JP2003215029A - Apparatus for measuring surface plasmon resonance, and apparatus for measuring surface plasmon resonance and optical absorption spectrum - Google Patents

Apparatus for measuring surface plasmon resonance, and apparatus for measuring surface plasmon resonance and optical absorption spectrum

Info

Publication number
JP2003215029A
JP2003215029A JP2002014701A JP2002014701A JP2003215029A JP 2003215029 A JP2003215029 A JP 2003215029A JP 2002014701 A JP2002014701 A JP 2002014701A JP 2002014701 A JP2002014701 A JP 2002014701A JP 2003215029 A JP2003215029 A JP 2003215029A
Authority
JP
Japan
Prior art keywords
slab
type waveguide
surface plasmon
light
plasmon resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002014701A
Other languages
Japanese (ja)
Other versions
JP3850730B2 (en
Inventor
Koji Suzuki
鈴木  孝治
Kazuyoshi Kurihara
一嘉 栗原
Kozo Takahashi
浩三 高橋
Kenji Kato
健次 加藤
Tatsuya Hida
達也 飛田
Hisao Tabei
久男 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYSTEM INSTR KK
Kanagawa Academy of Science and Technology
Japan Science and Technology Agency
NTT Advanced Technology Corp
System Instruments Co Ltd
Original Assignee
SYSTEM INSTR KK
Kanagawa Academy of Science and Technology
NTT Advanced Technology Corp
System Instruments Co Ltd
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYSTEM INSTR KK, Kanagawa Academy of Science and Technology, NTT Advanced Technology Corp, System Instruments Co Ltd, Japan Science and Technology Corp filed Critical SYSTEM INSTR KK
Priority to JP2002014701A priority Critical patent/JP3850730B2/en
Publication of JP2003215029A publication Critical patent/JP2003215029A/en
Application granted granted Critical
Publication of JP3850730B2 publication Critical patent/JP3850730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring surface plasmon resonance capable of performing measurement in addition to the phenomenon of surface plasmon resonance, to be concrete, measurement on optical absorption spectra in the same apparatus and provide an apparatus for measuring surface plasmon resonance and optical absorption spectra capable of actually measuring both surface plasmon resonance and optical absorption spectra. <P>SOLUTION: The surface plasmon resonance measuring apparatus is provided with a slab- type waveguide comprised of a slab-type transparent substrate on which a metal membrane is formed, a light source means constituted in such a way as to introduce white light to the slab-type waveguide via an optical fiber, and a light detecting means for detecting and analyzing light emergent from the slab-type waveguide after transmitting through the slab-type waveguide. A sample is arranged on the metal membrane, and the white light is made incident into the slab-type waveguide and transmit through the slab-type waveguide through the use of the light source means. A surface plasmon phenomenon is brought about in the metal membrane, on which the sample is arranged, to detect spectral changes of the white light due to the surface plasmon phenomenon from light emergent from the slab-type waveguide through the use of the light detecting means. From the results of detection, the refractive index of the sample is measured. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、スラブ型導波路を
用いて試料の屈折率を測定するように構成した表面プラ
ズモン共鳴センサに関する。
TECHNICAL FIELD The present invention relates to a surface plasmon resonance sensor configured to measure the refractive index of a sample by using a slab type waveguide.

【0002】[0002]

【従来の技術】従来から、金や銀等の金属薄膜表面に発
生する表面プラズモン共鳴現象を利用して物質の状態測
定を行うことが提案さている。表面プラズモンとは、金
属−誘電体界面に生じる電子の疎密波の一種であり、そ
の波数は試料の厚さや光学特性(誘電率、屈折率)によ
って変化する。この変化を直接測定することはできない
ため、表面プラズモン共鳴を利用した測定方法では、プ
リズムの底面に金や銀等の金属を堆積して金属薄膜を形
成し、その金属薄膜の表面に試料を直接接触させた状態
で、タングステンランプ、ハロゲンランプ、発光ダイオ
ード(LED)、スーパールミネッセントダイオード
(SLD)、レーザーなどの光を前記金属薄膜の裏面、
即ち、試料の反対面から当ててエバネッセント波を発生
させ、このエバネッセント波が表面プラズモンと共鳴す
ることに起因した減光により生じる暗線の角度の角度変
化から屈折率の変化を測定することで金属薄膜表面に接
触させた試料の状態変化を間接的に測定するのが一般的
な方法となっている。
2. Description of the Related Art Conventionally, it has been proposed to measure the state of a substance by utilizing the surface plasmon resonance phenomenon generated on the surface of a metal thin film such as gold or silver. The surface plasmon is a type of compressional wave of electrons generated at a metal-dielectric interface, and its wave number changes depending on the thickness of the sample and optical characteristics (dielectric constant, refractive index). Since this change cannot be measured directly, in the measurement method using surface plasmon resonance, a metal thin film is formed by depositing a metal such as gold or silver on the bottom surface of the prism, and the sample is directly attached to the surface of the metal thin film. In the contact state, light of a tungsten lamp, a halogen lamp, a light emitting diode (LED), a super luminescent diode (SLD), a laser or the like is applied to the back surface of the metal thin film,
That is, an evanescent wave is generated by applying it from the opposite surface of the sample, and a change in the refractive index is measured from the change in the angle of the dark line caused by the extinction caused by the resonance of the evanescent wave with the surface plasmon. It is a general method to indirectly measure the change in the state of the sample that is brought into contact with the surface.

【0003】[0003]

【発明が解決しようとする課題】最近、光吸収変化に基
づく表面プラズモン共鳴測定が、バイオ・化学センシン
グや材料評価で大変有効であることが示されている。そ
の場合、上記した従来の表面プラズモン共鳴センサー装
置は屈折率の実部変化を測定する装置として設計されて
いるため、光吸収変化による複素屈折率変化を測定する
原理に基づいた表面プラズモン共鳴センサーには必ずし
も適した設計となっていない問題点があった。発明者等
は、上記した問題点を考慮しながら、表面プラズモン共
鳴現象以外にも、光吸収に関する測定を同じ装置で行う
ことが可能な表面プラズモン共鳴測定の研究を進め本発
明を発明するに至った。本発明は、表面プラズモン共鳴
現象以外の光吸収に関係する測定、具体的には、光吸収
スペクトルの測定を同じ装置内で行うことが可能になる
表面プラズモン共鳴測定装置及び実際に表面プラズモン
共鳴測定及び光吸収スペクトル測定の両方を測定可能に
した表面プラズモン共鳴及び光吸収スペクトル測定装置
を提供することを目的としている。
Recently, it has been shown that surface plasmon resonance measurement based on light absorption change is very effective in bio / chemical sensing and material evaluation. In that case, since the conventional surface plasmon resonance sensor device described above is designed as a device for measuring the real part change of the refractive index, a surface plasmon resonance sensor based on the principle of measuring the complex refractive index change due to light absorption change is used. Had a problem that it was not always designed properly. In consideration of the above-mentioned problems, the inventors have proceeded with research on surface plasmon resonance measurement capable of performing measurement related to light absorption with the same device, in addition to the surface plasmon resonance phenomenon, and came to invent the present invention. It was The present invention provides a measurement related to light absorption other than the surface plasmon resonance phenomenon, specifically, a surface plasmon resonance measurement apparatus and an actual surface plasmon resonance measurement that enable measurement of a light absorption spectrum in the same apparatus. It is an object of the present invention to provide a surface plasmon resonance and optical absorption spectrum measurement device capable of measuring both the optical absorption spectrum measurement and the optical absorption spectrum measurement.

【0004】[0004]

【課題を解決するための手段】上記した目的を達成する
ために、本発明に係る表面プラズモン共鳴測定装置は、
金属薄膜が形成されたスラブ型の透明な基板からなるス
ラブ型導波路と、前記スラブ型導波路に光ファイバを介
して白色光を導入するように構成された光源手段と、前
記スラブ型導波路内を伝搬した後、該スラブ型導波路か
ら出射する光を検出し分析する光検出手段とを備え、前
記金属薄膜上に試料を配置し、前記光源手段を用いてス
ラブ型導波路内に白色光を入射してスラブ型導波路を伝
搬させ、試料が配置された金属薄膜において表面プラズ
モン現象を生じさせ、前記光検出手段を用いて該スラブ
型導波路から出射した光から表面プラズモン現象による
白色光のスペクトル変化を検出し、該検出結果から試料
の屈折率を測定するように構成したことを特徴としてい
る。また、本発明に係る表面プラズモン共鳴及び光吸収
スペクトル測定装置は、スラブ型導波路を着脱可能に取
り付けできる測定部と、前記スラブ型導波路に光ファイ
バを介して白色光を導入するように構成された光源手段
と、前記スラブ型導波路内を伝搬した後、該スラブ型導
波路から出射する光を検出し分析する光検出手段とを備
え、前記測定部に、金属薄膜層を備え、該金属薄膜上に
試料を配置できるように構成されたスラブ型の透明な基
板からなる表面プラズモン共鳴測定用スラブ型導波路
と、金属薄膜層を備えてなく、その上に直接試料を配置
できるように構成されたスラブ型の透明な基板からなる
光吸収スペクトル測定用スラブ型導波路とを交換可能に
配置できるように構成したことを特徴とする。また、本
発明に係る別の表面プラズモン共鳴及び光吸収スペクト
ル測定装置は、スラブ型導波路を配置できる測定部と、
前記スラブ型導波路に光ファイバを介して白色光を導入
するように構成された光源手段と、前記スラブ型導波路
内を伝搬した後、該スラブ型導波路から出射する光を検
出し分析する光検出手段とを備え、前記測定部に、金属
薄膜層を備え、該金属薄膜上に試料を配置できるように
構成された表面プラズモン共鳴測定部分と、金属薄膜層
を備えてなく、その上に直接試料を配置できるように構
成された光吸収スペクトル測定部分とを有するスラブ型
の透明な基板からなるスラブ型導波路を設け、光がスラ
ブ型導波路内で表面プラズモン共鳴測定部分又は光吸収
スペクトル測定部の何れか一方を選択的に通過できるよ
うに測定部及び/又は光源手段を移動可能に構成したこ
とを特徴とするものである。
In order to achieve the above object, a surface plasmon resonance measuring apparatus according to the present invention comprises:
A slab-type waveguide formed of a slab-type transparent substrate on which a metal thin film is formed, a light source means configured to introduce white light into the slab-type waveguide through an optical fiber, and the slab-type waveguide A light detecting means for detecting and analyzing the light emitted from the slab-type waveguide after propagating in the sample, and placing a sample on the metal thin film, and using the light source means to produce white light in the slab-type waveguide. Light is incident to propagate through the slab-type waveguide to generate a surface plasmon phenomenon in the metal thin film on which the sample is placed, and the light emitted from the slab-type waveguide using the photodetection means causes white color due to the surface plasmon phenomenon. It is characterized in that the spectral change of light is detected and the refractive index of the sample is measured from the detection result. Further, the surface plasmon resonance and optical absorption spectrum measuring apparatus according to the present invention is configured to introduce a white light into the slab type waveguide through an optical fiber, and a measuring section to which the slab type waveguide can be detachably attached. The light source means and the light detecting means for detecting and analyzing the light emitted from the slab-type waveguide after propagating in the slab-type waveguide, and the measuring unit having a metal thin film layer, A slab waveguide for surface plasmon resonance measurement consisting of a slab-type transparent substrate configured so that a sample can be placed on a metal thin film, and a sample can be placed directly on the metal slab waveguide without a metal thin film layer. It is characterized in that the slab type waveguide for optical absorption spectrum measurement made of the slab type transparent substrate thus constructed can be arranged exchangeably. Further, another surface plasmon resonance and optical absorption spectrum measuring apparatus according to the present invention is a measuring unit in which a slab type waveguide can be arranged,
Light source means configured to introduce white light into the slab type waveguide through an optical fiber, and detecting and analyzing light emitted from the slab type waveguide after propagating in the slab type waveguide. A surface plasmon resonance measurement portion including a photodetection means, the measurement unit including a metal thin film layer, and a sample arranged on the metal thin film, and a metal thin film layer not provided, A slab-type waveguide comprising a slab-type transparent substrate having an optical absorption spectrum measurement part configured so that the sample can be directly placed is provided, and the light is a surface plasmon resonance measurement part or an optical absorption spectrum in the slab-type waveguide. It is characterized in that the measuring unit and / or the light source means are configured to be movable so that either one of the measuring units can selectively pass therethrough.

【0005】[0005]

【発明の実施の形態】以下、添付図面に示した幾つかの
実施例を参照して本発明に係る表面プラズモン共鳴測定
装置の実施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a surface plasmon resonance measuring apparatus according to the present invention will be described below with reference to some embodiments shown in the accompanying drawings.

【0006】図1は、本発明に係る表面プラズモン共鳴
測定装置の一実施例の構成を示す模式図である。図面に
示すように、この測定装置は、光源手段A、スラブ型導
波路B及び光検出手段Cとを備えている。光源手段A
は、光源1からレンズ2、光チョッパー3、レンズ4、
入射用光ファイバ5、及び集光レンズ6を介して白色光
をスラブ型導波路内に入射できるように構成されてい
る。本実施例では、前記光ファイバ5は、コア径が40
0μmのものを用いた。スラブ型導波路Bは、図2に示
すように、断面台形の透明基板10上に、金属薄膜層1
1を形成してなる。本実施例では、基板10は長さが6
5mm、幅が20mmの石英のガラス板を厚さが0.2
mmになるまで研磨したものを使用した。基板10の光
入射面及び光出射面は図2に示すように60°の角度で
斜めに傾斜した。このように光入射面を傾斜させておく
ことにより、光の入射角度を制御し易くなり、プリズム
等を別途設ける必要がなくなる。また、金属薄膜層11
は、金から成り、基板10上にチタン12を介して設け
られている。尚、本実施例では、チタン12の厚みは3
nmであり、金属薄膜層11の厚みは50nmである。
光検出手段Cは、出射用ファイバ20、出射用レンズ2
1、分光器22、光電子増倍管23、増幅器24及びコ
ンピュータ25からなる。上記したように構成された測
定装置においては、光源1から発射された白色光がレン
ズ2、光チョッパ3及びレンズ4を介して光ファイバ5
に導入される。導入された光は光ファイバ5を通り集光
レンズ6で集光された後、直線偏光子7を介してP偏光
の光に偏光されて適当な角度でスラブ型導波路B内に入
射される。導波路B内に入射された光は、導波路B内で
全反射を繰り返した後、導波路Bから出射する。この導
波路B内を通過する過程において、P偏光の光が金属薄
膜層11で反射する時に表面プラズモン共鳴現象が生じ
る。導波路Bから出射した光は、出射用レンズ21を介
して出射用ファイバ20に導入され、この光ファイバ2
0によって分光器22に送られ、分光器22によって分
光された後、光電子増倍管21及び増幅器22を介して
コンピュータ25に入力される。コンピュータ25では
入力データに基づいて、白色光のスペクトル変化を検出
し、このスペクトル変化に基づいて、金属薄膜層11上
にのせられた試料の屈折率を算出する。
FIG. 1 is a schematic diagram showing the construction of an embodiment of the surface plasmon resonance measuring apparatus according to the present invention. As shown in the drawing, this measuring device includes a light source means A, a slab type waveguide B, and a light detecting means C. Light source means A
From the light source 1 to the lens 2, the optical chopper 3, the lens 4,
White light is configured to enter the slab-type waveguide through the incident optical fiber 5 and the condenser lens 6. In this embodiment, the optical fiber 5 has a core diameter of 40.
The one with 0 μm was used. As shown in FIG. 2, the slab type waveguide B includes a metal thin film layer 1 on a transparent substrate 10 having a trapezoidal cross section.
1 is formed. In this embodiment, the substrate 10 has a length of 6
A quartz glass plate 5 mm wide and 20 mm wide with a thickness of 0.2
What was polished to mm was used. The light incident surface and the light emitting surface of the substrate 10 were inclined at an angle of 60 ° as shown in FIG. Inclining the light incident surface in this way makes it easier to control the incident angle of light and eliminates the need to separately provide a prism or the like. In addition, the metal thin film layer 11
Is made of gold and is provided on the substrate 10 with titanium 12 interposed therebetween. In this embodiment, the thickness of titanium 12 is 3
The thickness of the metal thin film layer 11 is 50 nm.
The light detecting means C includes an emitting fiber 20 and an emitting lens 2.
1, a spectroscope 22, a photomultiplier tube 23, an amplifier 24 and a computer 25. In the measuring device configured as described above, the white light emitted from the light source 1 passes through the lens 2, the optical chopper 3, and the lens 4 and the optical fiber 5
Will be introduced to. The introduced light passes through the optical fiber 5, is condensed by the condenser lens 6, is then polarized into P-polarized light via the linear polarizer 7, and is incident on the slab type waveguide B at an appropriate angle. . The light entered into the waveguide B repeats total reflection in the waveguide B, and then exits from the waveguide B. In the process of passing through the waveguide B, the surface plasmon resonance phenomenon occurs when the P-polarized light is reflected by the metal thin film layer 11. The light emitted from the waveguide B is introduced into the emitting fiber 20 via the emitting lens 21, and the optical fiber 2
It is sent to the spectroscope 22 by 0, and after being spectroscopically separated by the spectroscope 22, it is inputted to the computer 25 via the photomultiplier tube 21 and the amplifier 22. The computer 25 detects the spectral change of white light based on the input data, and calculates the refractive index of the sample placed on the metal thin film layer 11 based on this spectral change.

【0007】図3〜図5に、上記したように構成された
測定装置を用いて、水の屈折率を測定した実験結果を示
す。図3は、金属薄膜層11の幅dを1.0mmとし、
入射光の入射面に対する角度を1°単位で7°〜16°
まで振った実験結果であり、図4は、金属薄膜層11の
幅dを1.5mmとし、入射光の入射面に対する角度を
1°単位で4°〜17°まで振った実験結果であり、図
5は、金属薄膜層11の幅dを2.0mmとし、入射光
の入射面に対する角度を1°単位で3°〜16°まで振
った実験結果である。図3〜図5に示すように、各実験
共、表面プラズモン共鳴現象による反射率の谷間が顕著
に表れ、これにより金属薄膜層11上にのせた試料の屈
折率が測定できることが分かる。
FIGS. 3 to 5 show experimental results of measuring the refractive index of water using the measuring device having the above-mentioned structure. In FIG. 3, the width d of the metal thin film layer 11 is 1.0 mm,
The angle of incident light with respect to the incident surface is 7 ° to 16 ° in units of 1 °
FIG. 4 shows the experimental results when the width d of the metal thin film layer 11 was set to 1.5 mm and the angle of the incident light with respect to the incident surface was swung from 4 ° to 17 ° in units of 1 °. FIG. 5 is an experimental result in which the width d of the metal thin film layer 11 is set to 2.0 mm and the angle of incident light with respect to the incident surface is swung from 3 ° to 16 ° in 1 ° units. As shown in FIG. 3 to FIG. 5, in each experiment, the valley of the reflectance due to the surface plasmon resonance phenomenon appears remarkably, and it can be seen that the refractive index of the sample placed on the metal thin film layer 11 can be measured.

【0008】以上説明した実施例では、測定装置を表面
プラズモン共鳴測定用として用いた例を示しているが、
図1に示す構成を備えた測定装置であれば、スラブ型導
波路Bを、図6に示す構造のものに取り替えるだけで、
光吸収スペクトルを測定することが可能である。図6に
示すスラブ型導波路は、基板30上に帯状に試料31を
載せた部分と、試料を載せていない参照部分32とを備
え、試料31を載せた部分と載せていない参照部分32
を比較することで試料の光吸収スペクトルがコンピュー
タ25で算出できる。また、スラブ型導波路を、図7に
示すように構成すれば、一枚のスラブ型導波路で、表面
プラズモン共鳴測定と光吸収スペクトル測定の両方を行
うことができる。図7に示すスラブ型導波路は、基板4
0上に、金属薄膜層を形成した表面プラズモン共鳴測定
部分41と、金属薄膜層を備えていない光吸収スペクト
ル測定部分42とを備えているので、スラブ型導波路を
幅方向に移動可能に構成するか、又は、光源手段A及び
光検出手段Cを導波路の幅方向に移動可能に構成するだ
けで、表面プラズモン共鳴測定と光吸収スペクトル測定
の両方を行うことが可能になる。
In the embodiment described above, an example in which the measuring device is used for measuring surface plasmon resonance is shown.
With the measuring device having the configuration shown in FIG. 1, the slab type waveguide B is simply replaced with the one having the structure shown in FIG.
It is possible to measure the light absorption spectrum. The slab-type waveguide shown in FIG. 6 includes a portion on which a sample 31 is mounted in a strip shape on a substrate 30, and a reference portion 32 on which the sample is not mounted, and a portion on which the sample 31 is mounted and a reference portion 32 on which the sample 31 is not mounted.
The computer 25 can calculate the light absorption spectrum of the sample by comparing Further, if the slab type waveguide is configured as shown in FIG. 7, both the surface plasmon resonance measurement and the optical absorption spectrum measurement can be performed with one slab type waveguide. The slab type waveguide shown in FIG.
0 is provided with a surface plasmon resonance measurement portion 41 having a metal thin film layer formed thereon and an optical absorption spectrum measurement portion 42 having no metal thin film layer, so that the slab waveguide can be moved in the width direction. Alternatively, it is possible to perform both the surface plasmon resonance measurement and the optical absorption spectrum measurement only by configuring the light source means A and the light detection means C to be movable in the width direction of the waveguide.

【0009】スラブ型導波路の寸法及び金属薄膜層の寸
法は、本実施例に限定されることなく、好ましくは、以
下の寸法範囲から任意に選択され得る。 スラブ型導波路 幅 :3mm〜200mm 厚み:0.01mm〜10mm 金属薄膜層 厚さ:20nm〜80nm 幅 :0.01mm〜10mm
The size of the slab type waveguide and the size of the metal thin film layer are not limited to those in this embodiment, but preferably, they can be arbitrarily selected from the following size ranges. Slab type waveguide width: 3 mm to 200 mm Thickness: 0.01 mm to 10 mm Metal thin film layer thickness: 20 nm to 80 nm Width: 0.01 mm to 10 mm

【0010】[0010]

【発明の効果】以上説明したように、本発明に係る表面
プラズモン共鳴測定装置は、金属薄膜が形成されたスラ
ブ型の透明な基板からなるスラブ型導波路と、前記スラ
ブ型導波路に光ファイバを介して白色光を導入するよう
に構成された光源手段と、前記スラブ型導波路内を伝搬
した後、該スラブ型導波路から出射する光を検出し分析
する光検出手段とを備え、前記金属薄膜上に試料を配置
し、前記光源手段を用いてスラブ型導波路内に白色光を
入射してスラブ型導波路を伝搬させ、試料が配置された
金属薄膜において表面プラズモン現象を生じさせ、前記
光検出手段を用いて該スラブ型導波路から出射した光か
ら表面プラズモン現象による白色光のスペクトル変化を
検出し、該検出結果から試料の屈折率を測定するように
構成しているので、単にスラブ型導波路を金属薄膜層が
ないものに変更するだけで、光吸収スペクトル測定を行
うことが可能になるので、従来のように表面プラズモン
測定専用の装置を組み立てる必要がなくなり、測定装置
を多目的に利用することが可能になるという効果を奏す
る。また、本発明に係る表面プラズモン共鳴及び光吸収
スペクトル測定装置は、スラブ型導波路を着脱可能に取
り付けできる測定部と、前記スラブ型導波路に光ファイ
バを介して白色光を導入するように構成された光源手段
と、前記スラブ型導波路内を伝搬した後、該スラブ型導
波路から出射する光を検出し分析する光検出手段とを備
え、前記測定部に、金属薄膜層を備え、該金属薄膜上に
試料を配置できるように構成されたスラブ型の透明な基
板からなる表面プラズモン共鳴測定用スラブ型導波路
と、金属薄膜層を備えてなく、その上に直接試料を配置
できるように構成されたスラブ型の透明な基板からなる
光吸収スペクトル測定用スラブ型導波路とを交換可能に
配置できるように構成しているので、実際に、一つの装
置で表面プラズモン共鳴と光吸収スペクトルの両方を測
定することが可能になるという効果を奏する。さらに、
本発明に係る別の表面プラズモン共鳴及び光吸収スペク
トル測定装置は、スラブ型導波路を配置できる測定部
と、前記スラブ型導波路に光ファイバを介して白色光を
導入するように構成された光源手段と、前記スラブ型導
波路内を伝搬した後、該スラブ型導波路から出射する光
を検出し分析する光検出手段とを備え、前記測定部に、
金属薄膜層を備え、該金属薄膜上に試料を配置できるよ
うに構成された表面プラズモン共鳴測定部分と、金属薄
膜層を備えてなく、その上に直接試料を配置できるよう
に構成された光吸収スペクトル測定部分とを有するスラ
ブ型の透明な基板からなるスラブ型導波路を設け、光が
スラブ型導波路内で表面プラズモン共鳴測定部分又は光
吸収スペクトル測定部の何れか一方を選択的に通過でき
るように測定部及び/又は光源手段を移動可能に構成し
ているので、基板の取り替え作業の必要なしに表面プラ
ズモン共鳴と光吸収スペクトルの測定を行うことが可能
になり、完全に同じ条件下で同一の試料についての表面
プラズモン共鳴及び光吸収スペクトルの測定を行うこと
が可能になるという効果を奏する。
As described above, the surface plasmon resonance measuring apparatus according to the present invention comprises a slab type waveguide made of a slab type transparent substrate on which a metal thin film is formed, and an optical fiber for the slab type waveguide. A light source means configured to introduce white light through, and a light detection means for detecting and analyzing light emitted from the slab-type waveguide after propagating in the slab-type waveguide, A sample is placed on the metal thin film, white light is made to enter the slab type waveguide using the light source means to propagate the slab type waveguide, and a surface plasmon phenomenon is generated in the metal thin film on which the sample is placed, Since it is configured to detect the spectral change of white light due to the surface plasmon phenomenon from the light emitted from the slab type waveguide using the light detection means, and to measure the refractive index of the sample from the detection result. By simply changing the slab type waveguide to one without a metal thin film layer, it becomes possible to measure the optical absorption spectrum, so there is no need to assemble a device dedicated to surface plasmon measurement as in the past, and the measuring device can be used. This has the effect that it can be used for multiple purposes. Further, the surface plasmon resonance and optical absorption spectrum measuring apparatus according to the present invention is configured to introduce a white light into the slab type waveguide through an optical fiber, and a measuring section to which the slab type waveguide can be detachably attached. The light source means and the light detecting means for detecting and analyzing the light emitted from the slab-type waveguide after propagating in the slab-type waveguide, and the measuring unit having a metal thin film layer, A slab waveguide for surface plasmon resonance measurement consisting of a slab-type transparent substrate configured so that a sample can be placed on a metal thin film, and a sample can be placed directly on the metal slab waveguide without a metal thin film layer. Since the slab waveguide for optical absorption spectrum measurement composed of the configured slab-type transparent substrate is arranged so as to be interchangeable, the surface plasmon resonance is actually used by one device. An effect that it is possible to measure both the optical absorption spectrum. further,
Another surface plasmon resonance and optical absorption spectrum measuring apparatus according to the present invention is a light source configured to introduce a white light into the slab type waveguide through an optical fiber, and a measuring section in which the slab type waveguide can be arranged. Means and, after propagating in the slab type waveguide, comprising a light detection means for detecting and analyzing the light emitted from the slab type waveguide, in the measurement unit,
A surface plasmon resonance measurement part provided with a metal thin film layer so that a sample can be placed on the metal thin film, and an optical absorption device provided without a metal thin film layer so that the sample can be placed directly thereon. Providing a slab type waveguide consisting of a slab type transparent substrate having a spectrum measurement part, and light can selectively pass through either the surface plasmon resonance measurement part or the optical absorption spectrum measurement part in the slab type waveguide. As described above, since the measuring unit and / or the light source means is movable, it becomes possible to measure the surface plasmon resonance and the optical absorption spectrum without the need to replace the substrate, and under the completely same conditions. It is possible to measure the surface plasmon resonance and the optical absorption spectrum of the same sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る表面プラズモン共鳴測定装置の
一実施例の公正を示す模式図
FIG. 1 is a schematic diagram showing fairness of an embodiment of a surface plasmon resonance measuring apparatus according to the present invention.

【図2】 スラブ型導波路の概略斜視図FIG. 2 is a schematic perspective view of a slab type waveguide.

【図3】 金属薄膜層11の幅dを1.0mmとして水
を測定した結果を示すグラフ
FIG. 3 is a graph showing the results of measuring water with the width d of the metal thin film layer 11 being 1.0 mm.

【図4】 金属薄膜層11の幅dを1.5mmとして水
を測定した結果を示すグラフ
FIG. 4 is a graph showing the results of measuring water with the width d of the metal thin film layer 11 being 1.5 mm.

【図5】 金属薄膜層11の幅dを2.0mmとして水
を測定した結果を示すグラフ
FIG. 5 is a graph showing the results of measuring water with the width d of the metal thin film layer 11 being 2.0 mm.

【図6】 光吸収スペクトル測定用のスラブ型導波路の
概略斜視図
FIG. 6 is a schematic perspective view of a slab type waveguide for measuring an optical absorption spectrum.

【図7】 スラブ型導波路の別の実施例の概略斜視図FIG. 7 is a schematic perspective view of another embodiment of the slab type waveguide.

【符号の説明】[Explanation of symbols]

A 光源手段 1 光源 2 レンズ 3 光チョッパー 4 レンズ 5 入射用光ファイバ 6 集光レンズ B スラブ型導波路 10 基板 11 金属薄膜層 12 チタン層 C 光検出手段 20 出射用ファイバ 21 出射用レンズ 22 分光器 23 光電子増倍管 24 増幅器 25 コンピュータ 30 基板 31 試料 32 参照部分 40 基板 41 表面プラズモン共鳴測定部分 42 光吸収スペクトル測定部分 A light source means 1 light source 2 lens 3 optical chopper 4 lenses 5 Incident optical fiber 6 Condensing lens B Slab type waveguide 10 substrates 11 Metal thin film layer 12 Titanium layer C light detection means 20 Output fiber 21 Output lens 22 Spectrometer 23 Photomultiplier tube 24 amplifier 25 computer 30 substrates 31 samples 32 reference parts 40 substrates 41 Surface plasmon resonance measurement part 42 Optical absorption spectrum measurement part

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000102739 エヌ・ティ・ティ・アドバンステクノロジ 株式会社 東京都新宿区西新宿二丁目1番1号 (72)発明者 鈴木 孝治 神奈川県川崎市幸区小倉1−1−A705 (72)発明者 栗原 一嘉 神奈川県川崎市中原区井田杉山町4−1− 305 クレールメゾン大瀬戸 (72)発明者 高橋 浩三 東京都小金井市前原町三丁目27番地13号 (72)発明者 加藤 健次 千葉県我孫子市つくし野五丁目16番2号 (72)発明者 飛田 達也 東京都新宿区西新宿二丁目1番1号 エ ヌ・ティ・ティ・アドバンステクノロジ株 式会社内 (72)発明者 田部井 久男 東京都新宿区西新宿二丁目1番1号 エ ヌ・ティ・ティ・アドバンステクノロジ株 式会社内 Fターム(参考) 2G059 AA02 EE02 EE05 EE12 GG04 GG10 JJ01 JJ11 JJ17 JJ19 JJ24 KK01    ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 000102739             NTT Advanced Technology             Corporation             2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo (72) Inventor Koji Suzuki             1-1-705 Kokura, Saiwai-ku, Kawasaki-shi, Kanagawa (72) Inventor Kazuyoshi Kurihara             4-1 Idasugiyama-cho, Nakahara-ku, Kawasaki-shi, Kanagawa             305 Claire Maison Oseto (72) Inventor Kozo Takahashi             3-27 Maebaru-cho, Koganei-shi, Tokyo 13-27 (72) Inventor Kenji Kato             5-16 Tsukushino, Abiko City, Chiba Prefecture (72) Inventor Tatsuya Tobita             2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo             Nutty Advance Technology Co., Ltd.             Inside the company (72) Inventor Hisao Tabei             2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo             Nutty Advance Technology Co., Ltd.             Inside the company F-term (reference) 2G059 AA02 EE02 EE05 EE12 GG04                       GG10 JJ01 JJ11 JJ17 JJ19                       JJ24 KK01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】金属薄膜が形成されたスラブ型の透明な基
板からなるスラブ型導波路と、 前記スラブ型導波路に光ファイバを介して白色光を導入
するように構成された光源手段と、 前記スラブ型導波路内を伝搬した後、該スラブ型導波路
から出射する光を検出し分析する光検出手段とを備え、 前記金属薄膜上に試料を配置し、 前記光源手段を用いてスラブ型導波路内に白色光を入射
してスラブ型導波路を伝搬させ、 試料が配置された金属薄膜において表面プラズモン現象
を生じさせ、 前記光検出手段を用いて該スラブ型導波路から出射した
光から表面プラズモン現象による白色光のスペクトル変
化を検出し、 該検出結果から試料の屈折率を測定するように構成した
ことを特徴とする表面プラズモン共鳴測定装置。
1. A slab type waveguide formed of a slab type transparent substrate on which a metal thin film is formed, and a light source means configured to introduce white light into the slab type waveguide through an optical fiber, A light detecting means for detecting and analyzing light emitted from the slab-type waveguide after propagating in the slab-type waveguide, placing a sample on the metal thin film, and using the light source means to form the slab-type waveguide. White light is made to enter the waveguide and propagated in the slab type waveguide to cause a surface plasmon phenomenon in the metal thin film on which the sample is placed, and the light emitted from the slab type waveguide is used by the light detecting means. A surface plasmon resonance measuring apparatus, characterized in that a spectral change of white light due to a surface plasmon phenomenon is detected, and the refractive index of a sample is measured from the detection result.
【請求項2】スラブ型導波路の光入射面及び光出射面を
斜めに傾斜させたことを特徴とする請求項1に記載の表
面プラズモン共鳴測定装置。
2. The surface plasmon resonance measuring device according to claim 1, wherein the light incident surface and the light emitting surface of the slab type waveguide are inclined.
【請求項3】前記光入射面及び光出射面の傾斜角度が6
0°であることを特徴とする請求項2に記載の表面プラ
ズモン共鳴測定装置。
3. The inclination angle of the light incident surface and the light emitting surface is 6
It is 0 degree, The surface plasmon resonance measuring apparatus of Claim 2 characterized by the above-mentioned.
【請求項4】スラブ型導波路を着脱可能に取り付けでき
る測定部と、 前記スラブ型導波路に光ファイバを介して白色光を導入
するように構成された光源手段と、 前記スラブ型導波路内を伝搬した後、該スラブ型導波路
から出射する光を検出し分析する光検出手段とを備え、 前記測定部に、 金属薄膜層を備え、該金属薄膜上に試料を配置できるよ
うに構成されたスラブ型の透明な基板からなる表面プラ
ズモン共鳴測定用スラブ型導波路と、 金属薄膜層を備えてなく、その上に直接試料を配置でき
るように構成されたスラブ型の透明な基板からなる光吸
収スペクトル測定用スラブ型導波路とを交換可能に配置
できるように構成したことを特徴とする表面プラズモン
共鳴及び光吸収スペクトル測定装置。
4. A measuring section to which a slab type waveguide can be detachably attached, a light source means configured to introduce white light into the slab type waveguide through an optical fiber, and the inside of the slab type waveguide. And a light detection means for detecting and analyzing the light emitted from the slab-type waveguide after propagating, and the measuring unit is provided with a metal thin film layer, and a sample can be arranged on the metal thin film. A slab-type waveguide for surface plasmon resonance measurement consisting of a transparent slab-type substrate, and a light consisting of a slab-type transparent substrate that does not have a metal thin film layer and can be placed directly on it. An apparatus for measuring surface plasmon resonance and optical absorption spectrum, characterized in that it can be arranged so as to be exchangeable with a slab type waveguide for absorption spectrum measurement.
【請求項5】スラブ型導波路を配置できる測定部と、 前記スラブ型導波路に光ファイバを介して白色光を導入
するように構成された光源手段と、 前記スラブ型導波路内を伝搬した後、該スラブ型導波路
から出射する光を検出し分析する光検出手段とを備え、 前記測定部に、 金属薄膜層を備え、該金属薄膜上に試料を配置できるよ
うに構成された表面プラズモン共鳴測定部分と、 金属薄膜層を備えてなく、その上に直接試料を配置でき
るように構成された光吸収スペクトル測定部分とを有す
るスラブ型の透明な基板からなるスラブ型導波路を設
け、 光がスラブ型導波路内で表面プラズモン共鳴測定部分又
は光吸収スペクトル測定部の何れか一方を選択的に通過
できるように測定部及び/又は光源手段を移動可能に構
成したことを特徴とする表面プラズモン共鳴及び光吸収
スペクトル測定装置。
5. A measuring unit in which a slab type waveguide can be arranged, a light source means configured to introduce white light into the slab type waveguide through an optical fiber, and a light source propagated in the slab type waveguide. After that, a surface plasmon having a light detecting means for detecting and analyzing light emitted from the slab type waveguide, a metal thin film layer being provided in the measuring section, and a sample being arranged on the metal thin film. A slab-type waveguide comprising a transparent slab-type substrate having a resonance measurement part and an optical absorption spectrum measurement part having no metal thin film layer and configured so that a sample can be directly placed thereon is provided. Is movable in the slab type waveguide so that either the surface plasmon resonance measuring portion or the optical absorption spectrum measuring portion can selectively pass therethrough. Surface plasmon resonance and optical absorption spectrum measuring device.
JP2002014701A 2002-01-23 2002-01-23 Surface plasmon resonance and optical absorption spectrum measuring device Expired - Fee Related JP3850730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002014701A JP3850730B2 (en) 2002-01-23 2002-01-23 Surface plasmon resonance and optical absorption spectrum measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002014701A JP3850730B2 (en) 2002-01-23 2002-01-23 Surface plasmon resonance and optical absorption spectrum measuring device

Publications (2)

Publication Number Publication Date
JP2003215029A true JP2003215029A (en) 2003-07-30
JP3850730B2 JP3850730B2 (en) 2006-11-29

Family

ID=27651308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014701A Expired - Fee Related JP3850730B2 (en) 2002-01-23 2002-01-23 Surface plasmon resonance and optical absorption spectrum measuring device

Country Status (1)

Country Link
JP (1) JP3850730B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783361B1 (en) 2006-09-29 2007-12-07 한국전자통신연구원 Optical wiring module
KR100877710B1 (en) 2007-03-14 2009-01-09 한양대학교 산학협력단 Surface plasmon optical waveguides having double metal layers
US7501289B2 (en) 2003-12-25 2009-03-10 Fujifilm Corporation Biosensor
WO2011147879A1 (en) 2010-05-27 2011-12-01 Episentec Ab Improved method of sensor measurement
WO2013075979A1 (en) 2011-11-22 2013-05-30 Episentec Ab Method for sensor calibration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161041A (en) * 1986-01-10 1987-07-17 Hitachi Ltd Method for measuring total reflection infrared spectrum
JPH06265336A (en) * 1993-03-15 1994-09-20 Olympus Optical Co Ltd Measuring apparatus utilizing surface plasmon resonance
JP2000019100A (en) * 1998-07-06 2000-01-21 Suzuki Motor Corp Spr sensor cell and immunoreaction-measuring device using the same
JP2001074647A (en) * 1999-09-07 2001-03-23 Suzuki Motor Corp Sensor plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161041A (en) * 1986-01-10 1987-07-17 Hitachi Ltd Method for measuring total reflection infrared spectrum
JPH06265336A (en) * 1993-03-15 1994-09-20 Olympus Optical Co Ltd Measuring apparatus utilizing surface plasmon resonance
JP2000019100A (en) * 1998-07-06 2000-01-21 Suzuki Motor Corp Spr sensor cell and immunoreaction-measuring device using the same
JP2001074647A (en) * 1999-09-07 2001-03-23 Suzuki Motor Corp Sensor plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501289B2 (en) 2003-12-25 2009-03-10 Fujifilm Corporation Biosensor
KR100783361B1 (en) 2006-09-29 2007-12-07 한국전자통신연구원 Optical wiring module
WO2008038921A1 (en) * 2006-09-29 2008-04-03 Electronics And Telecommunications Research Institute Optical wiring module
US8139906B2 (en) 2006-09-29 2012-03-20 Electronics And Telecommunications Research Institute Optical wiring module
KR100877710B1 (en) 2007-03-14 2009-01-09 한양대학교 산학협력단 Surface plasmon optical waveguides having double metal layers
WO2011147879A1 (en) 2010-05-27 2011-12-01 Episentec Ab Improved method of sensor measurement
WO2013075979A1 (en) 2011-11-22 2013-05-30 Episentec Ab Method for sensor calibration

Also Published As

Publication number Publication date
JP3850730B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
US5415842A (en) Surface plasmon resonance analytical device
Jory et al. Development of a prototype gas sensor using surface plasmon resonance on gratings
US6320991B1 (en) Optical sensor having dielectric film stack
US6100991A (en) Near normal incidence optical assaying method and system having wavelength and angle sensitivity
US7197198B2 (en) Biosensor substrate structure for reducing the effects of optical interference
JP3159763U (en) Surface plasmon resonance fiber sensor
US6421128B1 (en) Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties in the ultraviolet and infrared special ranges
US5925878A (en) Diffraction anomaly sensor having grating coated with protective dielectric layer
JP3786073B2 (en) Biochemical sensor kit and measuring device
US6330387B1 (en) Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties in the ultraviolet and infrared spectral ranges
JP2001255267A (en) Two-dimensional imaging surface plasmon resonance measuring device and measuring method
JP3947685B2 (en) Apparatus for surface plasmon resonance and fluorescence polarization measurement
JP2807777B2 (en) Optical absorption spectrum measuring device using slab optical waveguide
JP2003215029A (en) Apparatus for measuring surface plasmon resonance, and apparatus for measuring surface plasmon resonance and optical absorption spectrum
Nyamekye et al. Experimental analysis of waveguide-coupled surface-plasmon-polariton cone properties
US11656177B2 (en) Optical nanostructure sensing device and image analysis method
JP2004163257A (en) Method for guiding light to optical waveguide and optical waveguide spectrometric apparatus using the same
Zeller et al. Single-pad scheme for integrated optical fluorescence sensing
JPH06281568A (en) Analyzer for liquid component
JP2004028660A (en) Fluid component measurement apparatus using surface plasmon resonance chemical sensor
JP4367263B2 (en) Diffusion measuring device
JP2002286632A (en) Method for optically evaluating sample to be measured and device therefor
TW202006324A (en) Sensing apparatus
JP2003322616A (en) Refractive index measurement method and refractive index measurement apparatus using the same
JP2006258641A (en) Optical measuring method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees