JP2003213324A - Method for quenching metallic member - Google Patents

Method for quenching metallic member

Info

Publication number
JP2003213324A
JP2003213324A JP2002008982A JP2002008982A JP2003213324A JP 2003213324 A JP2003213324 A JP 2003213324A JP 2002008982 A JP2002008982 A JP 2002008982A JP 2002008982 A JP2002008982 A JP 2002008982A JP 2003213324 A JP2003213324 A JP 2003213324A
Authority
JP
Japan
Prior art keywords
quenching
oxide film
cooling
metal member
metallic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002008982A
Other languages
Japanese (ja)
Inventor
Yasuhide Kurimoto
泰英 栗本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002008982A priority Critical patent/JP2003213324A/en
Publication of JP2003213324A publication Critical patent/JP2003213324A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quenching method which achieves a prescribed rapid cooling by completing a film boiling process for a short time. <P>SOLUTION: In the quenching method which rapidly cools by dipping a metallic member into liquid, after applying an oxide film forming treatment to at least a part of the metallic member, this member is dipped into the liquid. The oxide film can be formed to the whole body of metallic member or the oxide film can be formed on only a portion, at where the cooling speed is slower than that of the other portion, when the metallic member is quenched. The metallic member may be formed with at least one method of casting, forging, rolling and machining. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属部材を液中に
浸漬することにより急冷する焼入れ方法に関し、特に鋳
造、鍛造、圧延、機械加工等により成形された金属部材
の焼入れ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quenching method of quenching a metal member by immersing it in a liquid, and more particularly to a quenching method of a metal member formed by casting, forging, rolling, machining or the like.

【0002】[0002]

【従来の技術】金属部材の焼入れは、鉄系材料に代表さ
れる急冷硬化のための焼入れやアルミニウム系材料に代
表される溶体化のための焼入れがその典型なものであ
り、いずれも冷却中に不要な相が生成するのを防止する
ための急冷である。焼入れ方法としては、焼入れ媒体と
しての水等の液中に浸漬することにより急冷するのが最
も簡便であるため広く行なわれている。
2. Description of the Related Art Quenching of a metal member is typically performed by quenching for quenching, which is represented by an iron-based material, and quenching for solution treatment, which is represented by an aluminum-based material. Quenching to prevent the formation of unnecessary phases. As the quenching method, quenching by immersing it in a liquid such as water as a quenching medium is the most convenient and widely used.

【0003】このような液中浸漬による焼入れにおいて
は、高温の金属部材を液中に浸漬すると部材表面で発生
した蒸気が膜となって部材表面を覆うため、部材から液
への熱伝達が阻害される。液中浸漬から液温にまで冷却
される冷却過程において、特に、浸漬してから金属部材
がまだ高温である冷却段階では蒸気膜が維持され易いた
め、冷却は遅い。より低温の冷却段階に入ると核沸騰に
よる激しい気泡発生で蒸気膜が破壊され熱伝達が高まる
ため、急速冷却が行なわれる。更に低温の冷却段階に入
ると気泡は発生しなくなり、焼入れ液の対流によりゆっ
くりした冷却が行なわれる。このように、液中浸漬焼入
には高温領域から順に(I)蒸気膜形成による緩速冷却
段階(膜沸騰段階)、(II)核沸騰による急冷段階、お
よび(III )対流による低速冷却段階の3段階が現れ
る。
In such quenching by immersion in a liquid, when a high temperature metal member is immersed in the liquid, vapor generated on the surface of the member forms a film and covers the surface of the member, so that heat transfer from the member to the liquid is hindered. To be done. In the cooling process of cooling from immersion in the liquid to the liquid temperature, especially in the cooling stage where the metal member is still at a high temperature after the immersion, the vapor film is likely to be maintained, so the cooling is slow. When entering the cooling stage at a lower temperature, rapid cooling is performed because the vapor film is destroyed by intense bubble generation due to nucleate boiling and heat transfer is enhanced. When the cooling step at a lower temperature is started, no bubbles are generated, and the convection of the quenching liquid causes slow cooling. As described above, in the liquid immersion quenching, in order from the high temperature region, (I) a slow cooling step by vapor film formation (film boiling step), (II) rapid cooling step by nucleate boiling, and (III) low speed cooling step by convection. 3 stages appear.

【0004】焼入れ冷却過程の具体例を図1に示す。す
なわち、同図(1)に示したアルミニウム合金製試験片
を同図(2)に示す姿勢で85℃水冷した場合に、同図
(3)に示すように上記(I)(II)(III )の各段階が現れ
る。
FIG. 1 shows a specific example of the quenching and cooling process. That is, when the aluminum alloy test piece shown in FIG. 1 (1) is water-cooled at 85 ° C. in the posture shown in FIG. 2 (2), the above (I) (II) (III) ) Each stage appears.

【0005】ここで、特に上記(I)膜沸騰段階は、意
図した急冷を妨げる影響が大きい。すなわち、高温領域
では成分元素の拡散速度が大きいため、冷却が遅いと種
々の成分元素が冷却過程で析出してしまい、所定の焼入
れができない。
Here, in particular, the above-mentioned (I) film boiling step has a great influence on the intended rapid cooling. That is, in the high temperature region, the diffusion rate of the component elements is high, so that if the cooling is slow, various component elements will be precipitated in the cooling process, and predetermined quenching cannot be performed.

【0006】特開平8−311534号公報には、焼入
れ槽内の屈曲した傾斜路を通して金属部材を落下させて
衝撃を与えることにより蒸気膜を除去して冷却速度を高
めることが提案されている。
Japanese Unexamined Patent Publication (Kokai) No. 8-31134 proposes to drop a metal member through a bent inclined path in a quenching tank to give an impact to remove the vapor film and increase the cooling rate.

【0007】しかし上記従来の方法には下記の問題があ
った。すなわち、衝撃によって金属部材が変形あるいは
破損する恐れがある。更に、部材形状によって冷却速度
の遅い部位にのみ選択的に衝撃を与えることができない
ため、部材全体の冷却速度を均一にすることができず、
焼入れ後の残留歪み発生を防止できない。
However, the above conventional method has the following problems. That is, the impact may cause the metal member to be deformed or damaged. Furthermore, since it is not possible to selectively give an impact only to a part having a slow cooling rate depending on the shape of the member, the cooling rate of the entire member cannot be made uniform,
It is impossible to prevent the occurrence of residual strain after quenching.

【0008】[0008]

【発明が解決しようとする課題】本発明は、膜沸騰段階
を短時間で終了させることにより所定の急冷を実現でき
る焼入れ方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a quenching method capable of realizing a predetermined rapid cooling by finishing a film boiling step in a short time.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明による焼入れ方法は、金属部材を液中に浸漬
することにより急冷する焼入れ方法であって、上記金属
部材の少なくとも一部分に酸化皮膜形成処理を施した後
に、上記液中に浸漬することを特徴とする。
In order to achieve the above object, a quenching method according to the present invention is a quenching method in which a metal member is rapidly cooled by being immersed in a liquid, and at least a part of the metal member is oxidized. It is characterized in that it is immersed in the above liquid after the film forming treatment.

【0010】本発明における酸化皮膜形成処理とは、鋳
造、熱処理等の高温における製造工程で不可避的に起こ
る酸化皮膜の生成に加えて、更に酸化皮膜の生成を促進
するための処理を言う。本明細書中において、本発明に
より酸化皮膜を形成する旨の記載は、上記酸化皮膜形成
処理を施して酸化皮膜の生成を促進することを意味す
る。
The oxide film forming treatment in the present invention refers to a treatment for further promoting the formation of an oxide film in addition to the formation of an oxide film inevitably occurring in a manufacturing process at high temperature such as casting and heat treatment. In the present specification, the description that the oxide film is formed according to the present invention means that the above-mentioned oxide film formation treatment is performed to promote the formation of the oxide film.

【0011】本発明者は、金属部材表面に酸化皮膜を形
成した状態で浸漬焼入れすると、膜沸騰が短時間で終了
し冷却速度が高まることを見出して、本発明を完成させ
た。
The present inventor has completed the present invention by finding that when immersion quenching is performed with an oxide film formed on the surface of a metal member, film boiling ends in a short time and the cooling rate increases.

【0012】[0012]

【発明の実施の形態】本発明の焼入れ方法においては、
部位による冷却速度の相違が実質的に無視できる場合に
は、金属部材の全体に酸化皮膜を形成することにより部
材全体に渡って冷却速度を高めることができる。例え
ば、金属部材の形状が単純な場合や、形状が多少複雑で
部位による冷却速度の相違が生じても、部位による焼入
れ効果(焼入れ硬さ、溶体化の達成等)に実質的な相違
が生ぜず、残留歪みも無視できる場合などが、これに該
当する。
BEST MODE FOR CARRYING OUT THE INVENTION In the quenching method of the present invention,
When the difference in cooling rate between the parts can be substantially ignored, the cooling rate can be increased over the entire member by forming an oxide film on the entire metal member. For example, even if the shape of the metal member is simple, or even if the shape is somewhat complicated and the cooling rate differs depending on the part, there is a substantial difference in the quenching effect (quenching hardness, achievement of solution treatment, etc.) depending on the part. In this case, the residual strain can be ignored.

【0013】一方、部位による冷却速度の相違が実質的
に無視できない場合には、焼入れ時の冷却速度が他の部
位よりも遅くなる特定部位にのみ酸化皮膜を形成するこ
とにより、特定部位の冷却速度を高めて部材全体の冷却
速度を均一化することができる。例えば、金属部材の形
状が複雑な場合や、形状があまり複雑でなくとも部位に
よる冷却速度の相違によって部位による焼入れ効果の相
違が無視できない場合などが、これに該当する。
On the other hand, when the difference in cooling rate depending on the site cannot be substantially ignored, the cooling of the specific site is performed by forming the oxide film only on the specific site where the cooling rate during quenching is slower than other sites. The cooling speed of the entire member can be made uniform by increasing the speed. For example, this corresponds to a case where the shape of the metal member is complicated, or a case where the difference in the quenching effect due to the site cannot be ignored due to the difference in the cooling rate depending on the site even if the shape is not so complicated.

【0014】本発明の焼入れ方法は、鋳造、鍛造、圧
延、機械加工等のいずれにより成形された金属部材にも
適用することができる。
The quenching method of the present invention can be applied to metal members formed by any of casting, forging, rolling, machining and the like.

【0015】[0015]

【実施例】図2に概略形状・寸法を示すアルミニウム合
金(JIS AC4CH)製のウォータージャケットミニモデル
を用いて、本発明により酸化皮膜を形成して焼入れ実験
を行なった。
EXAMPLE A quenching experiment was performed by forming an oxide film according to the present invention using a water jacket mini model made of an aluminum alloy (JIS AC4CH) whose schematic shape and dimensions are shown in FIG.

【0016】(1)焼入れ冷却曲線の測定 下記条件で砂型に酸化剤を塗布して鋳造を行なうことに
より上記ミニモデルを作製した。
(1) Measurement of Quenching and Cooling Curve The above mini model was produced by applying an oxidizing agent to a sand mold under the following conditions and performing casting.

【0017】酸化剤塗布条件:砂型のミニモデルポート
部対応部位(砂型中子)に、10wt%硝酸カリウム水溶
液を塗布量50mg/cmで塗布した。
Oxidizing agent application conditions: A 10 wt% potassium nitrate aqueous solution was applied at an application amount of 50 mg / cm 2 to the site corresponding to the sand type mini model port portion (sand type core).

【0018】鋳造条件:上記アルミニウム合金を温度7
50℃で溶解し、鋳造温度720℃で上記砂型に鋳造し
た。
Casting conditions: The above aluminum alloy was heated to a temperature of 7
It was melted at 50 ° C and cast in the sand mold at a casting temperature of 720 ° C.

【0019】鋳造したミニモデルは、砂型に酸化剤を塗
布したポート部Pには厚さ440μmの酸化皮膜が形成
されており、砂型に酸化剤を塗布しなかった部位の酸化
皮膜厚さは190μmであった。
In the cast mini model, an oxide film having a thickness of 440 μm is formed on the port P where the oxidizing agent is applied to the sand mold, and the oxide film thickness of the portion where the oxidizing agent is not applied to the sand mold is 190 μm. Met.

【0020】上記と同一条件で鋳造したミニモデルを用
いて下記条件で熱処理を行なった。
Using a mini model cast under the same conditions as above, heat treatment was performed under the following conditions.

【0021】 熱処理条件(T6処理):溶体化 加熱……530℃×3時間 焼入れ…80℃水冷 時効 170℃×3時間 上記溶体化焼入れの際に、図2のポート内部および外表
面について温度測定を行なった。比較例として、砂型へ
の酸化剤塗布を行なわずに、他は同一条件で作製したミ
ニモデルについても、上記と同一条件で熱処理および温
度測定を行なった。温度測定結果を図3に示す。
Heat treatment conditions (T6 treatment): Solution heat: 530 ° C. × 3 hours Quenching: 80 ° C. Water cooling aging 170 ° C. × 3 hours During the solution quenching, temperature measurement was performed on the inside and outside surfaces of the port in FIG. Was done. As a comparative example, heat treatment and temperature measurement were performed under the same conditions as above for a mini model produced under the same conditions except that the sand mold was not coated with the oxidizing agent. The temperature measurement result is shown in FIG.

【0022】まず図3(1)は、比較例として砂型中子
に酸化剤を塗布せずに鋳造したミニモデルについて溶体
化焼入れ時の温度測定結果を示しており、ポート内部は
外表面に対して冷却曲線が長時間側にシフトしており冷
却速度が遅いことが分かる。
First, FIG. 3 (1) shows a temperature measurement result at the time of solution hardening for a mini model cast without applying an oxidizing agent to a sand core as a comparative example. It can be seen that the cooling curve shifts to the long side and the cooling rate is slow.

【0023】これに対して図3(2)は、本発明例とし
て砂型中子に酸化剤を塗布して鋳造したミニモデルにつ
いて溶体化焼入れ時の温度測定結果を示しており、ポー
ト内部と外表面とで冷却曲線が良く一致していることが
分かる。これは、図1に示した膜沸騰段階(I)が特にポ
ート部において短縮されたことによる。
On the other hand, FIG. 3 (2) shows the temperature measurement results during solution hardening of a mini model cast by applying an oxidizer to a sand core as an example of the present invention. It can be seen that the cooling curves match well with the surface. This is because the film boiling step (I) shown in FIG. 1 was shortened especially at the port portion.

【0024】(2)焼入れ残留歪の測定 次に、砂型中子への酸化剤塗布量を25mg/cm
した以外は上記(1)と同一条件で鋳造したウォーター
ジャケットミニモデルについて、上記(1)と同一条件
で熱処理を行い、ポート部Pの残留歪を測定した。この
場合、ポート部の酸化皮膜厚さは250μmであった。
(2) Measurement of Quenching Residual Strain Next, a water jacket mini model cast under the same conditions as in (1) above except that the amount of the oxidizer applied to the sand core was set to 25 mg / cm 2 Heat treatment was performed under the same conditions as 1), and the residual strain of the port portion P was measured. In this case, the oxide film thickness of the port portion was 250 μm.

【0025】比較例として酸化剤を塗布せずに鋳造した
ミニモデルについても同様にポート部の残留歪を測定し
た。この場合、ポート部の酸化皮膜厚さは190μmで
あった。
As a comparative example, the residual strain of the port portion was similarly measured for a mini model cast without applying an oxidizing agent. In this case, the oxide film thickness of the port portion was 190 μm.

【0026】いずれの場合も、測定箇所は図2に示した
ようにポート部P内のM1〜M4の4箇所とした。な
お、残留歪は、熱処理後のミニモデルからポート部を切
り出した際に解放される歪として測定した。測定結果を
図4に示す。
In any case, the measurement points were four points M1 to M4 in the port P as shown in FIG. The residual strain was measured as the strain released when the port portion was cut out from the mini model after heat treatment. The measurement results are shown in FIG.

【0027】図示したように、測定箇所M1〜M4のい
ずれについても、酸化剤により酸化促進処理を行い厚さ
250μmの酸化皮膜を形成した本発明例は、酸化剤に
よる酸化促進処理を行なわず酸化皮膜厚さが190μm
であった比較例に比べて、残留歪が大幅に低減している
ことが分かる。
As shown in the figure, in each of the measurement points M1 to M4, the example of the present invention in which the oxidation promoting treatment was performed with the oxidizing agent to form the oxide film having a thickness of 250 μm was performed without performing the oxidation promoting treatment with the oxidizing agent. Film thickness is 190 μm
It can be seen that the residual strain is significantly reduced compared to the comparative example.

【0028】(3)酸化剤塗布量と焼入れ残留歪との関
係 砂型中子への酸化剤塗布量を0〜50mg/cmの範
囲で種々に変えて、上記(2)と同様に熱処理後の残留
歪を測定した。同一条件で繰返し数n=8にて行なった
測定結果を図5に示す。
(3) Relationship between coating amount of oxidizer and residual strain after quenching The coating amount of the oxidizer on the sand mold core was variously changed within the range of 0 to 50 mg / cm 2 , and after heat treatment as in (2) above. Was measured for residual strain. FIG. 5 shows the results of measurements performed under the same conditions and with the number of repetitions n = 8.

【0029】図示したように、本発明により少量でも酸
化剤を塗布するとポート部残留歪は減少し、酸化剤の塗
布量の増加に伴い残留歪は単調に減少する。ただし、塗
布量が60mg/cmを超えると鋳造欠陥が発生する
場合があるので、塗布量は60mg/cm以下にする
ことが望ましい。図の結果から塗布量の下限を明瞭に判
断することはできないが、本実施例で用いた最少の塗布
量10mg/cmで既に残留歪低減効果が明瞭に認め
られるので、塗布量の下限は5mg/cm程度である
と推定される。
As shown in the figure, according to the present invention, when a small amount of oxidizer is applied, the residual strain at the port portion decreases, and the residual strain monotonically decreases as the amount of oxidizer applied increases. However, if the coating amount exceeds 60 mg / cm 2 , casting defects may occur, so the coating amount is preferably 60 mg / cm 2 or less. Although it is not possible to clearly determine the lower limit of the coating amount from the results shown in the figure, since the residual strain reducing effect is already clearly recognized at the minimum coating amount of 10 mg / cm 2 used in this example, the lower limit of the coating amount is set. It is estimated to be about 5 mg / cm 2 .

【0030】なお、本実施例においては砂型に酸化剤を
塗布したが、別の方法として、酸化剤を鋳物砂に混合し
た混合砂で、酸化皮膜形成対象箇所の造型を行なうこと
もできる。その場合、酸化剤として硝酸カリウム粉末の
混合量を、混合砂の3wt%以上20wt%未満とすること
が適当である。酸化剤の混合量が少なすぎると酸化皮膜
形成効果が得られず、多すぎると造型性が低下するとと
もに鋳造欠陥の発生要因になる可能性がある。
In this embodiment, the oxidizing agent is applied to the sand mold, but as another method, it is also possible to mold the oxide film forming target portion with mixed sand in which the oxidizing agent is mixed with the foundry sand. In that case, it is appropriate that the mixing amount of the potassium nitrate powder as the oxidizing agent is 3 wt% or more and less than 20 wt% of the mixed sand. If the mixing amount of the oxidizing agent is too small, the effect of forming an oxide film cannot be obtained, and if the mixing amount is too large, the moldability may be deteriorated and a casting defect may be caused.

【0031】また、本実施例では砂型で鋳造を行なった
が、本発明は金型による鋳造にも適用できる。その場合
は、例えば酸化剤として硝酸カリウム粉末を20wt%以
下となるように離型剤に溶解させて金型に塗布すること
ができる。
In this embodiment, the sand mold was used for casting, but the present invention can also be applied to metal mold casting. In that case, for example, potassium nitrate powder as an oxidizing agent can be dissolved in a release agent so as to be 20 wt% or less and applied to a mold.

【0032】[0032]

【発明の効果】本発明によれば、金属部材に酸化皮膜を
形成した後に焼入れを行なうことにより、膜沸騰段階が
短時間で終了し、所定の急冷が実現できる。
According to the present invention, by quenching after forming an oxide film on a metal member, the film boiling step is completed in a short time and a predetermined rapid cooling can be realized.

【0033】また、焼入れ冷却速度が遅くなる部位にの
み酸化皮膜を形成した後に焼入れを行なうことにより、
金属部材全体に渡って焼入れ冷却速度を均一化でき、焼
入れ残留歪を低減もしくは解消することができる。
Further, by forming the oxide film only on the portion where the quenching cooling rate becomes slow and then quenching,
The quenching cooling rate can be made uniform over the entire metal member, and the quenching residual strain can be reduced or eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、水冷による焼入れの具体例について、
(1)試験片形状を示す(a)平面図および(b)側面
図、(2)焼入れ姿勢を示す断面図および(3)焼入れ
冷却曲線を示すグラフである。
FIG. 1 shows a specific example of quenching by water cooling,
(1) A plan view showing a test piece shape, (b) a side view, (2) a cross-sectional view showing a quenching posture, and (3) a graph showing a quenching cooling curve.

【図2】図2は、本発明による焼入れ実験に用いたウォ
ータージャケットミニモデルの概略の形状・寸法を示す
(1)平面図および(2)断面図である。
FIG. 2 is (1) a plan view and (2) a cross-sectional view showing a schematic shape and dimensions of a water jacket mini model used in a quenching experiment according to the present invention.

【図3】図3は、(1)酸化剤を用いない比較例および
(2)酸化剤により酸化皮膜形成を促進した本発明例に
ついて、それぞれミニモデルのポート内部および外表面
の焼入れ冷却曲線を示すグラフである。
FIG. 3 shows quenching and cooling curves of the inside and the outside of the port of the mini model for (1) a comparative example not using an oxidant and (2) an example of the present invention in which the formation of an oxide film was promoted by the oxidant. It is a graph shown.

【図4】図4は、酸化剤を用いない比較例および酸化剤
により酸化皮膜形成を促進した本発明例について、焼入
れ残留歪の測定結果を比較して示すグラフである。
FIG. 4 is a graph showing comparative results of quenching residual strain measurement for a comparative example not using an oxidizing agent and an example of the present invention in which formation of an oxide film was promoted by the oxidizing agent.

【図5】図5は、本発明による酸化皮膜形成のための酸
化剤塗布量と焼入れ残留歪との関係を示すグラフであ
る。
FIG. 5 is a graph showing a relationship between an applied amount of an oxidant for forming an oxide film and a residual strain after quenching according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 8/04 C23C 8/04 8/10 8/10 8/80 8/80 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) C23C 8/04 C23C 8/04 8/10 8/10 8/80 8/80

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属部材を液中に浸漬することにより急
冷する焼入れ方法であって、 上記金属部材の少なくとも一部分に酸化皮膜形成処理を
施した後に、上記液中に浸漬することを特徴とする金属
部材の焼入れ方法。
1. A quenching method of quenching a metal member by immersing it in a liquid, characterized in that at least a part of the metal member is subjected to an oxide film forming treatment and then immersed in the liquid. Hardening method for metal parts.
【請求項2】 上記金属部材の全体に上記酸化皮膜を形
成することを特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein the oxide film is formed on the entire surface of the metal member.
【請求項3】 上記金属部材の上記焼入れ時の冷却速度
が他の部位よりも遅くなる部位にのみ上記酸化皮膜を形
成することを特徴とする請求項1記載の方法。
3. The method according to claim 1, wherein the oxide film is formed only on a portion where the cooling rate during quenching of the metal member is slower than other portions.
【請求項4】 酸化剤を塗布または混合した鋳型を用い
て上記金属部材を鋳造することにより上記酸化皮膜を形
成することを特徴とする請求項1から3までのいずれか
1項記載の方法。
4. The method according to claim 1, wherein the oxide film is formed by casting the metal member using a mold coated or mixed with an oxidizing agent.
JP2002008982A 2002-01-17 2002-01-17 Method for quenching metallic member Withdrawn JP2003213324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002008982A JP2003213324A (en) 2002-01-17 2002-01-17 Method for quenching metallic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002008982A JP2003213324A (en) 2002-01-17 2002-01-17 Method for quenching metallic member

Publications (1)

Publication Number Publication Date
JP2003213324A true JP2003213324A (en) 2003-07-30

Family

ID=27647100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002008982A Withdrawn JP2003213324A (en) 2002-01-17 2002-01-17 Method for quenching metallic member

Country Status (1)

Country Link
JP (1) JP2003213324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773271A (en) * 2012-06-12 2012-11-14 莱芜钢铁集团有限公司 Temperature equalizing device and temperature equalizing method for hot-rolling H-shaped steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773271A (en) * 2012-06-12 2012-11-14 莱芜钢铁集团有限公司 Temperature equalizing device and temperature equalizing method for hot-rolling H-shaped steel

Similar Documents

Publication Publication Date Title
CA1037842A (en) Aluminum alloy shapes and method of making the same
RU2007127862A (en) THERMAL TREATMENT OF ALUMINUM ALLOY CASTINGS OBTAINED BY HIGH PRESSURE CASTING
JP2003213324A (en) Method for quenching metallic member
JP2023542330A (en) 7XXX aluminum alloy with high strength and low quenching sensitivity and its manufacturing method
JPH11264088A (en) Pretreating method of surface treatment of aluminum alloy member
JP3608546B2 (en) Mold for casting and manufacturing method thereof
LU82877A1 (en) PROCESS FOR FORMING BLANKS OF METAL BEAMS
JP4110620B2 (en) Heat treatment method of aluminum alloy
US5540792A (en) Components based on intermetallic phases of the system titanium-aluminum and process for producing such components
KR20080067796A (en) The surface treatment method for magnesium
JP2002332534A (en) Magnesium alloy molded body and surface treatment method therefor
JP2018104801A (en) Fe-Al ALLOY MATERIAL, AND PRODUCTION METHOD THEREOF
JP3056395B2 (en) Method of manufacturing hollow club head made of Ti alloy for golf club
JP3283833B2 (en) Cast iron casting for hot-dip Al-Zn plating bath with excellent erosion resistance
JPH07290222A (en) Casting metal mold
JPH10298723A (en) Manufacture of aluminum alloy die casting
JP3050625B2 (en) Manufacturing method of drill screw
JPS5956561A (en) Al alloy for self-color anodization
RU2125618C1 (en) Method of heat treatment of castings of aluminum alloys
JP4074490B2 (en) Zinc-based alloy and method for producing the same
JPH05287466A (en) Method for reforming surface of member made of light alloy
JPH0925557A (en) Production of pipe excellent in corrosion resistance in outside face
JPS5810445B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent core loss
CN115747682A (en) Homogenizing method of 2196 aluminum alloy
JP3017889B2 (en) Manufacturing method of die casting mold having water cooling hole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061220