JP2003214982A - Light receiving device inspection device, its adjusting method, and noise measuring method using it - Google Patents

Light receiving device inspection device, its adjusting method, and noise measuring method using it

Info

Publication number
JP2003214982A
JP2003214982A JP2002016568A JP2002016568A JP2003214982A JP 2003214982 A JP2003214982 A JP 2003214982A JP 2002016568 A JP2002016568 A JP 2002016568A JP 2002016568 A JP2002016568 A JP 2002016568A JP 2003214982 A JP2003214982 A JP 2003214982A
Authority
JP
Japan
Prior art keywords
light
receiving device
light receiving
distance
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002016568A
Other languages
Japanese (ja)
Inventor
Masumi Daiho
真澄 大保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002016568A priority Critical patent/JP2003214982A/en
Publication of JP2003214982A publication Critical patent/JP2003214982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light receiving device inspection device capable of providing a product at a low cost, an adjustment method of the same, and a noise measuring method using the same by easily forming a precise light source intensity in the product inspection process of a light receiving device to improve calibration level in the inspection process, thereby improving the yield, and also providing a means capable of easily confirming electromagnetic noise resistance level. <P>SOLUTION: This light receiving device inspection device is a device for inspecting whether the light receiving distance of the light receiving device arranged opposite to measuring light sources 11 and 12 for repeatedly outputting pulse wave light of a prescribed period with a fixed space is a prescribed distance or more. This device comprises a judgment means for measuring the pulse width of the measuring light sources 11 and 12 received by the light receiving device and judging whether the pulse width is a set value or more or not. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、受信距離特性を測
定可能な受光デバイスの検査装置の調整方法、受光デバ
イスの検査装置、および受光デバイスの検査装置を用い
たノイズ測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adjusting an inspection device for a light receiving device capable of measuring a reception distance characteristic, an inspection device for a light receiving device, and a noise measuring method using the inspection device for the light receiving device.

【0002】[0002]

【従来の技術】従来、信号光を受光し、出力波形を出す
デバイスは、TV、VTR、オーディオなどの遠隔操作
を行う装置の受光側に多用されており、リモコン受光ユ
ニット、リモコンホトIC、リモコンセンサ、リモコン
受光素子等の名称で広く用いられている。
2. Description of the Related Art Conventionally, a device which receives signal light and outputs an output waveform has been widely used on the light receiving side of a remote control device such as a TV, a VTR, an audio system, and a remote control light receiving unit, remote control photo IC, remote control. It is widely used as the name of sensor, remote control light receiving element, etc.

【0003】これらのデバイスの特徴としては、一般に
端子はVcc(電源電圧)、Vo(出力端子)、GND
の3端子出力であり、VoはTTL出力であるため、後
段のIC回路への結合が容易であることが挙げられる。
As a characteristic of these devices, terminals are generally Vcc (power supply voltage), Vo (output terminal), GND.
Since it is a 3-terminal output and Vo is a TTL output, it can be easily coupled to the IC circuit in the subsequent stage.

【0004】近年では、携帯電話へのIrDA(赤外線
データ通信規格)方式の赤外線受発光素子も使用される
ようになってきており、受光デバイスとしての利用分野
が拡大してきている。
In recent years, an infrared ray receiving / emitting element of the IrDA (infrared data communication standard) system for a mobile phone has come to be used, and its application field as a light receiving device is expanding.

【0005】これらの受光デバイスを使用する上で最も
重要な特性としては、受信距離特性があり、送信側と受
光デバイス間の通信可能な距離範囲が重要になる。
The most important characteristic in using these light receiving devices is the reception distance characteristic, and the distance range in which communication is possible between the transmitting side and the light receiving device is important.

【0006】受信距離特性は、送信側の発光強度と密接
な関係があり、発光強度が強いデバイスや電流値を大き
くすることにより、受信デバイスへの信号光も強くな
り、最大受信距離は伸びることになるが、評価、検査と
しては条件を一定にするために標準光源を作成して標準
光源発光強度を規定している。
The reception distance characteristic is closely related to the light emission intensity on the transmitting side, and by increasing the device having a high light emission intensity or the current value, the signal light to the receiving device also becomes strong and the maximum reception distance is extended. However, for evaluation and inspection, a standard light source is created and the emission intensity of the standard light source is specified in order to keep the conditions constant.

【0007】以下、リモコンの受光距離の検査方法につ
いて例を述べる。
An example of a method for inspecting the light receiving distance of the remote controller will be described below.

【0008】標準光源の作成方法としては、図7に示す
ように、20cm程度の一定の距離で、標準受信機の基
準PD(ホトダイオード)等を用いて信号光に対するP
Dのピーク電圧値で規定化している。例えば、PDの出
力値が50mVp−pになるように標準光源側の出力を
調整することにより発光強度を規定している。
As a method for producing a standard light source, as shown in FIG. 7, P for signal light is used at a constant distance of about 20 cm by using a reference PD (photodiode) of a standard receiver.
It is specified by the peak voltage value of D. For example, the emission intensity is regulated by adjusting the output on the standard light source side so that the output value of the PD becomes 50 mVp-p.

【0009】リモコン受光デバイスにおいての検査で
は、上記受信距離特性が重要になり、検査の中では最大
受信距離(8〜20m)、中間距離(3〜7m)、近距
離特性(10〜20cm)についてそれぞれ検査してい
る。さらに使用形態別に必要な最大受信距離別へのラン
ク分類も実施されている。例えば、20m以上、15m
以上、10m以上の受光デバイスへ分類している。
In the inspection using the remote control light receiving device, the above-mentioned reception distance characteristics are important. Regarding the maximum reception distance (8 to 20 m), intermediate distance (3 to 7 m), and short distance characteristics (10 to 20 cm) in the inspection. We are inspecting each. Furthermore, rank classification according to the maximum reception distance required for each type of usage is also implemented. For example, 20m or more, 15m
As described above, the light receiving devices of 10 m or more are classified.

【0010】リモコン受信距離別の検査器光源側の強度
は、標準光源を基準に考えて実際に距離を離して受光デ
バイスを評価し、受信距離が20mのサンプル、15m
のサンプル、10mのサンプルを選び出し、そのサンプ
ルを検査器にセットし、サンプルが良品となるように光
源パワーを調整し、検査している。また検査したい距離
サンプルが得られない場合には、受光デバイスのレンズ
面を一部削除したサンプルを作成し、検査器光源強度を
決定している。よって、距離別ごとの受信サンプル作成
が必要になっている。
The intensity on the light source side of the inspector for each remote control reception distance is evaluated by observing the light receiving device with the standard light source as a reference, and the light receiving device is evaluated at a reception distance of 20 m for a sample of 15 m.
Samples of 10 m are selected, set in an inspector, and the light source power is adjusted so that the samples are non-defective and inspected. When the distance sample to be inspected cannot be obtained, a sample in which the lens surface of the light receiving device is partially deleted is created to determine the light source intensity of the inspector. Therefore, it is necessary to create reception samples for each distance.

【0011】さらにリモコンは送信波形に副搬送波を変
調させており、ユーザや使用セットによりこの副搬送波
が異なるため、受光ユニットには副搬送波に対応した中
心周波数を一致させたB.P.F(バンドパスフィル
タ)を内蔵させている。このため、検査受信距離が異な
り中心周波数が異なる品種には、その都度距離サンプル
が必要になる。
Further, the remote controller modulates the sub-carrier in the transmission waveform, and the sub-carrier is different depending on the user and the set used. Therefore, in the light receiving unit, the center frequency corresponding to the sub-carrier is matched. P. It has a built-in F (band pass filter). Therefore, a range sample is required for each type of product having different inspection reception distances and different center frequencies.

【0012】また、送信側の発光強度だけではなく、送
信側のフォーマットの違いや基準信号パルス幅値の相
違、受信側マイコンの読み込みパルス幅値の基準の違い
により、最大受信距離は大きく異なる。
Further, not only the emission intensity on the transmitting side, but also the maximum receiving distance greatly differs due to the difference in the format of the transmitting side, the difference in the reference signal pulse width value, and the difference in the reference of the reading pulse width value of the receiving side microcomputer.

【0013】一方、受光デバイスは使用環境が例えばT
Vの場合、ブラウン管等のノイズ源の近くに設置される
ため、耐電磁ノイズ特性が高いことが要求される。耐電
磁ノイズ特性を上げるためには受光デバイスへの金属シ
ールドケース付加が実施されており、電磁ノイズレベル
が大きいセットに対しては、受光窓をメッシュにし、さ
らにデバイス裏面も金属で覆っているタイプもある。金
属ケースには一般にセット側への位置決めピンも具備さ
れるため、金属ケースの種類は多種多様になる。したが
って、形の異なる多種多様の金属ケース別の自動化検査
は非常に困難であり、特性検査としては、金属ケース付
加前に実施するのが一般的である。このことにより、金
属ケース付加前の受光デバイスは、一般には耐電磁ノイ
ズ特性が低く、検査環境の電磁ノイズレベルが大きいと
歩留まり低下を招くことになる。したがって、検査環境
のチェックは重要で、設備移動や周囲環境の変化が発生
した場合、歩留まり推移のチェックやEMC(電磁環境
両立性)評価に多大な労力をかけ、調査解析を実施して
いる。
On the other hand, the light receiving device has a use environment of, for example, T.
In the case of V, since it is installed near a noise source such as a cathode ray tube, high electromagnetic noise resistance is required. A metal shield case has been added to the light-receiving device to improve the electromagnetic noise resistance. For a set with a high electromagnetic noise level, the light-receiving window is meshed and the back side of the device is also covered with metal. There is also. Since the metal case is generally provided with a positioning pin on the set side, there are various kinds of metal cases. Therefore, it is very difficult to perform an automated inspection for various metal cases having different shapes, and it is common to perform the characteristic inspection before adding the metal case. As a result, the light-receiving device before the addition of the metal case generally has low electromagnetic noise resistance, and if the electromagnetic noise level of the inspection environment is large, the yield is reduced. Therefore, it is important to check the inspection environment, and when equipment movement or changes in the surrounding environment occur, a great deal of effort is put into checking yield transitions and EMC (electromagnetic environment compatibility) evaluation, and conducting survey analysis.

【0014】リモコン受光素子の動作距離範囲測定につ
いては、例えば、特開平11−51811号公報に示さ
れるように、複数個のリモコン発光素子を発光源から一
定の距離に配置し、発光源の光出力の設定値を制御して
送信することにより、リモコン受光素子の動作可能な設
定値範囲を確認し、予め実測により求めた上記設定値と
動作距離との相関特性による換算によって、リモコン受
光素子の動作距離範囲を求めるようにしたので、従来に
比べて測定系のスペースを格段に小さくすることがで
き、また、多数個のリモコン受光素子を並べて同時に測
定することが可能になるので、測定工数の低減に大きく
寄与できるとしている。測定方法においては、リモコン
受光素子と測定用発光源との間に光出力調整用のフィル
タを配置することで、実質的に光出力の設定値をより広
い範囲に変えることが示されている。
Regarding measurement of the operating distance range of the remote control light receiving element, a plurality of remote control light emitting elements are arranged at a fixed distance from the light emitting source as shown in, for example, Japanese Patent Laid-Open No. 11-51811, and the light of the light emitting source is emitted. By controlling and transmitting the output set value, the operable set value range of the remote control light receiving element is confirmed, and the remote control light receiving element of the remote control light receiving element is converted by conversion based on the correlation characteristics between the set value and the operating distance obtained by actual measurement in advance. Since the operating distance range is determined, the space for the measurement system can be made much smaller than before, and it is possible to measure multiple remote control light-receiving elements side by side, making it possible to reduce the number of measurement steps. It is said that it can greatly contribute to the reduction. In the measurement method, it is shown that the set value of the light output is substantially changed to a wider range by disposing the filter for adjusting the light output between the remote control light receiving element and the light emitting source for measurement.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、受光デ
バイスの検査では、受信距離特性検査やランク分類が必
要で実施しているが、歩留まりへの影響は多大である。
よって、ランク採れ率を上げるには、発光距離に相当す
る光の強度を正確に作り出す必要があるが、距離別のサ
ンプル作成には多大な時間がかかるという問題がある。
However, in the inspection of the light receiving device, the reception distance characteristic inspection and the rank classification are necessary, but the yield is greatly affected.
Therefore, in order to increase the rank collection rate, it is necessary to accurately generate the light intensity corresponding to the light emission distance, but there is a problem that it takes a lot of time to create a sample for each distance.

【0016】また、特開平11−51811号公報に開
示されている測定法では、送信側のフォーマットの違い
や基準信号パルス幅値の相違、受信側マイコンの読み込
みパルス幅値の基準の違いにより、最大受信距離や動作
距離範囲は大きく異なるため、フォーマット別、基準信
号パルス幅値別、受信側マイコンの読み込みパルス幅値
別の基準サンプルが必要になり、多大な労力を要する。
Further, in the measuring method disclosed in Japanese Patent Laid-Open No. 11-51811, due to the difference in the format of the transmitting side, the difference in the reference signal pulse width value, and the difference in the reference of the reading pulse width value of the receiving side microcomputer, Since the maximum receiving distance and the operating distance range are greatly different, reference samples for each format, each reference signal pulse width value, and each reading pulse width value of the receiving side microcomputer are required, which requires a great deal of labor.

【0017】これらの問題を解決するために、安価で正
確な光源強度を決定する受光デバイスの検査装置が求め
られている。
In order to solve these problems, there is a demand for an inexpensive inspection device for a light-receiving device that accurately determines the light source intensity.

【0018】一方、光源を単一のLEDで近距離から遠
距離相当の光源強度を作り出そうとすると、例えば標準
光源20m相当の光量を基準に作成すると近距離時での
LEDに流す電流を数十アンペアとしなければならない
ためLEDの劣化が憂慮され、安定した検査が実施でき
ない。また、フィルタを機械的に変更するとなると制御
系が複雑になり、フィルタ入れ替えの時間も必要となり
検査時間が長くなるという問題も発生する。そこで、近
距離から遠距離相当の光を自由に出力できる安定した光
源も求められている。
On the other hand, when it is attempted to generate a light source intensity from a short distance to a long distance by using a single LED as a light source, for example, if a light amount corresponding to a standard light source of 20 m is used as a reference, a current flowing through the LED at a short distance is several tens. Since it is necessary to use ampere, deterioration of the LED is a concern, and stable inspection cannot be performed. Further, if the filter is mechanically changed, the control system becomes complicated, the time for replacing the filter is required, and the inspection time becomes long. Therefore, there is also a demand for a stable light source that can freely output light corresponding to a short distance to a long distance.

【0019】また、検査環境も歩留まりに大きく影響す
るが、近年では製品サイクルの短命化により設備入れ替
え等も頻繁に発生して周囲環境が変化しやすくなってお
り、歩留まり推移のチェックやEMC(電磁環境両立
性)評価に多大な労力がかかるという問題もある。
Further, the inspection environment has a great influence on the yield, but in recent years, due to the shortening of the product cycle, equipment replacement and the like frequently occur, and the surrounding environment is apt to change. There is also a problem that a great deal of labor is required for evaluation of environmental compatibility.

【0020】そこで本発明は、受光デバイスの製品検査
工程において、正確な光源強度を容易に作り出し、検査
工程での校正レベルを向上させることにより歩留まりを
向上させ、併せて耐電磁ノイズレベル確認の容易な手段
を提供し、最終的には安価に製品を提供する受光デバイ
スの検査装置、その調整方法およびそれを用いたノイズ
測定方法を提供することを目的とする。
Therefore, according to the present invention, in the product inspection process of the light receiving device, an accurate light source intensity is easily created, and the yield is improved by improving the calibration level in the inspection process, and at the same time, it is easy to confirm the electromagnetic noise resistance level. It is an object of the present invention to provide an inspection device for a light-receiving device, an adjustment method therefor, and a noise measurement method using the same, which provide various means and finally provide a product at low cost.

【0021】[0021]

【課題を解決するための手段】本発明の受光デバイスの
検査装置においては、受光デバイスで標準光源から出力
されるパルス幅値を測定し、このパルス幅値から受光デ
バイスによる受光距離を算出するものである。この発明
によれば、測定用光源として距離別の複数のサンプルを
作成する必要がなくなり、単一の測定用光源で測定を行
うことができる受光デバイスの検査装置が得られる。
In an inspection device for a light receiving device of the present invention, a pulse width value output from a standard light source is measured by the light receiving device, and a light receiving distance by the light receiving device is calculated from this pulse width value. Is. According to the present invention, it is not necessary to prepare a plurality of samples for each distance as a measurement light source, and an inspection device for a light receiving device capable of performing measurement with a single measurement light source can be obtained.

【0022】また、本発明の受光デバイスの検査装置の
調整方法においては、予め測定した受信距離とパルス幅
値の関係に合わせて電流を調整し、所定のパルス幅値を
得るものである。この発明によれば、性能の異なる測定
用光源を簡単かつ迅速に調整できる。
Further, in the adjusting method of the inspection device for the light receiving device of the present invention, the current is adjusted in accordance with the relationship between the previously measured reception distance and the pulse width value to obtain a predetermined pulse width value. According to the present invention, it is possible to easily and quickly adjust the measurement light sources having different performances.

【0023】また、本発明の受光デバイスの検査装置に
おいては、複数の測定用光源のうち同時に出力する測定
用光源の数を変更して発光強度を変更する切換スイッチ
を備えたものである。この発明によれば、遠距離から近
距離にわたる詳細な光源出力及び調整が可能な受光デバ
イスの検査装置が得られる。
Further, the light-receiving device inspection apparatus of the present invention is provided with a changeover switch for changing the emission intensity by changing the number of measurement light sources to be simultaneously output among the plurality of measurement light sources. According to the present invention, it is possible to obtain a light receiving device inspection apparatus capable of performing detailed light source output and adjustment from a long distance to a short distance.

【0024】また、本発明の受光デバイスの検査装置を
用いたノイズ測定方法においては、パルス幅値の標準偏
差を算出し、これを基準となるものと比較することによ
り測定場所のノイズレベルを評価するものである。この
発明によれば、簡単かつ容易に測定を行うことができる
受光デバイスの検査装置を用いたノイズ測定方法が得ら
れる。
Further, in the noise measuring method using the light receiving device inspecting apparatus of the present invention, the standard deviation of the pulse width value is calculated and compared with the standard deviation to evaluate the noise level at the measuring place. To do. According to the present invention, it is possible to obtain a noise measuring method using an inspection device for a light-receiving device, which enables simple and easy measurement.

【0025】[0025]

【発明の実施の形態】本発明の請求項1に記載の発明
は、所定周期のパルス波の光を繰り返し出力する測定用
光源に対して一定の間隔をあけて対向配置される受光デ
バイスの受光距離が所定距離以上であるかを検査する装
置において、前記受光デバイスで受光した前記測定用光
源のパルス幅を測定し、このパルス幅が設定値以上であ
るか否かを判定する判定手段を有することを特徴とする
受光デバイスの検査装置としたものであり、所定距離か
らパルス幅値を測定することにより受光距離が求められ
るという作用を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is a light receiving device of a light receiving device which is arranged to face a measuring light source which repeatedly outputs light of a pulse wave having a predetermined period, with a constant interval. An apparatus for inspecting whether a distance is a predetermined distance or more has a determination means for measuring a pulse width of the measurement light source received by the light receiving device and determining whether the pulse width is a set value or more. The light-receiving device is inspected, and the light-receiving distance can be obtained by measuring the pulse width value from a predetermined distance.

【0026】本発明の請求項2に記載の発明は、前記測
定用光源は複数設けられ、この複数の前記測定用光源に
は、前記パルス波の光を同時に出力する前記測定用光源
の数を変更して発光強度を変更する切換スイッチが設け
られていることを備えたことを特徴とする請求項1に記
載の受光デバイスの検査装置としたものであり、同時に
出力する測定用光源の数を変更して、遠距離相当の光量
を作成する場合には測定用光源の数を減らし、近距離相
当の光量を作成する場合には測定用光源の数を増やし
て、測定用光源に流れる電流の量を適正にするという作
用を有する。
According to a second aspect of the present invention, a plurality of the light sources for measurement are provided, and the plurality of light sources for measurement are provided with the number of the light sources for measurement that simultaneously output the light of the pulse wave. The inspection apparatus for a light receiving device according to claim 1, further comprising a changeover switch for changing the emission intensity. Change the number of light sources for measurement to create a light amount equivalent to a long distance, and increase the number of light sources for measurement to create a light amount equivalent to a short distance. It has the effect of making the amount appropriate.

【0027】本発明の請求項3に記載の発明は、所定周
期のパルス波の光を繰り返し出力する標準光源に対して
受光デバイスの受信距離ごとのパルス幅値を予め測定し
ておき、前記受光デバイスに対して所定の距離を定めて
測定用光源を備えた検査装置を設置し、前記測定用光源
に流す電流を調整して、前記受信距離に対応した所定の
パルス幅値を設定することを特徴とする受光デバイスの
検査装置の調整方法であり、性能の異なる測定用光源を
正確かつ迅速に調整できるという作用を有する。
According to a third aspect of the present invention, the pulse width value for each reception distance of the light receiving device is measured in advance with respect to a standard light source that repeatedly outputs the light of the pulse wave having a predetermined period, and the received light is received. An inspection device provided with a measurement light source by setting a predetermined distance with respect to the device is adjusted, and a current supplied to the measurement light source is adjusted to set a predetermined pulse width value corresponding to the reception distance. It is a characteristic method for adjusting an inspection apparatus for a light receiving device, and has an effect of accurately and quickly adjusting measurement light sources having different performances.

【0028】本発明の請求項4に記載の発明は、所定周
期のパルス波の光を繰り返し出力する測定用光源を備え
た受光デバイスの検査装置を用いて周囲のノイズを測定
する方法であって、前記測定用光源に対する受光デバイ
スのパルス幅値を、ノイズレベルが所定値以下の場所で
予め多数回測定して、基準となる標準偏差を導出してお
き、所定の測定場所で、前記検査装置から出力された光
の多数のパルス波を測定して比較する標準偏差を導出
し、前記標準偏差の大きさの差から前記測定場所のノイ
ズレベルを評価することを特徴とする受光デバイスの検
査装置を用いたノイズ測定方法としたものであり、ノイ
ズの影響により所定のパルス幅と異なるパルス幅となる
ことを利用し、多数のパルス幅値を計数するだけで、ノ
イズレベルの大小が評価できるという作用を有する。
According to a fourth aspect of the present invention, there is provided a method for measuring ambient noise using an inspection device for a light-receiving device equipped with a measuring light source for repeatedly outputting light of a pulse wave having a predetermined period. The pulse width value of the light receiving device with respect to the light source for measurement is measured many times in advance at a place where the noise level is a predetermined value or less, and a standard deviation serving as a reference is derived, and the inspection device is set at a predetermined measurement place. An inspection apparatus for a light-receiving device, characterized by deriving a standard deviation for measuring and comparing a large number of pulse waves of light output from the device, and evaluating a noise level at the measurement location from the difference in the magnitude of the standard deviation. This is a noise measurement method that uses a pulse width that differs from a predetermined pulse width due to the effect of noise. It has the effect of being able to value.

【0029】以下、本発明の実施の形態について、図1
から図4を用いて説明する。
FIG. 1 shows an embodiment of the present invention.
4 to FIG.

【0030】(実施の形態1)図1は本発明の一実施の
形態に係る受光デバイスの検査装置の説明図を示す。図
1において検査装置10は、基板13上に設けられ、所
定周期のパルス波の光を繰り返し出力可能な複数の測定
用光源の一例である発光ダイオード11,12と、受光
デバイスで受光した発光ダイオード11,12のパルス
幅を測定し、このパルス幅が設定値以上であるか否かを
判定する図示しない判定手段を有する。
(Embodiment 1) FIG. 1 is an explanatory view of an inspection apparatus for a light receiving device according to an embodiment of the present invention. In FIG. 1, an inspection apparatus 10 includes light emitting diodes 11 and 12 which are examples of a plurality of measurement light sources which are provided on a substrate 13 and which can repeatedly output light of a pulse wave having a predetermined cycle, and light emitting diodes which are received by a light receiving device. It has a determination means (not shown) that measures the pulse widths of 11 and 12 and determines whether or not the pulse width is equal to or larger than a set value.

【0031】また、検査装置10は、複数の発光ダイオ
ード11,12のうちパルス波の光を同時に出力する測
定用光源の数を1個と8個に変更して発光強度を変更す
る図示しない切換スイッチとを備えている。すなわち、
検査装置10は、サンプルまでの距離を一定に保持した
状態で、発光ダイオード11,12の数と、これに流す
電流量を変化させることにより、所定の到達距離に相当
する光源パワーを作ることができる。
Further, the inspection device 10 changes the number of light sources for measurement which simultaneously outputs the light of the pulse wave among the plurality of light emitting diodes 11 and 12 to 1 and 8 to change the emission intensity, which is not shown. And a switch. That is,
The inspection device 10 can generate a light source power corresponding to a predetermined reaching distance by changing the number of the light emitting diodes 11 and 12 and the amount of current flowing through the light emitting diodes 11 and 12 while keeping the distance to the sample constant. it can.

【0032】例えば、1個の発光ダイオード11を点灯
させることにより数cm〜25m相当の光源パワーを作
ることができ、また、発光ダイオード11の周囲に円形
に配置された8個の発光ダイオード12を点灯させるこ
とにより10cm〜数十m相当の光源パワーを作ること
ができる。特に10cm相当の光源パワーを作る場合で
も発光ダイオード12に流す電流は数百mAで可能にな
り、発光ダイオード12への負担を大幅に低減できる。
For example, a light source power equivalent to several cm to 25 m can be produced by turning on one light emitting diode 11, and eight light emitting diodes 12 arranged in a circle around the light emitting diode 11 can be used. By turning on the light source, a light source power equivalent to 10 cm to several tens of meters can be produced. In particular, even when a light source power equivalent to 10 cm is produced, the current flowing through the light emitting diode 12 can be several hundred mA, and the load on the light emitting diode 12 can be significantly reduced.

【0033】次に、発光ダイオード11,12に流す電
流量を調整する。
Next, the amount of current flowing through the light emitting diodes 11 and 12 is adjusted.

【0034】まず、受信距離特性を検査したい受信距離
以上のパルス幅を出力可能なサンプルを用意し、標準光
源を用いて受光距離とパルス幅値の特性を実際に測定す
る。このとき、パルス幅値は、統計値解析が可能な回
数、例えば数百〜一万回程度の計測を実施し、平均値、
最大値、最小値、標準偏差を計算する。近年では、タイ
ムインターバルアナライザやロングメモリタイプのオシ
ロスコープ等の正確な時間を評価する測定機器が開発さ
れており、簡単に数百〜一万パルス程度の測定ができ統
計値演算表示も可能になっているため、計測器による評
価も容易になっている。検査テスタ側にパルス統計値処
理機能を付加し、利用しても同様な結果となる。
First, a sample capable of outputting a pulse width equal to or larger than the reception distance whose reception distance characteristic is desired to be inspected is prepared, and the characteristics of the light reception distance and the pulse width value are actually measured using a standard light source. At this time, the pulse width value is the number of times that statistical value analysis is possible, for example, hundreds to 10,000 times of measurements are performed, and the average value
Calculate maximum, minimum and standard deviation. In recent years, measuring instruments such as time interval analyzers and long memory type oscilloscopes that evaluate accurate time have been developed, and it is possible to easily measure several hundred to 10,000 pulses and to display statistical values. Therefore, it is easy to evaluate using a measuring instrument. Similar results can be obtained by adding a pulse statistical value processing function to the inspection tester side.

【0035】図2は、送信信号と遠距離側の受光信号を
測定して同一画面に表示した説明図、図3は、送信信号
と近距離側の受光信号を測定して同一画面に表示した説
明図、図4は受光デバイスの受光距離とパルス幅値の関
係を示すグラフである。
FIG. 2 is an explanatory diagram in which the transmission signal and the light receiving signal on the far distance side are measured and displayed on the same screen, and FIG. 3 is the illustration where the transmission signal and the light receiving signal on the near distance side are measured and displayed on the same screen. FIG. 4 is a graph showing the relationship between the light receiving distance of the light receiving device and the pulse width value.

【0036】図2、図3は、矩形波である送信信号及び
受信信号を上段及び下段にそれぞれ表示している。送信
信号は、High側を出力とし、受信信号は、Low側
を出力としている。
2 and 3, the transmission signal and the reception signal which are rectangular waves are displayed in the upper and lower rows, respectively. The transmission signal has a High side as an output, and the reception signal has a Low side as an output.

【0037】図2に示すように送信信号のパルス幅値t
1に対し、遠距離側の受光信号のパルス幅値t2は小さ
くなっている。一方、図3に示すように送信信号のパル
ス幅値t3に対し、近距離側の受光信号のパルス幅値t
4は大きくなっている。
As shown in FIG. 2, the pulse width value t of the transmission signal
In contrast to 1, the pulse width value t2 of the light receiving signal on the far side is smaller. On the other hand, as shown in FIG. 3, the pulse width value t3 of the transmission signal is different from the pulse width value t of the light receiving signal on the short distance side.
4 is getting bigger.

【0038】また、図4に示すように、一般に受光デバ
イスは、受光距離によって出力のパルス幅値が変動し、
距離が大きくなると平均パルス幅値は小さくなる傾向が
ある。
Further, as shown in FIG. 4, generally, in the light receiving device, the pulse width value of the output varies depending on the light receiving distance,
The average pulse width value tends to decrease as the distance increases.

【0039】ここで、受光距離別の平均パルス幅値が定
まるため、検査装置10の受光距離を設定するときは、
電流を調整して受光距離に対応するパルス幅値に合わせ
ることによって容易に行うことができる。また、距離別
ごとの受信パルス幅を数十cm間隔でデータを採取する
ことによって、細かい距離別の光源強度を作ることも可
能になる。さらに、標準光源での値付けを実施してしま
えば、中心周波数の異なる品種での光源強度も同一であ
るため、それぞれ異なるサンプルは必要ない。さらに、
検査テスタ側にパルス統計値処理機能を付加してもよい
し、外部に計測器を用意し、評価を実施してもよい。
Here, since the average pulse width value for each light receiving distance is determined, when setting the light receiving distance of the inspection device 10,
This can be easily performed by adjusting the current to match the pulse width value corresponding to the light receiving distance. Further, by collecting data of the reception pulse width for each distance at intervals of several tens of cm, it becomes possible to create a light source intensity for each fine distance. Furthermore, once the standard light source is used for pricing, different light sources with different center frequencies have the same light source intensity, and therefore different samples are not required. further,
A pulse statistical value processing function may be added to the inspection tester side, or an external measuring instrument may be prepared for evaluation.

【0040】次に、検査装置10を用いた受光デバイス
の検査方法について説明する。
Next, a method of inspecting the light receiving device using the inspection apparatus 10 will be described.

【0041】まず、前述の手順により発光ダイオード1
1,12に対して受光デバイスの受信距離ごとのパルス
幅値を予め測定しておく。そして、発光ダイオード1
1,12に対して所定の距離を定めて測定しようとする
受光デバイスを設置する。この距離は任意であるが、例
えば20cmに設定する。
First, the light emitting diode 1 is manufactured by the above procedure.
The pulse width value of each receiving distance of the light receiving device for 1 and 12 is measured in advance. And the light emitting diode 1
A light receiving device to be measured by setting a predetermined distance with respect to 1 and 12 is installed. This distance is arbitrary, but is set to 20 cm, for example.

【0042】そして、この受光デバイスで発光ダイオー
ド11,12から出力されるパルス幅値を測定し、この
パルス幅値から受光デバイスによる受光距離を算出す
る。
Then, the pulse width value output from the light emitting diodes 11 and 12 is measured by this light receiving device, and the light receiving distance by the light receiving device is calculated from this pulse width value.

【0043】このようにして、受光デバイスの有する受
光能力を数値化して、特定できるので、単なる歩留まり
の向上のみならず、同一製品の製造場所、時期による特
性のばらつきをデータ化して蓄積でき、製品品質の変動
を迅速に把握することができる。
In this way, since the light-receiving ability of the light-receiving device can be quantified and specified, not only the yield can be improved, but also the characteristic variation due to the manufacturing place and the timing of the same product can be converted into data and accumulated. It is possible to quickly grasp fluctuations in quality.

【0044】(実施の形態2)次に受光デバイスの検査
装置を用いたノイズ測定方法について説明する。
(Embodiment 2) Next, a noise measuring method using a light receiving device inspection apparatus will be described.

【0045】図5は、電磁ノイズがない場合の多数のパ
ルス幅値の分布を示すグラフ、図6は、電磁ノイズがあ
る場合の多数のパルス幅値の分布を示すグラフである。
FIG. 5 is a graph showing the distribution of many pulse width values when there is no electromagnetic noise, and FIG. 6 is a graph showing the distribution of many pulse width values when there is electromagnetic noise.

【0046】図5に示すように、測定したパルス幅値は
一定のばらつきの範囲内にある。ばらつきの範囲の大小
は、例えば、測定データから算出した標準偏差の大小に
対応して決定される。
As shown in FIG. 5, the measured pulse width value is within a certain range of variation. The magnitude of the range of variation is determined corresponding to the magnitude of the standard deviation calculated from the measurement data, for example.

【0047】ノイズの測定には、検査装置10を用い
る。
The inspection device 10 is used for measuring the noise.

【0048】まず、発光ダイオード11,12に対する
受光デバイスのパルス幅値を、ノイズレベルが所定値以
下の場所で、予め多数回測定して、図5に示すようにば
らつきの範囲を導出すると共に基準となる標準偏差を算
出しておく。
First, the pulse width value of the light receiving device for the light emitting diodes 11 and 12 is measured many times in advance at a place where the noise level is a predetermined value or less, and the range of variation is derived and the reference is obtained as shown in FIG. The standard deviation is calculated.

【0049】そして、ノイズレベルを測定したい所定の
測定場所で、検査装置から出力された多数のパルス波を
測定し、標準偏差を算出する。
Then, a large number of pulse waves output from the inspection device are measured at a predetermined measurement location where the noise level is desired to be measured, and the standard deviation is calculated.

【0050】図6に示すように、電磁ノイズの影響が表
れると、受光デバイスから出力されるパルス幅値は、正
規のパルス幅分布とは異なった分布を示すようになるた
め、実際の検査環境でサンプルを評価することにより、
簡単にノイズレベルの評価が可能になる。ノイズレベル
が所定値以下の場所による距離−パルス幅特性に比べ
て、ノイズ環境下での受光デバイスは、パルス幅値のジ
ッター特性が振れるため、標準偏差が大きくなる。こう
して、基準となる標準偏差と比較することにより、簡単
にノイズレベルの影響を知ることが可能になる。
As shown in FIG. 6, when the influence of electromagnetic noise appears, the pulse width value output from the light receiving device has a distribution different from the regular pulse width distribution, so that the actual inspection environment By evaluating the sample with
The noise level can be easily evaluated. Compared with the distance-pulse width characteristic at a place where the noise level is equal to or lower than a predetermined value, the jitter characteristic of the pulse width value of the light receiving device in a noise environment fluctuates, and thus the standard deviation becomes large. In this way, the influence of the noise level can be easily known by comparing with the standard deviation serving as the reference.

【0051】なお、ノイズレベルと標準偏差の大小の関
係、またはノイズレベルとばらつきの範囲から外れたパ
ルス幅値の数との関係を、予め実験によって求めておい
てもよい。
Note that the relationship between the noise level and the standard deviation, or the relationship between the noise level and the number of pulse width values outside the range of variation may be obtained in advance by experiments.

【0052】これらと同様に、IrDAデバイスの光源
強度についてもIrDAデバイスの受光側の距離−パル
ス幅値特性を評価し、同様な方法により光源強度を作り
出すことが可能である。また、ノイズレベルの影響も容
易に評価できる。
Similarly to the above, with respect to the light source intensity of the IrDA device, it is possible to evaluate the distance-pulse width value characteristic on the light receiving side of the IrDA device and generate the light source intensity by a similar method. Also, the effect of noise level can be easily evaluated.

【0053】[0053]

【発明の効果】以上のように本発明の受光デバイスの検
査装置においては、パルス幅値から受光デバイスによる
受光距離を算出するので、測定用光源として距離別の複
数のサンプルを作成する必要がなくなり、単一の測定用
光源で測定を行うことができる受光デバイスの検査装置
が得られ、検査の精度を向上させることができる。
As described above, in the light receiving device inspection apparatus of the present invention, since the light receiving distance by the light receiving device is calculated from the pulse width value, it is not necessary to prepare a plurality of samples for each distance as the measurement light source. An inspection apparatus for a light-receiving device that can perform measurement with a single light source for measurement is obtained, and the accuracy of inspection can be improved.

【0054】また、同時に発光する光源の数を変える切
換スイッチを設けると、光源の数を少なくして、遠距離
相当の弱い光を発生させ、光源の数を多くして、近距離
相当の強い光を発生させるので、測定用光源に流れる電
流の量を適正にして、検査装置の寿命を長くすることが
できる。
If a changeover switch for changing the number of light sources that emit light at the same time is provided, the number of light sources is reduced to generate weak light corresponding to a long distance, and the number of light sources is increased to increase a strong light corresponding to a short distance. Since light is generated, the amount of current flowing through the measurement light source can be made appropriate and the life of the inspection device can be extended.

【0055】本発明の受光デバイスの検査装置の調整方
法は、電流を調整して、受信距離に応じたパルス幅値を
設定するので、性能の異なる測定用光源を正確かつ迅速
に調整でき、検査の精度を向上させることができる。
In the method for adjusting the inspection device for the light receiving device of the present invention, the current is adjusted to set the pulse width value according to the receiving distance, so that the measuring light sources having different performances can be adjusted accurately and quickly, and the inspection can be performed. The accuracy of can be improved.

【0056】本発明の受光デバイスの検査装置を用いた
ノイズ測定方法においては、ノイズによりパルス幅が変
動することを利用し、パルス幅値を計数して求めた標準
偏差を基準値と比較するだけで、EMC評価設備がなく
ても簡単にノイズレベルを評価できる。
In the noise measuring method using the light receiving device inspection apparatus of the present invention, the fact that the pulse width fluctuates due to noise is utilized, and the standard deviation obtained by counting the pulse width values is simply compared with the reference value. Therefore, the noise level can be easily evaluated without the EMC evaluation equipment.

【0057】このように、受光デバイスの製品検査工程
において、正確な光源強度を容易に作り出し、検査工程
での校正レベルを向上させることにより、歩留まりを向
上させ、併せて、耐電磁ノイズレベル確認の容易な手段
を提供し、最終的に安価な製品を提供することが可能に
なる。
As described above, in the product inspection process of the light receiving device, it is possible to easily produce an accurate light source intensity and improve the calibration level in the inspection process to improve the yield and also to confirm the electromagnetic noise resistance level. It becomes possible to provide an easy means and finally provide an inexpensive product.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る受光デバイスの検
査装置を示す説明図
FIG. 1 is an explanatory view showing an inspection device for a light receiving device according to an embodiment of the present invention.

【図2】送信信号と遠距離側の受光信号を測定して同一
画面に表示した説明図
FIG. 2 is an explanatory diagram in which a transmission signal and a light receiving signal on the far side are measured and displayed on the same screen.

【図3】送信信号と近距離側の受光信号を測定して同一
画面に表示した説明図
FIG. 3 is an explanatory diagram in which a transmission signal and a light receiving signal on the short distance side are measured and displayed on the same screen.

【図4】受光デバイスの受光距離とパルス幅値の関係を
示すグラフ
FIG. 4 is a graph showing a relationship between a light receiving distance of a light receiving device and a pulse width value.

【図5】電磁ノイズがない場合の多数のパルス幅値の分
布を示すグラフ
FIG. 5 is a graph showing the distribution of many pulse width values in the absence of electromagnetic noise.

【図6】電磁ノイズがある場合の多数のパルス幅値の分
布を示すグラフ
FIG. 6 is a graph showing the distribution of many pulse width values in the presence of electromagnetic noise.

【図7】従来例に係る受光デバイスの検査方法の説明図FIG. 7 is an explanatory diagram of an inspection method of a light receiving device according to a conventional example.

【符号の説明】[Explanation of symbols]

11,12 発光ダイオード(測定用光源) 13 基板 11,12 Light emitting diode (light source for measurement) 13 board

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所定周期のパルス波の光を繰り返し出力
する測定用光源に対して一定の間隔をあけて対向配置さ
れる受光デバイスの受光距離が所定距離以上であるかを
検査する装置において、 前記受光デバイスで受光した前記測定用光源のパルス幅
を測定し、このパルス幅が設定値以上であるか否かを判
定する判定手段を有することを特徴とする受光デバイス
の検査装置。
1. An apparatus for inspecting whether a light receiving distance of a light receiving device, which is arranged to face a measurement light source that repeatedly outputs light of a pulse wave having a predetermined cycle with a constant interval, is a predetermined distance or more, An inspection apparatus for a light-receiving device, comprising: a determination unit that measures a pulse width of the measurement light source received by the light-receiving device and determines whether or not the pulse width is equal to or larger than a set value.
【請求項2】 前記測定用光源は複数設けられ、この複
数の前記測定用光源には、前記パルス波の光を同時に出
力する前記測定用光源の数を変更して発光強度を変更す
る切換スイッチが設けられていることを備えたことを特
徴とする請求項1に記載の受光デバイスの検査装置。
2. A plurality of measuring light sources are provided, and a changeover switch for changing the emission intensity by changing the number of the measuring light sources that simultaneously output the light of the pulse wave to the plurality of measuring light sources. The light receiving device inspection apparatus according to claim 1, further comprising:
【請求項3】 所定周期のパルス波の光を繰り返し出力
する標準光源に対して受光デバイスの受信距離ごとのパ
ルス幅値を予め測定しておき、前記受光デバイスに対し
て所定の距離を定めて測定用光源を備えた検査装置を設
置し、前記測定用光源に流す電流を調整して、前記受信
距離に対応した所定のパルス幅値を設定することを特徴
とする受光デバイスの検査装置の調整方法。
3. A pulse width value for each receiving distance of a light receiving device is measured in advance for a standard light source that repeatedly outputs a pulsed wave light of a predetermined cycle, and a predetermined distance is set for the light receiving device. An inspection device equipped with a measurement light source is installed, and a current supplied to the measurement light source is adjusted to set a predetermined pulse width value corresponding to the reception distance. Method.
【請求項4】 所定周期のパルス波の光を繰り返し出力
する測定用光源を備えた受光デバイスの検査装置を用い
て周囲のノイズを測定する方法であって、 前記測定用光源に対する受光デバイスのパルス幅値を、
ノイズレベルが所定値以下の場所で予め多数回測定し
て、基準となる標準偏差を導出しておき、所定の測定場
所で、前記検査装置から出力された光の多数のパルス波
を測定して比較する標準偏差を導出し、前記標準偏差の
大きさの差から前記測定場所のノイズレベルを評価する
ことを特徴とする受光デバイスの検査装置を用いたノイ
ズ測定方法。
4. A method of measuring ambient noise using an inspection device for a light-receiving device equipped with a light source for measurement that repeatedly outputs light of a pulse wave having a predetermined cycle, the pulse of the light-receiving device with respect to the light source for measurement. Width value,
A large number of pulse waves of the light output from the inspection device are measured at a predetermined measurement location by measuring a large number of times in advance at a noise level of a predetermined value or less and deriving a standard deviation as a reference. A noise measuring method using an inspection apparatus for a light-receiving device, which comprises deriving a standard deviation to be compared, and evaluating a noise level at the measurement location from a difference in magnitude of the standard deviation.
JP2002016568A 2002-01-25 2002-01-25 Light receiving device inspection device, its adjusting method, and noise measuring method using it Pending JP2003214982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002016568A JP2003214982A (en) 2002-01-25 2002-01-25 Light receiving device inspection device, its adjusting method, and noise measuring method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002016568A JP2003214982A (en) 2002-01-25 2002-01-25 Light receiving device inspection device, its adjusting method, and noise measuring method using it

Publications (1)

Publication Number Publication Date
JP2003214982A true JP2003214982A (en) 2003-07-30

Family

ID=27652596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002016568A Pending JP2003214982A (en) 2002-01-25 2002-01-25 Light receiving device inspection device, its adjusting method, and noise measuring method using it

Country Status (1)

Country Link
JP (1) JP2003214982A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058720A (en) * 2009-09-09 2011-03-24 Hitachi Appliances Inc Air conditioner
JP2014020817A (en) * 2012-07-13 2014-02-03 Nippon Steel & Sumitomo Metal Calibration device for radiation thermometer and calibration method for radiation thermometer
CN109029931A (en) * 2018-08-02 2018-12-18 北京空间机电研究所 A kind of remote sensor pointing accuracy on-orbit calibration device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058720A (en) * 2009-09-09 2011-03-24 Hitachi Appliances Inc Air conditioner
JP2014020817A (en) * 2012-07-13 2014-02-03 Nippon Steel & Sumitomo Metal Calibration device for radiation thermometer and calibration method for radiation thermometer
CN109029931A (en) * 2018-08-02 2018-12-18 北京空间机电研究所 A kind of remote sensor pointing accuracy on-orbit calibration device and method

Similar Documents

Publication Publication Date Title
US6255830B1 (en) Method of testing shielding effectiveness and electromagnetic field generator for use in testing shielding effectiveness
CN109164405A (en) A kind of highpowerpulse Field strength calibration system and method
US6441896B1 (en) Method and apparatus for measuring spatial uniformity of radiation
CN110927136B (en) Quality detection device of dry-type immunofluorescence POCT detection instrument and use method thereof
CN107612615B (en) Parallel optical module optical power calibration method and system
US20050046430A1 (en) RF testing method and arrangement
KR102604008B1 (en) Apparatus and method for testing a device under test
JP2003214982A (en) Light receiving device inspection device, its adjusting method, and noise measuring method using it
CN113203886A (en) Method for controlling gain and sensitivity of electro-optical probe
CN114323314A (en) Time sequence control system suitable for absolute calibration of photon number
US20190277936A1 (en) Multi-channel detecting system
RU2657333C1 (en) Integrated scintillation method of investigation of a substance with its introduction into plasma
CN111366967A (en) System and method for measuring irradiation dose rate of strong radiation field
CN108051425B (en) Raman spectrum signal-to-noise ratio evaluation method
CN211669078U (en) Quality detection device of dry-type immunofluorescence POCT detection instrument
Steinhaus et al. Short period spectral intensity measurements
CN110907879B (en) Calibration method of interturn voltage-withstanding tester
US8803560B2 (en) Audio frequency device for audible eyes off measurements
CN112197939A (en) Calibration method and calibration system of light source stroboscopic tester based on optical chopping method
CN208654022U (en) A kind of biochemical substances detecting instrument based on optical means
CN112129492A (en) Calibration method and calibration system of simple light source stroboscopic tester based on light-emitting diode
JP3267869B2 (en) Test method of light receiving device
CN110455760A (en) A kind of color dispersion-type AFS light source scattering interference subtraction method based on DMD
US20030234924A1 (en) Optical device measuring apparatus and light receiving unit available for such optical device measuring apparatus
CN110487404A (en) A method of eliminating grating spectrograph Advanced Diffraction influences