JP2003212891A - N-acetylglucosaminyl-cellooligosaccharide derivative and method for producing the same - Google Patents

N-acetylglucosaminyl-cellooligosaccharide derivative and method for producing the same

Info

Publication number
JP2003212891A
JP2003212891A JP2002011613A JP2002011613A JP2003212891A JP 2003212891 A JP2003212891 A JP 2003212891A JP 2002011613 A JP2002011613 A JP 2002011613A JP 2002011613 A JP2002011613 A JP 2002011613A JP 2003212891 A JP2003212891 A JP 2003212891A
Authority
JP
Japan
Prior art keywords
derivative
cellooligosaccharide
chitinase
acetylglucosaminyl
sugar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002011613A
Other languages
Japanese (ja)
Other versions
JP4105873B2 (en
Inventor
Shinichiro Shoda
晋一郎 正田
Yoshitomo Misawa
義知 三澤
Masahisa Kuriyama
真央 栗山
Masaya Fujita
雅也 藤田
Tsuyoshi Watanabe
剛志 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaizu Suisan Kagaku Kogyo Co Ltd
Original Assignee
Yaizu Suisan Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaizu Suisan Kagaku Kogyo Co Ltd filed Critical Yaizu Suisan Kagaku Kogyo Co Ltd
Priority to JP2002011613A priority Critical patent/JP4105873B2/en
Publication of JP2003212891A publication Critical patent/JP2003212891A/en
Application granted granted Critical
Publication of JP4105873B2 publication Critical patent/JP4105873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-natural type new cellooligosaccharide derivative, and to provide a method for producing the same. <P>SOLUTION: This method for producing the new cellooligosaccharide derivative, an N-acetylglucosaminly-cellooligosaccharide derivative, comprises the following process: using a cellooligosaccharide or a derivative thereof as a saccharide receptor and an oxazoline derivative of N-acetyllactosamine as a saccharide donor, a chitinase is subjected to them under alkaline conditions to obtain a non-natural type N-acetyllactosaminyl-cellooligosaccharide derivative where N-acetyllactosamine is transferred via a β-1,4-linkage to the non-reduced terminal of the cellooligosaccharide or the derivative thereof; subsequently, β-D galactosidase is subjected to the non-natural type N-acetyllactosaminyl- cellooligosaccharide derivative to obtain the objective N-acetyl glucosaminyl- cellooligosaccharide derivative where N-acetylglucosamine is transferred via a β-1,4-linkage to the non-reduced terminal of the cellooligosaccharide or the derivative thereof; wherein it is preferable that the chitinase (preferably, Bacillus-derived one) be subjected to both the saccharide receptor and donor under the condition of pH 8-10. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新規なN−アセチ
ルグルコサミニル−セロオリゴ糖誘導体及びその製造方
法に関する。
TECHNICAL FIELD The present invention relates to a novel N-acetylglucosaminyl-cellooligosaccharide derivative and a method for producing the same.

【0002】[0002]

【従来の技術】分離精製技術や解析技術の進歩によっ
て、複雑な糖鎖の構造やその機能が解明されつつある。
糖鎖は、様々な生命現象に関与しており、糖鎖を利用し
た新たな医薬品等の開発が期待されている。
2. Description of the Related Art Advances in separation / purification technology and analysis technology are elucidating the structure and function of complex sugar chains.
Sugar chains are involved in various life phenomena, and development of new drugs and the like using sugar chains is expected.

【0003】糖鎖の持つ情報量は、構成単位である糖の
種類、数、結合位置、及び立体等に依存しており、とて
つもなく膨大となるため、未だ知られていない配列や結
合等を有する糖鎖が存在する可能性は否定できない。
The amount of information that a sugar chain has depends on the type, number, bonding position, steric structure, etc. of the sugar as a structural unit, and is extremely enormous. Therefore, it has an unknown sequence or bond. The possibility that sugar chains exist cannot be denied.

【0004】糖鎖を利用した新たな医薬品等を開発研究
する上で、非天然型糖鎖を構築することは、新たな発見
をもたらす可能性を秘めていると共に、糖鎖の機能を向
上させたり、新たな機能を付与したりできる可能性もあ
る。
[0004] In developing and researching new drugs using sugar chains, constructing a non-natural sugar chain has the potential to make new discoveries and improve the function of sugar chains. There is also the possibility of adding new functions.

【0005】これまで、糖鎖を合成する方法としては、
有機合成化学的な方法と、酵素法によるトランスフェラ
ーゼを用いた方法が知られている。
Up to now, as a method for synthesizing sugar chains,
Organic synthetic chemical methods and methods using enzymatic transferases are known.

【0006】[0006]

【発明が解決しようとする課題】しかし、有機合成化学
的な合成方法は、官能基の保護・脱保護等の繰り返しに
よる多段階の反応工程及び複数回の精製操作が必要であ
り、工業的規模での実施は極めて困難であった。
However, the synthetic method of synthetic organic chemistry requires a multi-step reaction process by repeated protection / deprotection of functional groups and a plurality of purification operations, and therefore is industrial scale. Was extremely difficult to implement.

【0007】一方、トランスフェラーゼを用いた糖鎖合
成方法は、上記のような化学合成法に比べて非常に簡便
であり、また、異性体の生成を伴わないので、構造の明
確な糖鎖を効率良く得ることができるが、トランスフェ
ラーゼを大量に入手することが困難であり、また、基質
となる糖ヌクレオチドも不安定で高価であることから、
工業的規模での実施はコスト的に難しかった。また、ト
ランスフェラーゼは、糖の認識が極めて厳密で、ある決
まった糖鎖しか合成できないという弱点があり、修飾さ
れた糖鎖や非天然型糖鎖の合成には適さないという問題
があった。
On the other hand, the method of synthesizing a sugar chain using transferase is much simpler than the above-mentioned chemical synthesis method, and since it does not involve the production of isomers, a sugar chain having a clear structure can be efficiently produced. Although it can be obtained well, it is difficult to obtain a large amount of transferase, and the sugar nucleotide as a substrate is unstable and expensive,
Implementation on an industrial scale was costly. In addition, transferase has a weak point that sugar recognition is extremely strict and only certain sugar chains can be synthesized, and there is a problem that it is not suitable for the synthesis of modified sugar chains and non-natural sugar chains.

【0008】したがって、本発明の目的は、非天然型の
新規なセロオリゴ糖誘導体及びその製造方法を提供する
ことにある。
Therefore, an object of the present invention is to provide a novel non-natural cellooligosaccharide derivative and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明者らは、糖加水分
解酵素を用いて糖鎖を構築する研究の過程で、アルカリ
性条件下において、キチンを分解する酵素であるキチナ
ーゼの受容体特異性が、比較的寛容であり、糖受容体と
して二位のアセトアミド基が存在しないセロビオースや
セロトリオースを認識することを見出し、この知見に基
いて本発明を完成するに至った。
[Means for Solving the Problems] In the course of research for constructing a sugar chain using a sugar hydrolase, the present inventors have found that the receptor specificity of chitinase, which is an enzyme that decomposes chitin under alkaline conditions. However, they have found that they are relatively tolerant and recognize cellobiose and cellotriose that do not have an acetamide group at the 2-position as a sugar acceptor, and have completed the present invention based on this finding.

【0010】すなわち、本発明の一つは、下記一般式
(1)で表されるN−アセチルグルコサミニル−セロオ
リゴ糖誘導体である。
That is, one of the present invention is an N-acetylglucosaminyl-cellooligosaccharide derivative represented by the following general formula (1).

【0011】[0011]

【化2】 [Chemical 2]

【0012】また、本発明のもう一つは、糖受容体とな
るセロオリゴ糖又はセロオリゴ糖誘導体と、糖供与体と
なるN−アセチルラクトサミンのオキサゾリン誘導体
に、アルカリ性条件下でキチナーゼを作用させた後、更
にβ−D−ガラクトシダーゼを作用させることを特徴と
するN−アセチルグルコサミニル−セロオリゴ糖誘導体
の製造方法である。
Another aspect of the present invention is that a cellinooligosaccharide or cellooligosaccharide derivative serving as a sugar acceptor and an oxazoline derivative of N-acetyllactosamine serving as a sugar donor are treated with chitinase under alkaline conditions. After that, the method for producing an N-acetylglucosaminyl-cellooligosaccharide derivative is characterized by further reacting β-D-galactosidase.

【0013】上記製造方法においては、前記糖受容体と
前記糖供与体に、pH8〜10の条件下でキチナーゼを
作用させることが好ましい。また、前記キチナーゼが、
Bacillus属由来のキチナーゼであることが好ましい。
In the above-mentioned production method, it is preferable that chitinase is allowed to act on the sugar acceptor and the sugar donor under the conditions of pH 8 to 10. In addition, the chitinase,
It is preferably a chitinase from the genus Bacillus .

【0014】本発明によれば、糖受容体としてセロオリ
ゴ糖又はセロオリゴ糖誘導体、糖供与体としてN−アセ
チルラクトサミンのオキサゾリン誘導体を用い、これら
にキチナーゼをアルカリ性条件下で作用させて、セロオ
リゴ糖又はセロオリゴ糖誘導体の非還元末端にN−アセ
チルラクトサミンがβ−1,4結合で転移した非天然型
のN−アセチルラクトサミニル−セロオリゴ糖誘導体を
得、これにβ−D−ガラクトシダーゼを作用させること
により、セロオリゴ糖又はセロオリゴ糖誘導体の非還元
末端にN−アセチルグルコサミンがβ−1,4結合で転
移した非天然型のセロオリゴ糖誘導体(N−アセチルグ
ルコサミニル−セロオリゴ糖誘導体)を簡単かつ安価に
調製することができる。このN−アセチルグルコサミニ
ル−セロオリゴ糖誘導体は、新規生理活性物質として、
医薬品、診断薬、化粧品、食品、農薬、肥料等としての
利用が期待できる。また、上記セロオリゴ糖誘導体の還
元末端には、固定化のための重合基や検出のための官能
基等を付与することができるので、例えば、セルラーゼ
の活性測定用の基質やカラム充填剤としての利用も期待
できる。
According to the present invention, a cellooligosaccharide or a cellooligosaccharide derivative is used as the sugar acceptor, and an oxazoline derivative of N-acetyllactosamine is used as the sugar donor, and a chitinase is allowed to act on these to react with the cellooligosaccharide or A non-natural N-acetyllactosaminyl-cellooligosaccharide derivative in which N-acetyllactosamine is transferred to the non-reducing end of the cellooligosaccharide derivative through a β-1,4 bond is obtained, and β-D-galactosidase is allowed to act on the derivative. Thus, a non-natural cellooligosaccharide derivative (N-acetylglucosaminyl-cellooligosaccharide derivative) in which N-acetylglucosamine is transferred to the non-reducing end of a cellooligosaccharide or a cellooligosaccharide derivative through a β-1,4 bond can be prepared easily and easily. It can be prepared inexpensively. The N-acetylglucosaminyl-cellooligosaccharide derivative is a novel physiologically active substance,
It can be expected to be used as medicines, diagnostics, cosmetics, foods, agricultural chemicals, fertilizers, etc. Further, the reducing end of the cellooligosaccharide derivative can be provided with a polymerizing group for immobilization or a functional group for detection, and therefore, for example, as a substrate for cellulase activity measurement or a column packing material. Expected to be used.

【0015】[0015]

【発明の実施の形態】本発明のN−アセチルグルコサミ
ニル−セロオリゴ糖誘導体の合成方法の基本は、糖供与
体であるN−アセチルラクトサミンのオキサゾリン誘導
体に、アルカリ性条件下でキチナーゼを作用させること
により、糖受容体となるセロオリゴ糖又はセロオリゴ糖
誘導体の非還元末端側へβ−1,4結合で転移させた
後、更にβ−D−ガラクトシダーゼを作用させて、非還
元末端のガラクトース残基を切断するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The basis of the method for synthesizing an N-acetylglucosaminyl-cellooligosaccharide derivative of the present invention is to allow a chitinase to act on an oxazoline derivative of N-acetyllactosamine, which is a sugar donor, under alkaline conditions. As a result, after transfer to the non-reducing terminal side of the cellooligosaccharide or cellooligosaccharide derivative serving as a sugar acceptor by β-1,4 bond, β-D-galactosidase is further allowed to act to form a galactose residue at the non-reducing terminal. Is to disconnect.

【0016】本発明において、N−アセチルラクトサミ
ンのオキサゾリン誘導体(以下、単にオキサゾリン誘導
体という)とは、N−アセチルラクトサミンから誘導さ
れた下記式(2)に示される構造を有する化合物をい
う。
In the present invention, the oxazoline derivative of N-acetyllactosamine (hereinafter, simply referred to as oxazoline derivative) means a compound having a structure represented by the following formula (2), which is derived from N-acetyllactosamine.

【0017】[0017]

【化3】 [Chemical 3]

【0018】上記オキサゾリン誘導体は、例えばN−ア
セチルラクトサミンに塩化アセチルを作用させてアノマ
ー位の塩素化及び水酸基の保護を行い、塩化テトラエチ
ルアンモニウムと炭酸水素ナトリウムによりオキサゾリ
ン環を形成し、最後にナトリウムメトキシドによる脱ア
セチル化を行なうことにより得ることができる(K. Sas
aki, S. Ahlfors, T. Frejd, J. Kihlberg, G. Magnuss
on, J. Org. Chem., 53, 5629 (1988)、S. Nishimura,
H. Kuzuhara, Y. Takiguchi, K. Shimahara, Carbohyd
r. Res., 194, 223 (1989))。
The above oxazoline derivative, for example, acts acetyl chloride on N-acetyllactosamine to chlorinate the anomeric position and protects the hydroxyl group, forms an oxazoline ring with tetraethylammonium chloride and sodium hydrogen carbonate, and finally sodium. It can be obtained by carrying out deacetylation with methoxide (K. Sas
aki, S. Ahlfors, T. Frejd, J. Kihlberg, G. Magnuss
on, J. Org. Chem., 53, 5629 (1988), S. Nishimura,
H. Kuzuhara, Y. Takiguchi, K. Shimahara, Carbohyd
r. Res., 194, 223 (1989)).

【0019】糖受容体となるセロオリゴ糖又はセロオリ
ゴ糖誘導体としては、二糖から六糖のセロオリゴ糖及び
それらの還元末端をメチル基、アクリルアミド基、パラ
ニトロフェニル基等で修飾したもの等が好ましく用いら
れる。
As cellooligosaccharides or cellooligosaccharide derivatives serving as sugar acceptors, cellooligosaccharides of disaccharides to hexasaccharides and those obtained by modifying their reducing terminals with a methyl group, an acrylamide group, a paranitrophenyl group or the like are preferably used. To be

【0020】キチナーゼとしては、Henrissatらによる
糖質加水分解酵素の分類(Henrissat, B., Biochem.
J., 280, 309 (1991)、Henrissat, B., A. Bairoch., B
iochem.J., 293, 781 (1993))において、ファミリー1
8に属するキチナーゼが用いられ、特に、Bacillus属由
来のキチナーゼが好ましく用いられる。
As the chitinase, a classification of carbohydrate hydrolase by Henrissat et al. (Henrissat, B., Biochem.
J., 280, 309 (1991), Henrysat, B., A. Bairoch., B
iochem.J., 293, 781 (1993)), family 1
A chitinase belonging to Group 8 is used, and a chitinase derived from the genus Bacillus is particularly preferably used.

【0021】キチナーゼは、Bacillus属の菌体(例えば
Bacillus circulans(IFO13627)等)の培養液
から、例えば硫安沈殿により粗酵素を調製し、必要に応
じて更にキチンカラム等を用いて精製することにより調
製できる(T. Watanabe, K.Suzuki, W. Oyanagi, K. Oh
nishi, H. Tanaka, J. Biol. Chem., 265, 15659 (199
0))。なお、キチナーゼは、精製されたものを用いても
よく、粗酵素を用いてもよい。また、市販のキチナーゼ
を用いてもよく、例えば商品名「キチナーゼ」(Bacill
us sp.由来、和光純薬工業社製)等を用いることがで
きる。
Chitinase is a bacterium of the genus Bacillus (for example,
It can be prepared by preparing a crude enzyme from a culture solution of Bacillus circulans (IFO 13627, etc.) by, for example, ammonium sulfate precipitation, and further purifying it using a chitin column or the like if necessary (T. Watanabe, K. Suzuki, W. Oyanagi, K. Oh
nishi, H. Tanaka, J. Biol. Chem., 265, 15659 (199
0)). The chitinase may be a purified one or a crude enzyme. In addition, a commercially available chitinase may be used, and for example, a trade name “chitinase” ( Bacill
us sp. Origin, manufactured by Wako Pure Chemical Industries, Ltd., etc. can be used.

【0022】本発明においては、安価に入手できること
から、Bacillus sp.由来のキチナーゼが特に好ましく
用いられる。
In the present invention, Bacillus sp. A chitinase derived from is particularly preferably used.

【0023】β−D−ガラクトシダーゼとしては、特に
制限はないが、例えばストレプトコッカス ニューモニ
ア(Streptococcus pneumoniae(ATCC630
5))、Bacillus circulans(IFO13627)等由
来のものを使用することができる。
[0023] The β-D-galactosidase is not particularly limited, but for example, Streptococcus pneumoniae (ATCC630).
5)), Bacillus circulans (IFO 13627) and the like can be used.

【0024】β−D−ガラクトシダーゼは、これらの菌
体の培養液から、例えば硫安沈殿(Green, A. A. et a
l. : Methods in Enzymology, vol. 1, p76, 1955)
や、ゲル濾過クロマトグラフィー(Miyazaki et al. :
Agric Bio Chem, 52, 625-631, 1988)により調製する
ことができる。また、市販のβ−D−ガラクトシダーゼ
を用いてもよく、例えば商品名「乳糖分解酵素製剤Biol
acta FN5」(Bacillus circulans由来、大和化成社製)
等を用いることができる。なお、β−D−ガラクトシダ
ーゼは、N−アセチルヘキソサミニダーゼ活性を除いて
おくことが好ましい。
Β-D-galactosidase can be extracted from the culture broth of these cells by, for example, ammonium sulfate precipitation (Green, AA et a.
l .: Methods in Enzymology, vol. 1, p76, 1955)
Gel filtration chromatography (Miyazaki et al.
Agric Bio Chem, 52 , 625-631, 1988). Alternatively, a commercially available β-D-galactosidase may be used, and for example, the trade name "lactose-degrading enzyme preparation Biol
acta FN5 "(from Bacillus circulans , manufactured by Daiwa Kasei)
Etc. can be used. In addition, it is preferable that β-D-galactosidase have N-acetylhexosaminidase activity removed.

【0025】本発明においては、ストレプトコッカス
ニューモニア(Streptococcus pneumoniae)由来のβ−
D−ガラクトシダーゼが特に好ましく用いられる。
In the present invention, Streptococcus
Β- from Pneumonia ( Streptococcus pneumoniae )
D-galactosidase is particularly preferably used.

【0026】本発明において一般式(1)で表されるN
−アセチルグルコサミニル−セロオリゴ糖誘導体は、例
えば以下のようにして得ることができる。
In the present invention, N represented by the general formula (1)
The -acetylglucosaminyl-cellooligosaccharide derivative can be obtained, for example, as follows.

【0027】すなわち、上記オキサゾリン誘導体と、セ
ロオリゴ糖又はセロオリゴ糖誘導体を、アルカリ性(好
ましくはpH7〜11、より好ましくはpH8〜10)
に調整した緩衝液に溶解し、これにキチナーゼを添加し
て20〜40℃で反応を行なう。反応中は、反応液を経
時的にサンプリングして高速液体クロマトグラフィーで
オキサゾリン誘導体のピークの消失を確認した後、酵素
を失活させ、高速液体クロマトグラフィー等により目的
物(N−アセチルラクトサミニル−セロオリゴ糖誘導
体)を単離する。
That is, the above-mentioned oxazoline derivative and cellooligosaccharide or cellooligosaccharide derivative are alkaline (preferably pH 7 to 11, more preferably pH 8 to 10).
It is dissolved in the buffer solution prepared as described above, chitinase is added thereto, and the reaction is performed at 20 to 40 ° C. During the reaction, the reaction solution was sampled with time to confirm the disappearance of the peak of the oxazoline derivative by high performance liquid chromatography, and then the enzyme was inactivated, and the target product (N-acetyllactosaminyl was analyzed by high performance liquid chromatography or the like. -Cellooligosaccharide derivative).

【0028】そして、得られたN−アセチルラクトサミ
ニル−セロオリゴ糖誘導体に、緩衝液(好ましくはpH
5〜7、より好ましくはpH6〜6.5)中でβ−D−
ガラクトシダーゼを作用させて、非還元末端のガラクト
ース残基を切断し、高速液体クロマトグラフィー等によ
り精製することにより、一般式(1)で表されるN−ア
セチルグルコサミニル−セロオリゴ糖誘導体を得ること
ができる。
The obtained N-acetyllactosaminyl-cellooligosaccharide derivative is added to a buffer solution (preferably pH).
5-7, more preferably pH 6-6.5) in β-D-
To obtain an N-acetylglucosaminyl-cellooligosaccharide derivative represented by the general formula (1) by allowing galactosidase to act, cleaving the galactose residue at the non-reducing end, and purifying by high performance liquid chromatography or the like. You can

【0029】本発明においては、キチナーゼを用いた酵
素反応を、上記のようなアルカリ性条件下で行なうこと
により、糖受容体となるセロオリゴ糖又はセロオリゴ糖
誘導体の非還元末端側へ糖供与体であるN−アセチルラ
クトサミンのオキサゾリン誘導体をβ−1,4結合で効
率よく転移させることができる。
In the present invention, the enzymatic reaction using chitinase is carried out under the alkaline conditions as described above to give a sugar donor to the non-reducing terminal side of the cellooligosaccharide or cellooligosaccharide derivative serving as a sugar acceptor. The oxazoline derivative of N-acetyllactosamine can be efficiently transferred by β-1,4 bond.

【0030】本発明においては、上記オキサゾリン誘導
体と、セロオリゴ糖又はセロオリゴ糖誘導体をモル比で
0.3〜3:1となるように用いることが好ましい。
In the present invention, it is preferable to use the oxazoline derivative and the cellooligosaccharide or cellooligosaccharide derivative in a molar ratio of 0.3 to 3: 1.

【0031】また、キチナーゼの添加量は、転移反応が
充分に進行する量であれば特に制限はないが、例えば上
記オキサゾリン誘導体を0.1mol/L含む反応系に
おいては、キチナーゼの添加量は50〜500mU/m
Lが好ましく、70〜150mU/mLがより好まし
い。なお、本発明において、キチナーゼ1U(ユニッ
ト)とは、pH6.8、37℃の条件下で酵素をN−ア
セチルキトサンに作用させた際に、1分間にN−アセチ
ルキトサンから1μmolのN−アセチルグルコサミン
に相当する還元糖を生成する酵素量を意味する。
The amount of chitinase added is not particularly limited as long as the transfer reaction proceeds sufficiently. For example, in the reaction system containing 0.1 mol / L of the above oxazoline derivative, the amount of chitinase added is 50. ~ 500 mU / m
L is preferable, and 70 to 150 mU / mL is more preferable. In the present invention, chitinase 1U (unit) means 1 μmol of N-acetyl chitosan per minute from N-acetyl chitosan when the enzyme is allowed to act on N-acetyl chitosan under the conditions of pH 6.8 and 37 ° C. It means the amount of enzyme that produces a reducing sugar corresponding to glucosamine.

【0032】また、β−D−ガラクトシダーゼの添加量
は、反応が充分に進行する量であれば特に制限はない
が、例えば、基質(N−アセチルラクトサミニル−セロ
オリゴ糖誘導体)を5〜10mmol/L含む反応系に
おいては、β−D−ガラクトシダーゼの添加量は5〜2
50mU/mLが好ましく、25〜125mU/mLが
より好ましい。なお、本発明において、β−D−ガラク
トシダーゼ1U(ユニット)とは、pH6.0、37℃
の条件下で酵素をパラニトロフェニル−β−D−ガラク
トシドに作用させた際に、1分間にパラニトロフェニル
−β−D−ガラクトシドから1μmolのパラニトロフ
ェノールを遊離する酵素量を意味する。
The amount of β-D-galactosidase added is not particularly limited as long as the reaction proceeds sufficiently. For example, 5 to 10 mmol of the substrate (N-acetyllactosaminyl-cellooligosaccharide derivative) is added. In the reaction system containing / L, the addition amount of β-D-galactosidase is 5 to 2
50 mU / mL is preferable, and 25-125 mU / mL is more preferable. In the present invention, βU-galactosidase 1U (unit) means pH 6.0, 37 ° C.
When the enzyme is allowed to act on para-nitrophenyl-β-D-galactoside under the conditions of 1), it means the amount of enzyme that liberates 1 μmol of para-nitrophenol from para-nitrophenyl-β-D-galactoside in 1 minute.

【0033】上記の各酵素反応を行なう際に用いられる
緩衝液としては、キチナーゼを用いた酵素反応の場合
は、例えばトリス緩衝液、リン酸緩衝液、炭酸緩衝液等
が挙げられる。また、β−D−ガラクトシダーゼを用い
た酵素反応の場合は、例えばSodium cacodylate緩衝
液、リン酸緩衝液等が挙げられる。
In the case of the enzyme reaction using chitinase, examples of the buffer solution used when carrying out the above-mentioned enzyme reactions include Tris buffer solution, phosphate buffer solution, carbonate buffer solution and the like. In the case of an enzymatic reaction using β-D-galactosidase, for example, Sodium cacodylate buffer solution, phosphate buffer solution and the like can be mentioned.

【0034】また、高速液体クロマトグラフィーの条件
は、例えば「TSK-gel Amide-80」(商品名、トーソー社
製)、「Asahipak NH2P-50 4E」(商品名、昭和電工社
製)等のカラムを用い、溶媒としてアセトニトリル/水
混合溶媒(アセトニトリル/水(v/v)=80/20
〜60/40)等を用いて行なうことができる。
The conditions for high performance liquid chromatography are, for example, a column such as "TSK-gel Amide-80" (trade name, manufactured by Tosoh Corporation), "Asahipak NH2P-50 4E" (trade name, manufactured by Showa Denko KK). Acetonitrile / water mixed solvent (acetonitrile / water (v / v) = 80/20)
~ 60/40) and the like.

【0035】[0035]

【実施例】以下、本発明を実施例を挙げてさらに具体的
に説明する。 製造例 N−アセチルラクトサミン4.0gに塩化アセチル20
mLを加え、撹拌しながら室温で4日間反応を行なっ
た。なお、反応中は、TLC(酢酸エチル/ヘキサン
(v/v)=4/1)により反応を追跡した。
EXAMPLES The present invention will be described more specifically below with reference to examples. Production Example 4.0 g of N-acetyllactosamine was mixed with 20 g of acetyl chloride.
mL was added, and the reaction was carried out at room temperature for 4 days while stirring. During the reaction, the reaction was followed by TLC (ethyl acetate / hexane (v / v) = 4/1).

【0036】この反応液をエバポレートによって濃縮
し、過剰量の塩化メチレンで希釈後、pHが中性になる
まで冷水及び飽和炭酸水素ナトリウム溶液で分液し、得
られた有機溶媒相を無水硫酸ナトリウムで乾燥後、濾過
して硫酸ナトリウムを除去した。
The reaction solution was concentrated by evaporation, diluted with an excess amount of methylene chloride, and then partitioned with cold water and saturated sodium hydrogen carbonate solution until the pH became neutral. The obtained organic solvent phase was dried over anhydrous sodium sulfate. After drying in, it was filtered to remove sodium sulfate.

【0037】得られた濾液をエバポレートにより濃縮
し、更に減圧乾燥して溶媒を完全に除去して、塩化N−
アセチル−3,6,2',3',4',6'−ヘキサ−O−アセチル−α
−ラクトサミニル(以下、化合物(I)という)6.8
0gを得た。精製は行なわずにそのまま次の反応を行っ
た。
The obtained filtrate was concentrated by evaporation and further dried under reduced pressure to completely remove the solvent, and N-chloride was added.
Acetyl-3,6,2 ', 3', 4 ', 6'-hexa- O -acetyl-α
-Lactosaminyl (hereinafter referred to as compound (I)) 6.8
0 g was obtained. The following reaction was carried out as it was without purification.

【0038】上記化合物(I)3.01gをアセトニト
リル25mLに溶解し、この溶液を、塩化カルシウムに
よって一時間半乾燥させた塩化テトラエチルアンモニウ
ム1.0gと炭酸水素ナトリウム1.0gに加え、55
℃で1時間40分還流させた。TLC(酢酸エチル/ヘ
キサン(v/v)=4/1)にて反応終了を確認し、ガ
ラスフィルターG4(商品名、柴田科学社製)で固形物
を除去し、得られた濾液を減圧下で濃縮した後、過剰量
の塩化メチレンで希釈し、水相のpHが中性になるまで
冷水及び飽和炭酸水素ナトリウム溶液で分液し、得られ
た有機溶媒相を無水硫酸ナトリウムにより乾燥後、濾過
して硫酸ナトリウムを除去した。
3.01 g of the above compound (I) was dissolved in 25 mL of acetonitrile, and this solution was added to 1.0 g of tetraethylammonium chloride and 1.0 g of sodium hydrogencarbonate dried with calcium chloride for one and a half hours.
Refluxed at 0 ° C for 1 hour and 40 minutes. After confirming the completion of the reaction by TLC (ethyl acetate / hexane (v / v) = 4/1), a glass filter G4 (trade name, manufactured by Shibata Scientific Co., Ltd.) was used to remove solids, and the obtained filtrate was decompressed. After concentrating with, diluted with an excess amount of methylene chloride, partitioned with cold water and saturated sodium hydrogen carbonate solution until the pH of the aqueous phase becomes neutral, and the obtained organic solvent phase is dried over anhydrous sodium sulfate, The sodium sulfate was removed by filtration.

【0039】得られた溶液をエバポレートによって濃縮
した後、シリカゲルフラッシュカラムクロマトグラフィ
ー(Gel:商品名「Silica Gel 60」、Merck社製、parti
clesize:0.04−0.063mm、展開溶媒:酢酸エチル/ヘキ
サン(v/v)=4/1)により精製して、固体状の2
−メチル{3,6ジ−O−アセチル−4−O−(2,3,4,6−テト
ラ−O−アセチル−β−D−ガラクトピラノシル)1,2−ジ
デオキシ−α−グルコピラノ}[2,1−d]−2−オキサ
ゾリン(以下、化合物(II)という)1.40gを得
た。
After the obtained solution was concentrated by evaporation, silica gel flash column chromatography (Gel: trade name "Silica Gel 60", manufactured by Merck, parti
clesize: 0.04-0.063mm, developing solvent: ethyl acetate / hexane (v / v) = 4/1)
-Methyl {3,6 di- O -acetyl-4- O- (2,3,4,6-tetra- O -acetyl-β-D-galactopyranosyl) 1,2-dideoxy-α-glucopyrano} 1.40 g of [2,1-d] -2-oxazoline (hereinafter referred to as compound (II)) was obtained.

【0040】アルゴン雰囲気下、上記化合物(II)
1.40gを無水メタノール270mLに溶解させ、
0.01Mの濃度になるようにナトリウムメトキシドの
メタノール溶液を添加し、室温で2時間反応させた。T
LC(酢酸エチル/ヘキサン(v/v)=4/1)によ
り反応終了を確認した後、反応溶液が中性になるまでイ
オン交換樹脂Amberlite IR-120(H+)(商品名、オルガノ
社製)を加えた後、濾過してイオン交換樹脂を除去し
た。
The above compound (II) under an argon atmosphere.
1.40 g was dissolved in anhydrous methanol 270 mL,
A methanol solution of sodium methoxide was added so as to have a concentration of 0.01 M, and the mixture was reacted at room temperature for 2 hours. T
After confirming the completion of the reaction by LC (ethyl acetate / hexane (v / v) = 4/1), the ion exchange resin Amberlite IR-120 (H + ) (trade name, manufactured by Organo Corporation) was added until the reaction solution became neutral. ) Was added and then filtered to remove the ion exchange resin.

【0041】得られた濾液をエバポレートによって濃縮
し、更に減圧乾燥して、2−メチル{4−O−(β−D−ガ
ラクトピラノシル)1,2−ジデオキシ−α−D−グルコピ
ラノ}[2,1−d]−2−オキサゾリン(以下、オキサゾ
リン誘導体(I)という)0.80gを得た。なお、オ
キサゾリン誘導体(I)は、NMRにより構造を確認し
た。
The obtained filtrate was concentrated by evaporation and further dried under reduced pressure to give 2-methyl {4- O- (β-D-galactopyranosyl) 1,2-dideoxy-α-D-glucopyrano} [ 0.80 g of 2,1-d] -2-oxazoline (hereinafter referred to as oxazoline derivative (I)) was obtained. The structure of the oxazoline derivative (I) was confirmed by NMR.

【0042】実施例1 上記オキサゾリン誘導体(I)36.5mgをエッペン
ドルフチューブに入れ、(N−アクリルアミドメチル)
−アミノカルボニルエチル−1−チオ−β−D−セロビ
オシド16.9mgと市販キチナーゼ325mUを溶解
した50mMトリス緩衝液(pH9.0)1mLを添加
し、40℃の恒温槽に入れて反応を行なった。
Example 1 36.5 mg of the above oxazoline derivative (I) was placed in an Eppendorf tube and (N-acrylamidomethyl) was added.
-Aminocarbonylethyl-1-thio-β-D-cellobioside 16.9 mg and 1 mL of 50 mM Tris buffer (pH 9.0) in which 325 mU of commercial chitinase were dissolved were added, and the mixture was placed in a constant temperature bath at 40 ° C to carry out the reaction. .

【0043】反応中、高速液体クロマトグラフィーによ
り反応を追跡し、オキサゾリン誘導体のピークが完全に
消失したのを確認した後、90℃で20分間熱失活を行
なった。なお、高速液体クロマトグラフィーは、以下の
条件(1)で行なった。
During the reaction, the reaction was traced by high performance liquid chromatography, and after confirming that the peak of the oxazoline derivative had completely disappeared, heat deactivation was carried out at 90 ° C. for 20 minutes. The high performance liquid chromatography was performed under the following condition (1).

【0044】・条件(1) カラム:「TSK-gel Amide-80 (4.6×25mm)」(商品名、
トーソー社製) 溶媒:アセトニトリル/水(v/v)=75/25 温度:40℃ 流速:1.0mL/min 検出:RI 次いで、得られた反応液を用いて、以下の条件(2)で
高速液体クロマトグラフィーを行ない、目的物の画分を
回収した。
Conditions (1) Column: "TSK-gel Amide-80 (4.6 x 25 mm)" (trade name,
Solvent: Acetonitrile / water (v / v) = 75/25 Temperature: 40 ° C. Flow rate: 1.0 mL / min Detection: RI Then, using the obtained reaction liquid, the following conditions (2) are used. High-performance liquid chromatography was performed to collect the target fraction.

【0045】・条件(2) カラム:「Inertsil ODS-3 (10.0×25mm)」(商品名、G
L Sciences社製) 溶媒:水/メタノール(v/v)=900/70 温度:室温 流速:3.0mL/min 検出:UV(210nm) そして、回収した画分をエバポレートで濃縮、凍結乾燥
して、下記式で表されるN−アセチルラクトサミニル−
セロオリゴ糖誘導体4.7mgを得た。
-Condition (2) Column: "Inertsil ODS-3 (10.0 x 25 mm)" (trade name, G
Solvent: water / methanol (v / v) = 900/70 temperature: room temperature flow rate: 3.0 mL / min detection: UV (210 nm) Then, the collected fractions are concentrated by evaporation and freeze-dried. , N-acetyllactosaminyl represented by the following formula:
4.7 mg of a cellooligosaccharide derivative was obtained.

【0046】[0046]

【化4】 [Chemical 4]

【0047】得られたN−アセチルラクトサミニル−セ
ロオリゴ糖誘導体4.5mgに、20mMリン酸緩衝液
(pH6.0)730μL、及び市販のβ−D−ガラク
トシダーゼ(Streptococcus pneumoniae由来、商品名
「β1,4−ガラクトシダーゼ」、CALBIOCHEM社製)1
0.7mUを添加し、37℃の恒温槽中で反応を行なっ
た。
4.5 mg of the obtained N-acetyllactosaminyl-cellooligosaccharide derivative was added to 730 μL of 20 mM phosphate buffer (pH 6.0) and commercially available β-D-galactosidase (derived from Streptococcus pneumoniae , trade name “β1”). , 4-galactosidase ", manufactured by CALBIOCHEM) 1
0.7 mU was added and the reaction was carried out in a constant temperature bath at 37 ° C.

【0048】反応中、高速液体クロマトグラフィーによ
り反応を追跡し、N−アセチルラクトサミニルオリゴ糖
誘導体のピークが完全に消失したのを確認した後、90
℃で20分間熱失活を行なった。なお、高速液体クロマ
トグラフィーは、上記の条件(1)で行なった。
During the reaction, the reaction was traced by high performance liquid chromatography, and after confirming that the peak of the N-acetyllactosaminyl oligosaccharide derivative had completely disappeared, 90
Heat deactivation was performed at 20 ° C. for 20 minutes. The high performance liquid chromatography was performed under the above condition (1).

【0049】次いで、得られた反応液を用いて、以下の
条件(3)で高速液体クロマトグラフィーを行ない、目
的物の画分を回収した。
Then, the obtained reaction solution was subjected to high performance liquid chromatography under the following condition (3) to collect a fraction of the desired product.

【0050】・条件(3) カラム:「Inertsil ODS-3」(商品名、GL Sciences社
製) 溶媒:水/メタノール(v/v)=900/70 温度:室温 流速:5.0mL/min 検出:UV(210nm) そして、回収した画分をエバポレートで濃縮、凍結乾燥
して、下記式で表されるN−アセチルグルコサミニル−
セロオリゴ糖誘導体2.3mgを得た。
Condition (3) Column: "Inertsil ODS-3" (trade name, manufactured by GL Sciences) Solvent: water / methanol (v / v) = 900/70 Temperature: room temperature Flow rate: 5.0 mL / min Detection : UV (210 nm) Then, the collected fraction is concentrated by evaporation and freeze-dried to obtain N-acetylglucosaminyl represented by the following formula.
2.3 mg of a cellooligosaccharide derivative was obtained.

【0051】[0051]

【化5】 [Chemical 5]

【0052】なお、上記のN−アセチルラクトサミニル
−セロオリゴ糖誘導体、及びN−アセチルグルコサミニ
ル−セロオリゴ糖誘導体は、1H、13CNMR及びMALDI
TOFMASSにより、その構造を確認した。
The above-mentioned N-acetyllactosaminyl-cellooligosaccharide derivative and N-acetylglucosaminyl-cellooligosaccharide derivative were analyzed by 1 H, 13 CNMR and MALDI.
The structure was confirmed by TOFMASS.

【0053】[0053]

【発明の効果】以上説明したように、本発明によれば、
糖受容体としてセロオリゴ糖又はセロオリゴ糖誘導体、
糖供与体としてN−アセチルラクトサミンのオキサゾリ
ン誘導体を用い、これらにキチナーゼをアルカリ性条件
下で作用させて、セロオリゴ糖又はセロオリゴ糖誘導体
の非還元末端にN−アセチルラクトサミンがβ−1,4
結合した非天然型のN−アセチルラクトサミニル−セロ
オリゴ糖誘導体を得、これにβ−D−ガラクトシダーゼ
を作用させることにより、セロオリゴ糖又はセロオリゴ
糖誘導体の非還元末端にN−アセチルグルコサミンがβ
−1,4結合した非天然型のN−アセチルグルコサミニ
ル−セロオリゴ糖誘導体を簡単かつ安価に調製すること
ができる。このN−アセチルグルコサミニル−セロオリ
ゴ糖誘導体は、新規生理活性物質として、医薬品、診断
薬、化粧品、食品、農薬、肥料等としての利用が期待で
きる。また、上記セロオリゴ糖誘導体の還元末端には、
固定化のための重合基や検出のための官能基等を付与す
ることができるので、例えば、セルラーゼの活性測定用
の基質やカラム充填剤としての利用も期待できる。
As described above, according to the present invention,
A cellooligosaccharide or a cellooligosaccharide derivative as a sugar acceptor,
An oxazoline derivative of N-acetyllactosamine was used as a sugar donor, and a chitinase was allowed to act on these derivatives under alkaline conditions to give N-acetyllactosamine β-1,4 at the non-reducing end of a cellooligosaccharide or a cellooligosaccharide derivative.
A bound non-natural type N-acetyllactosaminyl-cellooligosaccharide derivative is obtained, and β-D-galactosidase is allowed to act on this to give N-acetylglucosamine at the non-reducing end of the cellooligosaccharide or the cellooligosaccharide derivative.
A non-natural type N-acetylglucosaminyl-cellooligosaccharide derivative having -1,4 linkage can be prepared easily and inexpensively. This N-acetylglucosaminyl-cellooligosaccharide derivative can be expected to be used as a novel physiologically active substance as a drug, a diagnostic agent, a cosmetic, a food, a pesticide, a fertilizer and the like. Further, the reducing end of the cellooligosaccharide derivative,
Since a polymerizing group for immobilization, a functional group for detection and the like can be added, it can be expected to be used as a substrate for cellulase activity measurement or a column packing material, for example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栗山 真央 宮城県仙台市青葉区荒巻字青葉07 東北大 学内 (72)発明者 藤田 雅也 宮城県仙台市青葉区荒巻字青葉07 東北大 学内 (72)発明者 渡邊 剛志 新潟県新潟市五十嵐二の町8050番地 新潟 大学内 Fターム(参考) 4B064 AF21 CA21 CB07 CC03 CD09 DA01 4C057 CC03 CC05 DD01 DD03 JJ14   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mao Kuriyama             07 Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi Tohoku University             On campus (72) Inventor Masaya Fujita             07 Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi Tohoku University             On campus (72) Inventor Takeshi Watanabe             Niigata Prefecture Niigata City Igarashi Ninomachi 8050 Niigata             Inside the university F-term (reference) 4B064 AF21 CA21 CB07 CC03 CD09                       DA01                 4C057 CC03 CC05 DD01 DD03 JJ14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)で表されるN−アセチ
ルグルコサミニル−セロオリゴ糖誘導体。 【化1】
1. An N-acetylglucosaminyl-cellooligosaccharide derivative represented by the following general formula (1). [Chemical 1]
【請求項2】 糖受容体となるセロオリゴ糖又はセロオ
リゴ糖誘導体と、糖供与体となるN−アセチルラクトサ
ミンのオキサゾリン誘導体に、アルカリ性条件下でキチ
ナーゼを作用させた後、更にβ−D−ガラクトシダーゼ
を作用させることを特徴とするN−アセチルグルコサミ
ニル−セロオリゴ糖誘導体の製造方法。
2. A cellooligosaccharide or cellooligosaccharide derivative which serves as a sugar acceptor, and an oxazoline derivative of N-acetyllactosamine which serves as a sugar donor are allowed to act with chitinase under alkaline conditions, and then β-D-galactosidase is added. A method for producing an N-acetylglucosaminyl-cellooligosaccharide derivative, characterized in that:
【請求項3】 前記糖受容体と前記糖供与体に、pH8
〜10の条件下でキチナーゼを作用させる、請求項2に
記載のN−アセチルグルコサミニル−セロオリゴ糖誘導
体の製造方法。
3. The pH of the sugar acceptor and the sugar donor is 8
The method for producing an N-acetylglucosaminyl-cellooligosaccharide derivative according to claim 2, wherein a chitinase is allowed to act under the conditions of 10 to 10.
【請求項4】 前記キチナーゼが、Bacillus属由来のキ
チナーゼである、請求項2又は3に記載のN−アセチル
グルコサミニル−セロオリゴ糖誘導体の製造方法。
4. The method for producing an N-acetylglucosaminyl-cellooligosaccharide derivative according to claim 2, wherein the chitinase is derived from the genus Bacillus .
JP2002011613A 2002-01-21 2002-01-21 N-acetylglucosaminyl-cellooligosaccharide derivative and method for producing the same Expired - Fee Related JP4105873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002011613A JP4105873B2 (en) 2002-01-21 2002-01-21 N-acetylglucosaminyl-cellooligosaccharide derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002011613A JP4105873B2 (en) 2002-01-21 2002-01-21 N-acetylglucosaminyl-cellooligosaccharide derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003212891A true JP2003212891A (en) 2003-07-30
JP4105873B2 JP4105873B2 (en) 2008-06-25

Family

ID=27649045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002011613A Expired - Fee Related JP4105873B2 (en) 2002-01-21 2002-01-21 N-acetylglucosaminyl-cellooligosaccharide derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP4105873B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232779A (en) * 2005-02-28 2006-09-07 Yaizu Suisankagaku Industry Co Ltd Two-headed type glycoside and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232779A (en) * 2005-02-28 2006-09-07 Yaizu Suisankagaku Industry Co Ltd Two-headed type glycoside and method for producing the same

Also Published As

Publication number Publication date
JP4105873B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
Williams et al. Glycosynthases: mutant glycosidases for glycoside synthesis
JPH01199592A (en) Production of isomaltulose
JP2001046096A (en) PRODUCTION OF GLYCOSIDE WITH alpha-GLUCOSIDASE AND NEW alpha- GLUCOSIDASE AND ITS PRODUCTION
JP4105873B2 (en) N-acetylglucosaminyl-cellooligosaccharide derivative and method for producing the same
US6562600B1 (en) Production of cyclic alternan tetrasaccharides from oligosaccharide substrates
JP4105872B2 (en) N-acetyllactosaminyl-cellooligosaccharide derivative and method for producing the same
JP2903221B2 (en) Glycoside production method
US5068186A (en) Process for the enzymatic preparation of disaccharide fluorides using α-glycosyl fluorides as substrates
JPS623795A (en) Production of branched cyclodextrin
JP4105874B2 (en) Process for producing β-1,6-linked N-acetyllactosamine oligosaccharide
EP0263955A2 (en) Process for the production of panosyl derivatives
JP2001292792A (en) Method for recovering n-acetylglucosamine
JP2754358B2 (en) Production method of glycosphingolipid
US5876981A (en) Transglycosylation reactions employing β-galactosidase
JP4819240B2 (en) Process for producing purified N-acetyllactosamine
JP2001292791A (en) Method for producing n-acetyllactosmine
JPH0833496A (en) Production of oligosaccharide
JP3916682B2 (en) Method for producing glycoside
JP2817746B2 (en) Manufacturing method of laminaribiose
JP3045509B2 (en) Method for producing mannose-containing oligosaccharides
JP4402878B2 (en) Novel monoacetylchitooligosaccharide and method for producing the same, and method for producing chitin oligosaccharide and chitosan oligosaccharide
JP4011496B2 (en) Method for producing L-glucose
JPH0577397B2 (en)
JPH06335395A (en) Production of n-acetyl-lactosamine
JP2840772B2 (en) How to increase glucose yield

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080304

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080328

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees