JP2003207443A - Photometric apparatus - Google Patents

Photometric apparatus

Info

Publication number
JP2003207443A
JP2003207443A JP2002004752A JP2002004752A JP2003207443A JP 2003207443 A JP2003207443 A JP 2003207443A JP 2002004752 A JP2002004752 A JP 2002004752A JP 2002004752 A JP2002004752 A JP 2002004752A JP 2003207443 A JP2003207443 A JP 2003207443A
Authority
JP
Japan
Prior art keywords
light
attenuation
amplification
combination
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002004752A
Other languages
Japanese (ja)
Other versions
JP3783849B2 (en
Inventor
Ichiro Oda
一郎 小田
Ikuo Konishi
郁夫 小西
Sadao Takeuchi
貞夫 竹内
Hisafumi Sakauchi
尚史 坂内
Yukihisa Wada
幸久 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002004752A priority Critical patent/JP3783849B2/en
Publication of JP2003207443A publication Critical patent/JP2003207443A/en
Application granted granted Critical
Publication of JP3783849B2 publication Critical patent/JP3783849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optimum signal intensity level even if light reception/ transmission conditions such as a light transmission section, a light reception section, or an area between light transmitted/received light differs in a photometric apparatus having a plurality of light transmission points and a plurality of light reception points. <P>SOLUTION: The photometric apparatus that applies light to a specimen and measures light that is discharged to the outside after light is transmitted or reflected in the inside of the specimen comprises a light transmission/reception means 2 having a plurality of light transmission sections for applying light having one or a plurality of wavelengths to the specimen and a plurality of light reception sections for receiving light that is radiated from the specimen, a plurality of amplifiers 4 for amplifying each of measured signals that are measured by each light reception section, and/or a plurality of attenuation means 8 for attenuating each light intensity that is applied to each light reception section. During measurement, each amplification factor in the amplification means and/or each attenuation rate in the attenuation means are changed. An optimum signal strength level is obtained by changing each amplification factor in the amplification means and each attenuation rate in the attenuation means according to light transmission/reception conditions that change during measurement. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光計測装置に関し、
生体の散乱吸収の内部分布を光により計測する装置に関
する。
TECHNICAL FIELD The present invention relates to an optical measuring device,
The present invention relates to an apparatus for measuring the internal distribution of scattering absorption of a living body by light.

【0002】[0002]

【従来の技術】被検体の散乱吸収の内部分布を光により
計測し、この光計測によって生体成分の経時的変化を計
測して組織の正常・異常を診断したり、脳内各部の血流
経時変化や酸素供給の変化を計測して脳機能計測や循環
器系診断を行う等、医療分野に使用される光計測装置が
提案されている。
2. Description of the Related Art The internal distribution of scattering absorption of a subject is measured by light, and the change over time of biological components is measured by this light measurement to diagnose normal / abnormal tissue, or blood flow in various parts of the brain over time. Optical measurement devices used in the medical field have been proposed, such as measuring changes in oxygen supply and changes in oxygen supply to perform brain function measurement and cardiovascular system diagnosis.

【0003】このような光計測装置において、複数の送
光部と受光部を有し複数のチャンネルを備えるマルチチ
ャンネル光計測装置が知られており、マルチチャンネル
型酸素モニタ等の製品も市販されている。
As such an optical measuring device, a multi-channel optical measuring device having a plurality of light-transmitting portions and light-receiving portions and a plurality of channels is known, and products such as a multi-channel oxygen monitor are also commercially available. There is.

【0004】このようなマルチチャンネル光計測装置
は、受光した光を検出器によって電気信号として検出し
ている。図10は、従来のマルチチャンネル光計測装置
が備える検出器の一構成例を示している。
In such a multi-channel optical measuring device, the received light is detected by a detector as an electric signal. FIG. 10 shows a configuration example of a detector included in a conventional multi-channel optical measurement device.

【0005】検出器100は、被検体からの光を電気信
号に変換する手段として光電子増倍管(ホトマル)10
1を使用している。この光電子増倍管101は、受光し
た光に応じて光電子を放出する光電面101a、光電子
の個数を増加させる増幅器101b、及び増幅器101
bに印加する負電圧を供給する負電圧部101cを備
え、この増幅器101bは検出信号増倍機能を有してい
る。光電子増倍管101より検出された計測信号(電流
値)は、プリアンプ102で電圧に変換された後、アン
プ(電圧増幅回路)103及び積分回路104を介して
A/D変換器105に入力され、デジタル信号に変換さ
れた検出信号はデータ取得部120に出力される。デー
タ取得部120は、検出信号の記録や表示を行う。な
お、検出部100の制御は、光検出制御部110によっ
て行われる。また、異なる照射波長や異なる照射場所を
計測する場合には、時系列に点灯及び非点灯を行うこと
によって、波長や場所を分離した信号を検出している。
The detector 100 is a photomultiplier tube (photomultiplier) 10 as a means for converting light from an object into an electric signal.
1 is used. The photomultiplier tube 101 includes a photocathode 101a that emits photoelectrons according to received light, an amplifier 101b that increases the number of photoelectrons, and an amplifier 101.
A negative voltage unit 101c for supplying a negative voltage applied to b is provided, and this amplifier 101b has a detection signal multiplication function. The measurement signal (current value) detected by the photomultiplier tube 101 is converted into a voltage by the preamplifier 102, and then input to the A / D converter 105 via the amplifier (voltage amplification circuit) 103 and the integration circuit 104. The detection signal converted into the digital signal is output to the data acquisition unit 120. The data acquisition unit 120 records and displays the detection signal. The light detection control unit 110 controls the detection unit 100. Further, when measuring different irradiation wavelengths or different irradiation places, the signals separated in wavelength and place are detected by performing lighting and non-lighting in time series.

【0006】[0006]

【発明が解決しようとする課題】マルチチャンネル型酸
素モニタをはじめとする光生体計測装置では、送受光手
段(送光ファイバ及び受光ファイバの一端)を被検体の
測定部位に密着させて、その透過光強度や反射光強度あ
るいはその強度変化を計測する。この計測においては、
光が透り易い人あるいは透り難い人等の被検体の個人差
や、同じ被検体においても頭部や四肢部等の測定部位の
他、送光ファイバ及び受光ファイバの端部間を例えば2
cm離すか3cm離すか等の送受光距離、髪の毛が多い
かあるいは少ないか等の設置状態、照射波長等に種々の
測定条件によって、得られる光強度が大きく異なる。
In an optical biometric device such as a multi-channel oxygen monitor, the light transmitting / receiving means (one end of the light transmitting fiber and the light receiving fiber) is brought into close contact with the measurement site of the object to be transmitted therethrough. The light intensity, the reflected light intensity, or its intensity change is measured. In this measurement,
In addition to individual differences of the subject such as a person who easily transmits light or a person who does not easily transmit light, measurement sites such as the head and limbs of the same subject, as well as between the ends of the light transmitting fiber and the light receiving fiber, for example, 2
The obtained light intensity varies greatly depending on various measurement conditions such as the distance between transmission and reception of whether the distance is 3 cm or 3 cm, the installation state such as whether the hair is large or small, and the irradiation wavelength.

【0007】そこで、図10で示した検出器では、通
常、本計測の前の予備計測において光強度を確認してお
き、得られた強度に合わせて信号を増幅させ、データ取
得を行っている。ところで、複数の送光点及び複数の受
光点を持つマルチチャンネル型酸素モニタでは、これら
複数の送受光点の組み合わせて計測することを特徴とし
ており、例えば、図11に示すように、同一の検出点
(検出点1)において複数の送光点(送光部A,送光部
B)からの光を分離し検出することになる。
Therefore, in the detector shown in FIG. 10, the light intensity is usually confirmed in the preliminary measurement before the main measurement, and the signal is amplified in accordance with the obtained intensity to acquire data. . By the way, a multi-channel oxygen monitor having a plurality of light-transmitting points and a plurality of light-receiving points is characterized in that measurement is performed by combining these plurality of light-receiving points. For example, as shown in FIG. At the point (detection point 1), light from a plurality of light transmitting points (light transmitting section A, light transmitting section B) is separated and detected.

【0008】被検体が生体の場合、光が内部を伝播して
再放出される光強度は送受光距離(送光点Aと受光部1
の距離、あるいは送光点Bと受光部1の距離等)に対し
て指数関数的に減衰する。例えば、送受光距離が1cm
拡がると光強度は約1/10に減衰する。そのため、図
11に示すように、送光点Aと受光部1の距離に比べて
送光点Bと受光部1の距離が長い配置では、送光点Bと
受光部1の組み合わせで得られる光強度は送光点Aと受
光部1で得られる光強度に比べてかなり弱いものにな
る。
When the subject is a living body, the intensity of light propagating through the inside of the living body and being re-emitted is determined by the light transmitting / receiving distance (light transmitting point A and light receiving portion 1).
Or the distance between the light-sending point B and the light-receiving portion 1) is exponentially attenuated. For example, the distance between transmitting and receiving light is 1 cm
When it is spread, the light intensity is attenuated to about 1/10. Therefore, as shown in FIG. 11, when the distance between the light transmitting point B and the light receiving portion 1 is longer than the distance between the light transmitting point A and the light receiving portion 1, a combination of the light transmitting point B and the light receiving portion 1 is obtained. The light intensity is considerably weaker than the light intensity obtained at the light transmitting point A and the light receiving portion 1.

【0009】また、前述のように、検出される光強度
は、上記した送受光距離だけでなくファイバの設置状態
や照射波長によっても左右されるため、実際の光強度の
差は送受光点の組み合わせによってかなり大きくなる。
Further, as described above, the detected light intensity depends not only on the above-mentioned transmission / reception distance but also on the installation condition of the fiber and the irradiation wavelength, so the actual difference in light intensity depends on the transmission / reception point. Depending on the combination, it can be quite large.

【0010】従って、従来の光計測装置では、受光部に
おいて一定の信号増幅率で信号増幅を行うため、 (1)検出光強度が強い組み合わせ(例えば、図10の
送光点Aと受光部1の組み合わせ)に合わせて信号増幅
率を設定すると、検出光強度が弱い組み合わせ(例え
ば、図11の送光点Bと受光部1との組み合わせ)で得
られる増幅信号は弱くなり、図10におけるアンプ10
3,積分器104,A/D変換器105で重畳される雑
音に対して極めて弱くなり、S/N比が低下する。 (2)検出光強度が弱い組み合わせに合わせて信号増幅
率を設定すると、検出光強度が強い組み合わせで得られ
る増幅信号は受光部のダイナミックレンジを超えて飽和
し、正確な計測が難しくなる。といった、検出信号の信
号強度レベルにおいて問題がある。
Therefore, in the conventional optical measuring device, since signal amplification is performed at a constant signal amplification rate in the light receiving section, (1) a combination having a strong detected light intensity (for example, the light transmitting point A and the light receiving section 1 in FIG. 10). If the signal amplification factor is set in accordance with the combination (1), the amplification signal obtained by the combination with the weak detected light intensity (for example, the combination of the light transmitting point B and the light receiving unit 1 in FIG. 11) becomes weak, and the amplifier in FIG. 10
3, it becomes extremely weak against noise superimposed on the integrator 104 and the A / D converter 105, and the S / N ratio decreases. (2) When the signal amplification factor is set according to the combination with the weak detected light intensity, the amplified signal obtained by the combination with the strong detected light intensity is saturated beyond the dynamic range of the light receiving section, which makes accurate measurement difficult. There is a problem in the signal strength level of the detection signal.

【0011】そこで、本発明は前記した従来の問題点を
解決し、複数の送光点及び複数の受光点を持つ光計測装
置において、送光部、受光部、あるいは送受光間等の送
受光条件が異なる場合においても、最適な信号強度レベ
ルを得ることを目的とする。
Therefore, the present invention solves the above-mentioned conventional problems, and in an optical measuring device having a plurality of light-transmitting points and a plurality of light-receiving points, the light-transmitting section, the light-receiving section, or the light-transmitting / receiving section such as between the light-receiving section The purpose is to obtain an optimum signal strength level even under different conditions.

【0012】[0012]

【課題を解決するための手段】本発明は、複数の受光部
で計測された計測信号の増幅や、各受光部に入射される
光強度の減衰を、送光部と受光部との組み合わせに応じ
て変化させることによって、送光部、受光部、あるいは
送受光間等の送受光条件が異なる場合であっても最適な
信号強度レベルを得る。なお、計測信号の増幅と各受光
部に入射される光強度の減衰は、何れか一方のみとする
ことも、あるいは両方を組み合わせることもできる。
According to the present invention, amplification of a measurement signal measured by a plurality of light receiving sections and attenuation of light intensity incident on each light receiving section are combined in a light transmitting section and a light receiving section. The optimum signal intensity level can be obtained by changing the light transmission / reception conditions such as the light transmission unit, the light reception unit, or the light transmission / reception conditions. It should be noted that the amplification of the measurement signal and the attenuation of the light intensity incident on each light receiving unit may be performed either alone, or both may be combined.

【0013】本発明の光計測装置は、被検体に光を照射
し、被検体中を透過及び/又は反射した後に外部に放出
される光を計測する光計測装置であって、被検体に1つ
又は複数の波長の光を照射する複数の送光部と被検体か
ら放出される光を受光する複数の受光部とを備えた送受
光手段と、各受光部で計測された計測信号を各々増幅す
る複数の増幅手段、及び/又は各受光部に入射される光
強度を各々減衰する複数の減衰手段とを備える構成と
し、計測中に増幅手段の各増幅率及び/又は減衰手段の
各減衰率を変化させる。計測中に変化する送受光条件に
応じて、増幅手段の各増幅率や減衰手段の各減衰率を変
化させることによって、最適な信号強度レベルを得る。
The optical measuring device of the present invention is an optical measuring device for irradiating a subject with light and measuring the light emitted to the outside after being transmitted and / or reflected in the subject. Light-transmitting / receiving means having a plurality of light-transmitting portions for irradiating light of one or a plurality of wavelengths and a plurality of light-receiving portions for receiving light emitted from the subject, and measuring signals measured by the respective light-receiving portions, respectively. A plurality of amplifying means for amplifying and / or a plurality of attenuating means for respectively attenuating the light intensity incident on each light receiving part are provided, and each amplification factor of the amplifying means and / or each attenuation of the attenuating means during measurement. Change the rate. An optimum signal intensity level is obtained by changing each amplification factor of the amplification means and each attenuation factor of the attenuation means according to the transmission / reception conditions that change during measurement.

【0014】さらに、計測中に増幅手段の各増幅率及び
/又は減衰手段の各減衰率を変化させる一態様として、
送受光手段の送受光、及び前記増幅手段の増幅率又は前
記減衰手段の減衰率を制御する制御手段を備え、制御手
段は、照射波長及び/又は送受光を行う送光部と受光部
の組み合わせ及び順序を定めた制御テーブルと、制御テ
ーブルに設定された組み合わせに対応する増幅率を定め
た増幅率テーブル及び/又は前記制御テーブルに設定さ
れた組み合わせに対応する減衰率を定めた減衰率テーブ
ルとを備える。
Further, as one mode in which each amplification factor of the amplification means and / or each attenuation factor of the attenuation means is changed during measurement,
A control unit for controlling the light transmission / reception of the light transmission / reception unit and the amplification factor of the amplification unit or the attenuation factor of the attenuation unit is provided, and the control unit is a combination of a light transmission unit and a light reception unit for performing irradiation wavelength and / or light transmission / reception. And a control table that defines the order, an amplification factor table that defines the amplification factor corresponding to the combination set in the control table, and / or an attenuation factor table that defines the attenuation factor corresponding to the combination set in the control table. Equipped with.

【0015】制御手段は、制御テーブルに定められた照
射波長及び/又は送光部と受光部の組み合わせ及び順序
に基づいて送受光制御を行うと共に、制御テーブルの制
御に同期させて、増幅率テーブルに定められた増幅率を
各増幅手段に設定する制御、あるいは減衰率テーブルに
定められた減衰率を各減衰率手段に設定する制御を行
う。また、その両方の制御を行うこともできる。
The control means performs light transmission / reception control based on the irradiation wavelength and / or the combination and order of the light transmission part and the light reception part defined in the control table, and in synchronization with the control of the control table, the amplification factor table. The control for setting the amplification factor defined in 1) to each amplification means or the control for setting the attenuation factor defined in the attenuation rate table in each attenuation factor means is performed. Also, both of them can be controlled.

【0016】この態様では、増幅率テーブル及び/又は
減衰率テーブルは、制御テーブルが定める送光部と受光
部の組み合わせ及び順序に対応するものであり、設定し
た送光部と受光部の組み合わせ及び順序に応じて予め設
定しておき、計測中に変化する送光部と受光部の組み合
わせに合わせて増幅率や減衰率を変化させる。
In this aspect, the amplification factor table and / or the attenuation factor table corresponds to the combination and order of the light transmitting unit and the light receiving unit defined by the control table, and the set combination of the light transmitting unit and the light receiving unit and It is set in advance according to the order, and the amplification factor and the attenuation factor are changed according to the combination of the light transmitting unit and the light receiving unit that changes during measurement.

【0017】また、計測中に増幅手段の各増幅率及び/
又は減衰手段の各減衰率を変化させる他の態様として、
送受光手段の送受光、及び前記増幅手段の増幅率及び/
又は前記減衰手段の減衰率を制御する制御手段を備え、
制御手段は、照射波長及び/又は送受光を行う送光部と
受光部の組み合わせ及び順序を定めた制御テーブルと、
各増幅手段の増幅率の組み合わせを少なくとも一つ定め
た増幅率テーブル、及び/又は前記各減衰手段の減衰率
の組み合わせを少なくとも一つ定めた減衰率テーブルと
を備える。なお、増幅率テーブルや減衰率テーブルは制
御テーブルに設定された組み合わせとの対応に制限され
ない。
Also, during measurement, each amplification factor of the amplification means and / or
Or, as another aspect of changing each damping rate of the damping means,
Light transmission / reception of the light transmission / reception means, and amplification factor of the amplification means and /
Or a control means for controlling the damping rate of the damping means,
The control means includes a control table that defines the combination and order of the light-transmitting part and the light-receiving part that perform irradiation wavelength and / or light transmission / reception,
An amplification factor table that defines at least one combination of amplification factors of each amplification unit and / or an attenuation factor table that defines at least one combination of attenuation factors of each of the attenuation units. The amplification factor table and the attenuation factor table are not limited to the correspondence with the combinations set in the control table.

【0018】制御手段は、制御テーブルに定められた照
射波長及び/又は送光部と受光部の組み合わせ及び順序
と、増幅率テーブルに定められた増幅率及び/又は減衰
率テーブルに定められた減衰率の組み合わせとを組み合
わせ、この制御テーブル及び増幅率テーブルの組み合わ
せ、及び/又は制御テーブル及び減衰率テーブルの組み
合わせに基づいて、送受光制御を行うと共に、増幅率設
定及び/又は減衰率設定を行う。
The control means includes the irradiation wavelength defined in the control table and / or the combination and order of the light-transmitting part and the light-receiving part, and the attenuation factor defined in the amplification factor table and / or the attenuation factor defined in the attenuation factor table. A combination of a ratio and a combination of the control table and the amplification factor table and / or a combination of the control table and the attenuation ratio table is used to perform transmission / reception control, and also to set the amplification factor and / or the attenuation factor. .

【0019】この他の態様では、増幅率テーブル及び/
又は減衰率テーブルは、制御テーブルが定める送光部と
受光部の組み合わせ及び順序と独立して設定しておき、
制御テーブルと増幅率テーブル及び/又は減衰率テーブ
ルとを組み合わせることによって、計測中に変化する送
光部と受光部の組み合わせに合わせて増幅率や減衰率を
変化させる。この制御テーブルと、増幅率テーブル及び
/又は減衰率テーブルとの各組み合わせの切り換えは、
同期して行うことも、非同期で行うことできる。
In this other aspect, an amplification factor table and / or
Alternatively, the attenuation rate table is set independently of the combination and order of the light transmitting unit and the light receiving unit defined by the control table,
By combining the control table with the amplification factor table and / or the attenuation factor table, the amplification factor and the attenuation factor are changed according to the combination of the light transmitting unit and the light receiving unit which changes during measurement. Switching of each combination of the control table and the amplification factor table and / or the attenuation factor table is performed by
It can be done synchronously or asynchronously.

【0020】上記各態様において、制御テーブルは送光
テーブルや受光テーブルを備え、この制御テーブルと連
動させて送受光点の組み合わせ毎に増幅率テーブルを用
いて検出部の増幅率を変化させる。増幅率テーブルを用
いることで、送受光状態に連動させて受光手段に備え付
けられた増幅手段の増幅率を変化させる。例えば、送光
点Bと受光部1の検出光強度が、送光点Aと受光部1の
1/100である場合、受光部1の増幅率を送光点Aで
照射されているときと送光点Bで照射されているときと
で計測データあるいは光強度を100倍変化させること
で、両組み合わせの信号をS/N良く計測する。
In each of the above aspects, the control table includes a light transmitting table and a light receiving table, and the amplification factor of the detecting section is changed by using the amplification factor table for each combination of the light transmitting and receiving points in association with the control table. By using the amplification factor table, the amplification factor of the amplification unit provided in the light receiving unit is changed in association with the light transmitting / receiving state. For example, when the detected light intensities of the light transmitting point B and the light receiving portion 1 are 1/100 of those of the light transmitting point A and the light receiving portion 1, when the amplification factor of the light receiving portion 1 is irradiated at the light transmitting point A, By changing the measurement data or the light intensity by 100 times when the light is emitted at the light transmitting point B, the signals of both combinations are measured with good S / N.

【0021】なお、上記各手段によって時系列的に連続
して得られた計測信号は、記録手段に記録したり、表示
手段に表示することができる他、通信手段によって他の
装置に送信することができる。
The measurement signals continuously obtained in time series by each of the above means can be recorded in the recording means or displayed on the display means, or transmitted to another device by the communication means. You can

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を、図
を参照しながら詳細に説明する。図1は本発明の光計測
装置の一構成例を説明するための概略構成図を示してい
る。なお、図1に示す構成例は、増幅率テーブルを備え
る例を示している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a schematic configuration diagram for explaining an example of the configuration of the optical measurement device of the present invention. The configuration example shown in FIG. 1 is an example including an amplification factor table.

【0023】図1において、光計測装置1は、被検体1
0に光を照射する送光部22a、被検体10からの光を
受光する受光部22b、及び測定プローブを備える送受
光部22と、送光部22aに光を送光する発光部21、
受光部22bで受光した光を光検出する光検出部23
と、光検出部23で検出した信号を増幅する増幅手段4
と、発光部21,光検出部23,及び増幅手段4を制御
する制御部3を備え、さらに、増幅手段4で信号増幅し
た計測信号を取得する信号取得手段5、記録手段6及び
表示手段7を備える。
In FIG. 1, the optical measuring device 1 is a subject 1
A light transmitting unit 22a for irradiating light to 0, a light receiving unit 22b for receiving light from the subject 10, a light transmitting / receiving unit 22 including a measurement probe, and a light emitting unit 21 for transmitting light to the light transmitting unit 22a,
Photodetector 23 for detecting the light received by the light receiver 22b
And an amplification means 4 for amplifying the signal detected by the photodetection section 23.
And a control unit 3 for controlling the light emitting unit 21, the light detecting unit 23, and the amplifying unit 4, and further, a signal acquiring unit 5, a recording unit 6, and a displaying unit 7 for acquiring the measurement signal amplified by the amplifying unit 4. Equipped with.

【0024】制御部3は、発光部21を制御して送光部
22aからの送光を制御する送光制御部31、光検出部
23の受光制御、及び増幅手段4の増幅率の設定を行う
光検出制御32を備え、さらに、送光制御部31及び光
検出制御32の制御形態を定める制御テーブル33と、
増幅手段4の増幅率を定める増幅率テーブル34を備え
る。
The control section 3 controls the light emitting section 21 to control the light transmission from the light transmitting section 22a, the light receiving control of the light detecting section 23, and the setting of the amplification factor of the amplifying means 4. A light detection control 32 to be performed, and a control table 33 that defines control modes of the light transmission control unit 31 and the light detection control 32;
An amplification factor table 34 for determining the amplification factor of the amplification means 4 is provided.

【0025】制御テーブル33は、例えば送光を行う送
光部の組み合わせと順序を定めた送光テーブル33a、
及び受光部の組み合わせと順序を定めた受光テーブル3
3bを備える。なお、送光テーブル33a及び受光テー
ブル33bの個々のテーブルに代えて、送光部の組み合
わせ及び順序と受光部の組み合わせ及び順序とを一テー
ブルで定める送受光テーブル(図示していない)を設け
ることもできる。
The control table 33 is, for example, a light-sending table 33a in which a combination of light-sending units for sending light and the order thereof are determined.
And a light receiving table 3 in which the order and the combination of the light receiving units are determined
3b is provided. It should be noted that instead of the individual tables of the light transmitting table 33a and the light receiving table 33b, a light transmitting / receiving table (not shown) that defines the combination and order of the light transmitting units and the combination and order of the light receiving units as one table is provided. You can also

【0026】制御テーブル33において、発光にかかわ
る制御に関しては、送受光部22に配列される複数の送
光部22aの中から、送光を同時に行う送光部の組み合
わせと動作順とを定め、光検出にかかわる制御に関して
は、送受光部22に配列される複数の受光部22bで受
光して得られる受光信号を有効データとする受光部の組
み合わせと動作順とを定める。
In the control table 33, regarding the control relating to light emission, the combination and operation sequence of the light-transmitting units that simultaneously transmit light are determined from among the plurality of light-transmitting units 22a arranged in the light-transmitting / receiving unit 22. Regarding the control related to the light detection, the combination of the light receiving units that use the light receiving signals obtained by receiving light by the plurality of light receiving units 22b arranged in the light transmitting and receiving unit 22 as valid data and the operation order are determined.

【0027】送光制御部31は、送光テーブル33aか
ら受け取った送光部の組み合わせと動作順に基づいて発
光部21の発光を制御する。また、受光制御部32は、
受光テーブル33bから受け取った受光部の組み合わせ
と動作順に基づいて、受光部22bで受光し光検出部2
3で変換して得た受光信号を制御する。また、増幅率テ
ーブル34には、各受光部における信号を増幅する増幅
率が設定される。増幅率は、送光テーブル33a及び受
光テーブル33bで定めた送光部及び受光部の組み合わ
せと動作順に応じて設定する形態とすることも、送光部
及び受光部の組み合わせと独立して設定する形態とする
こともできる。
The light-sending control unit 31 controls the light emission of the light-emitting unit 21 based on the combination of the light-sending units received from the light-sending table 33a and the operation order. Further, the light receiving control unit 32
Based on the combination of the light receiving units received from the light receiving table 33b and the operation order, the light receiving unit 22b receives the light and the light detecting unit 2 receives the light.
The received light signal obtained by conversion in 3 is controlled. Further, in the amplification factor table 34, the amplification factor for amplifying the signal in each light receiving unit is set. The amplification factor may be set according to the combination of the light transmitting unit and the light receiving unit defined in the light transmitting table 33a and the light receiving table 33b and the operation order, or may be set independently of the combination of the light transmitting unit and the light receiving unit. It can also be in the form.

【0028】以下、図2に示す複数の送光点と受光点の
組み合わせを用いて説明する。なお、各送光点において
異なる波長で照射することができるが、ここでは簡略化
して極めて単純な送受光配置のモデルを用いて説明す
る。図2の送光点と受光点の組み合わせは、送光部A,
B,C及び受光部1,2,3からなる計測例を示してい
る。この組み合わせにおいて考えられる送受光の組み合
わせは9通り(=3×3)であるが、この内7通り(図
2中の矢印CH1〜CH7)の計測を行うものとする。
また、各送受光の組み合わせで得られる受光部の光信号
強度は矢印の太さで表しており、太い矢印はと細い矢印
の光信号強度の比は、100:1であり、各受光部は増
幅された信号強度を0〜100(信号強度に因らない雑
音を±1とする)に合わせて計測を開始するとする。
A description will be given below using a combination of a plurality of light transmitting points and light receiving points shown in FIG. Note that irradiation can be performed at different wavelengths at each light transmitting point, but here, a simplified model of extremely simple light transmitting and receiving arrangement is used for description. The combination of the light transmitting point and the light receiving point in FIG.
The measurement example which consists of B and C and the light-receiving parts 1, 2, and 3 is shown. There are 9 (= 3 × 3) possible combinations of light transmission and reception in this combination, but seven of them (arrows CH1 to CH7 in FIG. 2) are to be measured.
Further, the optical signal intensity of the light receiving portion obtained by the combination of each light transmitting and receiving is represented by the thickness of the arrow, the ratio of the optical signal intensity of the thick arrow is 100: 1, and the light signal intensity of the thin arrow is 100: 1. It is assumed that the measurement is started by adjusting the amplified signal strength to 0 to 100 (noise not depending on the signal strength is ± 1).

【0029】この例において、従来のように、受光部に
おいて一定の信号増幅率で信号増幅を行う場合には、以
下の表1で示される送光テーブル、受光テーブル、及び
増幅率を設定する。
In this example, when the signal amplification is performed at a constant signal amplification rate in the light receiving section as in the conventional case, the light transmission table, the light reception table, and the amplification rate shown in Table 1 below are set.

【0030】[0030]

【表1】 [Table 1]

【0031】表1において、送光テーブルはステップ1
〜3においてどの送光部を照射するかを示し、受光テー
ブルは同様に各ステップにおいて各受光部でデータを取
得するか否かを示している。表1の例では、ステップ1
では送光部1のみで照射(図中○印)し、ステップ2で
は送光部2のみ、ステップ3では送光部3のみで照射す
る。一方、受光部については、ステップ1で受光部1,
2のデータを取得(図中○印)し、ステップ2では受光
部1,2,3の全てで取得を行う。また、ステップS3
2は受光部2,3で取得する。なお、受光テーブルの括
弧内に記載された数字は、各受光部が検出する光強度を
示す。
In Table 1, the light transmission table is Step 1
3 to 3 indicate which light transmitting section is irradiated, and similarly the light receiving table indicates whether or not data is acquired by each light receiving section in each step. In the example of Table 1, step 1
In step 2, the light is emitted from only the light transmitting section 1 (circle in the figure), in step 2, only the light transmitting section 2 is irradiated, and in step 3, only the light transmitting section 3 is irradiated. On the other hand, regarding the light receiving unit, in Step 1, the light receiving unit 1,
The data of No. 2 is acquired (marked with a circle in the figure), and in step 2, all of the light receiving units 1, 2, 3 are acquired. Also, step S3
2 is acquired by the light receiving units 2 and 3. The numbers in the brackets of the light receiving table indicate the light intensity detected by each light receiving unit.

【0032】この送光テーブルと受光テーブルを用い
て、例えば予備計測を行って各受光部が検出する光強度
を調べることによって、各受光部に設定する増幅率を求
めることができる。ただし、ステップ1〜3において全
ての計測を上記計測範囲内で行う必要があるため、各受
光部に設定する増幅率は各ステップで最大となる検出光
強度で決定される。表の例では、受光部1についてはス
テップ1での検出光強度100が最大となるので設定す
る増幅率は1とし、受光部2,3については各々10
0,1の増幅率とする。表1で決定された条件の下で計
測した結果を表2に示す。なお、表2中の括弧内の数字
は増幅されて得られる信号強度の大きさを示している。
By using the light sending table and the light receiving table, for example, preliminary measurement is performed to check the light intensity detected by each light receiving section, whereby the amplification factor set for each light receiving section can be obtained. However, in Steps 1 to 3, it is necessary to perform all the measurements within the above-mentioned measurement range, so the amplification factor set for each light receiving unit is determined by the detected light intensity that is the maximum in each step. In the example of the table, since the detected light intensity 100 in step 1 is maximum for the light receiving section 1, the amplification factor to be set is 1, and for the light receiving sections 2 and 3, 10 is set for each.
The amplification factor is 0 and 1. Table 2 shows the results measured under the conditions determined in Table 1. The numbers in parentheses in Table 2 indicate the magnitude of signal intensity obtained by amplification.

【0033】[0033]

【表2】 [Table 2]

【0034】表2の結果から明らかなように、CH1や
CH3〜CH5,CH7などは信号強度が100となり
S/Nの良い計測となるが、CH2,6については雑音
レベルと同等な信号しか得られず、極めてS/Nの悪い
状態での計測になる。
As is clear from the results shown in Table 2, CH1 and CH3 to CH5, CH7, etc. have a signal strength of 100 and a good S / N measurement, but for CH2 and 6 only signals equivalent to the noise level are obtained. It is not possible to measure, and the measurement is performed in an extremely poor S / N state.

【0035】次に、本発明を適用した例について、図3
及び表3,4を用いて説明する。この例では、送光テー
ブルと受光テーブルの他に増幅率テーブルを各ステップ
毎に設定する。表3は、この各テーブルを示している。
Next, an example to which the present invention is applied is shown in FIG.
And Tables 3 and 4 will be described. In this example, an amplification factor table is set for each step in addition to the light transmission table and the light reception table. Table 3 shows each of these tables.

【0036】[0036]

【表3】 [Table 3]

【0037】増幅率テーブルの作成にあたっては、前述
の従来技術の適用例と同様に、送光テーブルと受光テー
ブルを用いて、例えば予備計測を行って各受光部が検出
する光強度を調べることで設定する増幅率を求める。
In creating the amplification factor table, similar to the application example of the above-mentioned prior art, by using the light transmitting table and the light receiving table, for example, preliminary measurement is performed to check the light intensity detected by each light receiving unit. Obtain the amplification factor to be set.

【0038】また、これら送光テーブル、受光テーブ
ル、増幅率テーブルを用いた計測では、行われるステッ
プ毎に照射する送光部の選択や、データ取得する受光部
の選択といった制御の他に、増幅率テーブルに従った増
幅率の切替制御も合わせて行い、データの取得を行う。
表4は、これにより得られる計測結果を示す。また、図
3は各ステップ1〜3における増幅率の設定状態と信号
強度を示している。
Further, in the measurement using the light sending table, the light receiving table, and the amplification factor table, in addition to the control such as the selection of the light sending section for irradiation and the selection of the light receiving section for acquiring data, amplification is performed. Amplification rate switching control according to the rate table is also performed to acquire data.
Table 4 shows the measurement results obtained by this. Further, FIG. 3 shows the setting state of the amplification factor and the signal strength in each of the steps 1 to 3.

【0039】[0039]

【表4】 [Table 4]

【0040】表4及び図3に示すように、どの送受光の
組み合わせによる計測でもほぼ同等な信号強度が得られ
るようになる。なお、実際の計測では検出光強度に無関
係な雑音の他に光強度に依存した雑音がある。一般的に
は、光強度が弱くなるとS/Nは下がるため、送受光の
任意の組み合わせによる計測においても同等なS/Nが
得られるとは限らないが、本発明を適用することで検出
光強度に無関係な雑音によるS/Nの劣化を避けること
ができる。
As shown in Table 4 and FIG. 3, almost the same signal strength can be obtained by measurement by any combination of light transmission and reception. In actual measurement, there is noise that is dependent on the light intensity in addition to noise that is not related to the detected light intensity. Generally, when the light intensity becomes weaker, the S / N decreases, so that an equivalent S / N may not be obtained even in the measurement by an arbitrary combination of light transmission and reception. It is possible to avoid S / N deterioration due to noise irrelevant to the intensity.

【0041】次に、本発明を適用した他の例について、
図4及び表5,6を用いて説明する。この例では、送光
テーブルと受光テーブルの他に、送光テーブル及び受光
テーブルと独立して増幅率テーブルを設定し、送光テー
ブル及び受光テーブルと増幅率テーブルとを組み合わ
せ、増幅率テーブルに従って増幅率を切り替えることに
よって計測を行う例である。
Next, regarding another example to which the present invention is applied,
This will be described with reference to FIG. 4 and Tables 5 and 6. In this example, in addition to the light sending table and the light receiving table, an amplification rate table is set independently of the light sending table and the light receiving table, the light sending table and the light receiving table are combined with the amplification rate table, and amplification is performed according to the amplification rate table. This is an example of measuring by switching the rate.

【0042】各受光部に対する増幅率の切替に時間がか
かるようなシステムにおいては、各ステップ毎に増幅率
切替を行うとこの切替時間が律速になり、ステップ1〜
3を繰り返して連続計測を行う際のサンプリング間隔
(ステップ1が行われた後、再度ステップ1が行われる
までの時間)が長くなり、計測時間が長時間化するとい
う問題が生じる。例えば、光電子増倍管の負高圧を切替
ることによって増幅率を変える場合には、負高圧を切替
えてから増幅率が安定するまで時間を要する。
In a system in which it takes a long time to switch the amplification factor for each light receiving unit, if the amplification factor is switched at each step, the switching time becomes rate-determining, and steps 1 to
When 3 is repeated and continuous measurement is performed, the sampling interval (the time from when step 1 is performed until step 1 is performed again) becomes long, which causes a problem that the measurement time becomes long. For example, when the amplification factor is changed by switching the negative high voltage of the photomultiplier tube, it takes time from the switching of the negative high voltage until the amplification factor becomes stable.

【0043】本例は、このような増幅率の切替に伴う計
測時間の長時間化を解消するものである。本例では、表
5中の(a)に示すように、増幅率を送光テーブル及び
受光テーブルのステップとは異なるサイクルで切替える
ようなテーブルで制御を行う。
The present example eliminates the lengthening of the measurement time associated with such switching of the amplification factor. In this example, as shown in (a) of Table 5, control is performed by a table that switches the amplification rate in a cycle different from the steps of the light transmission table and the light reception table.

【0044】[0044]

【表5】 [Table 5]

【0045】表5中の(b)は、送光テーブル及び受光
テーブルのステップと増幅率のサイクルとの関係を示し
ている。ある増幅率の組み合わせでステップ1〜3の計
測(例えば、サイクルa)を行い、その後、増幅率を切
替えて同様にステップ1〜3の計測(例えば、サイクル
b)を行う。
(B) in Table 5 shows the relationship between the steps of the light transmitting table and the light receiving table and the cycle of the amplification factor. The measurement of steps 1 to 3 (for example, cycle a) is performed with a certain combination of amplification factors, and then the amplification factor is switched and the measurement of steps 1 to 3 (for example, cycle b) is performed similarly.

【0046】表6は、得られる計測データを示してい
る。また、図4は各ステップ1〜3における増幅率の設
定状態と信号強度を示している。
Table 6 shows the obtained measurement data. Further, FIG. 4 shows the setting state of the amplification factor and the signal strength in each of the steps 1 to 3.

【0047】[0047]

【表6】 [Table 6]

【0048】表6及び図4に示す結果によれば、送受光
点の組み合わせ(CH1〜CH7)に対する計測データ
について、適当なサイクル及び適当なステップにおける
データを選択することで、前記した表4と同じ結果を得
ることができる。
According to the results shown in Table 6 and FIG. 4, as to the measurement data for the combination (CH1 to CH7) of the light transmitting / receiving points, by selecting the data in the appropriate cycle and the appropriate step, the above Table 4 is obtained. You can get the same result.

【0049】なお、表6において、増幅して得た信号強
度は100を基準とした選択を行い、信号強度が1のデ
ータは雑音として棄却し、また、信号強度が1000の
データは飽和したものとして棄却する。表中では、受光
テーブルに基づいて収集したデータにおいてこのように
棄却したデータを△で示している。
In Table 6, the signal strength obtained by amplification is selected on the basis of 100, data having a signal strength of 1 is rejected as noise, and data having a signal strength of 1000 is saturated. Reject as. In the table, in the data collected based on the light receiving table, the data thus rejected is indicated by Δ.

【0050】なお、前記した表3で示した、送光テーブ
ル及び受光テーブルと組み合わせた増幅率テーブルを用
いた実施例においても、表6で行った増幅率の切替に時
間がかかるようなシステムに対応した同等な計測を行う
ことができる。この場合の「送光テーブル」,「受光テ
ーブル」,「増幅率テーブル」を以下の表7に示す。
Even in the embodiment using the amplification factor table combined with the light transmission table and the light reception table shown in Table 3 above, the system in which the amplification factor switching performed in Table 6 takes a long time is performed. Corresponding and equivalent measurements can be performed. Table 7 below shows the “light transmitting table”, “light receiving table”, and “amplification factor table” in this case.

【0051】[0051]

【表7】 [Table 7]

【0052】上記の例によれば、例えば、表3で行って
いた3回の増幅率切替を2回とすることができ、増幅率
切替時間が律速になっているようなシステムにおいては
サンプリング間隔を短縮することができる。
According to the above example, for example, the amplification rate switching of three times performed in Table 3 can be switched to two times, and the sampling interval is set in the system in which the amplification rate switching time is rate-determining. Can be shortened.

【0053】次に、本発明を適用した別の例について、
表8を用いて説明する。表5,6に示した例では、サイ
クルの切替とステップ1〜3の開始とを同期させている
が、これらサイクルとステップが完全に同期していない
場合でも同等な計測を行うことができる。表8は、増幅
率のサイクルと送受光のステップと切り替え状態を示し
ている。
Next, regarding another example to which the present invention is applied,
This will be described with reference to Table 8. In the examples shown in Tables 5 and 6, the cycle switching and the start of steps 1 to 3 are synchronized, but the same measurement can be performed even when these cycles and steps are not completely synchronized. Table 8 shows the amplification factor cycle, the steps of transmitting and receiving light, and the switching state.

【0054】[0054]

【表8】 [Table 8]

【0055】この例では、増幅率を切替えるサイクル時
間を送受光のステップ1〜3を行うのに必要な時間より
も長くすることで、表8中の太線枠で示すデータを抜き
出すことによって表5の(b)と同等な結果を得ること
ができる。
In this example, the cycle time for switching the amplification factor is set to be longer than the time required for performing steps 1 to 3 of light transmission / reception, so that the data indicated by the bold line frame in Table 8 is extracted. It is possible to obtain the same result as that of (b).

【0056】前記した各例は、検出器で電気信号に変換
された検出光信号を増幅することで、適正な信号強度を
得る構成例であるが、検出器に入射される光強度そのも
のを光減衰器で調整して適正な信号強度を得る構成とす
ることもできる。
Each of the above-mentioned examples is a structural example in which a proper signal intensity is obtained by amplifying the detected optical signal converted into an electric signal by the detector. It is also possible to use an attenuator to obtain a proper signal strength.

【0057】図5,6及び表9は、光減衰器を備える例
を示している。図5に示した概略構成図は、前記した図
1の概略構成図とほぼ同様であり、増幅手段4に代え
て、受光部22bと光検出部23との間に光減衰器等の
減衰手段8を備え、制御手段3内に増幅率テーブルに代
えて減衰率テーブル35を備える。減衰手段8は、減衰
率テーブル35に設定された減衰率に基づいて各受光信
号を減衰した後、光検出部23に送る。
FIGS. 5 and 6 and Table 9 show an example including an optical attenuator. The schematic configuration diagram shown in FIG. 5 is almost the same as the schematic configuration diagram of FIG. 1 described above. Instead of the amplifying means 4, an attenuating means such as an optical attenuator is provided between the light receiving section 22b and the light detecting section 23. 8 is provided, and an attenuation rate table 35 is provided in the control means 3 instead of the amplification rate table. The attenuator 8 attenuates each received light signal based on the attenuation rate set in the attenuation rate table 35, and then sends it to the photodetector 23.

【0058】表9は、減衰率テーブルの一例を示し、図
6は各ステップ1〜3における減衰率の設定状態と信号
強度を示している。なお、表9中の減衰率テーブルは、
送光テーブル及び受光テーブルの組み合わせに対応して
設定しているが、前記した増幅率テーブルと同様に、送
光テーブル及び受光テーブルと独立して設定し、減衰率
のサイクルと送受光のステップとを同期あるいは非同期
して行うこともできる。
Table 9 shows an example of the attenuation rate table, and FIG. 6 shows the setting state of the attenuation rate and the signal strength in steps 1 to 3. The attenuation rate table in Table 9 is
Although it is set corresponding to the combination of the light sending table and the light receiving table, it is set independently of the light sending table and the light receiving table in the same manner as the amplification rate table described above, and the cycle of the attenuation rate and the steps of light sending and receiving are set. Can be performed synchronously or asynchronously.

【0059】[0059]

【表9】 [Table 9]

【0060】さらに、検出器で電気信号に変換された検
出光信号を増幅することで適正な信号強度を得る構成
と、検出器に入射される光強度そのものを光減衰器で調
整して適正な信号強度を得る構成とを組み合わせた構成
とすることもできる。
Furthermore, a configuration is obtained in which a proper signal intensity is obtained by amplifying the detection light signal converted into an electric signal by the detector, and the light intensity itself incident on the detector is adjusted by an optical attenuator to obtain a proper signal intensity. It is also possible to adopt a configuration in which a configuration for obtaining signal strength is combined.

【0061】図7,8及び表10は、増幅手段及び減衰
手段を備える例を示している。図7に示す光計測装置の
概略構成は、前記した図1が備える増幅手段と図5が備
える減衰手段の両手段を備えると共に、制御手段3内に
増幅率テーブル34及び減衰率テーブル35を備える。
減衰手段8は、減衰率テーブル35に設定された減衰率
に基づいて各受光信号を減衰した後、光検出部23に送
る。また、増幅手段4は、増幅率テーブル34に設定さ
れた増幅率に基づいて信号増幅を行う。表10は、減衰
率テーブル及び増幅率テーブルの一例を示し、図8は、
一ステップにおける減衰率及び増幅率の設定状態と信号
強度を示している。
FIGS. 7 and 8 and Table 10 show an example including an amplifying means and an attenuating means. The schematic configuration of the optical measuring device shown in FIG. 7 includes both the amplifying unit included in FIG. 1 and the attenuating unit included in FIG. 5 described above, and further includes an amplification factor table 34 and an attenuation factor table 35 in the control unit 3. .
The attenuator 8 attenuates each received light signal based on the attenuation rate set in the attenuation rate table 35, and then sends it to the photodetector 23. Further, the amplification means 4 performs signal amplification based on the amplification rate set in the amplification rate table 34. Table 10 shows an example of the attenuation rate table and the amplification rate table, and FIG.
The setting state of the attenuation rate and the amplification rate and the signal strength in one step are shown.

【0062】[0062]

【表10】 [Table 10]

【0063】一般に、光強度自体を弱めることはS/N
を低下させる傾向があり、計測には不向きであるが、極
端に光強度が強い信号については減衰させることによる
S/Nの低下による影響は少ないと考えられるため、減
衰率テーブルと増幅率テーブルとを組み合わせることに
よって、より有効な計測結果が望まれる。
Generally, it is S / N to weaken the light intensity itself.
Is not suitable for measurement, but it is considered that there is little influence of the S / N reduction due to attenuation for signals with extremely strong light intensity. Therefore, the attenuation rate table and the amplification rate table are By combining the above, more effective measurement results are desired.

【0064】図9を用いて、本発明による光計測装置に
よるS/Nの向上例について説明する。図9は、例え
ば、6送光6受光による送受光配置モデルの例である。
この送光点と受光点の配置で考えられる送受光の組み合
わせは36通り(=6×6)である。この組み合わせに
おいて、最近接した送受光の組み合わせ(図9(a)に
示す16通り)や次近接した送受光の組み合わせ(図9
(b)に示す16通り)では、検出光の強度差が大きい
という問題があり、混在した状態でS/N良く計測する
ことが難しい。
An example of improving S / N by the optical measuring device according to the present invention will be described with reference to FIG. FIG. 9 is an example of a transmission / reception arrangement model with 6 transmissions and 6 receptions.
There are 36 (= 6 × 6) combinations of light transmission / reception that can be considered in the arrangement of the light transmission point and the light reception point. In this combination, the combination of the most adjacent light emitting and receiving (16 patterns shown in FIG. 9A) and the combination of the next adjacent light emitting and receiving (FIG. 9).
In (16 types shown in (b)), there is a problem that the intensity difference of the detection light is large, and it is difficult to measure S / N well in a mixed state.

【0065】本発明の光計測装置は、このような場合に
おいても良好なS/Nで計測することができ、送受光点
距離に比例して観測されると言われている深さ方向に関
する情報についても、計測可能となる。例えば、図9
(a),(b)は送受光距離が異なるため、計測される
光信号が持つ深さの情報が異なる。また、ほぼ等距離で
の計測においても、ファイバの設置状態や照射波長によ
って検出光強度が異なることによるS/Nの劣化改善の
可能性がある。
The optical measuring device of the present invention can measure with a good S / N even in such a case, and it is said that the information about the depth direction, which is said to be observed in proportion to the distance between the transmitting and receiving points. Can also be measured. For example, in FIG.
Since (a) and (b) have different transmission and reception distances, the depth information of the measured optical signal is different. Further, even in measurement at almost equal distances, there is a possibility that the S / N deterioration can be improved due to the difference in the detected light intensity depending on the installation state of the fiber and the irradiation wavelength.

【0066】[0066]

【発明の効果】以上説明したように、本発明の光計測装
置によれば、複数の送光点及び複数の受光点を持つ光計
測装置において、送光部、受光部、あるいは送受光間等
の送受光条件が異なる場合においても、最適な信号強度
レベルを得ることができる。
As described above, according to the optical measuring device of the present invention, in the optical measuring device having a plurality of light transmitting points and a plurality of light receiving points, the light transmitting section, the light receiving section, or between the light transmitting and receiving sections, etc. Even when the conditions for transmitting and receiving light are different, the optimum signal strength level can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光計測装置の一構成例を説明するため
の概略構成図である。
FIG. 1 is a schematic configuration diagram for explaining a configuration example of an optical measurement device of the present invention.

【図2】複数の送光点と受光点の組み合わせを説明する
ための送受光配置のモデルである。
FIG. 2 is a model of a light transmitting / receiving arrangement for explaining a combination of a plurality of light transmitting points and light receiving points.

【図3】本発明の光計測装置による各ステップにおける
増幅率の設定状態と信号強度を示す図である。
FIG. 3 is a diagram showing a setting state of an amplification factor and a signal intensity in each step by the optical measuring device of the present invention.

【図4】本発明の光計測装置による各ステップにおける
増幅率の設定状態と信号強度を示す図である。
FIG. 4 is a diagram showing a setting state of an amplification factor and a signal intensity in each step by the optical measuring device of the present invention.

【図5】本発明の光計測装置の一構成例を説明するため
の概略構成図である。
FIG. 5 is a schematic configuration diagram for explaining one configuration example of the optical measurement device of the present invention.

【図6】本発明の光計測装置による各ステップにおける
減衰率の設定状態と信号強度を示す図である。
FIG. 6 is a diagram showing a setting state of an attenuation rate and a signal intensity in each step by the optical measuring device of the present invention.

【図7】本発明の光計測装置の一構成例を説明するため
の概略構成図である。
FIG. 7 is a schematic configuration diagram for explaining one configuration example of the optical measurement device of the present invention.

【図8】本発明の光計測装置による減衰率及び増幅率の
設定状態と信号強度を示す図である。
FIG. 8 is a diagram showing a setting state of an attenuation rate and an amplification rate and a signal intensity by the optical measurement device of the present invention.

【図9】本発明による光計測装置によるS/Nの向上例
を説明するための図である。
FIG. 9 is a diagram for explaining an example of improving S / N by the optical measurement device according to the present invention.

【図10】従来のマルチチャンネル光計測装置が備える
検出器の一構成例を示し図である。
FIG. 10 is a diagram showing a configuration example of a detector included in a conventional multi-channel optical measurement device.

【図11】送光点と受光点を説明するための概略図であ
る。
FIG. 11 is a schematic diagram for explaining a light transmitting point and a light receiving point.

【符号の説明】[Explanation of symbols]

1…光計測装置、2…送受光手段、3…制御手段、4…
増幅手段、5…信号取得手段、6…記録手段、7…表示
手段、21…発光部、22…送受光部、22a…送光
部、22b…受光部、23…光受光部、31…送光制御
部、32…受光制御部、33…制御テーブル、33a…
送光テーブル、33b…受光テーブル、34…増幅率テ
ーブル、35…減衰率テーブル
1 ... Optical measuring device, 2 ... Transmitting / receiving means, 3 ... Control means, 4 ...
Amplifying means, 5 ... Signal acquiring means, 6 ... Recording means, 7 ... Displaying means, 21 ... Light emitting part, 22 ... Light emitting / receiving part, 22a ... Light sending part, 22b ... Light receiving part, 23 ... Light receiving part, 31 ... Sending Light control unit, 32 ... Light reception control unit, 33 ... Control table, 33a ...
Light sending table, 33b ... Light receiving table, 34 ... Amplification rate table, 35 ... Attenuation rate table

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 貞夫 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所内 (72)発明者 坂内 尚史 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所内 (72)発明者 和田 幸久 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所内 Fターム(参考) 2G059 AA05 BB12 CC16 EE01 EE02 EE11 FF04 GG03 GG10 JJ17 KK03 LL04 NN01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Sadao Takeuchi             1 Nishinokyo Kuwabaracho, Nakagyo Ward, Kyoto City, Kyoto Prefecture             Shimadzu Corporation (72) Inventor Naofumi Sakauchi             1 Nishinokyo Kuwabaracho, Nakagyo Ward, Kyoto City, Kyoto Prefecture             Shimadzu Corporation (72) Inventor Yukihisa Wada             1 Nishinokyo Kuwabaracho, Nakagyo Ward, Kyoto City, Kyoto Prefecture             Shimadzu Corporation F term (reference) 2G059 AA05 BB12 CC16 EE01 EE02                       EE11 FF04 GG03 GG10 JJ17                       KK03 LL04 NN01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被検体に光を照射し、被検体中を透過及
び/又は反射した後に外部に放出される光を計測する光
計測装置において、被検体に1つ又は複数の波長の光を
照射する複数の送光部と被検体から放出される光を受光
する複数の受光部とを備えた送受光手段と、前記各受光
部で計測された計測信号を各々増幅する複数の増幅手
段、及び/又は前記各受光部に入射される光強度を各々
減衰する複数の減衰手段とを備え、計測中に前記増幅手
段の各増幅率及び/又は前記減衰手段の各減衰率を変化
させることを特徴とする光計測装置。
1. An optical measuring device for irradiating a subject with light and measuring the light emitted to the outside after being transmitted and / or reflected in the subject, wherein the subject is irradiated with light of one or a plurality of wavelengths. Transmitting and receiving means having a plurality of transmitting parts for irradiating and a plurality of receiving parts for receiving light emitted from the subject, and a plurality of amplifying means for amplifying the measurement signals measured by the respective receiving parts, And / or a plurality of attenuating means for respectively attenuating the light intensity incident on each of the light receiving parts, and changing each amplification factor of the amplification means and / or each attenuation factor of the attenuation means during measurement. Characteristic optical measuring device.
【請求項2】 前記送受光手段の送受光、及び前記増幅
手段の増幅率又は前記減衰手段の減衰率を制御する制御
手段を備え、前記制御手段は、照射波長及び/又は送受
光を行う送光部と受光部の組み合わせ及び順序を定めた
制御テーブルと、前記制御テーブルに設定された組み合
わせに対応する増幅率を定めた増幅率テーブル及び/又
は前記制御テーブルに設定された組み合わせに対応する
減衰率を定めた減衰率テーブルとを備え、前記制御手段
は、前記制御テーブルに定められた照射波長及び/又は
送光部と受光部の組み合わせ及び順序に基づいて送受光
制御を行うと共に、前記制御テーブルの制御に同期させ
て、前記増幅率テーブルに定められた増幅率を前記各増
幅手段に設定、及び/又は前記減衰率テーブルに定めら
れた減衰率を前記各減衰率手段に設定することを特徴と
する、請求項1記載の光計測装置。
2. A control unit for controlling the light transmission / reception of the light transmission / reception unit, and the amplification factor of the amplification unit or the attenuation factor of the attenuation unit, wherein the control unit transmits / receives an irradiation wavelength. A control table that defines the combination and order of the light unit and the light receiving unit, an amplification factor table that defines the amplification factor corresponding to the combination set in the control table, and / or an attenuation corresponding to the combination set in the control table. An attenuation rate table that defines a rate, the control means performs light transmission / reception control based on the irradiation wavelength and / or the combination and order of the light transmission section and the light reception section defined in the control table, and the control is performed. In synchronization with the control of the table, the amplification factor set in the amplification factor table is set in each of the amplification means, and / or the attenuation factor set in the attenuation factor table is set in each of the amplification factors. The optical measuring device according to claim 1, wherein the optical measuring device is set in an attenuation rate means.
【請求項3】 前記送受光手段の送受光、及び前記増幅
手段の増幅率及び/又は前記減衰手段の減衰率を制御す
る制御手段を備え、前記制御手段は、照射波長及び/又
は送受光を行う送光部と受光部の組み合わせ及び順序を
定めた制御テーブルと、前記各増幅手段の増幅率の組み
合わせを少なくとも一つ定めた増幅率テーブル、及び/
又は前記各減衰手段の減衰率の組み合わせを少なくとも
一つ定めた減衰率テーブルとを備え、前記制御手段は、
前記制御テーブルに定められた照射波長及び/又は送光
部と受光部の組み合わせ及び順序と、前記増幅率テーブ
ルに定められた増幅率及び/又は前記減衰率テーブルに
定められた減衰率の組み合わせとを組み合わせ、当該制
御テーブル及び増幅率テーブルの組み合わせ、及び/又
は制御テーブル及び減衰率テーブルの組み合わせに基づ
いて、送受光制御、及び増幅率設定及び/又は減衰率設
定を行うことを特徴とする、請求項1記載の光計測装
置。
3. A control unit for controlling the light transmission / reception of the light transmission / reception unit, and the amplification factor of the amplification unit and / or the attenuation factor of the attenuation unit, wherein the control unit controls the irradiation wavelength and / or the light transmission / reception. A control table that defines the combination and order of the light-transmitting unit and the light-receiving unit to perform, and an amplification factor table that defines at least one combination of the amplification factors of the amplification means, and /
Or an attenuation rate table that defines at least one combination of attenuation rates of the respective attenuation means, and the control means,
A combination of an irradiation wavelength and / or a combination and order of a light transmitting unit and a light receiving unit defined in the control table, and a combination of an amplification factor defined in the amplification factor table and / or an attenuation factor defined in the attenuation factor table. And transmitting / receiving control, and performing amplification factor setting and / or attenuation factor setting based on a combination of the control table and the amplification factor table, and / or a combination of the control table and the attenuation factor table. The optical measuring device according to claim 1.
【請求項4】 前記制御テーブル、及び増幅率テーブル
及び/又は減衰率テーブルの各組み合わせの切り換え
は、同期又は非同期で行うことを特徴とする、請求項3
記載の光計測装置。
4. The switching of each combination of the control table and the amplification factor table and / or the attenuation factor table is performed synchronously or asynchronously.
The optical measurement device described.
JP2002004752A 2002-01-11 2002-01-11 Optical measuring device Expired - Lifetime JP3783849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002004752A JP3783849B2 (en) 2002-01-11 2002-01-11 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002004752A JP3783849B2 (en) 2002-01-11 2002-01-11 Optical measuring device

Publications (2)

Publication Number Publication Date
JP2003207443A true JP2003207443A (en) 2003-07-25
JP3783849B2 JP3783849B2 (en) 2006-06-07

Family

ID=27643994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002004752A Expired - Lifetime JP3783849B2 (en) 2002-01-11 2002-01-11 Optical measuring device

Country Status (1)

Country Link
JP (1) JP3783849B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230657A (en) * 2005-02-24 2006-09-07 Spectratech Inc Visualization apparatus
JP2008188364A (en) * 2007-02-08 2008-08-21 Shimadzu Corp Holder and optical measuring instrument
JP2009508110A (en) * 2005-09-08 2009-02-26 ビオプティックス・インコーポレイテッド Optical probe for optical imaging system
US7729732B2 (en) 2005-02-09 2010-06-01 Spectratech Inc. Biological information measuring apparatus and method for controlling the apparatus
WO2014034285A1 (en) * 2012-08-31 2014-03-06 株式会社日立メディコ Biophotonic measurement apparatus and biophotonic measurement method using same
JPWO2016111056A1 (en) * 2015-01-07 2017-11-02 国立研究開発法人産業技術総合研究所 Brain function measurement device and light irradiation / light detection method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674858B (en) * 2013-09-18 2016-04-20 江西科益茶业有限公司 A kind of tea soup look method for quick and device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7729732B2 (en) 2005-02-09 2010-06-01 Spectratech Inc. Biological information measuring apparatus and method for controlling the apparatus
JP2006230657A (en) * 2005-02-24 2006-09-07 Spectratech Inc Visualization apparatus
JP2009508110A (en) * 2005-09-08 2009-02-26 ビオプティックス・インコーポレイテッド Optical probe for optical imaging system
JP2013061345A (en) * 2005-09-08 2013-04-04 Vioptix Inc Device
JP2015007643A (en) * 2005-09-08 2015-01-15 ビオプティックス・インコーポレイテッドVioptix,Inc. Method
JP2008188364A (en) * 2007-02-08 2008-08-21 Shimadzu Corp Holder and optical measuring instrument
WO2014034285A1 (en) * 2012-08-31 2014-03-06 株式会社日立メディコ Biophotonic measurement apparatus and biophotonic measurement method using same
CN104582588A (en) * 2012-08-31 2015-04-29 株式会社日立医疗器械 Biophotonic measurement apparatus and biophotonic measurement method using same
JP5944511B2 (en) * 2012-08-31 2016-07-05 株式会社日立メディコ Biological light measurement device and biological light measurement method using the same
JPWO2016111056A1 (en) * 2015-01-07 2017-11-02 国立研究開発法人産業技術総合研究所 Brain function measurement device and light irradiation / light detection method using the same
US11096609B2 (en) 2015-01-07 2021-08-24 National Institute Of Advanced Industrial Science And Technology Brain function measurement device and brain function measurement method

Also Published As

Publication number Publication date
JP3783849B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
EP0290274B1 (en) Examination apparatus for measuring oxygenation
US6018674A (en) Fast-turnoff photodiodes with switched-gain preamplifiers in photoplethysmographic measurement instruments
EP0525107B1 (en) Method and apparatus for measuring the concentration of absorbing substances
JP4546274B2 (en) Biological information measuring apparatus and control method thereof
US5713352A (en) Method for investigating a scattering medium with intensity-modulated light
US8355131B2 (en) Device and method for acquiring image data from a turbid medium
US6097975A (en) Apparatus and method for noninvasive glucose measurement
EP1327418B1 (en) Organism optical measurement instrument
JP2002529682A (en) Substance concentration measurement system
KR20070032643A (en) Photometers with spatially uniform multi-color sources
WO2014178257A1 (en) Acoustic wave measurement device
AU2012264244A1 (en) A method and a system for evaluating vascular endothelium function
JP2003207443A (en) Photometric apparatus
JP2009542289A (en) Optical imaging system and method
US11872022B2 (en) System and method for an optical blood flow measurement
WO2019171800A1 (en) Photoacoustic device and method for controlling photoacoustic device
JP4151162B2 (en) Optical measuring device
WO2005041771A1 (en) Biological photometric equipment
JPH08103434A (en) Device and method for measuring living body light
EP2712544A1 (en) Systems and methods for spectroscopic measurement of a characteristic of biological tissue
EP1954178B1 (en) A method and device for imaging an interior of a turbid medium
JP4131006B2 (en) Fluorescence diagnostic system
CN112485206B (en) Correction method of contact type measuring device and percutaneous jaundice instrument
JPH08289882A (en) Instrument for measuring non-invasive blood component
Fantini et al. Frequency-domain multisource optical spectrometer and oximeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3783849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

EXPY Cancellation because of completion of term