JP2003210953A - Method of manufacturing zeolite membrane - Google Patents

Method of manufacturing zeolite membrane

Info

Publication number
JP2003210953A
JP2003210953A JP2002334242A JP2002334242A JP2003210953A JP 2003210953 A JP2003210953 A JP 2003210953A JP 2002334242 A JP2002334242 A JP 2002334242A JP 2002334242 A JP2002334242 A JP 2002334242A JP 2003210953 A JP2003210953 A JP 2003210953A
Authority
JP
Japan
Prior art keywords
zeolite membrane
porous support
zeolite
sol
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002334242A
Other languages
Japanese (ja)
Other versions
JP3905461B2 (en
Inventor
Taisuke Ando
泰典 安藤
Masaki Kato
正樹 加藤
Yuji Kamei
裕二 亀井
Hisatomi Taguchi
久富 田口
Yuji Hirano
裕司 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2002334242A priority Critical patent/JP3905461B2/en
Publication of JP2003210953A publication Critical patent/JP2003210953A/en
Application granted granted Critical
Publication of JP3905461B2 publication Critical patent/JP3905461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a zeolite membrane which hardly causes faults during membrane production or heat treatment. <P>SOLUTION: The method of manufacturing the zeolite membrane comprises the steps of: impregnating into the inside of a porous supporter 1 with fine pores of 0.03 to 20 μm in size a sol 3 for synthesizing enough amount of zeolite membrane to form the zeolite membrane of 5 μm or more in thickness; forming crystals by hydrothermal treatment of the porous supporter 1; and forming the zeolite membrane 5 having gas separability and a thickness of 5 μm or more in the porous supporter 1, wherein the zeolite membrane 5 is formed as a continuous membrane composed of zeolite crystals crystallized and grown by hydrothermal treatment from the sol 3 for synthesizing zeolite membrane in the fine pores 2 inside the porous supporter 1. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ゼオライト膜の製
造方法、詳しくは多孔質支持体に担持させる工程中にお
いて欠陥が発生し難く高い気体分離能を有するゼオライ
ト膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a zeolite membrane, and more particularly to a method for producing a zeolite membrane which does not easily generate defects during the step of supporting it on a porous support and has a high gas separation ability.

【0002】[0002]

【従来の技術】ゼオライト膜は一般的に、ゼオライト結
晶が重なりあって膜状になる多結晶膜である。このゼオ
ライト膜は結晶中に数オングストロームの細孔を有して
いる。このため、かかる細孔を利用した分子ふるいによ
る気体分離、パーベーパレイション等の分離膜、メンブ
レンリアクター、あるいは気体センサーへの応用等が考
えられている。さらにゼオライトは耐熱性、耐薬品性に
優れており、また細孔径がほぼ均一であることから、上
述の用途のなかでも特に高温での気体分離膜としての用
途が期待されている。
2. Description of the Related Art Zeolite membranes are generally polycrystalline membranes which are formed into a film by overlapping zeolite crystals. This zeolite membrane has pores of several angstroms in the crystal. Therefore, application to gas separation using molecular sieves utilizing such pores, separation membranes such as pervaporation, membrane reactors, or gas sensors has been considered. Furthermore, since zeolite has excellent heat resistance and chemical resistance, and its pore size is almost uniform, it is expected that it will be used as a gas separation membrane especially at high temperatures among the above-mentioned applications.

【0003】ところでゼオライト結晶単独で形成された
膜は、ゼオライト結晶間のつながりが弱く機械的強度が
弱いことから、分離膜として利用することは困難であっ
た。このため従来からゼオライトを多孔質の支持体に担
持させた形態での使用が検討されてきた。例えば、混合
ゾルをそれ自体または仮焼してゲル化した後多孔質担持
体に被覆し、同担持体を熱水中等で80〜500℃で水
熱処理し、400〜1300℃で焼成して製造する方法
(特公平4−80726号公報)、ゼオライト骨格金属
源とアルカリ金属源と水からなる水性ゲル混合物に担体
を接触させ、該水性ゲル混合物を乱流を生じさせること
なく加熱等することにより、該担体上にゼオライト膜を
析出させる方法(特開平6−99044号公報)、セラ
ミックス多孔体基盤表面にアルカリ金属、ケイ素、及び
アルミニウムの成分を含むゾルあるいはゲルの懸濁液を
塗布し、蒸気中に曝露することによりゼオライト膜を製
造する方法(特開平7−89714号公報)等がある。
By the way, a membrane formed of zeolite crystals alone has been difficult to be used as a separation membrane because the zeolite crystals are weakly connected and the mechanical strength is weak. Therefore, the use of zeolite in the form of being supported on a porous support has been studied. For example, it is produced by coating the porous carrier with the mixed sol by itself or by calcination to form a gel, hydrothermally treating the carrier in hot water at 80 to 500 ° C., and firing at 400 to 1300 ° C. Method (Japanese Patent Publication No. 4-80726), by bringing a carrier into contact with an aqueous gel mixture consisting of a zeolite skeleton metal source, an alkali metal source and water, and heating the aqueous gel mixture without causing turbulent flow. , A method of depositing a zeolite membrane on the carrier (Japanese Patent Laid-Open No. 6-99044), a sol or gel suspension containing components of alkali metal, silicon, and aluminum is applied to the surface of a ceramic porous substrate and vaporized. There is a method for producing a zeolite membrane by exposing it to the inside (JP-A-7-89714).

【0004】[0004]

【発明が解決しようとする課題】しかしながらこれらの
方法は、製膜後添加した結晶化促進剤等の熱分解性の不
純物を除去するために熱処理を行う。この際製膜時には
無欠陥であっても、ゼオライトと支持体との熱膨張率の
差あるいは熱分解性成分の燃焼に伴う膨張等により応力
が発生するため、結晶粒界または支持体と結晶との界面
でのクラックの発生、膜の剥離による膜欠陥等が生じる
場合がある。かかる欠陥がゼオライト細孔径に比較して
著しく大きい場合、これらの欠陥を介して気体が透過す
ることとなるため、気体の十分な分離性能を得ることが
困難となる。
However, in these methods, heat treatment is performed in order to remove thermally decomposable impurities such as a crystallization accelerator added after film formation. At this time, even if there is no defect during film formation, stress is generated due to the difference in the coefficient of thermal expansion between the zeolite and the support or the expansion accompanying the combustion of the thermally decomposable component, so that the grain boundaries or the support and the crystal In some cases, cracks may occur at the interface, and film defects due to peeling of the film may occur. If such defects are significantly larger than the zeolite pore size, the gas will permeate through these defects, making it difficult to obtain sufficient gas separation performance.

【0005】例えば清住らの報告(清住ら,触媒,vo
l.134,No.6,368(1992))によれ
ば、支持体の表面にゼオライトの1種であるシリカライ
ト膜を製膜した分離膜においては、気体の分離係数がク
ヌッセンフローから推測される値とほぼ同じ値となって
いる。すなわち気体の透過はクヌッセンフロー型の透過
パターンを示し、シリカライトの細孔ではなく、それよ
りも大きな欠陥を気体が透過していることを示唆してい
る。また化学工学会第60年会研究発表講演要旨集,N
109においては、He/N2及びCO2/N2分離係数
がクヌッセンフローから予測される値をわずかに越えて
いるだけであり、支持体上に無欠陥膜が担持されている
わけではなく、製膜が不十分であることが推測できる。
For example, a report by Kiyozumi et al. (Kiyozumi et al., Catalyst, vo
l. 134, No. 6,368 (1992)), in a separation membrane in which a silicalite membrane, which is one kind of zeolite, is formed on the surface of a support, the gas separation coefficient is almost the same as the value estimated from the Knudsen flow. Has become. That is, the gas permeation shows a Knudsen flow type permeation pattern, which suggests that the gas permeates larger defects than the pores of silicalite. Proceedings of the 60th Annual Meeting of the Chemical Engineering Society of Japan, N
In 109, the He / N 2 and CO 2 / N 2 separation coefficients are slightly higher than the values predicted from the Knudsen flow, and the support does not have a defect-free film. It can be inferred that the film formation is insufficient.

【0006】一方前述の特開平7−89714号公報に
は、セラミックス多孔体表面に面する気孔を埋めるゼオ
ライト膜を作製することができることが示唆されている
が、該膜の具体的製法、特性等についての記載が全くな
い。
On the other hand, the above-mentioned Japanese Patent Laid-Open No. 7-89714 suggests that a zeolite membrane for filling the pores facing the surface of the ceramic porous body can be prepared, but the specific production method, characteristics, etc. of the membrane. Is not described at all.

【0007】そこで本発明は、製膜時あるいは熱処理中
に欠陥が発生し難いゼオライト膜の製造方法を提供する
ことを目的とする。
[0007] Therefore, an object of the present invention is to provide a method for producing a zeolite membrane in which defects are less likely to occur during membrane formation or during heat treatment.

【0008】[0008]

【課題を解決するための手段】本発明は機械的強度に優
れた多孔質支持体の内部にゼオライト膜合成用のゾルま
たはゲルを浸透させて結晶を生成させ、機械的強度を向
上させるとともに高い気体分離能を維持したゼオライト
膜を製造するための方法を提供する。かかる多孔質支持
体内部に結晶が生成したゼオライト膜は、製膜後の熱処
理時のゼオライトと多孔質支持体との熱膨張率の差によ
る応力の発生や熱分解性成分の燃焼除去時の応力の発生
が緩和され、欠陥の発生が防止され、高い気体分離能を
有する。すなわち請求項1記載の発明は、細孔径0.0
3〜20μmの多孔質支持体の内部に、厚さ5μm以上
のゼオライト膜を形成するのに十分な量のゼオライト膜
合成用ゾルまたはゲルを浸透させ、前記多孔質支持体を
水熱処理して結晶を生成させ、気体分離能を有し前記多
孔質支持体の内部における厚さが5μm以上のゼオライ
ト膜を形成するゼオライト膜の製造方法であって、前記
多孔質支持体の内部における前記ゼオライト膜を、前記
支持体の細孔内においてゼオライト膜合成用ゾルまたは
ゲルから水熱処理により結晶化して成長したゼオライト
結晶から構成される連続膜として形成させるゼオライト
膜の製造方法である。また、請求項5記載の発明は、厚
さ5μm以上のゼオライト膜を内部に形成するのに十分
な量のゼオライト膜合成用ゾルまたはゲルを内部に有す
る細孔径0.03〜20μmの多孔質支持体を水熱処理
して、気体分離能を有し前記多孔質支持体の内部におけ
る厚さが5μm以上のゼオライト膜を形成する水熱処理
工程を含むゼオライト膜の製造方法であって、前記多孔
質支持体の内部における前記ゼオライト膜を、前記支持
体の細孔内においてゼオライト膜合成用ゾルまたはゲル
から水熱処理により結晶化して成長したゼオライト結晶
から構成される連続膜として形成させるゼオライト膜の
製造方法である。前記ゼオライト膜合成用ゾルまたはゲ
ルとして、結晶化促進剤を含有するものを用い、前記水
熱処理工程で形成したゼオライト膜を熱処理して結晶化
促進剤を除去する結晶化促進剤除去工程を、前記水熱処
理工程よりも後に有することができる。
According to the present invention, a sol or gel for synthesizing a zeolite membrane is permeated into the inside of a porous support having excellent mechanical strength to form crystals, and the mechanical strength is improved and high. Provided is a method for producing a zeolite membrane that maintains gas separation ability. Zeolite membrane in which crystals are formed inside such a porous support is the stress during the heat treatment after film formation due to the difference in the coefficient of thermal expansion between the zeolite and the porous support and the stress during combustion removal of thermally decomposable components. The generation of gas is mitigated, the generation of defects is prevented, and the gas separation ability is high. That is, the invention of claim 1 has a pore size of 0.0
A sol or gel for synthesizing a zeolite membrane sufficient to form a zeolite membrane having a thickness of 5 μm or more is permeated into the porous support having a thickness of 3 to 20 μm, and the porous support is hydrothermally treated to crystallize. A method for producing a zeolite membrane having a gas separation ability and having a thickness of 5 μm or more inside the porous support, which is capable of separating gas. A method for producing a zeolite membrane, which is formed as a continuous membrane composed of zeolite crystals crystallized and grown by hydrothermal treatment from a sol or gel for synthesizing a zeolite membrane in the pores of the support. Further, the invention according to claim 5 is a porous support having a pore diameter of 0.03 to 20 μm, which has therein a zeolite film synthesizing sol or gel in an amount sufficient to form a zeolite film having a thickness of 5 μm or more inside. A method for producing a zeolite membrane, comprising a hydrothermal treatment step of subjecting a body to a hydrothermal treatment to form a zeolite membrane having gas separation ability and a thickness of 5 μm or more inside the porous support, the porous support comprising: In the method for producing a zeolite membrane, the zeolite membrane inside the body is formed as a continuous membrane composed of zeolite crystals grown by crystallization from a sol or gel for synthesizing a zeolite membrane in the pores of the support by hydrothermal treatment. is there. As the sol or gel for synthesizing the zeolite membrane, the one containing a crystallization accelerator is used, and the crystallization accelerator removing step of heat treating the zeolite membrane formed in the hydrothermal treatment step to remove the crystallization accelerator, It can be provided after the hydrothermal treatment step.

【0009】本発明の製造方法で製造されたゼオライト
膜において、多孔質支持体の有効厚さが0.5mm以上
であるものは好ましい。ゼオライト膜合成用原料混合物
がゾルである場合には、多孔質支持体の有効厚さが0.
5mm未満であると、以下に述べる理由によりゾルが多
孔質支持体内に浸透していても欠陥が生じる場合があ
る。このため多孔質支持体の有効厚さが0.5mm以上
であることは、多孔質支持体の内部に浸透させるゼオラ
イト膜合成用原料混合物がゾルである場合に特に有用で
ある。なおここでゾルとは、ゼオライトを形成するため
に加えられているシリカ、アルミナ等からなるコロイド
粒子が細かく、液体中に完全に分散して流動性を示す系
であり、一般に透明または半透明である。一方ゲルと
は、ゾルと比較してコロイド粒子が大きいために液体が
懸濁しているが、コロイド粒子間の相互作用が弱いため
固化せずに流動性を保っている系をいう。ゾル、ゲルの
変換はpH、原料の種類、濃度等の変化によって生じる
が、一般にゼオライト合成に用いられるゲルはゾルと比
較して高濃度である。
In the zeolite membrane manufactured by the manufacturing method of the present invention, it is preferable that the porous support has an effective thickness of 0.5 mm or more. When the raw material mixture for synthesizing the zeolite membrane is a sol, the effective thickness of the porous support is 0.
If it is less than 5 mm, a defect may occur even if the sol permeates into the porous support for the reason described below. Therefore, the effective thickness of the porous support being 0.5 mm or more is particularly useful when the raw material mixture for synthesizing the zeolite membrane to be penetrated into the porous support is a sol. The sol here is a system in which colloidal particles made of silica, alumina, etc., which are added to form zeolite, are fine and are completely dispersed in a liquid to show fluidity, and are generally transparent or translucent. is there. On the other hand, a gel refers to a system in which a liquid is suspended because the colloidal particles are larger than a sol, but the interaction between the colloidal particles is weak and the fluidity is maintained without solidification. Conversion of sol and gel occurs due to changes in pH, type of raw material, concentration, etc., but gels generally used for zeolite synthesis have higher concentrations than sol.

【0010】ゼオライト膜合成用原料混合物がゲルであ
る場合には、上記のようにコロイド粒子の濃度が高いた
め、ゲルと結晶化(製膜化)後の体積には大きな変化が
なく、ゲルが多孔質支持体の表面から内部の所定の個所
まで均一に浸透していればその後の水熱処理等により、
該多孔質支持体の表面から内部の該所定の個所まで連続
した無欠陥のゼオライト膜を得ることができる。
When the raw material mixture for synthesizing the zeolite membrane is a gel, since the concentration of the colloidal particles is high as described above, there is no large change in the gel and the volume after crystallization (film formation), and the gel is If it has evenly permeated from the surface of the porous support to a predetermined location inside, by subsequent hydrothermal treatment,
It is possible to obtain a continuous, defect-free zeolite membrane from the surface of the porous support to the predetermined portion inside.

【0011】しかしゼオライト膜合成用原料混合物がゾ
ルである場合には、上記のようにコロイド粒子の濃度が
低いため、ゲルと結晶化(製膜化)後の体積には大きな
差があるため、欠陥のあるゼオライト膜が生じることが
ある。
However, when the raw material mixture for synthesizing the zeolite membrane is a sol, since the concentration of colloidal particles is low as described above, there is a large difference between the gel and the volume after crystallization (film formation). Defective zeolite membranes may form.

【0012】図1−(1)、図1−(2)、図1−
(3)、図1−(4)は多孔質支持体内部にゼオライト
膜が製膜されていく様子を示した模式図である。図1−
(1)のような多孔質支持体内部にゼオライト膜合成用
ゾルを浸透させた後(図1−(2))、該ゼオライト膜
合成用ゾル中で水熱処理を行うと、結晶化は多孔質支持
体表面付近で始まる。製膜の初期段階で多孔質支持体の
表面にはゼオライトが堆積して多結晶膜が形成され、多
孔質支持体内部にも各所でゼオライト結晶が成長し始め
る(図1−(3))。この際内部への結晶成長に比較し
て表面での製膜が速く進行する。このため内部に連続し
た膜が製膜される前に表面にゼオライト膜が製膜されて
しまう。かかる状態になると多孔質支持体内部のゼオラ
イト膜合成用ゾルと外部のゼオライト膜合成用ゾルとが
遮断されてしまい、多孔質支持体内部へはゼオライト膜
合成用ゾルがそれ以上供給されなくなる。かかる場合多
孔質支持体内部への結晶の成長は、多孔質支持体表面に
膜が製膜される前に、多孔質支持体内部に浸透していた
ゼオライト膜合成用ゾルによってのみ行われることとな
る。このため製膜に十分な量のゼオライト膜合成用ゾル
が多孔質支持体内部に浸透していれば結晶が成長してや
がて連続したゼオライト膜となる(図1−(4))。し
かし結晶成長に十分な量のゼオライト膜合成用ゾルが多
孔質支持体内部に浸透していない場合には、結晶成長が
図1−(3)のような状態で停止してしまい、多孔質支
持体内部に未製膜の部分が残存する場合が生ずるのであ
る。かかる未製膜部分の残存したゼオライト膜エレメン
トを熱処理すると図2のように欠陥の生じやすい表面に
製膜されたゼオライトにクラックが生じゼオライト膜を
介しないで気体が透過する経路ができてしまい分離性能
が大きく低下する原因となる場合がある。
1- (1), 1- (2), 1-
(3) and FIG. 1- (4) are schematic views showing a state in which a zeolite membrane is being formed inside the porous support. Figure 1-
After the sol for synthesizing the zeolite membrane is permeated into the porous support as in (1) (FIG. 1- (2)), hydrothermal treatment is performed in the sol for synthesizing the zeolite membrane, whereby crystallization becomes porous. It starts near the surface of the support. At the initial stage of film formation, zeolite is deposited on the surface of the porous support to form a polycrystalline film, and zeolite crystals start to grow in various places inside the porous support (FIG. 1- (3)). At this time, the film formation on the surface progresses faster than the internal crystal growth. Therefore, the zeolite membrane is formed on the surface before the continuous membrane is formed inside. In such a state, the sol for synthesizing the zeolite membrane inside the porous support is blocked from the sol for synthesizing the zeolite membrane outside, and no further sol for synthesizing the zeolite membrane is supplied to the inside of the porous support. In such a case, the growth of crystals inside the porous support is performed only by the zeolite membrane synthesis sol that has permeated inside the porous support before the membrane is formed on the surface of the porous support. Become. Therefore, if a sufficient amount of sol for synthesizing a zeolite membrane for film formation has permeated into the inside of the porous support, crystals grow and eventually become a continuous zeolite membrane (Fig. 1- (4)). However, when a sufficient amount of zeolite membrane synthesis sol for crystal growth does not penetrate into the porous support, the crystal growth stops in the state as shown in Fig. 1- (3), and the porous support In some cases, an unmade film remains inside the body. When the zeolite membrane element in which such an unproduced membrane portion remains is heat-treated, cracks are formed in the zeolite formed on the surface where defects are likely to occur as shown in FIG. 2, and a path for gas permeation is formed without passing through the zeolite membrane, resulting in separation. This may cause a significant decrease in performance.

【0013】このような欠陥を防止するためには、多孔
質支持体内部に膜合成に十分な量のゼオライト膜合成用
ゾルが浸透していればよい。しかしながら合成が進むと
まず多孔質支持体表面がゼオライトで覆われてしまうた
め外部から多孔質支持体内部へのゼオライト膜合成用ゾ
ルの供給は行われなくなる。したがって予め多孔質支持
体内部での膜合成に十分な量のゼオライト膜合成用ゾル
が、多孔質支持体表面での膜合成前に多孔質支持体内部
に浸透している必要がある。このため多孔質支持体内部
の細孔の容積は、多孔質支持体内部にゼオライト膜を形
成するのに十分な量のゼオライト膜合成用ゾルを蓄える
だけの細孔容積が必要となる。しかし多孔質支持体の気
孔率や細孔径を大きくして多孔質支持体の細孔の容積を
大きくしたとしても、ゼオライト膜が覆うべき細孔の断
面積が大きくなるため効果がない。多孔質支持体内部の
細孔の容積は、多孔質支持体の有効厚さを厚くすること
によって大きくすることができる。ここで多孔質支持体
の有効厚さとはゼオライト膜合成用ゾルに接した一方の
面と該一方の面と反対側の面との間の距離をさす。例え
ば多孔質支持体が板状の場合はゼオライト膜合成用ゾル
に接した一方の面とこれと反対側の面との距離であり、
円筒状の多孔質支持体ではゼオライト膜合成用ゾルと接
した内側面または外側面と、外側面または内側面との距
離であり、ハニカム、マルチ形状では隣接する連通孔を
仕切っている壁(多孔質支持体)の厚さをさす。したが
って該一方の面のみならず該反対側の面がやはりゼオラ
イト膜合成用ゾルと接している場合の有効厚さは、該一
方の面と該反対側の面との距離の半分となる。なおマル
チ形状とは例えば円柱、角柱等の多孔質支持体の内部に
円柱形、角柱形等の連通孔が複数設けられたものをいう
(図7参照)。
In order to prevent such defects, it is sufficient that the sol for synthesizing the zeolite membrane permeates the inside of the porous support in an amount sufficient for synthesizing the membrane. However, as the synthesis proceeds, the surface of the porous support is first covered with zeolite, so that the sol for synthesizing the zeolite membrane from the outside to the inside of the porous support cannot be supplied. Therefore, it is necessary that a sufficient amount of zeolite membrane synthesis sol for membrane synthesis inside the porous support has permeated into the porous support before the membrane synthesis on the surface of the porous support. Therefore, the volume of the pores inside the porous support needs to be a volume of pores sufficient to store a sufficient amount of the zeolite film synthesizing sol to form a zeolite membrane inside the porous support. However, even if the porosity or the pore diameter of the porous support is increased to increase the volume of the pores of the porous support, the cross-sectional area of the pores to be covered by the zeolite membrane becomes large, which is not effective. The volume of pores inside the porous support can be increased by increasing the effective thickness of the porous support. Here, the effective thickness of the porous support means a distance between one surface in contact with the sol for synthesizing the zeolite membrane and the surface opposite to the one surface. For example, when the porous support is plate-like, it is the distance between the one surface in contact with the sol for zeolite membrane synthesis and the surface on the opposite side,
In a cylindrical porous support, it is the distance between the inner surface or outer surface in contact with the sol for synthesizing the zeolite membrane and the outer surface or inner surface. Quality support). Therefore, the effective thickness when not only the one surface but also the opposite surface is in contact with the sol for synthesizing the zeolite membrane is half the distance between the one surface and the opposite surface. The multi-shape means, for example, a columnar support, a prismatic support, or the like in which a plurality of communication holes of a cylindrical support or a prismatic support are provided inside a porous support (see FIG. 7).

【0014】ある一定以上の有効厚さがあれば多孔質支
持体内部の膜合成に十分な量のゼオライト膜合成用ゾル
を多孔質支持体内部に蓄えることが可能となる。かかる
多孔質支持体を用いてゼオライト膜を合成することによ
り、より再現性が高く分離性能の高いゼオライト膜を得
ることができる。好ましい多孔質支持体の有効厚さは
0.5mm以上、より好ましくは1mm以上である。多
孔質支持体の有効厚さを0.5mm以上とすることによ
り、多孔質支持体内部にゼオライト膜合成用ゾルを浸漬
させて水熱処理等を行った場合に無欠陥膜が多孔質支持
体内部に製膜される。なお多孔質支持体の内部に無欠陥
のゼオライト膜が合成されるには、ゼオライト膜合成用
ゾルが多孔質支持体表面から0.5mm以上、より好ま
しくは1mm以上浸透していることが望ましい。
If the effective thickness is not less than a certain value, it is possible to store a sufficient amount of zeolite membrane synthesis sol for synthesizing the membrane inside the porous support inside the porous support. By synthesizing a zeolite membrane using such a porous support, a zeolite membrane having higher reproducibility and high separation performance can be obtained. The effective thickness of the porous support is preferably 0.5 mm or more, more preferably 1 mm or more. By setting the effective thickness of the porous support to 0.5 mm or more, the deficiency-free film is formed inside the porous support when the zeolite membrane synthesis sol is immersed in the porous support for hydrothermal treatment. Is formed into a film. In order to synthesize a defect-free zeolite membrane inside the porous support, it is desirable that the zeolite membrane synthesis sol penetrates from the surface of the porous support to 0.5 mm or more, more preferably 1 mm or more.

【0015】本発明は多孔質支持体の内部にゼオライト
膜合成用ゾルまたはゲルを浸透させ、多孔質支持体を水
熱処理して結晶を生成させる方法により、高い気体分離
能を有するゼオライト膜を形成する方法を提供する。す
なわち従来は製膜は主に多孔質支持体の表面で行われ、
多孔質支持体内部に結晶が生成することはなかった。こ
のため製膜時には無欠陥の膜であっても、その後の熱処
理によってクラックの発生や膜の剥離が生じやすく、高
い気体分離能を示す膜を製造することが困難であった。
本発明の製造方法によれば、ゼオライト膜は多孔質支持
体内部に製膜されるので、製膜後の熱処理時の応力の発
生が緩和され、欠陥の発生が防止され、高い気体分離能
を有する。
In the present invention, a sol or gel for synthesizing a zeolite membrane is permeated into the inside of the porous support, and the porous support is hydrothermally treated to form crystals, thereby forming a zeolite membrane having high gas separation ability. Provide a way to do. That is, conventionally, film formation is mainly performed on the surface of the porous support,
No crystals were formed inside the porous support. For this reason, even if the film is defect-free at the time of film formation, cracking or peeling of the film is likely to occur due to subsequent heat treatment, and it is difficult to manufacture a film having high gas separation ability.
According to the production method of the present invention, since the zeolite membrane is formed inside the porous support, the generation of stress during the heat treatment after membrane formation is alleviated, the occurrence of defects is prevented, and high gas separation ability is achieved. Have.

【0016】請求項2、請求項3、請求項4は前記ゼオ
ライト膜合成用ゾルまたはゲルを多孔質支持体内部に浸
透させるための好ましい実施態様を示している。かかる
方法によってゼオライト膜合成用ゾルまたはゲルは多孔
質支持体内部に浸透し、その後の熱処理によってもゼオ
ライト膜は膜欠陥を生じることなく高い気体分離能を維
持する。すなわち請求項2記載の発明は、請求項1記載
の方法において、多孔質支持体の内部にゼオライト膜合
成用ゾルまたはゲルを強制的に注入することにより行う
製造方法である。請求項3記載の発明は、請求項2記載
の方法において、強制的な注入が、ゼオライト膜合成用
ゾルまたはゲルを高圧で多孔質支持体に対して吐出さ
せ、多孔質支持体内部に注入すること、である製造方法
である。請求項4記載の発明は、請求項2記載の方法に
おいて、強制的な注入が、多孔質支持体の内部の気泡を
脱泡操作により除去し、ゼオライト膜合成用ゾルまたは
ゲルを多孔質支持体の内部に注入すること、である製造
方法である。
[0016] Claims 2, 3, and 4 show preferred embodiments for permeating the sol or gel for synthesizing the zeolite membrane into the inside of the porous support. By such a method, the sol or gel for synthesizing the zeolite membrane permeates into the inside of the porous support, and the zeolite membrane maintains high gas separation ability without causing membrane defects even by the subsequent heat treatment. That is, the invention according to claim 2 is the method according to claim 1, which is carried out by forcibly injecting the sol or gel for synthesizing the zeolite membrane into the inside of the porous support. The invention according to claim 3 is the method according to claim 2, in which the sol or gel for synthesizing the zeolite membrane is discharged to the porous support at a high pressure by forced injection, and is injected into the porous support. That is the manufacturing method. The invention according to claim 4 is the method according to claim 2, wherein the forced injection removes air bubbles inside the porous support by a defoaming operation, and the sol or gel for synthesizing the zeolite membrane is removed by the porous support. It is a manufacturing method which is to inject inside.

【0017】[0017]

【発明の実施の形態】ゼオライト膜は気体分離性に優れ
ているが、機械的強度が弱いため、一般に機械的強度の
強い多孔質支持体表面に被覆して使用されている。しか
し被覆後の熱処理による応力の発生等により膜欠陥を生
じる場合が多く、ゼオライトが本来的に有する気体分離
能が損なわれる結果となる。本発明では、多孔質支持体
の表面でなく多孔質支持体内部にゼオライト膜合成用ゾ
ルまたはゲルを浸透させることにより、かかる膜欠陥が
生じることを防止し、機械的強度を向上させるとともに
気体分離能を維持するものである。以下本発明に係るゼ
オライト膜の製造方法について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Zeolite membranes have excellent gas separation properties, but since they have weak mechanical strength, they are generally used by coating them on the surface of a porous support having high mechanical strength. However, membrane defects often occur due to the generation of stress due to heat treatment after coating, resulting in a loss of gas separation ability originally possessed by zeolite. In the present invention, the sol or gel for synthesizing the zeolite membrane is permeated into the inside of the porous support instead of the surface of the porous support to prevent such membrane defects from occurring and improve mechanical strength and gas separation. It is to maintain Noh. The method for producing the zeolite membrane according to the present invention will be described below.

【0018】ゼオライト膜の原料となるゼオライト膜合
成用ゾルまたはゲルには例えば以下の原料を用いること
ができる。すなわちシリカ源としてケイ酸ナトリウム、
シリカゾル、メタケイ酸ナトリウム、オルトケイ酸ナト
リウム、水ガラス、メタケイ酸カリウム、シリコンアル
コキシド等、アルミナ源として硫酸アルミニウム、硝酸
アルミニウム、塩化アルミニウム、アルミン酸ナトリウ
ム等、アルカリ金属源として水酸化ナトリウム、水酸化
カリウム、水酸化セシウム等である。これらの中から目
的とするゼオライトの種類、組成にしたがって、シリカ
源、アルミナ源、アルカリ金属源を任意に選択すること
ができる。さらに結晶化促進剤として例えば、テトラプ
ロピルアンモニウムブロマイド(TPABr)、テトラ
ブチルアンモニウムブロマイド等を用いることができ
る。なお本発明で製造するゼオライト膜はどのような組
成のものであってもよい。例えばアルミナ成分を含有し
ない特殊なゼオライトであってもよい。またシリカ、ア
ルミナ以外に、酸化チタン、酸化ガリウム、酸化鉄、酸
化イットリウム等を含有するゼオライトであってもよ
い。
The following raw materials can be used for the sol or gel for synthesizing the zeolite membrane, which is the raw material for the zeolite membrane. That is, sodium silicate as a silica source,
Silica sol, sodium metasilicate, sodium orthosilicate, water glass, potassium metasilicate, silicon alkoxide, etc., aluminum sulfate as an alumina source, aluminum nitrate, aluminum chloride, sodium aluminate, etc., sodium hydroxide as an alkali metal source, potassium hydroxide, Cesium hydroxide or the like. From these, a silica source, an alumina source, and an alkali metal source can be arbitrarily selected according to the type and composition of the desired zeolite. Further, as a crystallization accelerator, for example, tetrapropylammonium bromide (TPABr), tetrabutylammonium bromide, etc. can be used. The zeolite membrane produced in the present invention may have any composition. For example, it may be a special zeolite containing no alumina component. Further, in addition to silica and alumina, zeolite containing titanium oxide, gallium oxide, iron oxide, yttrium oxide or the like may be used.

【0019】ゼオライト膜合成用ゾルまたはゲルは常法
にしたがって調製される。例えばゼオライトA型合成用
のゲルは以下の方法により調製できる。すなわちアルミ
ン酸ナトリウム(NaAlO2、87%)を水に溶解
し、これにシリカゾル(SiO2、30%)を添加す
る。この混合物を30分間撹拌して均一にした後水酸化
ナトリウム溶液を添加すると、Na2O/SiO2=0.
5、SiO2/Al23=4、H2O/Na2O=246
なる組成を有するゲルが生成する。本発明で製造するこ
とのできるゼオライトとしては例えば、ZSM−5、シ
リカライト、ゼオライトA型、ゼオライトY型等どのよ
うな種類でもよい。
The sol or gel for synthesizing the zeolite membrane is prepared by a conventional method. For example, a gel for zeolite A type synthesis can be prepared by the following method. That is, sodium aluminate (NaAlO 2 , 87%) is dissolved in water, and silica sol (SiO 2 , 30%) is added thereto. The mixture was stirred for 30 minutes to homogenize, then sodium hydroxide solution was added and Na 2 O / SiO 2 = 0.
5, SiO 2 / Al 2 O 3 = 4, H 2 O / Na 2 O = 246
A gel having a composition of The zeolite that can be produced by the present invention may be any type such as ZSM-5, silicalite, zeolite A type, zeolite Y type and the like.

【0020】本発明に係る多孔質支持体としては、連通
気孔を有するものであることが必要であり、連通気孔を
有していれば、例えば空孔が針状のものが連なったもの
であってもよい。また物性的には機械的強度が高くかつ
水熱処理及びその後の熱処理において安定に存在し得る
材質であることが必要であり、例えばアルミナ、ムライ
ト、コーディライト等のセラミック、多孔質ステンレス
等の金属・合金類、多孔質ガラス等を用いることができ
る。また多孔質支持体の形状は、その内部でゼオライト
の結晶が生成するものであればよく、膜状、板体状、筒
体状、ペレット状、粒子状、中空糸状、織布状、不織布
状、ハニカム状等の種々の形状とすることができる。ま
た多孔質支持体の製造方法は特に限定されず、例えばプ
レス成形、押出し成形、スリップキャスティング等多孔
質支持体の形状にあわせて任意に選択することができ
る。
The porous support according to the present invention is required to have continuous ventilation holes, and if it has continuous ventilation holes, it is, for example, a series of needle-like holes. May be. In terms of physical properties, it is necessary that the material has high mechanical strength and can exist stably in hydrothermal treatment and subsequent heat treatment.For example, ceramics such as alumina, mullite, and cordierite, metals such as porous stainless steel, etc. Alloys, porous glass and the like can be used. The shape of the porous support may be any as long as zeolite crystals are formed therein, such as a film, a plate, a cylinder, a pellet, a particle, a hollow fiber, a woven cloth, or a non-woven cloth. Various shapes such as a honeycomb shape can be used. The method for producing the porous support is not particularly limited, and can be arbitrarily selected according to the shape of the porous support such as press molding, extrusion molding, slip casting and the like.

【0021】ゼオライト膜合成用ゾルを多孔質支持体内
部に浸透させるためには、多孔質支持体の有効厚さは
0.5mm以上であることが好ましく、より好ましくは
1mmである。多孔質支持体の有効厚さが0.5mm以
上であれば多孔質支持体内部の膜合成に十分な量のゼオ
ライト膜合成用ゾルを蓄えることが可能となり、多孔質
支持体の表面から内部の所定の厚さまで連続した無欠陥
のゼオライト膜を得ることができる。なお水熱処理等の
後に多孔質支持体内部に生成したゼオライト膜の所定の
厚さは特に限定はしないが、多孔質支持体表面から略
0.5μm〜50μmの任意の厚さが好ましい。該膜厚
はあまり薄すぎると破損しやすくなるが、破損しないな
らば薄い方が気体透過性がよく、略5〜30μmの任意
の厚さがより好ましい。またゼオライト膜合成用ゾルま
たはゲルを多孔質支持体内部に浸透させるためには、多
孔質支持体の細孔径が0.03〜20μm、気孔率が1
0〜60%であることが好ましい。さらにより好ましく
は、細孔径が0.06〜10μm、気孔率が20〜40
%のものである。細孔径が0.03〜20μm及び気孔
率が10〜60%である多孔質支持体は、多孔質支持体
内部にゼオライト膜合成用ゾルまたはゲルが十分浸透
し、かつゼオライトによる効率的かつ容易な気体の分離
を妨げることがない。
In order to permeate the sol for synthesizing the zeolite membrane into the inside of the porous support, the effective thickness of the porous support is preferably 0.5 mm or more, more preferably 1 mm. If the effective thickness of the porous support is 0.5 mm or more, it is possible to store a sufficient amount of zeolite membrane synthesizing sol for synthesizing the membrane inside the porous support, and the sol for synthesizing from the surface to the inside It is possible to obtain a continuous, defect-free zeolite membrane up to a predetermined thickness. The predetermined thickness of the zeolite membrane formed inside the porous support after hydrothermal treatment is not particularly limited, but an arbitrary thickness of about 0.5 μm to 50 μm from the surface of the porous support is preferable. If the film thickness is too thin, the film is easily broken, but if it is not broken, the thin film has better gas permeability, and an arbitrary thickness of about 5 to 30 μm is more preferable. Further, in order to permeate the sol or gel for synthesizing the zeolite membrane into the inside of the porous support, the pore size of the porous support is 0.03 to 20 μm and the porosity is 1
It is preferably 0 to 60%. Even more preferably, the pore size is 0.06 to 10 μm and the porosity is 20 to 40.
%belongs to. The porous support having a pore size of 0.03 to 20 μm and a porosity of 10 to 60% has a sol or gel for synthesizing a zeolite membrane sufficiently permeated into the inside of the porous support, and is efficient and easy by the zeolite. Does not interfere with gas separation.

【0022】次にゼオライトを多孔質支持体内部に浸透
させる方法について説明する。従来の、ゼオライト膜合
成用ゾルまたはゲルを多孔質支持体表面に塗布する方法
では、多孔質支持体内部に結晶を生成する成分が浸透し
ないため、ゼオライトの結晶化は多孔質支持体表面での
み進行し、製膜は主に支持体表面で行われていた。この
ため製膜時には無欠陥膜であっても、熱処理中にクラッ
クの発生や膜の剥離が生じ、ゼオライト膜の有する気体
分離能が損なわれていた。本方法によればこのような欠
陥の発生を防止し、高い気体分離能を有するゼオライト
膜を得ることができる。
Next, a method of permeating zeolite into the inside of the porous support will be described. In the conventional method of applying the sol or gel for synthesizing the zeolite membrane to the surface of the porous support, since the component that generates crystals does not penetrate into the porous support, the crystallization of the zeolite is performed only on the surface of the porous support. As it proceeded, film formation was mainly performed on the surface of the support. Therefore, even if the film is defect-free at the time of film formation, cracking and peeling of the film occur during heat treatment, and the gas separation ability of the zeolite film is impaired. According to this method, it is possible to prevent the occurrence of such defects and obtain a zeolite membrane having high gas separation ability.

【0023】ゼオライト膜の原料となるゼオライト膜合
成用ゾルまたはゲルを多孔質内部に浸透させることがで
きればどのような方法でもよい。例えばやや長時間を要
するが、ゼオライト膜合成用ゾルまたはゲル中に多孔質
支持体を浸漬し、毛管凝縮作用によりゼオライト膜合成
用ゾルまたはゲルを多孔質支持体内部に浸透せしめ、所
定の時間放置した後水熱処理を行う方法を採用すること
もできる。
Any method may be used as long as the sol or gel for synthesizing the zeolite membrane, which is a raw material of the zeolite membrane, can be permeated into the porous interior. For example, although it takes a little longer time, the porous support is immersed in the sol or gel for synthesizing the zeolite membrane, and the sol or gel for synthesizing the zeolite membrane is permeated into the porous support by a capillary condensation action, and left for a predetermined time. It is also possible to employ a method in which hydrothermal treatment is performed after this.

【0024】しかしゼオライト膜合成用ゾルまたはゲル
を多孔質内部に浸透させる方法としては、多孔質支持体
の内部にゼオライト膜合成用ゾルまたはゲルを物理的に
強制的に注入する方法が好ましい。強制的に注入するこ
とにより、ゼオライト膜合成用ゾルまたはゲルの多孔質
支持体内部への浸透を短時間で効率的かつ再現性良く行
うことができる。さらにゼオライト膜合成用ゾルまたは
ゲルの多孔質支持体内部への浸透量のコントロールをよ
り容易に行うことができる。
However, as a method of infiltrating the sol or gel for synthesizing the zeolite membrane into the inside of the porous body, a method of physically forcing the sol or gel for synthesizing the zeolite membrane into the inside of the porous support is preferable. By forcibly injecting, the sol or gel for synthesizing the zeolite membrane can permeate into the inside of the porous support efficiently in a short time and with good reproducibility. Further, the permeation amount of the sol or gel for synthesizing the zeolite membrane into the porous support can be controlled more easily.

【0025】強制的な注入方法としては、ゼオライト膜
合成用ゾルまたはゲルを高圧で多孔質支持体表面に対し
て吐出させ、その吐出圧により多孔質支持体内部に注入
する方法がより好ましい。ゼオライト膜合成用ゾルまた
はゲルを吐出させるためには例えばポンプを用いること
ができる。該方法による場合、その後の熱処理に耐えか
つ良好な気体分離能を維持するゼオライト膜とするため
の条件は、ゾルまたはゲルの組成、多孔質支持体の材
質、細孔径、気孔率等にもよるが、例えばポンプ圧約
0.5〜10kgf/cm2の任意の圧力で約10分〜
5時間の任意の時間吐出させるのが好ましい。かかる圧
力、時間であれば、無欠陥膜を生成するに十分な量のゼ
オライト膜合成用ゾルを、有効厚さ0.5mm以上の多
孔質支持体内部に浸透させることができる。
As a compulsory injection method, a method in which a sol or gel for synthesizing a zeolite membrane is discharged under high pressure onto the surface of the porous support and then injected into the porous support by the discharge pressure is more preferable. For discharging the sol or gel for synthesizing the zeolite membrane, for example, a pump can be used. In the case of this method, the conditions for obtaining a zeolite membrane that withstands subsequent heat treatment and maintains a good gas separation ability depend on the composition of the sol or gel, the material of the porous support, the pore size, the porosity, etc. However, for example, at a pump pressure of about 0.5 to 10 kgf / cm 2 for about 10 minutes at any pressure.
It is preferable to discharge for an arbitrary time of 5 hours. With such pressure and time, a sufficient amount of sol for synthesizing a zeolite membrane to form a defect-free membrane can be permeated into the porous support having an effective thickness of 0.5 mm or more.

【0026】強制的な注入のより好ましい他の方法とし
ては、多孔質支持体の内部の気泡を脱泡操作により除去
し、ゼオライト膜合成用ゾルまたはゲルを多孔質支持体
の内部に注入する方法がある。本方法は多孔質支持体中
に存在する気泡を例えば真空ポンプ等で除去することに
より、ゼオライト膜合成用ゾルまたはゲルを多孔質支持
体内部に容易に浸透させるものである。より具体的には
例えば次のように行うことができる。すなわち容器にゼ
オライト膜合成用ゾルをいれ、このゾル中に多孔質支持
体を浸漬させ、容器を真空ポンプを用いて低圧、好まし
くは約20mmHg以下の任意の圧力にする。かかる減
圧下で約1〜10時間の任意の時間保持することによ
り、無欠陥膜を生成するに十分な量のゼオライト膜合成
用ゾルを、有効厚さ0.5mm以上の多孔質支持体内部
に浸透させることができる。なお上記容器は減圧下での
耐性を有するものであればどのようなものであってもよ
い。
As another more preferable method of forced injection, a method of removing air bubbles inside the porous support by a defoaming operation and injecting a sol or gel for synthesizing zeolite into the inside of the porous support. There is. In this method, air bubbles existing in the porous support are removed by, for example, a vacuum pump or the like, so that the sol or gel for synthesizing the zeolite membrane is easily permeated into the porous support. More specifically, for example, it can be performed as follows. That is, a sol for synthesizing a zeolite membrane is placed in a container, a porous support is immersed in this sol, and the container is set to a low pressure, preferably about 20 mmHg or less, using a vacuum pump. By holding for about 1 to 10 hours under such a reduced pressure for an arbitrary time, a sufficient amount of sol for synthesizing a zeolite membrane to form a defect-free membrane is placed inside a porous support having an effective thickness of 0.5 mm or more. Can be penetrated. The container may be any container as long as it has resistance under reduced pressure.

【0027】前記の、ゼオライト膜合成用ゾルまたはゲ
ルを高圧で吐出させる方法及び多孔質支持体の内部の気
泡を脱泡操作により除去する方法によれば、短時間で効
率よくかつ再現性良くゼオライト膜合成用ゾルまたはゲ
ルを多孔質支持体内部に浸透させることができ、かつ浸
透量を容易にコントロールすることができる。かかるゼ
オライト膜合成用ゾルまたはゲルの多孔質支持体内部へ
の浸透後水熱処理を行い、多孔質支持体内部に結晶を生
成し製膜することで、その後の熱処理等による応力の発
生を緩和することができ、膜欠陥の発生を防止してゼオ
ライトの気体分離能を維持することができる。なおゼオ
ライト膜合成用ゾルまたはゲルが多孔質支持体内部に浸
透すればよいのであり、ゼオライト膜合成用ゾルまたは
ゲルが多孔質支持体表面に付着していても差し支えな
い。またゼオライト膜合成用ゾルまたはゲルは多孔質支
持体表面に存在する全細孔から内部に浸透することが必
要である。そうでなければゼオライト膜の細孔より径の
大きい多孔質支持体の細孔から気体が流出することとな
り、ゼオライト膜の有する気体分離能を維持することが
不可能だからである。
According to the above-mentioned method of ejecting the sol or gel for synthesizing the zeolite membrane at high pressure and the method of removing the air bubbles inside the porous support by the defoaming operation, the zeolite is efficiently and reproducibly in a short time. The sol or gel for membrane synthesis can be permeated into the inside of the porous support, and the permeation amount can be easily controlled. By performing hydrothermal treatment after permeation of the sol or gel for synthesizing such a zeolite membrane into the inside of the porous support to form crystals inside the porous support to form a film, the occurrence of stress due to subsequent heat treatment etc. is mitigated. It is possible to prevent the occurrence of membrane defects and maintain the gas separation ability of zeolite. It is only necessary that the sol or gel for synthesizing the zeolite membrane penetrates into the porous support, and the sol or gel for synthesizing the zeolite membrane may adhere to the surface of the porous support. Further, the sol or gel for synthesizing the zeolite membrane needs to penetrate into all the pores existing on the surface of the porous support. Otherwise, the gas will flow out from the pores of the porous support having a diameter larger than that of the zeolite membrane, and the gas separation ability of the zeolite membrane cannot be maintained.

【0028】ゼオライト膜合成用ゾルまたはゲルが内部
に浸透した多孔質支持体の水熱処理は常法にしたがって
行うことができる。例えば多孔質支持体を80〜500
℃の任意の温度にて3〜180時間の任意の時間、単に
熱水またはオートクレーブ内の熱水中に浸漬するか、流
通する加熱水蒸気内に置くことにより行うことができ
る。さらにはゼオライト膜合成用ゾルまたはゲル中でそ
のまま水熱処理を行ってもよい。前記水熱処理の後、添
加した結晶化促進剤等の熱分解性の不純物を除去するた
めに熱処理を行う。熱処理は常法により例えば500〜
1000℃の任意の温度環境で1〜10時間の任意の時
間焼成することにより行う。かかる工程により多孔質支
持体内部にゼオライト膜が生成する。
The hydrothermal treatment of the porous support having the sol or gel for synthesizing the zeolite membrane infiltrated therein can be carried out by a conventional method. For example, the porous support may be 80-500.
It can be performed by simply immersing in hot water or hot water in an autoclave at any temperature of 3 to 180 hours at any temperature, or by placing it in circulating heated steam. Further, the hydrothermal treatment may be carried out as it is in the sol or gel for synthesizing the zeolite membrane. After the hydrothermal treatment, a heat treatment is performed to remove the thermally decomposable impurities such as the added crystallization accelerator. The heat treatment is, for example, 500 to
It is performed by firing in an arbitrary temperature environment of 1000 ° C. for an arbitrary time of 1 to 10 hours. By this step, a zeolite film is formed inside the porous support.

【0029】上述の通り従来の多孔質支持体表面にゼオ
ライト膜合成用ゾルまたはゲルを塗布する方法では、該
熱処理時に膜欠陥等が生じるのであるが、多孔質支持体
内部にゼオライト膜合成用ゾルまたはゲルを浸透させる
ことにより、かかる膜欠陥等が生じることを防止し、機
械的強度が向上するとともに高い気体分離能を維持した
ゼオライト膜が得られる。
As described above, in the conventional method of coating the sol or gel for synthesizing the zeolite membrane on the surface of the porous support, membrane defects and the like occur during the heat treatment. However, the sol for synthesizing the zeolite membrane inside the porous support. Alternatively, by permeating the gel, it is possible to obtain a zeolite membrane which prevents the occurrence of such membrane defects and the like, improves the mechanical strength and maintains a high gas separation ability.

【0030】[0030]

【実施例】以下に本発明の実施例を説明するが、以下の
実施例は本発明を何等制限するものではない。なお図3
は実施例に係る、混合気体の分離試験及び純気体の透過
試験を行うための多孔質支持体を組み込んだエレメン
ト、の模式図である。
EXAMPLES Examples of the present invention will be described below, but the following examples do not limit the present invention in any way. Figure 3
FIG. 3 is a schematic diagram of an element incorporating a porous support for performing a mixed gas separation test and a pure gas permeation test according to an example.

【0031】<実施例1>TPABr、水酸化ナトリウ
ムを蒸留水に溶解させた溶液に、コロイダルシリカ(カ
タロイド(Cataloid)SI−30、触媒化成
(株)製)を添加し、均一に撹拌して合成用のゾルを調
製した。該ゾルの組成は0.1TPABr−0.05N
2O−SiO2−80H2Oの比とした。図3を参照し
て、該ゾルの入った容器に、円筒状で外側面をシールし
て外側面が該ゾルと接しないようにしたアルミナ多孔質
支持体7(外径は10mm、内径は7mmであり多孔質
支持体の有効厚さは1.5mmである。また長さは10
0mm、平均細孔径は約0.8μm、気孔率は33%で
あり、99.9%がアルミナ質である。)を浸漬し、容
器内を真空ポンプで10mmHgに減圧し、6時間保持
した。その後アルミナ多孔質支持体7を、該ゾルととも
にオートクレーブに入れて170℃で72時間水熱処理
を行い、円筒状のアルミナ多孔質支持体7の内側面8か
らアルミナ多孔質支持体7の内部にゼオライト膜9を製
膜した。製膜後、ゼオライト膜9を担持したアルミナ多
孔質支持体7を80℃の温水で洗浄し、さらに超音波洗
浄し、蒸留水置換した後、100℃で24時間乾燥し
た。その後600℃で2時間焼成し、結晶中のTPAB
rを除去して試料とした。図3は、ゼオライト膜9が
内側面8からアルミナ多孔質支持体7の内部に浸透した
様子を模式的に示している。ゼオライト膜9はX線回折
(XRD)解析の結果、シリカライトであることが確認
された。またアルミナ多孔質支持体7の破断面の走査型
電子顕微鏡(SEM)観察の結果、アルミナ多孔質支持
体7の内部に結晶が生成していることが確認された。内
部の結晶の厚さは内側面8から約30μmであった。ま
たゼオライト膜9の細孔径は、X線回折の結果より約
0.6nmと考えられ、これは一般的にいわれるシリカ
ライトの細孔径とほぼ一致した。図4はゼオライト膜9
が内部に浸透したアルミナ多孔質支持体7の断面のSE
M像を示す図である。この試料を用い、室温(25
℃)にて、二酸化炭素、窒素混合気体の分離試験を行
い、分離係数(CO2/N2)及び透過係数を測定した。
すなわち図3に示すように円筒状のアルミナ多孔質支持
体7の一方の開口をアクリル板10で密閉し、他方の開
口をスウェージロック11を介してガスクロマトグラフ
に連結する。二酸化炭素10容量%、窒素90容量%の
混合気体を円筒状のアルミナ多孔質支持体7の外側面側
から供給し、ゼオライト膜9を透過した気体をガスクロ
マトグラフで分析し、次式により透過係数を算出した。
Example 1 Colloidal silica (Cataloid SI-30, manufactured by Catalyst Kasei Co., Ltd.) was added to a solution of TPABr and sodium hydroxide dissolved in distilled water, and the mixture was stirred uniformly. A sol for synthesis was prepared. The composition of the sol is 0.1TPABr-0.05N
The ratio was a 2 O-SiO 2 -80H 2 O. With reference to FIG. 3, a porous alumina support 7 (having an outer diameter of 10 mm and an inner diameter of 7 mm) is cylindrical and has an outer surface sealed in a container containing the sol so that the outer surface does not come into contact with the sol. The effective thickness of the porous support is 1.5 mm, and the length is 10.
0 mm, the average pore diameter is about 0.8 μm, the porosity is 33%, and 99.9% is alumina. ) Was soaked, the pressure in the container was reduced to 10 mmHg with a vacuum pump, and the container was held for 6 hours. Thereafter, the alumina porous support 7 was put into an autoclave together with the sol and subjected to hydrothermal treatment at 170 ° C. for 72 hours, and the zeolite was introduced from the inner surface 8 of the cylindrical alumina porous support 7 to the inside of the alumina porous support 7. The film 9 was formed. After the film formation, the alumina porous support 7 supporting the zeolite film 9 was washed with warm water at 80 ° C., further ultrasonically washed, replaced with distilled water, and then dried at 100 ° C. for 24 hours. After that, it is baked at 600 ° C. for 2 hours, and TPAB contained in the crystal.
r was removed to obtain a sample. FIG. 3 schematically shows a state in which the zeolite membrane 9 permeates the inside of the porous alumina support 7 from the inner surface 8. As a result of X-ray diffraction (XRD) analysis, the zeolite membrane 9 was confirmed to be silicalite. As a result of scanning electron microscope (SEM) observation of the fracture surface of the porous alumina support 7, it was confirmed that crystals were generated inside the porous alumina support 7. The thickness of the crystal inside was about 30 μm from the inner side surface 8. The pore diameter of the zeolite membrane 9 was considered to be about 0.6 nm from the result of X-ray diffraction, and this was almost the same as the pore diameter of silicalite generally called. Figure 4 shows the zeolite membrane 9
SE of the cross section of the porous alumina support 7 in which
It is a figure which shows M image. Using this sample, room temperature (25
(C), a separation test of a mixed gas of carbon dioxide and nitrogen was performed, and the separation coefficient (CO 2 / N 2 ) and the permeability coefficient were measured.
That is, as shown in FIG. 3, one opening of the cylindrical alumina porous support 7 is sealed with an acrylic plate 10, and the other opening is connected to a gas chromatograph via a swage lock 11. A mixed gas of 10% by volume of carbon dioxide and 90% by volume of nitrogen was supplied from the outer surface side of the cylindrical alumina porous support 7, and the gas permeated through the zeolite membrane 9 was analyzed by a gas chromatograph. Was calculated.

【0032】[0032]

【数1】 [Equation 1]

【0033】ここでPは透過係数(mol/m2・s・
Pa)、Qは透過量(mol)、p1は供給側圧力(P
a)、p2は透過側圧力(Pa)、Aは膜面積(m2)、
tは時間(s)を表す。
Where P is the transmission coefficient (mol / m 2 · s ·
Pa), Q is permeation amount (mol), p 1 is supply side pressure (P
a), p 2 is the pressure on the permeate side (Pa), A is the membrane area (m 2 ),
t represents time (s).

【0034】また次式により分離係数を算出した。The separation coefficient was calculated by the following equation.

【0035】[0035]

【数2】 [Equation 2]

【0036】ここでαは分離係数、Ca1は透過前のCO
2濃度、Cb1は透過前のN2濃度、C a2は透過後のCO2
濃度、Cb2は透過後のN2濃度を表す。
Where α is the separation coefficient, Ca1Is CO before permeation
2Concentration, Cb1Is N before transmission2Concentration, C a2Is CO after permeation2
Concentration, Cb2Is N after transmission2Indicates the concentration.

【0037】結果を表1に示す。The results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】<実施例2>実施例1と同一の合成用ゾル
を、加圧ポンプを用いて吐出圧3kgf/cm2で1時
間、実施例1と同一のアルミナ多孔質支持体7の内側面
8に対して吐出させ、さらに実施例1と同一の方法で製
膜した。その後実施例1と同一の工程で洗浄、超音波洗
浄、置換、乾燥、焼成し、試料とした。ゼオライト膜
9はXRD解析の結果、シリカライトであることが確認
された。またアルミナ多孔質支持体7の破断面の走査型
電子顕微鏡(SEM)観察の結果、アルミナ多孔質支持
体7の内部に結晶が生成していることが確認された。内
部の結晶の厚さは内側面8から約10μmであった。ま
たゼオライト膜9の細孔径は、X線回折の結果より約
0.6nmと考えられ、これは一般的にいわれるシリカ
ライトの細孔径とほぼ一致した。この試料を用いて実
施例1と同一の二酸化炭素、窒素混合気体の分離試験を
行った。結果を表1に示す。
Example 2 The same synthetic sol as in Example 1 was used for 1 hour at a discharge pressure of 3 kgf / cm 2 using a pressure pump, and the inner surface of the same alumina porous support 7 as in Example 1 was used. 8 was discharged, and a film was formed by the same method as in Example 1. Then, in the same steps as in Example 1, cleaning, ultrasonic cleaning, replacement, drying and baking were performed to obtain a sample. As a result of XRD analysis, the zeolite membrane 9 was confirmed to be silicalite. As a result of scanning electron microscope (SEM) observation of the fracture surface of the porous alumina support 7, it was confirmed that crystals were generated inside the porous alumina support 7. The thickness of the internal crystal was about 10 μm from the inner side surface 8. The pore diameter of the zeolite membrane 9 was considered to be about 0.6 nm from the result of X-ray diffraction, and this was almost the same as the pore diameter of silicalite generally called. Using this sample, the same separation test of carbon dioxide and nitrogen mixed gas as in Example 1 was performed. The results are shown in Table 1.

【0040】<実施例3>実施例1と同一の合成用ゾル
に実施例1と同一のアルミナ多孔質支持体7を浸漬し、
24時間放置し、さらに実施例1と同一の方法で製膜し
た。その後実施例1と同一の工程で洗浄、超音波洗浄、
置換、乾燥、焼成し、試料とした。ゼオライト膜9は
XRD解析の結果、シリカライトであることが確認され
た。またアルミナ多孔質支持体7の破断面の走査型電子
顕微鏡(SEM)観察の結果、アルミナ多孔質支持体7
の内部に結晶が生成していることが確認された。内部の
結晶の厚さは内側面8から約7μmであった。またゼオ
ライト膜9の細孔径は、X線回折の結果より約0.6n
mと考えられ、これは一般的にいわれるシリカライトの
細孔径とほぼ一致した。この試料を用いて実施例1と
同一の二酸化炭素、窒素混合気体の分離試験を行った。
結果を表1に示す。
Example 3 The same alumina porous support 7 as in Example 1 was dipped in the same synthetic sol as in Example 1,
After standing for 24 hours, a film was formed by the same method as in Example 1. After that, in the same steps as in Example 1, cleaning, ultrasonic cleaning,
Substitution, drying and firing were performed to obtain a sample. As a result of XRD analysis, the zeolite membrane 9 was confirmed to be silicalite. Moreover, as a result of observing the fracture surface of the alumina porous support 7 with a scanning electron microscope (SEM), the alumina porous support 7
It was confirmed that crystals were generated inside the. The thickness of the internal crystal was about 7 μm from the inner side surface 8. Also, the pore diameter of the zeolite membrane 9 is about 0.6 n from the result of X-ray diffraction.
m, which was almost the same as the pore size of silicalite which is generally called. Using this sample, the same separation test of carbon dioxide and nitrogen mixed gas as in Example 1 was performed.
The results are shown in Table 1.

【0041】<比較例1>実施例1と同一の合成用ゾル
に実施例1と同一のアルミナ多孔質支持体7を浸漬し、
30分間放置し、さらに実施例1と同一の方法で製膜し
た。その後実施例1と同一の工程で洗浄、超音波洗浄、
置換、乾燥、焼成し、試料とした。ゼオライト膜はX
RD解析の結果、シリカライトであることが確認され
た。またアルミナ多孔質支持体7の破断面の走査型電子
顕微鏡(SEM)観察の結果、結晶はアルミナ多孔質支
持体7の内側面8にのみ生成しており、アルミナ多孔質
支持体7の内部には結晶が生成していないことが確認さ
れた。またゼオライト膜の細孔径は、X線回折の結果よ
り約0.6nmと考えられ、これは一般的にいわれるシ
リカライトの細孔径とほぼ一致した。図5はゼオライト
膜が内側面8にのみ存在するアルミナ多孔質支持体7の
断面のSEM像を示す図である。この試料を用いて実
施例1と同一の二酸化炭素、窒素混合気体の分離試験を
行った。結果を表1に示す。
Comparative Example 1 The same alumina porous support 7 as in Example 1 was immersed in the same synthetic sol as in Example 1,
After standing for 30 minutes, a film was formed by the same method as in Example 1. After that, in the same steps as in Example 1, cleaning, ultrasonic cleaning,
Substitution, drying and firing were performed to obtain a sample. Zeolite membrane is X
As a result of RD analysis, it was confirmed to be silicalite. Moreover, as a result of scanning electron microscope (SEM) observation of the fracture surface of the alumina porous support 7, crystals were generated only on the inner side surface 8 of the alumina porous support 7, and inside the alumina porous support 7 It was confirmed that no crystals were formed. Further, the pore diameter of the zeolite membrane was considered to be about 0.6 nm from the result of X-ray diffraction, and this was almost the same as the pore diameter of silicalite generally called. FIG. 5 is a view showing a SEM image of a cross section of the porous alumina support 7 in which the zeolite membrane is present only on the inner surface 8. Using this sample, the same separation test of carbon dioxide and nitrogen mixed gas as in Example 1 was performed. The results are shown in Table 1.

【0042】実施例1〜3の場合は、分離係数がそれぞ
れ3.8、3.0、2.7、とクヌッセンフローから予
測される値(0.8)より非常に大きく、シリカライト
の細孔での表面吸着による拡散を示唆している。また分
離係数、透過係数の再現性も良く、ゼオライト膜9が気
密であることが確認できる。特にアルミナ多孔質支持体
7の内部の気泡を脱泡操作により除去する方法による場
合が分離係数が最も高く、該方法の有効性が確認でき
る。
In the case of Examples 1 to 3, the separation factors were 3.8, 3.0, 2.7, which were much larger than the values (0.8) predicted from the Knudsen flow, and the fineness of silicalite was small. It suggests diffusion due to surface adsorption at the pores. Also, the reproducibility of the separation coefficient and the permeability coefficient is good, and it can be confirmed that the zeolite membrane 9 is airtight. In particular, the method of removing the air bubbles inside the alumina porous support 7 by the defoaming operation has the highest separation coefficient, and the effectiveness of the method can be confirmed.

【0043】一方比較例1の場合は、分離係数、透過係
数の再現性が低く、分離係数が1に近い値となり、分離
性能をほとんど示さない。すなわちアルミナ多孔質支持
体1とゼオライト膜との気密性が実施例1〜3の場合と
比較して小さいことを示唆している。すなわち焼成の
際、ゼオライトと多孔質支持体との熱膨張率の差等によ
り発生する応力により膜欠陥が発生しやすいことが示唆
される。
On the other hand, in the case of Comparative Example 1, the reproducibility of the separation coefficient and the transmission coefficient is low, and the separation coefficient is a value close to 1, which shows almost no separation performance. That is, it is suggested that the airtightness between the alumina porous support 1 and the zeolite membrane is smaller than those in Examples 1 to 3. That is, it is suggested that during firing, a film defect is likely to occur due to stress generated due to a difference in coefficient of thermal expansion between zeolite and the porous support.

【0044】<実施例4>実施例1の試料を組み込ん
だエレメント(図3参照)を用い室温(25℃)にて、
ゼオライト膜9の、二酸化炭素、窒素、酸素、ヘリウ
ム、水素、メタン、プロパンの各純気体の透過試験を行
い、透過係数比を測定した。なお透過係数比とは各純気
体の透過係数の比を表す。結果を表2に示す。
Example 4 Using the element incorporating the sample of Example 1 (see FIG. 3) at room temperature (25 ° C.),
The zeolite membrane 9 was subjected to a permeation test of pure gases of carbon dioxide, nitrogen, oxygen, helium, hydrogen, methane, and propane, and the permeation coefficient ratio was measured. The permeation coefficient ratio represents the ratio of the permeation coefficients of pure gases. The results are shown in Table 2.

【0045】[0045]

【表2】 [Table 2]

【0046】表2から実施例1の試料のゼオライト膜
9は、種々の気体の分離に有効であることが確認でき
る。
From Table 2, it can be confirmed that the zeolite membrane 9 of the sample of Example 1 is effective for separating various gases.

【0047】<実施例5〜12、比較例2〜6>次に表
3に示す各種形状の多孔質支持体(99.9%がアルミ
ナ質)を用いてゼオライト膜を製膜した。
<Examples 5 to 12 and Comparative Examples 2 to 6> Next, a zeolite membrane was formed by using porous supports of various shapes shown in Table 3 (99.9% is alumina).

【0048】[0048]

【表3】 [Table 3]

【0049】TPABr、水酸化ナトリウムを蒸留水に
溶解させた溶液に、コロイダルシリカ(カタロイド(C
ataloid)SI−30、触媒化成(株)製)を添
加し、均一に撹拌して合成用のゾルを調製した。該ゾル
の組成は0.1TPABr−0.05Na2O−SiO2
−80H2Oの比とした。該ゾルの入った容器に、円筒
状で外側面をシールして内側面のみが該ゾルと接するよ
うにしたアルミナ多孔質支持体(実施例5〜8、10、
12、比較例2)、板状で一方の面のみが該ゾルと接す
るように他方の面をシールしたアルミナ多孔質支持体
(実施例9、11、比較例4〜6)、マルチ形状で外側
面(図7参照)をシールして内側面のみが該ゾルと接す
るようにしたアルミナ多孔質支持体(比較例3)を浸漬
し、該容器内を真空ポンプで10mmHgに減圧し、6
時間保持した。なお比較例3のマルチ形状は外径30m
m、長さ100mmの円柱(多孔質支持体)の内部に内
径4.5mmの円柱形の連通孔が19個設けられたもの
である。隣接する連通孔の有効厚さは最も薄い部分で
0.4mmである。図7はマルチ形状の多孔質支持体の
断面の模式図である。その後各アルミナ多孔質支持体
を、該ゾルとともにオートクレーブに入れて170℃で
72時間水熱処理を行い、円筒状のアルミナ多孔質支持
体の内側面からアルミナ多孔質支持体の内部に、板状の
アルミナ多孔質支持体の一方の面からアルミナ多孔質支
持体の内部に、マルチ形状のアルミナ多孔質支持体の内
側面からアルミナ多孔質支持体の内部に、それぞれゼオ
ライト膜を製膜した。製膜後、ゼオライト膜を担持した
各アルミナ多孔質支持体を80℃の温水で洗浄し、さら
に超音波洗浄し、蒸留水置換した後、100℃で24時
間乾燥した。その後600℃で2時間焼成し、結晶中の
TPABrを除去して試料とした。各多孔質支持体に製
膜されたゼオライト膜はX線回折(XRD)解析の結
果、シリカライトであることが確認された。かかる各ゼ
オライト膜の製膜状態のSEM観察結果を表4に示す。
A solution of TPABr and sodium hydroxide dissolved in distilled water was added to colloidal silica (cataloid (C
ataloid) SI-30, manufactured by Catalyst Kasei Co., Ltd. was added and uniformly stirred to prepare a sol for synthesis. The composition of the sol is 0.1TPABr-0.05Na 2 O-SiO 2
The ratio was −80H 2 O. A container containing the sol was formed into a cylindrical shape, the outer surface of which was sealed so that only the inner surface was in contact with the sol (Examples 5 to 8 and 10).
12, Comparative Example 2), a porous alumina support (Examples 9 and 11, Comparative Examples 4 to 6) which is plate-shaped and has the other surface sealed so that only one surface contacts the sol (multi-shaped). An alumina porous support (Comparative Example 3) whose side surface (see FIG. 7) was sealed so that only the inner surface was in contact with the sol was immersed, and the pressure in the container was reduced to 10 mmHg by a vacuum pump.
Held for hours. The multi-shape of Comparative Example 3 has an outer diameter of 30 m.
A cylinder (porous support) having a length of m and a length of 100 mm was provided with 19 cylindrical communication holes having an inner diameter of 4.5 mm. The effective thickness of the adjacent communication holes is 0.4 mm at the thinnest portion. FIG. 7 is a schematic view of a cross section of a multi-shaped porous support. Then, each alumina porous support was placed in an autoclave together with the sol and subjected to hydrothermal treatment at 170 ° C. for 72 hours to form a plate-like member from the inner surface of the cylindrical alumina porous support to the inside of the alumina porous support. Zeolite membranes were formed from one surface of the alumina porous support to the inside of the alumina porous support, and from the inner surface of the multi-shaped alumina porous support to the inside of the alumina porous support. After the membrane formation, each alumina porous support supporting the zeolite membrane was washed with warm water at 80 ° C., further washed with ultrasonic waves, replaced with distilled water, and then dried at 100 ° C. for 24 hours. Then, the sample was baked at 600 ° C. for 2 hours to remove TPABr in the crystal, and used as a sample. As a result of X-ray diffraction (XRD) analysis, it was confirmed that the zeolite membrane formed on each porous support was silicalite. Table 4 shows the results of SEM observation of the film-forming state of each zeolite membrane.

【0050】[0050]

【表4】 [Table 4]

【0051】(製膜性の評価基準) ○:欠陥が認められない。(Evaluation Criteria for Film Formability) ◯: No defect is recognized.

【0052】 ×:欠陥が認められる。[0052] X: A defect is recognized.

【0053】なお欠陥とは多孔質支持体に未製膜部分が
あったり、クラックの発生や膜の剥離により実用不可能
と認められる場合をいう。
The term "defect" refers to a case in which the porous support has an unformed film portion, cracks are generated, or the film is peeled off, which is considered to be impractical.

【0054】この結果より、多孔質支持体の有効厚さが
0.5mm未満の場合には、SEM観察でも確認できる
ような未製膜部分や膜の剥離等の欠陥が存在する。これ
に対して、多孔質支持体の有効厚さが0.5mm以上で
あれば、ゼオライト膜は薄い部分でも10μm以上の厚
さで製膜されていることが確認でき、欠陥も確認できな
い。またマルチ形状においては、有効厚さが0.5mm
未満の部分を有し、かかる部分で膜の欠陥を生じる。
From these results, when the effective thickness of the porous support is less than 0.5 mm, there are defects such as an unformed film portion and film peeling which can be confirmed by SEM observation. On the other hand, if the effective thickness of the porous support is 0.5 mm or more, it can be confirmed that the zeolite membrane is formed with a thickness of 10 μm or more even in a thin portion, and no defect can be confirmed. Also, in the multi-shape, the effective thickness is 0.5 mm
Has a lesser portion, and a film defect occurs at such a portion.

【0055】上記の製膜された各多孔質支持体のうち実
施例5、6、8、10、12、比較例4、5、6につい
て、室温(25℃)にて、二酸化炭素、窒素混合気体の
分離試験を行い、分離係数(CO2/N2)及び透過係数
を測定した。すなわち円筒状の多孔質支持体について
は、図3に示すようにアルミナ多孔質支持体7の一方の
開口をアクリル板10で密閉し、他方の開口をスウェー
ジロック11を介してガスクロマトグラフに連結する。
二酸化炭素10容量%、窒素90容量%の混合気体を円
筒状のアルミナ多孔質支持体7の外側面側から供給し、
ゼオライト膜9を透過した気体をガスクロマトグラフで
分析し、式(数1)により透過係数を算出した。また式
(数2)により分離係数を算出した。また板状の多孔質
支持体については、図6に示すようにセル19内に多孔
質支持体を固定して気体透過を行い分離係数、透過率を
算出した。さらにマルチ形状の多孔質支持体について
は、図7に示すマルチ形状のアルミナ多孔質支持体22
を、図3の場合と同様に、一方の開口をアクリル板で密
閉し、他方の開口をスウェージロックを介してガスクロ
マトグラフに連結し、二酸化炭素10容量%、窒素90
容量%の混合気体を円筒状のアルミナ多孔質支持体の外
側面23側から供給し、分離係数、透過率を算出した。
結果を表4に示す。
Among the above-mentioned film-formed porous supports, Examples 5, 6, 8, 10, 12 and Comparative Examples 4, 5, 6 were mixed with carbon dioxide and nitrogen at room temperature (25 ° C.). A gas separation test was conducted to measure the separation coefficient (CO 2 / N 2 ) and the permeability coefficient. That is, as for the cylindrical porous support, one opening of the alumina porous support 7 is sealed with an acrylic plate 10 and the other opening is connected to a gas chromatograph via a swagelock 11 as shown in FIG.
A mixed gas of 10% by volume of carbon dioxide and 90% by volume of nitrogen was supplied from the outer surface side of the cylindrical porous alumina support 7,
The gas that permeated the zeolite membrane 9 was analyzed by a gas chromatograph, and the permeation coefficient was calculated by the formula (Equation 1). Further, the separation coefficient was calculated by the formula (Equation 2). Regarding the plate-shaped porous support, the separation coefficient and the permeability were calculated by fixing the porous support in the cell 19 and permeating gas as shown in FIG. Furthermore, regarding the multi-shaped porous support, the multi-shaped alumina porous support 22 shown in FIG.
As in the case of FIG. 3, one opening was sealed with an acrylic plate, and the other opening was connected to a gas chromatograph via Swagelok, carbon dioxide 10% by volume, nitrogen 90%.
A mixed gas of volume% was supplied from the outer surface 23 side of the cylindrical alumina porous support, and the separation coefficient and the transmittance were calculated.
The results are shown in Table 4.

【0056】表4より膜に欠陥が認められない場合は分
離性能が良好であった。これに対し膜に欠陥が認められ
る場合は分離性能を示さない。すなわちこの欠陥を介し
て気体が透過していると考えられる。上記の結果から多
孔質支持体の有効厚さが0.5mm以上、特に1mm以
上では高い分離性能を示す膜が製膜されていることが確
認できた。
From Table 4, the separation performance was good when no defects were found in the film. On the other hand, when defects are found in the membrane, the separation performance is not shown. That is, it is considered that gas permeates through this defect. From the above results, it was confirmed that when the effective thickness of the porous support was 0.5 mm or more, particularly 1 mm or more, a membrane showing high separation performance was formed.

【0057】[0057]

【発明の効果】多孔質支持体内部にゼオライト膜合成用
のゾルまたはゲルを浸透させ、多孔質支持体内部にゼオ
ライトの結晶を特定の厚さ以上で生成させることによ
り、その後の熱処理による膜欠陥の発生を防止すること
ができる。すなわち従来多孔質支持体の表面にのみゼオ
ライトを製膜した場合は、その後の熱処理によるゼオラ
イトと多孔質支持体との熱膨張率の差等により発生する
応力により膜欠陥が発生したが、単に多孔質支持体内部
にゼオライト膜を生成させることにより、上記膜欠陥の
発生を防止し、機械的強度を向上させるとともに高い気
体分離能を維持するゼオライト膜を得ることができる。
特に多孔質支持体の有効厚さが0.5mm以上である場
合、この多孔質支持体内部にゼオライト膜を合成するこ
とで、完全に連続したゼオライト膜が担持され、熱処理
後も欠陥が発生することなく高い分離性能を示すゼオラ
イト膜が再現性良く得られる。
EFFECTS OF THE INVENTION A sol or gel for synthesizing a zeolite membrane is permeated into the inside of a porous support to form zeolite crystals with a specific thickness or more inside the porous support, so that a film defect due to a subsequent heat treatment is caused. Can be prevented. That is, when a zeolite is formed into a film only on the surface of a conventional porous support, a film defect occurs due to the stress generated due to the difference in the coefficient of thermal expansion between the zeolite and the porous support due to the subsequent heat treatment. By forming a zeolite membrane inside the porous support, it is possible to obtain a zeolite membrane that prevents the above-mentioned membrane defects from occurring, improves the mechanical strength, and maintains a high gas separation ability.
Particularly when the effective thickness of the porous support is 0.5 mm or more, a completely continuous zeolite film is supported by synthesizing the zeolite film inside the porous support, and defects occur even after the heat treatment. A zeolite membrane showing high separation performance can be obtained with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1−(1)は多孔質支持体を表す。図1−
(2)は多孔質支持体内部にゼオライト膜合成用ゾルが
浸透した状態を示す。図1−(3)は多孔質支持体内部
にゼオライト膜が生成を始めた状態を示す。図1−
(4)は多孔質支持体内部に連続的なゼオライト膜が形
成された状態を示す。
FIG. 1- (1) shows a porous support. Figure 1-
(2) shows a state in which the sol for synthesizing the zeolite membrane has penetrated into the inside of the porous support. FIG. 1- (3) shows a state in which the zeolite membrane has started to form inside the porous support. Figure 1-
(4) shows a state in which a continuous zeolite membrane is formed inside the porous support.

【図2】多孔質支持体表面に製膜されたゼオライトにク
ラックが生じた状態を示す。
FIG. 2 shows a state in which a zeolite formed on the surface of a porous support has cracks.

【図3】本発明の実施例に係る、混合気体の分離試験及
び純気体の透過試験を行うための円筒状のアルミナ多孔
質支持体を組み込んだエレメント、の模式図である。
FIG. 3 is a schematic view of an element incorporating a cylindrical alumina porous support for performing a mixed gas separation test and a pure gas permeation test according to an example of the present invention.

【図4】本発明の実施例に係る、アルミナ多孔質支持体
と該アルミナ多孔質支持体の内部に浸透したゼオライト
膜、の断面のSEM像(セラミック材料の組織)を示す
写真である。
FIG. 4 is a photograph showing a SEM image (structure of a ceramic material) of a cross section of an alumina porous support and a zeolite membrane permeated into the alumina porous support according to an example of the present invention.

【図5】本発明の実施例に係る、アルミナ多孔質支持体
と該アルミナ多孔質支持体の内側面にのみ存在するゼオ
ライト膜、の断面のSEM像(セラミック材料の組織)
を示す写真である。
FIG. 5 is a SEM image (structure of ceramic material) of a cross section of an alumina porous support and a zeolite membrane existing only on the inner surface of the alumina porous support according to an example of the present invention.
Is a photograph showing.

【図6】本発明の実施例に係る、混合気体の分離試験及
び純気体の透過試験を行うための板状のアルミナ多孔質
支持体を組み込んだセル、の模式図である。
FIG. 6 is a schematic diagram of a cell incorporating a plate-shaped alumina porous support for conducting a mixed gas separation test and a pure gas permeation test according to an example of the present invention.

【図7】本発明の実施例に係るマルチ形状の多孔質支持
体の断面の模式図である。
FIG. 7 is a schematic view of a cross section of a multi-shaped porous support according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1、7、20 多孔質支持体 2 多孔質支持体内部の細孔 3 ゼオライト膜合成用ゾル 4、5、9、13、16、21 ゼオライト膜 6 クラック 8、12、15 多孔質支持体の内側面 10 アクリル板 11 スウェージロック 14 多孔質支持体の内部と該内部に浸透したゼオライ
ト膜 17、18 ゼオライトの浸透していない多孔質支持体
内部 19 セル 22 固定用ゴム 23 マルチ形状の多孔質支持体 24 マルチ形状の多孔質支持体の外側面 25 マルチ形状の多孔質支持体の連通孔 26 マルチ形状の多孔質支持体の内側面
1, 7, 20 Porous support 2 Pores inside the porous support 3 Sol for zeolite membrane synthesis 4, 5, 9, 13, 16, 21 Zeolite membrane 6 Cracks 8, 12, 15 Of the porous supports Side surface 10 Acrylic plate 11 Swagelok 14 Inside of the porous support and zeolite membranes 17 and 18 that have penetrated into the inside 17 Inside of the porous support in which zeolite has not penetrated 19 Cell 22 Fixing rubber 23 Multi-shaped porous support 24 Outer surface of multi-shaped porous support 25 Communication hole of multi-shaped porous support 26 Inner surface of multi-shaped porous support

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 正樹 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 (72)発明者 亀井 裕二 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 (72)発明者 田口 久富 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 (72)発明者 平野 裕司 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 Fターム(参考) 4D006 GA41 MA01 MA02 MA03 MA04 MA09 MA21 MA31 MB11 MB15 MC02 MC03X MC90 NA46 NA50 NA54 NA59 NA62 PB62 PB63 PB64 PB66 PB68 PC69 4G073 BA82 BB05 BB06 BB48 BD05 BD18 CZ01 DZ02 FA09 FB11 FD17    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masaki Kato             Noritake Shincho 3-chome 1-36, Nishi-ku, Nagoya-shi, Aichi             Noritake Co., Ltd. Limited             Within (72) Inventor Yuji Kamei             Noritake Shincho 3-chome 1-36, Nishi-ku, Nagoya-shi, Aichi             Noritake Co., Ltd. Limited             Within (72) Inventor Hisatomi Taguchi             Noritake Shincho 3-chome 1-36, Nishi-ku, Nagoya-shi, Aichi             Noritake Co., Ltd. Limited             Within (72) Inventor Yuji Hirano             Noritake Shincho 3-chome 1-36, Nishi-ku, Nagoya-shi, Aichi             Noritake Co., Ltd. Limited             Within F-term (reference) 4D006 GA41 MA01 MA02 MA03 MA04                       MA09 MA21 MA31 MB11 MB15                       MC02 MC03X MC90 NA46                       NA50 NA54 NA59 NA62 PB62                       PB63 PB64 PB66 PB68 PC69                 4G073 BA82 BB05 BB06 BB48 BD05                       BD18 CZ01 DZ02 FA09 FB11                       FD17

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】細孔径0.03〜20μmの多孔質支持体
の内部に、厚さ5μm以上のゼオライト膜を形成するの
に十分な量のゼオライト膜合成用ゾルまたはゲルを浸透
させ、前記多孔質支持体を水熱処理して結晶を生成さ
せ、気体分離能を有し前記多孔質支持体の内部における
厚さが5μm以上のゼオライト膜を形成するゼオライト
膜の製造方法であって、 前記多孔質支持体の内部における前記ゼオライト膜を、
前記支持体の細孔内においてゼオライト膜合成用ゾルま
たはゲルから水熱処理により結晶化して成長したゼオラ
イト結晶から構成される連続膜として形成させることを
特徴とするゼオライト膜の製造方法。
1. A porous support having a pore diameter of 0.03 to 20 μm is impregnated with a sol or gel for synthesizing a zeolite membrane in an amount sufficient to form a zeolite membrane having a thickness of 5 μm or more, and the porous membrane A method for producing a zeolite membrane, which comprises subjecting a porous support to hydrothermal treatment to generate crystals to form a zeolite membrane having a gas separation ability and a thickness of 5 μm or more inside the porous support, The zeolite membrane inside the support,
A method for producing a zeolite membrane, characterized in that the zeolite membrane is formed as a continuous membrane composed of zeolite crystals crystallized and grown from a sol or gel for synthesizing a zeolite membrane by hydrothermal treatment in the pores of the support.
【請求項2】前記浸透が、前記多孔質支持体の内部に前
記ゼオライト膜合成用ゾルまたはゲルを強制的に注入す
ることにより行うものである、ことを特徴とする請求項
1記載の製造方法。
2. The method according to claim 1, wherein the permeation is performed by forcibly injecting the zeolite membrane synthesis sol or gel into the porous support. .
【請求項3】前記強制的に注入することが、前記ゼオラ
イト膜合成用ゾルまたはゲルを高圧で前記多孔質支持体
に対して吐出させ、前記多孔質支持体内部に注入するこ
と、を特徴とする請求項2記載の製造方法。
3. The forcible injection is characterized in that the sol or gel for synthesizing a zeolite membrane is discharged to the porous support at high pressure and injected into the porous support. The manufacturing method according to claim 2.
【請求項4】前記強制的に注入することが、前記多孔質
支持体の内部の気泡を脱泡操作により除去し、前記ゼオ
ライト膜合成用ゾルまたはゲルを前記多孔質支持体の内
部に注入すること、を特徴とする請求項2記載の製造方
法。
4. The forced injection removes air bubbles inside the porous support by a defoaming operation, and injects the zeolite membrane synthesis sol or gel into the porous support. The manufacturing method according to claim 2, wherein
【請求項5】厚さ5μm以上のゼオライト膜を内部に形
成するのに十分な量のゼオライト膜合成用ゾルまたはゲ
ルを内部に有する細孔径0.03〜20μmの多孔質支
持体を水熱処理して、気体分離能を有し前記多孔質支持
体の内部における厚さが5μm以上のゼオライト膜を形
成する水熱処理工程を含むゼオライト膜の製造方法であ
って、 前記多孔質支持体の内部における前記ゼオライト膜を、
前記支持体の細孔内においてゼオライト膜合成用ゾルま
たはゲルから水熱処理により結晶化して成長したゼオラ
イト結晶から構成される連続膜として形成させることを
特徴とするゼオライト膜の製造方法。
5. A hydrothermal treatment of a porous support having a pore diameter of 0.03 to 20 μm, which has therein a zeolite film synthesizing sol or gel in an amount sufficient to form a zeolite film having a thickness of 5 μm or more inside. A method for producing a zeolite membrane, which comprises a hydrothermal treatment step of forming a zeolite membrane having gas separation ability and having a thickness of 5 μm or more inside the porous support, Zeolite membrane,
A method for producing a zeolite membrane, characterized in that the zeolite membrane is formed as a continuous membrane composed of zeolite crystals crystallized and grown from a sol or gel for synthesizing a zeolite membrane by hydrothermal treatment in the pores of the support.
【請求項6】前記ゼオライト膜合成用ゾルまたはゲルと
して、結晶化促進剤を含有するものを用い、 前記水熱処理工程で形成したゼオライト膜を熱処理して
結晶化促進剤を除去する結晶化促進剤除去工程を、前記
水熱処理工程よりも後に有すること、を特徴とする請求
項5記載の製造方法。
6. A crystallization accelerator that uses a crystallization accelerator-containing sol or gel for synthesizing the zeolite membrane, and heats the zeolite membrane formed in the hydrothermal treatment step to remove the crystallization accelerator. The manufacturing method according to claim 5, further comprising a removing step after the hydrothermal treatment step.
JP2002334242A 1995-11-24 2002-11-18 Method for producing zeolite membrane Expired - Lifetime JP3905461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334242A JP3905461B2 (en) 1995-11-24 2002-11-18 Method for producing zeolite membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32990795 1995-11-24
JP7-329907 1995-11-24
JP2002334242A JP3905461B2 (en) 1995-11-24 2002-11-18 Method for producing zeolite membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6729896A Division JP3770504B2 (en) 1995-11-24 1996-02-28 Zeolite membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003210953A true JP2003210953A (en) 2003-07-29
JP3905461B2 JP3905461B2 (en) 2007-04-18

Family

ID=27666131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334242A Expired - Lifetime JP3905461B2 (en) 1995-11-24 2002-11-18 Method for producing zeolite membrane

Country Status (1)

Country Link
JP (1) JP3905461B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011980A (en) * 2007-07-06 2009-01-22 Research Institute Of Innovative Technology For The Earth Method for manufacturing zeolite membrane composite for gas separation
JP2010506697A (en) * 2006-10-18 2010-03-04 日本碍子株式会社 Ceramic porous membrane and ceramic filter
JP2010521284A (en) * 2007-03-13 2010-06-24 フェニックス アイピーアール リミテッド Membrane structure and its manufacture and use
JP2010527784A (en) * 2007-05-30 2010-08-19 フェニックス アイピーアール リミテッド Membrane structure and its manufacture and use
JP2015033688A (en) * 2013-07-08 2015-02-19 住友電気工業株式会社 Porous silica base body for high-silica zeolite membrane, fluid separation material and method for producing the fluid separation material
JPWO2013080994A1 (en) * 2011-12-01 2015-04-27 株式会社ルネッサンス・エナジー・リサーチ Method for producing facilitated transport membrane
WO2018180211A1 (en) * 2017-03-30 2018-10-04 日本碍子株式会社 Method for producing zeolite membrane structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506697A (en) * 2006-10-18 2010-03-04 日本碍子株式会社 Ceramic porous membrane and ceramic filter
JP2010521284A (en) * 2007-03-13 2010-06-24 フェニックス アイピーアール リミテッド Membrane structure and its manufacture and use
JP2010527784A (en) * 2007-05-30 2010-08-19 フェニックス アイピーアール リミテッド Membrane structure and its manufacture and use
JP2009011980A (en) * 2007-07-06 2009-01-22 Research Institute Of Innovative Technology For The Earth Method for manufacturing zeolite membrane composite for gas separation
JPWO2013080994A1 (en) * 2011-12-01 2015-04-27 株式会社ルネッサンス・エナジー・リサーチ Method for producing facilitated transport membrane
JP2016000402A (en) * 2011-12-01 2016-01-07 株式会社ルネッサンス・エナジー・リサーチ Manufacturing method of facilitated transport membrane
JP2015033688A (en) * 2013-07-08 2015-02-19 住友電気工業株式会社 Porous silica base body for high-silica zeolite membrane, fluid separation material and method for producing the fluid separation material
WO2018180211A1 (en) * 2017-03-30 2018-10-04 日本碍子株式会社 Method for producing zeolite membrane structure
JPWO2018180211A1 (en) * 2017-03-30 2020-03-05 日本碍子株式会社 Method for producing zeolite membrane structure
JP7161988B2 (en) 2017-03-30 2022-10-27 日本碍子株式会社 METHOD FOR MANUFACTURING ZEOLITE MEMBRANE STRUCTURE
US11559771B2 (en) 2017-03-30 2023-01-24 Ngk Insulators, Ltd. Method for manufacturing zeolite membrane structure

Also Published As

Publication number Publication date
JP3905461B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
US7909917B2 (en) Porous structure with seed crystal-containing layer for manufacturing zeolite membrane, zeolite membrane, and method for manufacturing zeolite membrane
JP2873293B2 (en) Composite membrane and method for producing the same
JP5690325B2 (en) Zeolite membrane and method for producing zeolite membrane
JP4204273B2 (en) DDR type zeolite membrane composite and method for producing the same
JP5108525B2 (en) Method for producing zeolite membrane
Wong et al. Effects of synthesis parameters on the zeolite membrane morphology
US8258069B2 (en) Zeolitic separation membrane and process for producing the same
JP3922389B2 (en) Zeolite membrane production method and production apparatus, and zeolite tubular separation membrane obtained by this method
EP1726354A1 (en) Separation membrane
JP3764309B2 (en) Zeolite membrane forming method
JP3770504B2 (en) Zeolite membrane and method for producing the same
JP4984566B2 (en) Method for producing zeolite separation membrane
JP5481075B2 (en) Method for producing zeolite membrane
JPH1057784A (en) Zeolite separation membrane and its production
JP2003210953A (en) Method of manufacturing zeolite membrane
JP2003159518A (en) Method for manufacturing ddr type zeolite membrane
JPH0543219A (en) Method of crystallization
EP1661616B1 (en) Gas separating body and method for producing same
JP2004082008A (en) Method of manufacturing zeolite membrane having separation factor decided by seed crystal depositing method
RU2322390C1 (en) Method for producing zeolite layer on a substrate
JP2002018247A (en) Method for manufacturing mixture separation membrane apparatus and mixture separation membrane apparatus
JP4997209B2 (en) Method for producing zeolite membrane
WO2007081024A1 (en) Process for production of zeolite separation membrane
JP2023090368A (en) Manufacturing method of porous support body and manufacturing method of porous support body/zeolite membrane composite body
JP2001295139A (en) Silica mesostructure fiber, mesoporous silica fiber, method for producing silica mesostructure fiber, and method for producing mesoporous silica fiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070111

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term