JP2003213471A - Gas compressor - Google Patents
Gas compressorInfo
- Publication number
- JP2003213471A JP2003213471A JP2002011125A JP2002011125A JP2003213471A JP 2003213471 A JP2003213471 A JP 2003213471A JP 2002011125 A JP2002011125 A JP 2002011125A JP 2002011125 A JP2002011125 A JP 2002011125A JP 2003213471 A JP2003213471 A JP 2003213471A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- electrode
- hydrogen
- compression device
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水素ガス等のガス
を圧縮するガス圧縮装置に関するものである。TECHNICAL FIELD The present invention relates to a gas compression device for compressing a gas such as hydrogen gas.
【0002】[0002]
【従来の技術】水素ガスを電極活性物質とする燃料電池
が、既に社会に提供されている。燃料電池は、環境負荷
が少ないエネルギーとして、その今後の発達が注目され
ており、水素ガスを如何に発生し、貯蔵するかが、燃料
電池の普及の技術面より見た一つの焦点となっている。2. Description of the Related Art Fuel cells using hydrogen gas as an electrode active substance have already been provided to society. Fuel cells are attracting attention for their future development as energy with a low environmental load, and how to generate and store hydrogen gas is one of the focal points from the perspective of the diffusion of fuel cells. There is.
【0003】将来は社会に水素ガスが広範囲に普及し、
例えば、各家庭に水素ガスが直接配達され、容易に直接
の入手が可能となることが予想される。現在のところ、
水素ガスを発生する方法としては、水の電気分解による
方法が多用されている。In the future, hydrogen gas will spread widely in society,
For example, it is expected that hydrogen gas will be delivered directly to each household and that it will be easily available. at present,
As a method of generating hydrogen gas, a method of electrolyzing water is widely used.
【0004】水素ガスを貯蔵する方法は、高圧ボンベに
高圧の圧縮した水素ガスを蓄える方法や水素ガス吸蔵合
金を用いる方法等の手法がとられている。ここで、水素
ガスの貯蔵量は、高圧ボンベに蓄える場合においても、
水素ガス吸蔵合金を用いた場合においても、水素ガスが
より圧縮されていれば、水素ガスの貯蔵量はより増加す
るので、水素ガスを圧縮して貯蔵する技術が重要とな
る。As a method of storing hydrogen gas, a method of storing high-pressure compressed hydrogen gas in a high-pressure cylinder, a method of using a hydrogen gas storage alloy, or the like is adopted. Here, the storage amount of hydrogen gas, even when stored in a high-pressure cylinder,
Even when a hydrogen gas storage alloy is used, if the hydrogen gas is more compressed, the storage amount of the hydrogen gas will increase, so a technique for compressing and storing the hydrogen gas becomes important.
【0005】水素ガスを圧縮する方法としては、従来、
水素ガスを密閉空間に閉じ込め、機械的に加圧する方法
が採用されている。Conventional methods for compressing hydrogen gas have been
A method of confining hydrogen gas in a closed space and mechanically pressurizing is adopted.
【0006】しかしながら、この方法によれば、装置が
大型化する等の問題点を有しており、個人が容易に水素
ガスを発生して使用することができるパーソナルユース
という観点からは、従来の機械的に加圧する方法を用い
た装置は適当ではない。However, according to this method, there is a problem that the apparatus becomes large in size, and from the viewpoint of personal use that an individual can easily generate and use hydrogen gas, the conventional method is used. Devices using mechanical pressurization methods are not suitable.
【0007】この問題点を改善するための水素ガスの圧
縮技術として、電気化学的ガス圧縮機が米国特許明細書
第4671080号や特開平5−242850号にて提
案されている。As a technique for compressing hydrogen gas to solve this problem, an electrochemical gas compressor has been proposed in US Pat. No. 4,671,080 and JP-A-5-242850.
【0008】図5は米国特許明細書第4671080号
に開示された従来の電気化学的水素ガス圧縮機の断面を
拡大して示す図で、同図において、101は約0.2m
mの厚みを有するイオン導電体膜としての例えばパーフ
ルオロスルホン酸樹脂(DuPont社製のナフィオン
等)、102は白金等の触媒を担持した陽極のガス拡散
性電極、103は陽極102と同様の触媒を担持した陰
極のガス拡散性電極、104は陽極側のガス流路、10
5は陰極側のガス流路、106は陽極側の金属集電体、
107は陰極側の金属集電体である。ここで、イオン導
電体膜101と両側のガス拡散性電極102及び103
とが一体化された構造体はMEA(Membrane-Electrode
Assembly)と称されている。FIG. 5 is an enlarged cross-sectional view of a conventional electrochemical hydrogen gas compressor disclosed in US Pat. No. 4,671,080, in which 101 is approximately 0.2 m.
As the ionic conductor film having a thickness of m, for example, perfluorosulfonic acid resin (such as Nafion manufactured by DuPont), 102 is a gas diffusion electrode of an anode carrying a catalyst such as platinum, and 103 is a catalyst similar to the anode 102. A gas diffusion electrode of a cathode carrying 104, 104 a gas flow path on the anode side,
5 is a gas flow path on the cathode side, 106 is a metal current collector on the anode side,
107 is a metal collector on the cathode side. Here, the ionic conductor film 101 and the gas diffusion electrodes 102 and 103 on both sides thereof.
MEA (Membrane-Electrode
Assembly).
【0009】次に、この装置の動作原理について説明す
る。水素ガスがガス拡散性電極102側のガス流路10
4に供給されると、この水素ガスは、ガス拡散性電極1
02上で電子を失い、下記式(1)に従ってH3O+イオ
ンを生成する。
H2+2H2O→2e−+2H3O+・・・式(1)Next, the operating principle of this device will be described. Hydrogen gas is gas flow path 10 on the gas diffusive electrode 102 side
4 is supplied to the gas diffusion electrode 1
02 loses electrons and produces H 3 O + ions according to the following formula (1). H 2 + 2H 2 O → 2e − + 2H 3 O + ... Formula (1)
【0010】次いで、上記発生したH3O+イオンは、イ
オン導電体膜101中の水を伴って、電圧を駆動力とし
て、他方のガス拡散性電極103まで進み、このガス拡
散性電極103上で電子を受け取り、下記式(2)に従
って再び水素ガスに転化される。
2e-+2H3O+→H2+2H2O・・・式(2)Next, the generated H 3 O + ions, along with the water in the ionic conductor film 101, proceed to the other gas diffusible electrode 103 using the voltage as a driving force, and on the gas diffusible electrode 103. The electrons are received at and converted to hydrogen gas again according to the following formula (2). 2e − + 2H 3 O + → H 2 + 2H 2 O ... Formula (2)
【0011】ガス拡散性電極103上で生成した水素ガ
スは、イオン導電体膜101を通ることができず、ま
た、電圧によるイオンの移動力は大きいので、ガス拡散
性電極103側に水素ガスが徐々に蓄積されて水素ガス
の圧力が上昇する。このとき、金属集電体106、10
7が各ガス拡散性電極102、103に電圧を印加する
と共に、ガス拡散性電極102、103及びイオン導電
体膜201を機械的に補強する旨が記載されている。The hydrogen gas generated on the gas diffusible electrode 103 cannot pass through the ionic conductor film 101, and the ion mobility due to the voltage is large. The pressure of hydrogen gas is gradually accumulated and rises. At this time, the metal current collectors 106, 10
No. 7 applies a voltage to each of the gas diffusible electrodes 102 and 103, and mechanically reinforces the gas diffusible electrodes 102 and 103 and the ionic conductor film 201.
【0012】そして、図6及び図7に示すように、プロ
トン伝導体膜111を白金等の触媒層110付きのガス
拡散性電極112及び113で挟着してなる一体構造体
をMEA(1)、MEA(2)、MEA(3)、・・・
MEA(n)としてガス移動方向に順次配置した、いわ
ば平行型水素圧縮器120としたものが知られている。Then, as shown in FIGS. 6 and 7, the MEA (1) has an integral structure in which a proton conductor membrane 111 is sandwiched between gas diffusion electrodes 112 and 113 having a catalyst layer 110 such as platinum. , MEA (2), MEA (3), ...
As the MEA (n), there is known a so-called parallel type hydrogen compressor 120 which is sequentially arranged in the gas moving direction.
【0013】この場合、各MEAの電極間にV1、V2、
V3・・・Vnの電位差を与え、プロトン伝導を生じさ
せて段階的に(即ち、図の右方側に向けて)水素圧を高
めていくことにより、小型の装置を用いて高純度の水素
を高圧圧縮させることが可能となる。In this case, V 1 , V 2 , between the electrodes of each MEA,
By applying a potential difference of V 3 ... Vn to generate proton conduction and stepwise increase the hydrogen pressure (that is, toward the right side of the figure), a high-purity hydrogen gas can be obtained using a small device. It is possible to compress hydrogen under high pressure.
【0014】ここで、各MEAの電極間の印加電圧は下
流側に向って順次大きくする必要はない。この理由は、
必要な印加電圧がネルンストの式より、次の式(3)の
ように導かれるためである。
E=E0+(RT/2F)×ln(PC/PA)+ir ・・・(3)
(但し、E0は水素イオン化電位、Rは気体定数、Tは
温度、Fはファラデー定数、PCは陰極側の水素圧力、
PAは陽極側の水素圧力、iは電流、rは電気抵抗を示
す。)即ち、印加電圧は電極間の相対圧(圧力比)に依
存するため、段階的に圧縮していく過程において電圧を
上げていく必要はない(陽極側の水素圧が高ければ、同
じ電圧でも陰極側により高圧の水素が得られる)。但
し、段階的な圧縮のためには、電圧又は電流を制御する
ための加圧制御部が必要である。Here, the applied voltage between the electrodes of each MEA does not have to be successively increased toward the downstream side. The reason for this is
This is because the required applied voltage is derived from the Nernst equation as in the following equation (3). E = E 0 + (RT / 2F) × ln (P C / P A ) + ir (3) (where E 0 is hydrogen ionization potential, R is gas constant, T is temperature, F is Faraday constant, P C is the hydrogen pressure on the cathode side,
P A is the anode side hydrogen pressure, i is the current, r is shows an electrical resistance. That is, since the applied voltage depends on the relative pressure (pressure ratio) between the electrodes, it is not necessary to increase the voltage in the process of gradually compressing (if the hydrogen pressure on the anode side is high, the same voltage is applied). High pressure hydrogen is obtained on the cathode side). However, for the stepwise compression, a pressurizing controller for controlling the voltage or current is required.
【0015】[0015]
【発明が解決しようとする課題】しかしながら、図6及
び図7のガス圧縮器では、装置のガス導入口114から
ガス導出口115に向けてガス圧が増大するので、装置
全体を支える外壁116は、到達圧縮圧を超える耐圧性
能が必要となる。これでは、非常に高コストとなり、ま
た破裂、爆発の危険性から安全面でも問題がある。ま
た、圧縮装置の一端を水素導入口114が占めるため、
水素導出口115は他端に限られるため、この装置から
の圧縮水素の供給効率は高いとはいえない。However, in the gas compressor shown in FIGS. 6 and 7, the gas pressure increases from the gas inlet 114 to the gas outlet 115 of the apparatus, so that the outer wall 116 supporting the entire apparatus is Therefore, pressure resistance that exceeds the ultimate compression pressure is required. This is very expensive, and there is a safety problem due to the risk of explosion and explosion. Further, since the hydrogen inlet 114 occupies one end of the compressor,
Since the hydrogen outlet 115 is limited to the other end, the efficiency of supplying compressed hydrogen from this device cannot be said to be high.
【0016】本発明の目的は、外壁に高価な耐高圧材を
使用する必要がなく、内圧による破裂、爆発の危険性が
激減し、装置の全体積に対し相対的に膜の表面積を大き
くして水素等のガス導入量を増大させ、ガス導出口の位
置も装置の両端に設置できる等の自由度が増した低コス
ト及びコンパクト化が可能なガス圧縮装置を提供するこ
とにある。The object of the present invention is to eliminate the need for using an expensive high pressure resistant material for the outer wall, reduce the risk of rupture and explosion due to the internal pressure, and increase the surface area of the membrane relatively to the total volume of the device. It is an object of the present invention to provide a gas compression device capable of increasing the amount of introduction of a gas such as hydrogen and increasing the degree of freedom such that the position of the gas outlet can be installed at both ends of the device, and achieving low cost and compactness.
【0017】[0017]
【課題を解決するための手段】即ち、本発明は、プロト
ン伝導体膜等のイオン伝導体層と、白金等の触媒を配し
たガス透過性の電極との一体構造体(MEA)の複数個
がガス移動方向に順次配置され、これらの一体構造体に
よって水素ガス等の所定のガスがイオン化されて一方側
から他方側へ移動し、これによってガスを圧縮するガス
圧縮装置において、前記複数の一体構造体のうち、筒状
又は中空状、例えば円筒状の第1の一体構造体の外周囲
を囲むように筒状又は中空状、例えば円筒状の第2の一
体構造体が配置され、これら第1及び第2の一体構造体
のそれぞれの電極間の電位差によって外側から内部に向
けてガス内圧が上昇するように構成されていることを特
徴とするガス圧縮装置に係るものである。That is, the present invention provides a plurality of integrated structures (MEA) of an ion conductor layer such as a proton conductor membrane and a gas permeable electrode on which a catalyst such as platinum is arranged. Are sequentially arranged in the gas movement direction, and a predetermined gas such as hydrogen gas is ionized by these integrated structures to move from one side to the other side, thereby compressing the gas. In the structure, a tubular or hollow, for example, cylindrical second integral structure is arranged so as to surround the outer periphery of the cylindrical first integral structure. The present invention relates to a gas compression device, characterized in that the internal gas pressure is increased from the outside toward the inside due to the potential difference between the electrodes of the first and second integrated structures.
【0018】本発明はまた、複数の壁部からなり、これ
らの壁部のうち、一の壁部により区画される一の略閉じ
た空間が、他の壁部により区画される他の略閉じた空間
を包含するような、或いは前記他の空間に包含されるよ
うな構造からなる容器を有し、前記複数の壁部のうちの
少なくとも1つの壁部が、触媒を含む2枚の電極と、前
記2枚の電極に挟持されるイオン伝導体と、前記2枚の
電極間に電位差を与える手段とを含むガス圧縮装置に係
るものである。The present invention also comprises a plurality of wall portions, of which one substantially closed space partitioned by one wall portion is another substantially closed space partitioned by another wall portion. A container having such a structure as to contain the space or contained in the other space, and at least one wall of the plurality of walls includes two electrodes containing a catalyst. The present invention relates to a gas compression device including an ionic conductor sandwiched between the two electrodes and a means for applying a potential difference between the two electrodes.
【0019】本発明者は、水素導入部に配置されるME
Aに加わる圧力が常圧であることに着目し、仮に外壁全
体がこの水素導入部により覆われている構造にすれば、
外壁部の耐圧性能は常圧以上であればよいことをつき止
め、本発明に到達したものである。従って、本発明によ
れば、前記第1の一体構造体の外周囲を囲むように前記
第2の一体構造体が配置され、これら第1及び第2の一
体構造体のそれぞれの電極間の電位差によって外側から
内部に向けてガス内圧が上昇するように構成されている
ことにより、以下の(1)〜(5)のような顕著な作用
効果を奏することができる。The inventor of the present invention has found that the ME arranged in the hydrogen introduction section.
Paying attention to the fact that the pressure applied to A is normal pressure, if the structure is such that the entire outer wall is covered by this hydrogen introduction part,
The present invention was achieved by finding that the pressure resistance of the outer wall portion should be at least atmospheric pressure. Therefore, according to the present invention, the second integral structure is arranged so as to surround the outer periphery of the first integral structure, and the potential difference between the respective electrodes of the first integral structure and the second integral structure. Since the internal gas pressure is increased from the outside to the inside, the following remarkable operational effects (1) to (5) can be obtained.
【0020】(1)水素等のガスを圧縮する段階で圧縮
装置の外壁の圧力は常圧に保たれるため、高コストの耐
高圧材を外壁に用いる必要がない。
(2)外壁への圧力が抑えられるため、高圧縮水素等の
爆発事故の発生率を下げることができる。
(3)同じ容積の従来の平行型水素圧縮器と比較してM
EA面積が大きくなるため、圧縮効率が高くなる。
(4)2つの底面の両方にガス導出口を設けることが可
能となり、ボンベ等への圧縮ガスの供給の利便性が高く
なる。
(5)ガス中に不純ガスが混在していても、この不純ガ
スをフィルタリングすること(即ち、目的のガスのみを
イオン化して上記の圧縮を行うこと)ができる。(1) Since the pressure on the outer wall of the compressor is maintained at normal pressure when the gas such as hydrogen is compressed, it is not necessary to use a high-cost high pressure resistant material for the outer wall. (2) Since the pressure on the outer wall is suppressed, the occurrence rate of explosion accidents such as highly compressed hydrogen can be reduced. (3) Compared with the conventional parallel type hydrogen compressor of the same volume, M
Since the EA area is large, the compression efficiency is high. (4) Since it is possible to provide a gas outlet on both of the two bottom surfaces, the convenience of supplying compressed gas to a cylinder or the like is enhanced. (5) Even if an impure gas is mixed in the gas, the impure gas can be filtered (that is, only the target gas is ionized to perform the above compression).
【0021】[0021]
【発明の実施の形態】本発明のガス圧縮装置は、装置表
面を覆う外壁にガス導入口が設けられていると共に、少
なくともガス導出領域の外壁部分が耐高圧材で形成され
ているのがよい。BEST MODE FOR CARRYING OUT THE INVENTION In the gas compressing apparatus of the present invention, it is preferable that an outer wall covering the surface of the apparatus is provided with a gas inlet and at least the outer wall portion of the gas outlet region is formed of a high pressure resistant material. .
【0022】また、前記第1及び第2の一体構造体が円
筒形又は球形に形成され、互いに組み合されて同心構造
を構成していてよい。Further, the first and second integral structures may be formed in a cylindrical shape or a spherical shape and combined with each other to form a concentric structure.
【0023】また、前記第1及び第2の一体構造体がそ
れぞれ、水素ガスをプロトン(H+)に分解する第1極
と、前記第1極で発生した前記プロトンを再び前記水素
ガスに転化する第2極と、これらの両極間に挟持された
プロトン伝導体層とからなるのがよい。Further, the first and second integrated structures respectively convert a first electrode for decomposing hydrogen gas into protons (H + ) and the protons generated at the first electrode into the hydrogen gas again. It is preferable that the second electrode and the proton conductor layer sandwiched between these two electrodes are provided.
【0024】また、前記2枚の電極が、ガス分子をイオ
ンに分解する触媒を含む第1電極と、前記第1電極で発
生した前記イオンを再びガス分子に転化する触媒を含む
第2電極であるのがよい。The two electrodes are a first electrode containing a catalyst for decomposing gas molecules into ions, and a second electrode containing a catalyst for converting the ions generated at the first electrode into gas molecules again. Good to have.
【0025】この場合、前記第1電極が前記壁部の外側
に設置され、前記第2電極が前記壁部の内側に設置され
ていてよく、また前記第1電極に、前記第2電極より高
電位を与えてよい。In this case, the first electrode may be installed outside the wall portion and the second electrode may be installed inside the wall portion, and the first electrode may be higher than the second electrode. A potential may be applied.
【0026】また、前記複数の壁部のうちの少なくとも
1つの壁部により区画される空間が、略円筒形状又は略
球形状であってよい。The space defined by at least one wall of the plurality of walls may be substantially cylindrical or spherical.
【0027】また、前記複数の壁部により区画される少
なくとも1つの空間からガスを排出する手段、又は前記
空間にガスを供給する手段を備えてよい。Further, there may be provided means for discharging gas from at least one space defined by the plurality of walls, or means for supplying gas to the space.
【0028】以下、本発明の好ましい実施の形態を図面
参照下に説明する。Preferred embodiments of the present invention will be described below with reference to the drawings.
【0029】図1及び図2は、第1の実施の形態による
水素圧縮器20Aを示す。この水素圧縮器20Aは、円
筒状のプロトン伝導体膜1を白金等の触媒層10付きの
円筒状のガス拡散性電極2及び3で挟着してなる円筒状
の一体構造体をMEA(1)、MEA(2)、MEA
(3)、・・・MEA(n)としてガス移動方向に所定
間隔を置いて順次同心状に配置した、いわば同心状の多
重管型の圧縮装置としたものである。従って、内側のM
EAの外周囲を外側のMEAが取囲んでいる。1 and 2 show a hydrogen compressor 20A according to the first embodiment. This hydrogen compressor 20A has a cylindrical integral structure formed by sandwiching a cylindrical proton conductor membrane 1 between cylindrical gas diffusible electrodes 2 and 3 having a catalyst layer 10 made of platinum or the like. ), MEA (2), MEA
(3) The MEA (n) is a so-called concentric multi-tube type compression device which is sequentially and concentrically arranged at predetermined intervals in the gas moving direction. Therefore, the inner M
The outer MEA surrounds the outer circumference of the EA.
【0030】そして、この圧縮器の表面を覆う外壁は金
属、プラスチック等で形成してよいが、水素導入口4を
設けた側壁6は常圧に耐えうる材料で形成され、ガス圧
力の大きくなる底壁(底面部)7は耐高圧材で形成され
ることが重要である。The outer wall that covers the surface of the compressor may be formed of metal, plastic, or the like, but the side wall 6 provided with the hydrogen inlet 4 is formed of a material that can withstand atmospheric pressure, and the gas pressure increases. It is important that the bottom wall (bottom surface) 7 is formed of a high pressure resistant material.
【0031】この外壁の内部には、側壁6に沿って円筒
状に多層(例えば3〜20層)のMEAを配置し、電極
2及び3をMEAの各電源V1、V2、V3、・・・Vn
に接続する(但し、この場合、既述したと同様に、下流
側に向けて電圧を上げる必要はない)。側壁6には水素
導入口4を設け、両底面部7の最も高圧となる部分に高
圧水素導出口5を設けるが、水素導入口4より水素を入
れていき、上記のように各MEAに中心に向かってプロ
トンが伝導していくように電位差(電極2側が電極3側
よりも高電位)を与えると、外方から内部へ向けて段階
的に水素内圧を上昇させ、最中心層で高圧縮水素ガスを
得ることができる。Inside the outer wall, a multi-layer (for example, 3 to 20 layers) MEA is arranged in a cylindrical shape along the side wall 6, and the electrodes 2 and 3 are connected to the MEA power sources V 1 , V 2 , and V 3 , respectively. ... Vn
(However, in this case, it is not necessary to increase the voltage toward the downstream side, as described above). The side wall 6 is provided with a hydrogen inlet 4, and the high-pressure hydrogen outlet 5 is provided at the highest pressure portion of both bottoms 7. The hydrogen is introduced through the hydrogen inlet 4, and each MEA is centered as described above. When a potential difference (higher potential on the electrode 2 side than on the electrode 3 side) is applied so that protons are conducted toward, the hydrogen internal pressure is gradually increased from the outside to the inside, and the hydrogen is highly compressed in the most central layer. Hydrogen gas can be obtained.
【0032】この段階で、たとえ中心部の水素圧を耐高
圧材が必要なレベルまで上げても、側面の外壁6が感じ
る圧力は初期水素導入圧力に低く保持されており、耐常
圧材料で形成した側壁6が内圧により破裂する危険性は
ない。中心部が高圧となっても、これは耐高圧の底壁7
によって十分な耐圧性を示すので、問題がない。また、
両底面部7につなげた2つの水素供給ボンベから、高圧
縮水素を水素貯蔵ボンベに送ることができる。At this stage, even if the hydrogen pressure in the central portion is raised to a level required by the high pressure resistant material, the pressure felt by the outer wall 6 on the side surface is kept low at the initial hydrogen introduction pressure, and the pressure resistant material is There is no risk of the formed side wall 6 bursting due to internal pressure. Even if the central part becomes high pressure, this is a high pressure resistant bottom wall 7
Sufficient pressure resistance is shown, so there is no problem. Also,
Highly compressed hydrogen can be sent to the hydrogen storage cylinder from the two hydrogen supply cylinders connected to both bottom parts 7.
【0033】このように、本実施の形態の水素圧縮器2
0Aは、次の顕著な作用効果を奏するものである。As described above, the hydrogen compressor 2 of the present embodiment
0A has the following remarkable effects.
【0034】(a)水素を圧縮する段階で圧縮器側壁6
の圧力は常圧に保たれるため、高コストの耐高圧材を側
壁に用いる必要がなくなる。耐高圧材は底壁7のみに用
いればよく、また底壁7のうち特に水素導出口5のある
底壁部分7aを耐高圧材で形成し、他の部分は比較的低
い耐圧材で形成してもよい。
(b)側壁6への圧力が抑えられることにより、内圧に
よる高圧縮水素の爆発事故の発生率を下げることができ
る。
(c)MEAを円筒状にして多重管型とすることによ
り、同じ容積の従来の平行型水素圧縮器と比較してME
A面積が大きくなるため(装置の全体積に対し相対的に
膜の表面積が大きくなるため)、水素導入量を増やし、
水素圧縮効率を高くすることができる。
(d)2つの底面の両方に水素導入口5を設けることが
可能となり、ボンベ等への圧縮水素の供給の利便性が高
い。
(e)仮に供給する水素ガスに不純ガスが混在していて
も、この不純ガスはイオン化されずにフィルタリングす
ることができる。(A) Compressor side wall 6 at the stage of compressing hydrogen
Since the pressure is maintained at normal pressure, it is not necessary to use high-cost high pressure resistant material for the side wall. The high pressure resistant material may be used only for the bottom wall 7, and the bottom wall portion 7a of the bottom wall 7 having the hydrogen outlet 5 is formed of a high pressure resistant material and the other portions are formed of a relatively low pressure resistant material. May be. (B) By suppressing the pressure on the side wall 6, it is possible to reduce the occurrence rate of the explosion accident of highly compressed hydrogen due to the internal pressure. (C) The MEA has a cylindrical shape and is of a multi-tube type, so that the MEA can be compared with a conventional parallel-type hydrogen compressor having the same volume.
Since the area A becomes large (because the surface area of the membrane becomes relatively large with respect to the total volume of the device), the amount of hydrogen introduced increases,
The hydrogen compression efficiency can be increased. (D) Since it is possible to provide the hydrogen inlets 5 on both of the two bottom surfaces, the convenience of supplying compressed hydrogen to a cylinder or the like is high. (E) Even if the supplied hydrogen gas contains an impure gas, the impure gas can be filtered without being ionized.
【0035】図3に示す水素圧縮器20Bでは、MEA
(1)〜(n)を球状とし、内側の径小の球状MEAを
外側の径大のMEAが内包するように同心球状に多層化
し、各層間に電位差を与えることにより中心部に向かっ
て段階的に水素内圧を上げていく。In the hydrogen compressor 20B shown in FIG. 3, the MEA
(1) to (n) are spherical, the inner small spherical MEA is multi-layered in a concentric spherical shape so that the outer large MEA is enclosed, and a potential difference is given between the layers to step toward the center. To increase the internal hydrogen pressure.
【0036】従って、上述した例と同様に、水素導入口
14のある外壁(外球部)16に加わる圧力を低く保つ
ことができ、同様の作用効果を得ることができる。但
し、最内方の高圧水素ガスは、耐高圧材からなる水素導
出部15によって導出する必要がある。Therefore, similar to the above-mentioned example, the pressure applied to the outer wall (outer sphere portion) 16 having the hydrogen inlet 14 can be kept low, and the same effect can be obtained. However, the innermost high-pressure hydrogen gas needs to be led out by the hydrogen lead-out portion 15 made of a high pressure resistant material.
【0037】図4に示す水素圧縮器20Cは、図1及び
図2に示した如き多重管型構造を長くし、蛇行状に屈曲
させたものである。A hydrogen compressor 20C shown in FIG. 4 is obtained by lengthening the multi-tube structure as shown in FIGS. 1 and 2 and bending it in a meandering shape.
【0038】このように構成すれば、MEAの占有面積
を一層増大させ、水素導入口4を複数箇所に設けて水素
導入量を更に増大させることができるので、水素圧縮効
率を向上させることができる。その他は、上述した例と
同様の作用効果を奏することができる。According to this structure, the occupied area of the MEA can be further increased and the hydrogen introduction ports 4 can be provided at a plurality of places to further increase the hydrogen introduction amount, so that the hydrogen compression efficiency can be improved. . Other than that, the same operational effects as those of the above-described example can be obtained.
【0039】なお、以上に述べた各例において、MEA
によるプロトン発生とその移動及び水素ガスの再生のメ
カニズムは、既述したナフィオンをプロトン伝導体に用
いる場合は次の通りである。In each of the examples described above, the MEA
The mechanism of the generation of protons and its transfer by hydrogen and the regeneration of hydrogen gas are as follows when Nafion described above is used as the proton conductor.
【0040】水素ガス導入口から供給された水素ガス
は、ガス拡散性電極2上で電子を失い、下記式(1)に
従ってH3O+イオンを生成する。
H2+2H2O→2e−+2H3O+・・・式(1)The hydrogen gas supplied from the hydrogen gas inlet loses electrons on the gas diffusive electrode 2 and produces H 3 O + ions according to the following formula (1). H 2 + 2H 2 O → 2e − + 2H 3 O + ... Formula (1)
【0041】次いで、上記発生したH3O+イオンは、プ
ロトン伝導体膜1中の水を伴って、電圧を駆動力とし
て、他方のガス拡散性電極3まで進み、このガス拡散性
電極3上で電子を受け取り、下記式(2)に従って再び
水素ガスに転化される。
2e−+2H3O+→H2+2H2O・・・式(2)Next, the generated H 3 O + ions travel to the other gas diffusive electrode 3 with water in the proton conductor membrane 1 as a driving force, and on the gas diffusible electrode 3. The electrons are received at and converted to hydrogen gas again according to the following formula (2). 2e − + 2H 3 O + → H 2 + 2H 2 O ... Formula (2)
【0042】また、プロトン伝導体としてフラーレン誘
導体、例えば−OH、−OSO3H、−COOH、−S
O3H、−OPO(OH)2、−C6H4−SO3H等のプ
ロトン解離性の基を導入したフラーレンを用いると、導
入された水素ガスは、陽極としてのガス拡散性電極2上
で電子を失い、下記式(4)に従ってプロトンを生成す
る。
H2→2H++2e−・・・式(4)Further, as a proton conductor, a fullerene derivative such as -OH, -OSO 3 H, -COOH, -S.
When a fullerene introduced with a proton-dissociative group such as O 3 H, —OPO (OH) 2 , —C 6 H 4 —SO 3 H is used, the introduced hydrogen gas is the gas diffusion electrode 2 serving as the anode. The above loses an electron and produces a proton according to the following formula (4). H 2 → 2H + + 2e - ··· formula (4)
【0043】陽極2にて生成したプロトンは、電圧を駆
動力として、プロトン伝導体1を通過して陰極としての
ガス拡散性電極3まで進み、ガス拡散性電極3上で電子
を受け取ることで、下記式(5)に従って再び水素ガス
に転化される。
2H++2e−→H2・・・式(5)The protons generated at the anode 2 pass through the proton conductor 1 to the gas diffusive electrode 3 as the cathode by using the voltage as a driving force, and receive electrons on the gas diffusible electrode 3, It is converted into hydrogen gas again according to the following formula (5). 2H + + 2e − → H 2 ... Formula (5)
【0044】このようにフラーレン誘導体をプロトン伝
導体1の構成材料として使用すると、H3O+イオン伝導
体であるナフィオンを用いた場合と違い、加湿装置等が
なくても、低湿度状態の大気中においても機能する。即
ち、低湿度状態の大気中にて水素を圧縮することができ
るので、定常運転までに時間をかけず、水素圧縮時の初
動作を早くすることができる。しかし、この場合でも、
例えば加湿装置を設け、水分を存在させて同様に水素を
圧縮してもよい。When the fullerene derivative is used as the constituent material of the proton conductor 1 as described above, unlike the case where Nafion, which is an H 3 O + ion conductor, is used, the atmosphere in a low humidity state can be obtained without a humidifying device. It also works inside. That is, since hydrogen can be compressed in the atmosphere of low humidity, it is possible to speed up the initial operation during hydrogen compression without taking time until steady operation. But even in this case,
For example, a humidifier may be provided so that water is present and hydrogen is similarly compressed.
【0045】また、電極2及び3は、ガス透過性があ
り、多孔性又はメッシュ状に形成されることが好まし
く、例えばカーボンファイバーや多孔質カーボンを材質
として、これらをシート状にし、プロトン伝導体1と密
着する側に、活性な触媒を担持させることによって、作
製することができる。The electrodes 2 and 3 are preferably gas permeable and are preferably formed in a porous or mesh shape. For example, carbon fiber or porous carbon is used as a material, and these are made into a sheet shape to form a proton conductor. It can be produced by supporting an active catalyst on the side closely contacting with 1.
【0046】上記触媒は、例えば白金やルテニウム、酸
化イリジウム等の微粒子であることが望ましく、また銀
など他の電極物質でも目的の反応が進行するものであれ
ばよく、他の電極物質でもよい。The catalyst is preferably fine particles of platinum, ruthenium, iridium oxide or the like, and other electrode substances such as silver may be used as long as the intended reaction proceeds, and other electrode substances may be used.
【0047】電極2及び3への上記触媒の担持は通常の
方法でよく、例えば、炭素粉末の表面に触媒又はその前
駆体を担持し、それに加熱などの処理を加えて、触媒粒
子を形成し、それを電極面にフッ素樹脂と共に焼き付け
る方法でもよい。The above catalyst may be carried on the electrodes 2 and 3 by a usual method. For example, the catalyst or its precursor is carried on the surface of carbon powder, and a treatment such as heating is applied thereto to form catalyst particles. Alternatively, a method of baking it on the electrode surface together with the fluororesin may be used.
【0048】以上に述べた実施の形態は、本発明の技術
的思想に基づいて種々に変形可能である。The embodiments described above can be variously modified based on the technical idea of the present invention.
【0049】例えば、上述の水素圧縮器又はMEAの断
面形状はダ円形、多角形等であってよく、またその立体
形状も種々変形してよい。MEAの層数や配列も様々で
あってよい。また、水素導入口のある外壁は常圧に耐え
ればよいので、MEA自体で形成することもできる。For example, the cross-sectional shape of the hydrogen compressor or MEA described above may be a circular shape, a polygonal shape or the like, and the three-dimensional shape thereof may be variously modified. The number and arrangement of layers of the MEA may vary. Further, since the outer wall having the hydrogen introducing port has only to withstand atmospheric pressure, it can be formed of MEA itself.
【0050】また、上述の例では、高圧水素を導出して
ボンベ等に貯留させるようにしたが、水素導出口を閉じ
て圧縮器自体をボンベとして用いることもできる。Further, in the above-mentioned example, the high-pressure hydrogen was discharged and stored in a cylinder or the like, but the hydrogen discharge port may be closed and the compressor itself may be used as a cylinder.
【0051】なお、本発明は、水素ガスの圧縮に限定さ
れることはなく、水素以外の他のガスの圧縮にも適用可
能である。The present invention is not limited to the compression of hydrogen gas, but can be applied to the compression of gases other than hydrogen.
【0052】[0052]
【発明の作用効果】本発明は上述したように、筒状又は
中空状の第1の一体構造体の外周囲を囲むように筒状又
は中空状の第2の一体構造体が配置され、これら第1及
び第2の一体構造体のそれぞれの電極間の電位差によっ
て外側から内部に向けてガス内圧が上昇するように構成
されていることにより、以下の(1)〜(5)のような
顕著な作用効果を奏することができる。As described above, according to the present invention, the cylindrical or hollow second integral structure is arranged so as to surround the outer periphery of the cylindrical or hollow first integral structure. Since the gas internal pressure increases from the outside to the inside due to the potential difference between the electrodes of the first and second integrated structures, the following (1) to (5) are remarkable. It is possible to achieve various operational effects.
【0053】(1)水素等のガスを圧縮する段階で圧縮
装置の外壁の圧力は常圧に保たれるため、高コストの耐
高圧材を外壁に用いる必要がない。
(2)外壁への圧力が抑えられるため、高圧縮水素等の
爆発事故の発生率を下げることができる。
(3)同じ容積の従来の平行型水素圧縮器と比較してM
EA面積が大きくなるため、圧縮効率が高くなる。
(4)2つの底面の両方にガス導出口を設けることが可
能となり、ボンベ等への圧縮ガスの供給の利便性が高く
なる。
(5)ガス中に不純ガスが混在していても、この不純ガ
スをフィルタリングすること(即ち、目的のガスのみを
イオン化して上記の圧縮を行うこと)ができる。(1) Since the pressure on the outer wall of the compressor is maintained at normal pressure at the stage of compressing gas such as hydrogen, it is not necessary to use high-cost high pressure resistant material for the outer wall. (2) Since the pressure on the outer wall is suppressed, the occurrence rate of explosion accidents such as highly compressed hydrogen can be reduced. (3) Compared with the conventional parallel type hydrogen compressor of the same volume, M
Since the EA area is large, the compression efficiency is high. (4) Since it is possible to provide a gas outlet on both of the two bottom surfaces, the convenience of supplying compressed gas to a cylinder or the like is enhanced. (5) Even if an impure gas is mixed in the gas, the impure gas can be filtered (that is, only the target gas is ionized to perform the above compression).
【図1】本発明の実施の形態による水素圧縮器の概略斜
視図である。FIG. 1 is a schematic perspective view of a hydrogen compressor according to an embodiment of the present invention.
【図2】同、水素圧縮器の断面図である。FIG. 2 is a sectional view of the hydrogen compressor.
【図3】本発明の他の実施の形態による水素圧縮器の概
略正面図である。FIG. 3 is a schematic front view of a hydrogen compressor according to another embodiment of the present invention.
【図4】本発明の更に他の実施の形態による水素圧縮器
の概略正面図である。FIG. 4 is a schematic front view of a hydrogen compressor according to still another embodiment of the present invention.
【図5】従来の水素圧縮器の断面図である。FIG. 5 is a cross-sectional view of a conventional hydrogen compressor.
【図6】従来の他の水素圧縮器の概略斜視図である。FIG. 6 is a schematic perspective view of another conventional hydrogen compressor.
【図7】同、水素圧縮器の断面図である。FIG. 7 is a sectional view of the hydrogen compressor.
1…プロトン伝導体、2、3…ガス拡散性電極、4、1
4…水素導入口、5、15…水素導出口、6…側壁、7
…底壁、10…触媒層、16…外壁、20A、20B、
20C…水素圧縮器、MEA(1)〜(n)…プロトン
伝導体膜−電極一体構造体1 ... Proton conductor, 2, 3 ... Gas diffusion electrode, 4, 1
4 ... Hydrogen inlet, 5, 15 ... Hydrogen outlet, 6 ... Side wall, 7
... bottom wall, 10 ... catalyst layer, 16 ... outer wall, 20A, 20B,
20C ... Hydrogen compressor, MEA (1) to (n) ... Proton conductor membrane-electrode integrated structure
Claims (11)
の一体構造体の複数個がガス移動方向に順次配置され、
これらの一体構造体によって所定のガスがイオン化され
て一方側から他方側へ移動し、これによってガスを圧縮
するガス圧縮装置において、前記複数の一体構造体のう
ち、筒状又は中空状の第1の一体構造体の外周囲を囲む
ように筒状又は中空状の第2の一体構造体が配置され、
これら第1及び第2の一体構造体のそれぞれの電極間の
電位差によって外側から内部に向けてガス内圧が上昇す
るように構成されていることを特徴とするガス圧縮装
置。1. A plurality of integrated structures of an ion conductor layer and an electrode on which a catalyst is arranged are sequentially arranged in a gas moving direction,
In the gas compressing device, which compresses gas by ionizing a predetermined gas by one of these integrated structures and moving it from one side to the other side, a tubular or hollow first part of the plurality of integrated structures. A cylindrical or hollow second integrated structure is arranged so as to surround the outer periphery of the integrated structure of
A gas compression device, characterized in that the internal gas pressure is increased from the outside toward the inside due to the potential difference between the respective electrodes of the first and second integrated structures.
られていると共に、少なくともガス導出領域の外壁部分
が耐高圧材で形成されている、請求項1に記載したガス
圧縮装置。2. The gas compression device according to claim 1, wherein the outer wall covering the surface of the device is provided with a gas inlet, and at least the outer wall portion of the gas outlet region is formed of a high pressure resistant material.
又は球形に形成され、互いに組み合されて同心構造を構
成している、請求項1に記載したガス圧縮装置。3. The gas compression device according to claim 1, wherein the first and second integral structures are formed into a cylindrical shape or a spherical shape, and are combined with each other to form a concentric structure.
れ、水素ガスをプロトン(H+)に分解する第1極と、
前記第1極で発生した前記プロトンを再び前記水素ガス
に転化する第2極と、これらの両極間に挟持されたプロ
トン伝導体層とからなる、請求項1に記載したガス圧縮
装置。4. A first electrode for decomposing hydrogen gas into protons (H + ) in each of the first and second integrated structures,
The gas compression device according to claim 1, comprising a second electrode for converting the protons generated in the first electrode into the hydrogen gas again, and a proton conductor layer sandwiched between the two electrodes.
ち、一の壁部により区画される一の略閉じた空間が、他
の壁部により区画される他の略閉じた空間を包含するよ
うな、或いは前記他の空間に包含されるような構造から
なる容器を有し、前記複数の壁部のうちの少なくとも1
つの壁部が、触媒を含む2枚の電極と、前記2枚の電極
に挟持されるイオン伝導体と、前記2枚の電極間に電位
差を与える手段とを含むガス圧縮装置。5. A plurality of wall portions, one of which is a substantially closed space defined by one wall portion, and the other of which is a substantially closed space defined by another wall portion. At least one of the plurality of wall parts has a container having a structure to be included or contained in the other space.
A gas compression device, wherein one wall includes two electrodes containing a catalyst, an ion conductor sandwiched between the two electrodes, and a means for applying a potential difference between the two electrodes.
分解する触媒を含む第1電極と、前記第1電極で発生し
た前記イオンを再びガス分子に転化する触媒を含む第2
電極である、請求項5に記載したガス圧縮装置。6. The second electrode, wherein the two electrodes include a first electrode including a catalyst that decomposes gas molecules into ions, and a second electrode including a catalyst that converts the ions generated at the first electrode into gas molecules again.
The gas compression device according to claim 5, which is an electrode.
れ、前記第2電極が前記壁部の内側に設置されている、
請求項6に記載したガス圧縮装置。7. The first electrode is installed outside the wall portion, and the second electrode is installed inside the wall portion,
The gas compression device according to claim 6.
位を与える、請求項6に記載したガス圧縮装置。8. The gas compression device according to claim 6, wherein a higher electric potential is applied to the first electrode than to the second electrode.
の壁部により区画される空間が、略円筒形状又は略球形
状である、請求項5に記載したガス圧縮装置。9. The gas compression device according to claim 5, wherein a space defined by at least one wall portion of the plurality of wall portions has a substantially cylindrical shape or a substantially spherical shape.
くとも1つの空間からガスを排出する手段、又は前記空
間にガスを供給する手段を備えた、請求項5に記載した
ガス圧縮装置。10. The gas compression device according to claim 5, further comprising means for discharging gas from at least one space defined by the plurality of walls or means for supplying gas to the space.
イオン伝導体がプロトン伝導体である、請求項5に記載
したガス圧縮装置。11. The gas compression device according to claim 5, wherein the gas is hydrogen gas and the ionic conductor is a proton conductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002011125A JP2003213471A (en) | 2002-01-21 | 2002-01-21 | Gas compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002011125A JP2003213471A (en) | 2002-01-21 | 2002-01-21 | Gas compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003213471A true JP2003213471A (en) | 2003-07-30 |
Family
ID=27648676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002011125A Pending JP2003213471A (en) | 2002-01-21 | 2002-01-21 | Gas compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003213471A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014207388A1 (en) * | 2013-06-26 | 2014-12-31 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Device for the electrochemical purification and compression of hydrogen having a plurality of stages |
FR3009135A1 (en) * | 2013-07-29 | 2015-01-30 | Commissariat Energie Atomique | DEVICE FOR SUPPLYING AND RECIRCULATING HYDROGEN FOR A FUEL CELL |
-
2002
- 2002-01-21 JP JP2002011125A patent/JP2003213471A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014207388A1 (en) * | 2013-06-26 | 2014-12-31 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Device for the electrochemical purification and compression of hydrogen having a plurality of stages |
FR3007669A1 (en) * | 2013-06-26 | 2015-01-02 | Commissariat Energie Atomique | DEVICE FOR PURIFYING AND ELECTROCHEMICALLY COMPRESSING MULTI-STAGE HYDROGEN |
FR3009135A1 (en) * | 2013-07-29 | 2015-01-30 | Commissariat Energie Atomique | DEVICE FOR SUPPLYING AND RECIRCULATING HYDROGEN FOR A FUEL CELL |
WO2015015072A1 (en) * | 2013-07-29 | 2015-02-05 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Device for supplying and recirculating hydrogen for a fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3719178B2 (en) | Hydrogen gas production filling device and electrochemical device | |
US6080501A (en) | Fuel cell with integral fuel storage | |
US5458989A (en) | Tubular fuel cells with structural current collectors | |
JP6325698B2 (en) | Proton exchange membrane fuel cell | |
JP4994571B2 (en) | Fuel cells and electrical equipment | |
JP5133252B2 (en) | Fuel cell stack | |
US20070207371A1 (en) | Fuel cell | |
JP2009527101A (en) | Power generation device having multiple fuel cell layers | |
US20060280662A1 (en) | Micro reformer and micro fuel cell having the same | |
WO2020095836A1 (en) | Electrochemical hydrogen pump | |
CA2441623C (en) | Fuel cell with a seal member defining a reactant gas flow field | |
JP4884881B2 (en) | Energy station | |
US7833394B2 (en) | Housing, apparatus for generating hydrogen and fuel cell power generation system having the same | |
JP2003213471A (en) | Gas compressor | |
JPH0992308A (en) | Solid polymer electrolyte fuel cell | |
JP2004356031A (en) | Fuel cell and small-sized electrical apparatus | |
JP2009037991A (en) | Mobile body | |
JP2003280747A (en) | Gas pressure regulator, electrochemical device, gas storage device and gas pressure regulating method | |
JP2006216281A (en) | Fuel cell and manufacturing method of the same | |
US8273486B2 (en) | Protecting a PEM fuel cell catalyst against carbon monoxide poisoning | |
JP2004265872A (en) | Fuel cell, fuel cell generator and instrument using the same | |
JP2005183132A (en) | Fuel cell | |
JP2004259705A (en) | Fuel cell, fuel cell generator, and equipment using the same | |
JP2001093540A (en) | Fuel cell | |
JP2003317790A (en) | Cell for fuel cell, fuel cell system and its manufacturing method |