JP2003213412A - Method and device of plasma ion implantation and film forming - Google Patents

Method and device of plasma ion implantation and film forming

Info

Publication number
JP2003213412A
JP2003213412A JP2002010944A JP2002010944A JP2003213412A JP 2003213412 A JP2003213412 A JP 2003213412A JP 2002010944 A JP2002010944 A JP 2002010944A JP 2002010944 A JP2002010944 A JP 2002010944A JP 2003213412 A JP2003213412 A JP 2003213412A
Authority
JP
Japan
Prior art keywords
processed
plasma
ion implantation
raw material
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002010944A
Other languages
Japanese (ja)
Other versions
JP4069199B2 (en
Inventor
Akiyoshi Chayahara
昭義 茶谷原
Yoshiaki Mokuno
由明 杢野
Atsushi Kinomura
淳 木野村
Nobuteru Tsubouchi
信輝 坪内
Yuji Horino
裕治 堀野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002010944A priority Critical patent/JP4069199B2/en
Publication of JP2003213412A publication Critical patent/JP2003213412A/en
Application granted granted Critical
Publication of JP4069199B2 publication Critical patent/JP4069199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device in which ions are implanted and/or a film is formed by using a plasma ion implantation method by which an element other than a target element and coarse particles are excluded. <P>SOLUTION: Plasma is generated from the vapor of an electrically conductive molten solution by discharge in which the molten liquid is used as a cathode, and ions in the plasma are implanted into a work to be processed by applying negative high voltage pulses on the work to be processed which is placed in the plasma. A film is formed when the voltage applied to the work to be processed is low. Further, it is possible that a vapor deposition with the vapor generated from the molten solution is performed simultaneously with the ion implantation. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、イオン注入方法、
成膜方法、並びにイオン注入及び/又は成膜装置に関す
る。
TECHNICAL FIELD The present invention relates to an ion implantation method,
The present invention relates to a film forming method and an ion implantation and / or film forming apparatus.

【0002】[0002]

【従来の技術】新規なイオン注入及び成膜技術としてプ
ラズマイオン注入の開発が進んでいる。プラズマイオン
注入とはプラズマ中に置かれた被処理物に負の高電圧パ
ルスを印加してプラズマ中のイオンを被処理物表面に注
入する技術の総称である。従来のイオンビームを用いた
イオン注入法を用いると、半導体ウェハーの代表される
平面形状物へのイオン注入は容易であるが、立体形状物
の場合はそれを回転させるなどして注入しており、形状
によっては注入できない部分があった。プラズマイオン
注入を用いると一度に立体形状物の全周に注入でき、適
用範囲の拡大や処理コストの低減が可能となるので注目
されている。
2. Description of the Related Art Development of plasma ion implantation has been advanced as a new ion implantation and film forming technique. Plasma ion implantation is a general term for a technique of applying a negative high-voltage pulse to an object to be processed placed in plasma and injecting ions in the plasma to the surface of the object to be processed. If the conventional ion implantation method using an ion beam is used, it is easy to implant ions into a flat-shaped object such as a semiconductor wafer, but in the case of a three-dimensional object, it is injected by rotating it. However, some parts could not be injected depending on the shape. When plasma ion implantation is used, it can be implanted into the entire circumference of a three-dimensional object at one time, which makes it possible to expand the range of application and reduce the processing cost, and therefore it is drawing attention.

【0003】プラズマイオン注入技術において、金属な
ど室温で固体の元素をイオンとして注入する場合は、そ
の元素のプラズマを発生させる必要がある。塩化物や有
機金属化合物ガスを用いて放電によってプラズマを発生
させると、目的のイオンの他に塩素、炭素、水素などが
同時に注入されてしまう。目的のイオンのみ注入を行い
たい場合は、専ら真空アーク放電を用いて固体原料から
直接プラズマを発生させる方法が用いられている。
In the plasma ion implantation technique, when a solid element such as metal at room temperature is implanted as ions, it is necessary to generate plasma of the element. When plasma is generated by discharge using a chloride or organometallic compound gas, chlorine, carbon, hydrogen, etc. are simultaneously injected in addition to the target ions. When it is desired to implant only target ions, a method of directly generating plasma from a solid material using a vacuum arc discharge is used.

【0004】本発明と形態が類似した成膜技術に、例え
ば「特開平11-36073 イオンプレーティング装置」があ
る。基板へパルスバイアス(正:50乃至120V、負:-200
乃至-2000V)を印加しているが、パルスバイアスを用い
る目的は、絶縁基板または絶縁材料を蒸着するときに起
こるチャージアップを防止するためであり、本発明での
負の高電圧パルスを印加するプラズマイオン注入法とは
区別される。
As a film forming technique having a form similar to that of the present invention, there is, for example, "JP-A-11-36073 Ion plating device". Pulse bias to substrate (Positive: 50 to 120V, Negative: -200
However, the purpose of using the pulse bias is to prevent charge-up that occurs when depositing an insulating substrate or an insulating material, and applying a negative high voltage pulse in the present invention. It is distinguished from the plasma ion implantation method.

【0005】[0005]

【発明が解決しようとする課題】プラズマイオン注入に
用いるプラズマを発生させるため上述のように真空アー
ク放電が利用されているが、固体原料を用いた真空アー
ク放電に伴って「液滴(ドロップレット)」と呼ばれる
粗大粒子が発生し、これが被処理物表面に付着する。こ
の現象は、平坦な処理表面が望まれる場合に大きな問題
となっており、真空アーク放電に伴って発生する液滴を
減少させる技術や液滴がなるべく被処理物に到達しない
ような工夫がなされているが、完全に液滴を取り除くこ
とは困難である。
The vacuum arc discharge is used as described above to generate the plasma used for plasma ion implantation. However, the vacuum arc discharge using the solid raw material causes a "droplet (droplet)". ) ”Is generated, which is attached to the surface of the object to be treated. This phenomenon becomes a big problem when a flat treated surface is desired, and a technique for reducing droplets generated by vacuum arc discharge and a device for preventing the droplets from reaching the object to be treated as much as possible are made. However, it is difficult to completely remove the droplet.

【0006】[0006]

【課題を解決するための手段】本発明は、以下の項1〜
項11のイオン注入及び成膜を行う方法およびその装置
に関する。 項1. プラズマ中の被処理物に負の高電圧パルスを印
加して、被処理物にイオン注入及び/又は成膜を行なう
方法であって、プラズマ発生に用いる材料蒸発源として
固体原料の融液又は昇華物を用いることを特徴とする方
法。 項2. 固体原料が元素単体若しくはその合金又は真空
蒸着可能な化合物である項1に記載の方法。 項3. 真空蒸着可能な化合物が元素単体の半導体、有
機半導体又は高分子半導体である項2に記載の方法。 項4. プラズマ発生に用いる材料蒸発源が固体原料の
融液である項1に記載の方法。 項5. 固体原料が炭素である項1に記載の方法。 項6. プラズマの発生を窒素ガス及び/又は酸素ガス
及び/又は炭化水素ガスの存在下で行なう項1〜5のい
ずれか1つに記載の方法。 項7. 被処理物と融液又は昇華物の間に遮蔽板を存在
させてイオン注入又は成膜を行なう項1の方法。 項8. 高電圧パルス電源及び被処理物の支持装置を有
する被処理物に高電圧パルスを印加する装置;陽極、固
体原料融液又は炭素を保持できる陰極体及び放電用電源
からなる放電装置;陰極体上の固体原料又は炭素を溶融
ないし昇華させるための装置;真空槽を備えたイオン注
入及び/又は成膜装置。 項9. 窒素ガス及び/又は酸素ガス及び/又は炭化水
素ガスの導入管をさらに備えた項8に記載の装置。 項10. 被処理物と材料発生源の間に遮蔽板を設けて
なる項8の装置。 項11. 処理表面に液滴がなく、イオン注入物が材料
蒸発源のみであるプラズマイオン注入・成膜処理物。
The present invention includes the following items 1 to 3.
Item 11 A method and an apparatus for performing ion implantation and film formation. Item 1. A method of applying a negative high voltage pulse to an object to be processed in plasma to perform ion implantation and / or film formation on the object to be processed, which is a melt or sublimation of a solid raw material as a material evaporation source used for plasma generation. A method characterized by using a thing. Item 2. Item 2. The method according to Item 1, wherein the solid raw material is a single element, an alloy thereof, or a compound capable of being vacuum-deposited. Item 3. Item 3. The method according to Item 2, wherein the compound capable of being vacuum-deposited is a semiconductor of an element simple substance, an organic semiconductor or a polymer semiconductor. Item 4. Item 2. The method according to Item 1, wherein the material evaporation source used for plasma generation is a melt of a solid raw material. Item 5. Item 2. The method according to Item 1, wherein the solid raw material is carbon. Item 6. Item 6. The method according to any one of Items 1 to 5, wherein plasma is generated in the presence of nitrogen gas and / or oxygen gas and / or hydrocarbon gas. Item 7. The method according to item 1, wherein a shield plate is present between the object to be processed and the melt or sublimate to perform ion implantation or film formation. Item 8. A device for applying a high voltage pulse to an object to be processed having a high voltage pulse power source and a support device for the object to be processed; a discharge device consisting of an anode, a cathode body capable of holding a solid raw material melt or carbon, and a power source for discharge; Apparatus for melting or sublimating the solid raw material or carbon; ion implantation and / or film forming apparatus equipped with a vacuum chamber. Item 9. Item 9. The apparatus according to Item 8, further comprising an inlet pipe for nitrogen gas and / or oxygen gas and / or hydrocarbon gas. Item 10. Item 9. An apparatus according to item 8, wherein a shielding plate is provided between the object to be processed and the material generation source. Item 11. Plasma ion implantation / deposition treatment product with no droplets on the surface to be treated and the ion implantation material being the only material evaporation source.

【0007】[0007]

【発明の実施の形態】以下図面に示す実施態様を参照し
つつ、本発明をさらに詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the embodiments shown in the drawings.

【0008】まず、炭素を除く固体原料について説明す
る。
First, the solid raw material excluding carbon will be described.

【0009】図1に示す様に、真空排気した真空槽の中
で電子ビーム加熱等によって、元素単体又は化合物など
の炭素を除く固体原料を溶融する。固体原料が炭素を除
く元素単体、単体の半導体、有機半導体、高分子半導体
などの場合には、固体原料を加熱溶融して、融液とする
のが好ましい。具体的には、内部が水冷されている銅製
ルツボに固体原料を入れ、電子ビームを照射して炭素を
除く固体原料を加熱溶融させて融液を得る。必要に応じ
て銅製ルツボにハースライナーと呼ばれる容器を入れ、
その中で元素単体又は化合物などの炭素を除く固体原料
を加熱溶融させる。上記銅製ルツボの代わりにアルミ
ナ、マグネシア、窒化アルミニウム、黒鉛、窒化ホウ素
コンポジットなどでできたルツボも用いることができ
る。アルミナ、マグネシア、窒化アルミニウムについて
は、絶縁体なので導電性の付与が必要である。また、こ
れらを使用した場合、融液が電極とならず、そのまわり
の銅などの金属部分が電極として働き、放電すると予想
される。
As shown in FIG. 1, solid raw materials excluding carbon such as elemental elements or compounds are melted by electron beam heating or the like in a vacuum chamber evacuated. When the solid raw material is an element simple substance except carbon, a single semiconductor, an organic semiconductor, a polymer semiconductor or the like, it is preferable to heat and melt the solid raw material to obtain a melt. Specifically, a solid raw material is put into a copper crucible whose inside is water-cooled, and the solid raw material except carbon is heated and melted by irradiating with an electron beam to obtain a melt. If necessary, put a container called hearth liner in a copper crucible,
A solid raw material excluding carbon, such as a single element or a compound, is heated and melted therein. Instead of the copper crucible, a crucible made of alumina, magnesia, aluminum nitride, graphite, boron nitride composite or the like can be used. Since alumina, magnesia, and aluminum nitride are insulators, it is necessary to impart conductivity. In addition, when these are used, it is expected that the melt does not serve as an electrode, and a metal portion such as copper around the melt serves as an electrode to discharge.

【0010】溶融の方法としては、電子ビーム加熱のほ
か、抵抗加熱やアーク放電などがあり、その方法を問わ
ない。固体原料全体を完全に溶融させても表面のみ溶融
させても良いが、以下の放電が起こる程度に、電子ビー
ム加熱の場合は電子ビーム電流を大きくし、蒸気が十分
になるようにする。該融液を陰極とし、その上部に配置
した陽極との間で放電を起こす。ここで、該陽極は放電
用直流電源に接続されている。上記放電用直流電源の代
わりに交流電源を用いることもできる。この放電によっ
て融液の蒸気がイオン化してプラズマが発生する。
The melting method may be electron beam heating, resistance heating, arc discharge, or the like, and any method may be used. The entire solid raw material may be completely melted or only the surface thereof may be melted, but in the case of electron beam heating, the electron beam current is increased so that the vapor is sufficient so that the following discharge occurs. The melt is used as a cathode, and an electric discharge is generated between the melt and the anode arranged above the melt. Here, the anode is connected to a discharge DC power supply. An AC power supply may be used instead of the discharging DC power supply. This discharge causes the vapor of the melt to be ionized to generate plasma.

【0011】本発明における固体原料は、真空蒸着可能
なものであれば特に限定されないが、例えば、元素単
体、その合金又は化合物を含む。元素単体として、チタ
ン、シリコン、ホウ素、炭素、マグネシウム、アルミニ
ウム、バナジウム、クロム、鉄、コバルト、ニッケル、
銅、亜鉛、ガリウム、ゲルマニウム、ニオブ、モリブデ
ン、パラジウム、銀、インジウム、スズ、タンタル、タ
ングステン、レニウム、イリジウム、白金、金、水銀、
鉛、ビスマス、タリウム、ゲルマニウムを含み、合金と
して、ニッケル-クロム、鉄-クロム、鉄-ニッケル-クロ
ム、白金-イリジウムを含み、化合物としてGaAs, CdSの
ような化合物半導体と、ポリアセン系化合物などの多環
芳香族化合物やメロシアニンのような有機半導体、ポリ
アセチレンなどの共役二重結合を持つ高分子半導体など
を含む。合金又は化合物を原料として用いる場合、合金
又は化合物中のいずれかの元素が選択的に蒸発してしま
ったり、分解したりして制御性が悪いことが予想され
る。合金又は化合物を薄膜形成または注入したい場合、
通常の真空蒸着のように複数の蒸発源を同時に使うほう
が実用的である。
The solid raw material in the present invention is not particularly limited as long as it can be vacuum-deposited, and includes, for example, element simple substance, its alloy or compound. As a simple element, titanium, silicon, boron, carbon, magnesium, aluminum, vanadium, chromium, iron, cobalt, nickel,
Copper, zinc, gallium, germanium, niobium, molybdenum, palladium, silver, indium, tin, tantalum, tungsten, rhenium, iridium, platinum, gold, mercury,
It contains lead, bismuth, thallium, germanium, alloys such as nickel-chromium, iron-chromium, iron-nickel-chromium, platinum-iridium, and compound semiconductors such as GaAs and CdS, and polyacene compounds. It includes polycyclic aromatic compounds, organic semiconductors such as merocyanine, and polymer semiconductors having conjugated double bonds such as polyacetylene. When an alloy or a compound is used as a raw material, it is expected that any element in the alloy or the compound will be selectively evaporated or decomposed, resulting in poor controllability. If you want to thin film formation or injection of alloys or compounds,
It is more practical to use a plurality of evaporation sources at the same time as in ordinary vacuum evaporation.

【0012】炭素は融液にならずに昇華するが蒸気が発
生するので使用できる。
Carbon can be used because it sublimes without forming a melt, but vapor is generated.

【0013】本発明における融液とは、上記固体原料が
融解したもので、陰極体と陽極との間で放電を起こすた
めに十分な蒸気を供給するに足る融液温度が必要であ
る。融液の量及び流動性は問わない。炭素のように融液
にならずに昇華する元素については、蒸気をイオン化し
てイオン注入及び/又は成膜を行なうことができる。
The melt in the present invention is a melt of the above-mentioned solid raw material, and needs a melt temperature sufficient to supply sufficient vapor to cause discharge between the cathode body and the anode. The amount and fluidity of the melt do not matter. For elements such as carbon that sublime without forming a melt, vapor can be ionized to perform ion implantation and / or film formation.

【0014】陰極体は、融液とそれを保持する任意形状
のルツボからなる。
The cathode body comprises a melt and a crucible having an arbitrary shape for holding the melt.

【0015】本発明における被処理物について、大きさ
は真空槽に入るもので、真空槽を大型化すれば制限はな
い。被処理物の形状は、板状、立体形状など任意であ
る。板状のほうが均一性などにおいて処理しやすいが、
本発明は立体形状物へイオン注入できることが特徴の1
つである。被処理物の素材は、金属、半導体など導電性
のものである。被処理物が絶縁性の場合、例えば、被処
理物が板状の時は、板の裏面に金属を接しておき、絶縁
性の被処理物が立体形状の時は、立体内部に導体を入
れ、それらを高電圧パルス電源に接続する必要がある。
The size of the object to be treated in the present invention is that which can be accommodated in the vacuum chamber, and there is no limitation as long as the size of the vacuum chamber is increased. The shape of the object to be processed is arbitrary, such as a plate shape or a three-dimensional shape. The plate shape is easier to process in terms of uniformity, but
One of the features of the present invention is that ions can be implanted into a three-dimensional object.
Is one. The material of the object to be processed is a conductive material such as metal or semiconductor. When the object to be processed is insulative, for example, when the object to be processed is a plate, the back surface of the plate is in contact with a metal, and when the object to be processed is three-dimensional, insert a conductor inside the three-dimensional object. , They need to be connected to a high voltage pulse power supply.

【0016】被処理物の表面の状態は、通常の真空蒸着
を行う程度の洗浄等をおこなって清浄にしておく。
The condition of the surface of the object to be treated is cleaned by performing cleaning such as ordinary vacuum deposition.

【0017】本発明の好ましい1つの実施形態におい
て、発生したプラズマ中に置かれた被処理物に、高電圧
パルス電源を用いて、負の高電圧パルス(0〜−100k
V)を印加することによって、プラズマ中の正イオンを
被処理物表面に注入及び/又は成膜する。この時、電子
ビームは加速電圧0.1 kV〜20 kVおよび電流10 mA〜1000
mA、放電電流は0〜1000 A、高電圧パルスのパルス幅は
0 μs〜300 μs、高電圧パルスの繰返し周波数は0〜500
kHzである。それぞれの条件は現実的な参考値であり、
それに限定されない。
In a preferred embodiment of the present invention, a high voltage pulse power source is used to apply a negative high voltage pulse (0 to -100 k) to an object to be processed placed in the generated plasma.
V) is applied to inject and / or form positive ions in the plasma on the surface of the object to be processed. At this time, the electron beam has an acceleration voltage of 0.1 kV to 20 kV and a current of 10 mA to 1000
mA, discharge current is 0 to 1000 A, pulse width of high voltage pulse is
0 μs to 300 μs, high voltage pulse repetition frequency 0 to 500
kHz. Each condition is a realistic reference value,
It is not limited to that.

【0018】イオン注入量は、電子ビーム電流、放電電
流、高電圧パルスのパルス幅およびパルス数によって制
御され、注入量はそれらの増加ととも増える。蒸着粒子
に対する遮蔽板がある場合、成膜量にも同じことがあて
はまる。遮蔽板がない場合は、イオンによる成膜と蒸気
(中性原子)による成膜が同時に起こるので、成膜量は
蒸気による成膜量にも依存する。
The amount of ion implantation is controlled by the electron beam current, the discharge current, the pulse width of the high voltage pulse and the number of pulses, and the amount of ion implantation increases with the increase. The same applies to the amount of film formation when there is a shielding plate for vapor deposition particles. In the absence of the shielding plate, film formation by ions and film formation by vapor (neutral atoms) occur simultaneously, so the film formation amount also depends on the film formation amount by vapor.

【0019】一般に固体元素のイオン照射を行なった場
合、負バイアスが約−2〜−100 kVの場合、主としてイ
オン注入が行われ、約−2〜0 kVではイオン注入及び成
膜が行なわれる。ただし、イオン注入から成膜へは連続
的に移行するので、負バイアスの境界は明確はものでは
なく、元素によっても変化する。
Generally, when ion irradiation of a solid element is performed, ion implantation is mainly performed when the negative bias is about −2 to −100 kV, and ion implantation and film formation are performed at about −2 to 0 kV. However, since the transition from ion implantation to film formation is continuous, the boundary of negative bias is not clear, and changes depending on the element.

【0020】イオン注入を続けると表面は、注入元素の
組成が100%に近づき、成膜を行なっていることにな
る。この場合、注入と同時にスパッタが起こり、成膜し
た一部は削られることになるので効率が悪い。それで成
膜のみを行なうときは、負バイアスの大きさを小さく、
場合によっては0 Vにして行なう。
When the ion implantation is continued, the composition of the implanted elements approaches 100% on the surface, and the film is formed. In this case, sputtering occurs at the same time as the implantation, and a part of the formed film is scraped off, resulting in poor efficiency. Therefore, when performing only film formation, reduce the magnitude of the negative bias,
In some cases, set to 0 V.

【0021】必要に応じて図1の装置にガス導入配管か
ら窒素ガス及び/又は酸素ガス及び/又は炭化水素ガス
等を導入することによって、窒化物または酸化物成膜等
の化合物薄膜形成を行うこともできる。
If necessary, nitrogen gas and / or oxygen gas and / or hydrocarbon gas or the like is introduced into the apparatus of FIG. 1 from the gas introduction pipe to form a compound thin film such as a nitride or oxide film. You can also

【0022】図1の構成だとイオン注入と単なる真空蒸
着が同時に起こることになるが、イオン注入のみ行いた
い場合は、被処理物と陽極の間に適当な大きさの遮蔽板
を挿入し、直進する中性の蒸着元素が被処理物に到達し
ないようにし、プラズマ中のイオンのみを被処理物に誘
引する(図2)。
With the structure shown in FIG. 1, ion implantation and simple vacuum deposition occur simultaneously. However, if only ion implantation is desired, a shield plate of an appropriate size is inserted between the object to be processed and the anode. The neutral vapor deposition elements that go straight ahead are prevented from reaching the object to be processed, and only the ions in the plasma are attracted to the object to be processed (FIG. 2).

【0023】[0023]

【実施例】以下に実施例を示し、本発明の特徴とすると
ころをより一層明確にする。
EXAMPLES Examples will be shown below to further clarify the features of the present invention.

【0024】実施例1 図1に示す装置において、真空排気後、10 kV、130 mA
の電子ビームによって固体原料のチタンを溶融させた。
放電用直流電源を用いて陽極に100 V印加して、放電に
よってプラズマを起こし、その後、アーク電流が約10 A
になるように保った。この状態で被処理物のステンレス
板(SUS304板、100×100×0.5 mm厚)にパルス電圧-1
0 kV、パルス幅10 μsのパルス状バイアスを、高電圧パ
ルス電源を用いて印加することによって、プラズマ中の
イオンを被処理物表面に誘引し注入を行った。図1の高
電圧プローブ、電流モニターおよびオシロを用いて、-1
0kV印加した場合の印加電圧および(保持用部品を含
む)被処理物に流れた注入電流の波形測定の結果を図2
に示す。
Example 1 In the apparatus shown in FIG. 1, after evacuation, 10 kV, 130 mA
Titanium as a solid raw material was melted by the electron beam.
Applying 100 V to the anode using a DC power source for discharge, plasma is generated by discharge, and then the arc current is about 10 A.
Kept to be. In this state, pulse voltage -1 is applied to the stainless steel plate (SUS304 plate, 100 × 100 × 0.5 mm thickness) of the object to be treated.
By applying a pulsed bias with a pulse width of 0 kV and a pulse width of 10 μs using a high-voltage pulse power source, ions in the plasma were attracted to the surface of the object to be implanted. Using the high-voltage probe, current monitor, and oscilloscope of Figure 1, -1
Fig. 2 shows the results of waveform measurement of the applied voltage when 0 kV was applied and the injection current that flowed into the workpiece (including the holding component).
Shown in.

【0025】また処理表面には、光学顕微鏡観察により
液滴は全くみられなかった。
No droplets were observed on the treated surface by observation with an optical microscope.

【0026】[0026]

【発明の効果】本発明によれば、アーク放電に用いる原
料を溶融させ、この融液を陰極として放電を起こすと、
目的元素以外の元素や液滴が全く混入しないプラズマイ
オン注入が可能となる。
According to the present invention, when a raw material used for arc discharge is melted and this melt is used as a cathode to cause discharge,
It becomes possible to perform plasma ion implantation in which elements other than the target element and droplets are not mixed at all.

【0027】本発明において、真空アーク放電が起こり
にくいシリコンやホウ素を原料としてプラズマを生成で
きるので、シリコンやホウ素をはじめとして、ほとんど
の固体元素のプラズマイオン注入が可能となる。
In the present invention, plasma can be generated from silicon or boron, which is unlikely to cause vacuum arc discharge, as a raw material, so that plasma ion implantation of most solid elements including silicon and boron is possible.

【0028】本発明の成膜法により、処理表面に光学顕
微鏡によりミクロン以上の液滴が全く見られない、均質
な成膜が可能である。
According to the film forming method of the present invention, a uniform film can be formed on the treated surface by an optical microscope without any droplets of micron or more being observed.

【0029】本発明によるイオン注入は、半導体の伝導
型(pn)制御を行うための不純物添加、基材との化合物
形成および成膜の前処理として密着性および耐衝撃性向
上のため傾斜組成層を基材と皮膜の間に形成するために
行なう。
The ion implantation according to the present invention is performed by adding impurities for controlling the conductivity type (pn) of a semiconductor, forming a compound with a base material, and pretreating film formation to form a gradient composition layer for improving adhesion and impact resistance. To form between the substrate and the coating.

【0030】本発明による成膜は、半導体素子、光学素
子の作製、機械部品、工具等に耐摩耗性、耐食性、装飾
性などを付与するために行なう。
The film formation according to the present invention is carried out for the production of semiconductor elements, optical elements, mechanical parts, tools and the like in order to impart wear resistance, corrosion resistance and decorativeness.

【0031】従来の固体陰極表面では、真空アーク放電
に伴い大きさ数ミクロンの粗大粒子(液滴)が発生し、
真空中へ飛散し、一部が被処理物に付着して表面の平滑
性を損ねていた。一方で、融液を陰極とした本発明にお
いては液滴が発生しないので、以上の問題は起こらな
い。
On the surface of a conventional solid cathode, coarse particles (droplets) having a size of several microns are generated due to vacuum arc discharge,
It scattered into the vacuum and partly adhered to the object to be treated, impairing the smoothness of the surface. On the other hand, in the present invention in which the melt is used as the cathode, since the liquid droplets are not generated, the above problems do not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、融液を陰極とした放電を用いたプラ
ズマイオン注入装置を示す。
FIG. 1 shows a plasma ion implantation apparatus using discharge using a melt as a cathode.

【図2】 図2は、融液を陰極とした放電を用いたプラ
ズマイオン注入装置を示す。
FIG. 2 shows a plasma ion implantation apparatus using discharge with a melt as a cathode.

【図3】 図3は、実施例1における被処理物に流れる
注入イオン電流と印加電圧の関係を表す。
FIG. 3 shows a relationship between an implanted ion current flowing through an object to be processed and an applied voltage in Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坪内 信輝 大阪府池田市緑丘1−8−31 独立行政法 人産業技術総合研究所関西センター内 (72)発明者 堀野 裕治 大阪府池田市緑丘1−8−31 独立行政法 人産業技術総合研究所関西センター内 Fターム(参考) 4K029 BA17 BA41 CA03 CA04 CA09 CA10 CA13 DA10 DE02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Nobuteru Tsubouchi             1-8-31 Midorigaoka, Ikeda-shi, Osaka Independent Administrative Law             Kansai Center, National Institute of Advanced Industrial Science and Technology (72) Inventor Yuji Horino             1-8-31 Midorigaoka, Ikeda-shi, Osaka Independent Administrative Law             Kansai Center, National Institute of Advanced Industrial Science and Technology F-term (reference) 4K029 BA17 BA41 CA03 CA04 CA09                       CA10 CA13 DA10 DE02

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 プラズマ中の被処理物に負の高電圧パル
スを印加して、被処理物にイオン注入及び/又は成膜を
行なう方法であって、プラズマ発生に用いる材料蒸発源
として固体原料の融液又は昇華物を用いることを特徴と
する方法。
1. A method of applying a negative high voltage pulse to an object to be processed in plasma to perform ion implantation and / or film formation on the object to be processed, which is a solid raw material as a material evaporation source used for plasma generation. A method comprising using the melt or sublimate of the above.
【請求項2】 固体原料が元素単体若しくはその合金又
は真空蒸着可能な化合物である請求項1に記載の方法。
2. The method according to claim 1, wherein the solid raw material is a simple substance of an element, an alloy thereof, or a compound capable of being vacuum-deposited.
【請求項3】 真空蒸着可能な化合物が元素単体の半導
体、有機半導体又は高分子半導体である請求項2に記載
の方法。
3. The method according to claim 2, wherein the compound capable of being vacuum-deposited is an elemental semiconductor, an organic semiconductor or a polymer semiconductor.
【請求項4】 プラズマ発生に用いる材料蒸発源が固体
原料の融液である請求項1に記載の方法。
4. The method according to claim 1, wherein the material evaporation source used for plasma generation is a melt of a solid raw material.
【請求項5】 固体原料が炭素である請求項1に記載の
方法。
5. The method according to claim 1, wherein the solid raw material is carbon.
【請求項6】 プラズマの発生を窒素ガス及び/又は酸
素ガス及び/又は炭化水素ガスの存在下で行なう請求項
1〜5のいずれか1つに記載の方法。
6. The method according to claim 1, wherein the plasma is generated in the presence of nitrogen gas and / or oxygen gas and / or hydrocarbon gas.
【請求項7】 被処理物と融液又は昇華物の間に遮蔽板
を存在させてイオン注入又は成膜を行なう請求項1の方
法。
7. The method according to claim 1, wherein a shield plate is present between the object to be processed and the melt or sublimate to perform ion implantation or film formation.
【請求項8】 高電圧パルス電源及び被処理物の支持装
置を有する被処理物に高電圧パルスを印加する装置;陽
極、固体原料融液又は炭素を保持できる陰極体及び放電
用電源からなる放電装置;陰極体上の固体原料又は炭素
を溶融ないし昇華させるための装置;真空槽を備えたイ
オン注入及び/又は成膜装置。
8. A device for applying a high voltage pulse to an object to be processed having a high voltage pulse power source and a support device for the object to be processed; an electric discharge comprising an anode, a cathode body capable of holding a solid raw material melt or carbon, and a discharge power source. Device: Device for melting or sublimating solid raw material or carbon on cathode body; Ion implantation and / or film forming device equipped with a vacuum chamber.
【請求項9】 窒素ガス及び/又は酸素ガス及び/又は
炭化水素ガスの導入管をさらに備えた請求項8に記載の
装置。
9. The apparatus according to claim 8, further comprising an inlet pipe for nitrogen gas and / or oxygen gas and / or hydrocarbon gas.
【請求項10】 被処理物と材料発生源の間に遮蔽板を
設けてなる請求項8の装置。
10. The apparatus according to claim 8, wherein a shield plate is provided between the object to be processed and the material generation source.
【請求項11】 処理表面に液滴がなく、イオン注入物
が材料蒸発源のみであるプラズマイオン注入・成膜処理
物。
11. A plasma-ion-implantation / film-formation treatment product in which there are no droplets on the surface to be treated and the ion-implantation material is only a material evaporation source.
JP2002010944A 2002-01-21 2002-01-21 Plasma ion implantation / deposition method and apparatus Expired - Lifetime JP4069199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002010944A JP4069199B2 (en) 2002-01-21 2002-01-21 Plasma ion implantation / deposition method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002010944A JP4069199B2 (en) 2002-01-21 2002-01-21 Plasma ion implantation / deposition method and apparatus

Publications (2)

Publication Number Publication Date
JP2003213412A true JP2003213412A (en) 2003-07-30
JP4069199B2 JP4069199B2 (en) 2008-04-02

Family

ID=27648539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002010944A Expired - Lifetime JP4069199B2 (en) 2002-01-21 2002-01-21 Plasma ion implantation / deposition method and apparatus

Country Status (1)

Country Link
JP (1) JP4069199B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081358A (en) * 2013-10-22 2015-04-27 三井造船株式会社 Coating film formation apparatus and method of forming coating film
JP2015183238A (en) * 2014-03-25 2015-10-22 三井造船株式会社 Coating formation device, coating formation method, and cylindrical member with coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081358A (en) * 2013-10-22 2015-04-27 三井造船株式会社 Coating film formation apparatus and method of forming coating film
JP2015183238A (en) * 2014-03-25 2015-10-22 三井造船株式会社 Coating formation device, coating formation method, and cylindrical member with coating

Also Published As

Publication number Publication date
JP4069199B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JPH0633451B2 (en) Surface treatment method of work piece
US9997338B2 (en) Method for operating a pulsed arc source
US5777438A (en) Apparatus for implanting metal ions in metals and ceramics
KR20100018585A (en) Vacuum treatment unit and vacuum treatment process
JPS63230866A (en) Vacuum vapor deposition method and apparatus by arc discharge between anode and cathode
JPH02285072A (en) Coating of surface of workpiece and workpiece thereof
US5192578A (en) Method of producing coating using negative dc pulses with specified duty factor
JP2005248322A (en) Process for depositing composite coating on surface
JPS61201769A (en) Reactive vapor deposition of oxide, nitride and oxide nitride
JP4240471B2 (en) Method for forming transparent conductive film
JPH09505529A (en) Abrasive material for precision surface treatment and manufacturing method thereof
Beilis et al. Thin-film deposition with refractory materials using a vacuum arc
JP4069199B2 (en) Plasma ion implantation / deposition method and apparatus
US6083356A (en) Method and device for pre-treatment of substrates
JP2017066483A (en) Film deposition apparatus and method using magnetron sputtering technique
Borisov et al. Effective processes for arc-plasma treatment in large vacuum chambers of technological facilities
Yukimura et al. Deposition of amorphous carbon using a shunting arc discharge
JPH11131224A (en) Sputtering target and member for sputtering device
JP3555033B2 (en) Apparatus for coating a substrate with a material vapor under negative pressure or vacuum
Grenadyorov et al. Investigation of parameters of plasma generated by high-power impulse magnetron sputtering (HiPIMS) of graphite
JPH07300665A (en) Method for forming boron cementation layer and boron film on metallic base material
RU2676719C1 (en) Method of low-temperature application of nanocrystalline coating from alpha-oxide aluminum
Walkowicz et al. Pulsed-plasma assisted magnetron methods of depositing TiN coatings
JP6569900B2 (en) Sputtering apparatus and film forming method
Borisenko Dynamics of the ion energy distribution and plasma parameters in flows of the non-self-sustained arc discharge in molybdenum vapors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

R150 Certificate of patent or registration of utility model

Ref document number: 4069199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term