparative examples, as shown in Table 1, electrophotographic photosensitive members D (conductive substrate thickness 2.5 mm), E (conductive substrate thickness 1.5 mm), and F (conductive substrate thickness) 1.0
mm). [Table 1] Then, a sample of the first surface layer 3 was prepared for the photoconductors A, B, and D under the same conditions, and a part of the sample was cut into 5 mm squares, and each component was subjected to XPS analysis (X-ray photoelectron Analysis), and for each sample,
The dynamic indentation hardness is measured using a micro hardness tester (DU, manufactured by Shimadzu Corporation).
H-201), the results shown in Table 2 were obtained. [Table 2] Next, the photosensitive members A, B, C, D, E,
F was evaluated for the frictional force with the cleaning blade using a friction evaluation device, and the results shown in Table 3 were obtained. The friction evaluation apparatus used was an electrophotographic apparatus provided with only a photosensitive member and a cleaning blade. Specifically, an electrophotographic printer (FS-1 made by Kyocera)
750), in an apparatus excluding a primary charger, an exposure unit, a developing unit, a transfer unit, and a cleaning roller,
The drive motor of the photoreceptor (24V DC rated)
By applying a constant voltage of V and measuring the current flowing into the motor, the power required to drive the photoconductor, that is, the frictional force between the photoconductor and the cleaning blade was measured. [Table 3] Further, the photosensitive members A, B, C, D, E,
F was mounted on an electrophotographic printer (FS-1750 manufactured by Kyocera) to evaluate blade squeal. In this evaluation, when the pressing pressure of the blade is set to a value higher than that of the ordinary condition under the conventional condition,
The test was performed under three kinds of conditions in the case of weakness, and the influence on the electrophotographic apparatus side was also evaluated. Further, when the cleaning force was made weaker than usual by reducing the pressing pressure of the blade, a cleaning failure in which the toner on the drum could not be sufficiently cleaned occurred.
Shown in The criteria for blade squeal and cleaning properties were as follows. The evaluation criteria of blade squeal are classified into three stages.
The mark indicates that slight blade squealing occurred at the start and stop of driving, but was within an allowable range that would not hinder practical use, and the cross indicates that blade squealing occurred at the time of driving and hindered practically. The evaluation criteria for the cleaning performance are classified into two stages. The mark ○ indicates that no cleaning failure occurred, and the mark x indicates the case where cleaning failure occurred. [Table 4] As is apparent from the above results, by setting the dynamic indentation hardness of the first surface layer 3 to 400 kgf / mm 2 or less, the frictional force between the photosensitive member surface and the cleaning blade can be reduced. The thickness of the conductive substrate is set to 1.
Even when the thickness is 5 mm or 1.0 mm, the blade squeal phenomenon can be prevented under the cleaning condition in which the cleaning failure does not occur as in the case of the thickness of 2.5 mm. (Example 2) In the same manner as in (Example 1), when producing the electrophotographic photosensitive member of the present invention, the thickness of the conductive substrate 1 was set to 1.5 mm, and the film thickness of the first surface layer 3 was changed. ,
As shown in Table 5, the H 2 gas flow rate was changed in various ways,
While diluting the gas, changing the flow rates of SiH 4 and CH 4 , photoconductors G, H,
I, J, K, and L were prepared, and each photoconductor G was prepared in the same manner as in (Example 1).
When the frictional force between L and the cleaning blade was evaluated, the results in Table 5 were obtained. The evaluation of blade squeal cleaning properties was performed in the same manner as in (Example 1). The results shown in Table 6 were obtained. [Table 5] [Table 6] As is apparent from the above results, by setting the dynamic indentation hardness of the first surface layer 3 to 400 kgf / mm 2 or less, the frictional force between the photosensitive member surface and the cleaning blade can be reduced. In addition, the blade squeal phenomenon could be prevented under cleaning conditions that do not cause cleaning failure. As described above, according to the present invention, by setting the dynamic indentation hardness of the first surface layer to 400 kgf / mm 2 or less, the frictional force between the surface of the photosensitive member and the cleaning blade is reduced. Can be reduced, and the thickness of the conductive substrate can be reduced.
Even under the condition of 0 mm or less, the blade squealing phenomenon can be prevented under the cleaning condition that does not cause the cleaning failure, and the electrophotographic photoreceptor having low cost and high durability can be provided.

【図面の簡単な説明】 【図1】本発明の電子写真感光体の層構成を示す断面図
である。 【図2】本発明の電子写真感光体の他の層構成を示す断
面図である。 【符号の説明】 1 導電性基板 2 光導電層 3 第1の表面層 4 第2の表面層 5 キャリア注入阻止層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a layer structure of an electrophotographic photosensitive member of the present invention. FIG. 2 is a cross-sectional view illustrating another layer configuration of the electrophotographic photosensitive member of the present invention. [Description of Signs] 1 conductive substrate 2 photoconductive layer 3 first surface layer 4 second surface layer 5 carrier injection blocking layer

Claims (1)

【特許請求の範囲】 【請求項1】厚み2.0mm以下の導電性基板上に光導
電層と水素化アモルファスシリコンカーバイドから成る
表面層とを順次積層して成る電子写真感光体であって、
前記表面層は、動的押し込み硬さを220〜400kg
f/mm2に規定した第1の表面層と、元素比率を組成
式a−Si1-XX:Hと表したときにx値が0.95≦
x<1.00であり、かつ自由表面の動的押し込み硬さ
を45〜220kgf/mm2に規定した第2の表面層
とを順次積層して成ることを特徴とする電子写真感光
体。
1. An electrophotographic photoreceptor comprising a photoconductive layer and a surface layer made of hydrogenated amorphous silicon carbide sequentially laminated on a conductive substrate having a thickness of 2.0 mm or less,
The surface layer has a dynamic indentation hardness of 220 to 400 kg.
When the first surface layer defined as f / mm 2 and the element ratio are represented by the composition formula a-Si 1-x C x : H, the x value is 0.95 ≦
An electrophotographic photoreceptor comprising: x <1.00; and a second surface layer having a free surface having a dynamic indentation hardness of 45 to 220 kgf / mm 2 , which is sequentially laminated.
JP2002019018A 2002-01-28 2002-01-28 Electrophotographic photoreceptor Pending JP2003215826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002019018A JP2003215826A (en) 2002-01-28 2002-01-28 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002019018A JP2003215826A (en) 2002-01-28 2002-01-28 Electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2003215826A true JP2003215826A (en) 2003-07-30

Family

ID=27654118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002019018A Pending JP2003215826A (en) 2002-01-28 2002-01-28 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2003215826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047662A1 (en) * 2011-09-30 2013-04-04 京セラ株式会社 Electron photosensitive conductor and image-forming device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047662A1 (en) * 2011-09-30 2013-04-04 京セラ株式会社 Electron photosensitive conductor and image-forming device using the same
JPWO2013047662A1 (en) * 2011-09-30 2015-03-26 京セラ株式会社 Electrophotographic photoreceptor and image forming apparatus provided with the same
US9291981B2 (en) 2011-09-30 2016-03-22 Kyocera Corporation Electrophotographic photoreceptor and image forming apparatus including the same

Similar Documents

Publication Publication Date Title
JP4499785B2 (en) Electrophotographic photoreceptor and image forming apparatus provided with the same
JP4404942B2 (en) Image forming apparatus
JP4242893B2 (en) Electrophotographic photoreceptor and image forming apparatus provided with the same
JP4829072B2 (en) Image forming apparatus
JP3279926B2 (en) Electrophotographic photoreceptor and image forming apparatus
JP4242902B2 (en) Electrophotographic photoreceptor and image forming apparatus provided with the same
JP4250669B2 (en) Electrophotographic photosensitive member, method for producing the electrophotographic photosensitive member, and image forming apparatus
JP4436823B2 (en) Image forming apparatus
JP2003215826A (en) Electrophotographic photoreceptor
US7759034B2 (en) Electrophotographic photosensitive member, method of producing the same and image forming apparatus
JPH06250425A (en) Electrophotographic sensitive body
JP2002149029A (en) Method and apparatus for forming image and photoreceptor
WO2009104466A1 (en) Electrophotographic photosensitive body and image-forming apparatus comprising the same
US20070231005A1 (en) Electrophotographic Photosensitive Member and Image Forming Apparatus Using Same
JP3545925B2 (en) Image forming device
JP3279878B2 (en) Electrophotographic recording device
JPH10104862A (en) Production of electrophotographic photoreceptor
JPH1152598A (en) Image forming device
JP4283331B2 (en) Image forming apparatus
JPH11133639A (en) Image forming device
JPH08202060A (en) Thin film device and evaluating method for the device
JPH1173076A (en) Image forming apparatus
JPH01269945A (en) Electrophotographic sensitive body
JP5078465B2 (en) Inspection method of electrophotographic photosensitive member
JP4273131B2 (en) Electrophotographic photoreceptor and image forming apparatus provided with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040716

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A02 Decision of refusal

Effective date: 20060808

Free format text: JAPANESE INTERMEDIATE CODE: A02