JP2003207284A - Condenser and condensing method - Google Patents
Condenser and condensing methodInfo
- Publication number
- JP2003207284A JP2003207284A JP2002008428A JP2002008428A JP2003207284A JP 2003207284 A JP2003207284 A JP 2003207284A JP 2002008428 A JP2002008428 A JP 2002008428A JP 2002008428 A JP2002008428 A JP 2002008428A JP 2003207284 A JP2003207284 A JP 2003207284A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- fluid
- steam
- pipe
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷却媒体が流通す
る伝熱管の管群に蒸気を流通させて凝縮水とする凝縮装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condensing device in which steam is made to flow through a tube group of heat transfer tubes through which a cooling medium flows to form condensed water.
【0002】[0002]
【従来の技術】蒸気タービン設備においては、仕事を終
えた蒸気がタービンから凝縮装置である復水装置に導入
され、復水装置で凝縮されて復水とされる。復水装置で
凝縮された復水は、ボイラ側に供給されて蒸気とされ蒸
気タービンの駆動源として用いられる。2. Description of the Related Art In steam turbine equipment, steam that has finished its work is introduced from a turbine to a condenser, which is a condenser, and condensed in the condenser to be condensed water. Condensed water condensed by the condensing device is supplied to the boiler side and converted into steam, which is used as a drive source for the steam turbine.
【0003】復水装置は、冷却水(例えば海水)が流通
する伝熱管の管群を胴内に備え、管群に蒸気を流入させ
ることにより蒸気を冷却して復水としている。復水装置
の胴内は高真空度に保たれているため、タービン排気室
から導入される蒸気には水蒸気以外に空気やボイラ側の
腐食を抑制する薬品の成分が多少なりとも含まれてい
る。空気や薬品成分ガスは不凝縮ガスでありそのため、
復水装置には不凝縮ガスを外部に排出する空気抽出手段
が備えられている。The condensing device is provided with a tube group of heat transfer tubes in which cooling water (eg, seawater) circulates, and steam is allowed to flow into the tube group to cool the steam to be condensed water. Because the inside of the body of the condenser is maintained at a high degree of vacuum, the steam introduced from the turbine exhaust chamber contains air and some chemical components that suppress corrosion on the boiler side, in addition to water vapor. . Since air and chemical component gases are non-condensing gases,
The condenser is equipped with air extraction means for discharging the non-condensed gas to the outside.
【0004】復水装置では、装置の大きさや配置状況、
蒸気の流れ等により空気抽出手段が設置される部位が凝
縮完了部位となるように設計され、不凝縮ガスを凝縮完
了部位から排出して、不凝縮ガスの澱みをなくして伝熱
管による所定の伝熱性能を確保するようになっている。In the condensing device, the size and arrangement of the device,
It is designed so that the part where the air extraction means is installed by the flow of steam becomes the condensation completion part, and the non-condensed gas is discharged from the condensation completed part to eliminate the stagnation of the non-condensed gas and to perform the predetermined transfer by the heat transfer tube. It is designed to ensure thermal performance.
【0005】[0005]
【発明が解決しようとする課題】従来の復水装置(凝縮
装置)は、凝縮完了部位に空気抽出手段を設けて不凝縮
ガスの澱みをなくすようにしている。しかし、タービン
の運転状況等により蒸気の流れに大きな分布が生じた
り、タービンの交換や伝熱管の施栓増加などの径年劣化
が生じると、設計通りの凝縮完了位置とずれて、空気抽
出手段から不凝縮ガスを排出できない虞があった。不凝
縮ガスの澱みが発生すると、澱み部位の伝熱性能が低下
して真空度が低下すると共に、伝熱管が薬品ガスに晒さ
れて腐食することが考えられる。In the conventional condensing device (condensing device), air extraction means is provided at the condensation completion portion to eliminate the stagnation of the non-condensable gas. However, if there is a large distribution of steam flow due to the operating conditions of the turbine, or if there is deterioration over the years, such as when the turbine is replaced or the heat transfer tubes are plugged more, there will be a deviation from the condensation completion position as designed and There was a possibility that the non-condensable gas could not be discharged. When stagnation of the non-condensed gas occurs, it is conceivable that the heat transfer performance at the stagnation site deteriorates and the degree of vacuum decreases, and the heat transfer tube is exposed to the chemical gas and corroded.
【0006】本発明は上記状況に鑑みてなされたもの
で、不凝縮ガスの澱みを回避することができる凝縮装置
を提供することを目的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a condensing device capable of avoiding stagnation of non-condensable gas.
【0007】また、本発明は上記状況に鑑みてなされた
もので、不凝縮ガスの澱みを的確に抑制することができ
る凝縮方法を提供することを目的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a condensation method capable of appropriately suppressing the stagnation of non-condensed gas.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
の本発明の凝縮装置の構成は、冷却媒体が流通する伝熱
管の管群を胴内に備え、胴内に蒸気を流入させることに
より蒸気を冷却して凝縮水とする凝縮装置において、管
群の任意の位置の伝熱管の位置に伝熱管と同径で胴内流
体を外部に抽出する流体抽出管を配置したことを特徴と
する。In order to achieve the above-mentioned object, the structure of a condenser of the present invention is provided with a tube group of heat transfer tubes through which a cooling medium flows in a cylinder, and steam is introduced into the cylinder. In a condenser for cooling steam to condensed water, a fluid extraction pipe having the same diameter as the heat transfer pipe and extracting the in-body fluid to the outside is arranged at the position of the heat transfer pipe at an arbitrary position of the tube group. .
【0009】そして、流体抽出管は管群の不凝縮流体が
澱んだ部位に配置されることを特徴とする。また、流体
抽出管は管群の複数箇所に配置され、複数の流体抽出管
を選択して流体を外部に抽出する選択手段を備えたこと
を特徴とする。また、選択手段で選択された流体抽出管
から流体を抽出して胴内の圧力が低下(真空度が上昇)
減少したことを判断した際に不凝縮流体が澱んだ部位で
あると判定する判定手段を備えたことを特徴とする。Further, the fluid extraction tube is characterized in that it is arranged at a portion of the tube group where the non-condensable fluid has settled. Further, the fluid extraction pipes are arranged at a plurality of positions of the pipe group, and the fluid extraction pipes are provided with selection means for selecting the plurality of fluid extraction pipes and extracting the fluid to the outside. Also, the fluid inside the body is reduced by extracting the fluid from the fluid extraction pipe selected by the selection means (the degree of vacuum is increased).
It is characterized in that it is provided with a judging means for judging that the uncondensed fluid has stagnated when it is judged that the amount has decreased.
【0010】また、上記目的を達成するための本発明の
凝縮装置の構成は、冷却媒体が流通する伝熱管の管群を
備え、胴内に蒸気を流入させることにより蒸気を冷却し
て凝縮水とする凝縮装置において、不凝縮流体が澱んだ
部位における管群の伝熱管に代えて伝熱管と同径の流体
抽出管を配置したことを特徴とする。In order to achieve the above object, the structure of the condenser of the present invention is provided with a group of heat transfer tubes through which a cooling medium flows, and the steam is made to flow into the cylinder to cool the steam and condense water. In the condensing device described above, a fluid extraction tube having the same diameter as the heat transfer tube is arranged in place of the heat transfer tube of the tube group in the portion where the non-condensed fluid has settled.
【0011】そして、請求項1乃至請求項5のいずれか
一項に記載の凝縮装置は、伝熱管に冷却水が流通し、管
群を流通する蒸気は蒸気タービンの排気でこれを凝縮液
化する復水装置であることを特徴とする。In the condenser according to any one of claims 1 to 5, the cooling water flows through the heat transfer tubes, and the steam flowing through the tube group is condensed and liquefied by the exhaust of the steam turbine. It is a condensing device.
【0012】上記目的を達成するための本発明の凝縮方
法は、冷却媒体が流通する伝熱管の管群を胴内に備え、
管群に蒸気を流通させることにより蒸気を冷却して凝縮
水とする凝縮装置における凝縮方法であって、管群の複
数箇所で流体を選択的に抽出し、胴内の圧力が低下した
ことを判断した際に選択されている抽出部位が不凝縮流
体が澱んだ部位であると判定することを特徴とする。The condensing method of the present invention for achieving the above object is provided with a tube group of heat transfer tubes through which a cooling medium flows in the body,
A method of condensing in a condenser that cools the steam by passing it through the tube group to form condensed water, and selectively extracts the fluid at multiple points in the tube group, and It is characterized in that the extraction site selected at the time of the determination is determined to be the site where the non-condensed fluid has settled.
【0013】[0013]
【発明の実施の形態】図1には本発明の一実施形態例に
係る凝縮装置としての復水装置の概略構成を表す斜視状
況、図2には復水装置の縦断面、図3には復水装置の側
断面、図4には管群の縦断面、図5には流体抽出管の斜
視、図6には流体抽出管の設置状況を説明する側断面を
示してある。1 is a perspective view showing a schematic configuration of a condenser as a condenser according to an embodiment of the present invention, FIG. 2 is a vertical cross section of the condenser, and FIG. 4 shows a side cross section of the condenser, FIG. 4 shows a vertical cross section of the tube group, FIG. 5 shows a perspective view of the fluid extraction pipe, and FIG. 6 shows a side cross section for explaining the installation condition of the fluid extraction pipe.
【0014】図1乃至図3に示すように、蒸気タービン
の排気蒸気が導入される胴1の両端部には管板2が備え
られ、管板2に多数の伝熱管3が接続されており、多数
の伝熱管3は管群4を構成する。(図2では4個の管群
4を示してある)管板2の外側は水室5となり、一方の
水室5の入口室に冷却水としての海水が供給され、海水
は管群4の伝熱管3を流れて他方の水室5に送られ排出
される。As shown in FIGS. 1 to 3, tube plates 2 are provided at both ends of a body 1 into which exhaust steam of a steam turbine is introduced, and a large number of heat transfer tubes 3 are connected to the tube plate 2. The plurality of heat transfer tubes 3 form a tube group 4. The outer side of the tube sheet 2 (shown in FIG. 2 is four tube groups 4) is a water chamber 5, and the inlet chamber of one of the water chambers 5 is supplied with seawater as cooling water. After flowing through the heat transfer tube 3, it is sent to the other water chamber 5 and discharged.
【0015】管群4の、例えば、中心部位には伝熱管3
よりも径が大きく適宜部位に穴6があけられた空気抽出
管7が設けられ、空気抽出管6は外部に導かれて弁9を
介して図示しない空気穴抽出装置につなげられている。
管群4の空気抽出管6及び多数の伝熱管3は胴1の内部
に図示しない複数仕切板をにより支持されさらに両端が
管板2に接続されている。In the tube group 4, for example, at the central portion, the heat transfer tube 3
An air extraction pipe 7 having a larger diameter than the above and having a hole 6 formed at an appropriate portion is provided, and the air extraction pipe 6 is guided to the outside and connected to an air hole extraction device (not shown) via a valve 9.
The air extraction tubes 6 and the multiple heat transfer tubes 3 of the tube group 4 are supported inside the case 1 by a plurality of partition plates (not shown), and both ends thereof are connected to the tube plate 2.
【0016】海水が流通する伝熱管3からなる管群4に
蒸気を流通させることにより、管群4の外周側から内周
側に凝縮が進み蒸気が冷却されて復水とされる。復水は
図示しない復水ポンプによりくみ上げられてボイラの給
水に使用される。復水装置の胴1の内部は高真空度に保
たれているため、タービンから導入される蒸気には水蒸
気以外に空気やボイラ側の腐食を抑制する薬品の成分が
多少なりとも含まれている。空気や薬品成分ガスは不凝
縮ガスとなるため、不凝縮ガスは管群4の凝縮完了部位
である空気抽出管6の近傍に溜まり、不凝縮ガスは穴6
から空気抽出管7に吸い込まれて外部に排出される。By circulating the steam through the tube group 4 composed of the heat transfer tubes 3 through which seawater flows, condensation proceeds from the outer peripheral side of the tube group 4 to the inner peripheral side, and the steam is cooled to be condensed water. Condensed water is pumped up by a not-shown condensate pump and used for supplying water to the boiler. Since the inside of the body 1 of the condenser is maintained at a high degree of vacuum, the steam introduced from the turbine contains air and some chemical components that suppress corrosion on the boiler side, in addition to steam. . Since the air and the chemical component gas become non-condensable gas, the non-condensable gas accumulates in the vicinity of the air extraction pipe 6 which is the condensation completion portion of the tube group 4, and the non-condensed gas becomes the holes 6
Is sucked into the air extraction pipe 7 and discharged to the outside.
【0017】これにより、不凝縮ガスが凝縮完了部位で
排出され、不凝縮ガスの澱みをなくして伝熱管3による
所定の伝熱性能が確保できるようになっている。このた
め、不凝縮ガスの澱みが発生して澱み部位における伝熱
管3の伝熱性能が低下して真空度が低下し復水器性能が
低下すると共に、伝熱管3が薬品ガスに晒されて腐食す
ることが防止される。As a result, the non-condensable gas is discharged at the condensation-completed portion, the stagnation of the non-condensable gas is eliminated, and the predetermined heat transfer performance by the heat transfer tube 3 can be secured. For this reason, stagnation of the non-condensable gas is generated, the heat transfer performance of the heat transfer tube 3 in the stagnation portion is decreased, the vacuum degree is decreased, the condenser performance is decreased, and the heat transfer tube 3 is exposed to the chemical gas. Corrosion is prevented.
【0018】ところで、タービンの運転状況等により蒸
気の流れに大きな分布が生じたり、タービンの交換や伝
熱管3の施栓増加などの径年劣化が生じると、設計通り
の凝縮完了部位とはならず、空気抽出管7から不凝縮ガ
スを排出できない虞があった。即ち、図4に示すよう
に、凝縮完了部位が空気抽出管7とは別の位置となって
不凝縮ガスが適切に排出されず、不凝縮ガスの澱み部8
が発生する虞がある。澱み部8が発生すると、澱み部8
の伝熱管3の部位が伝熱性能が低下し真空度が低下する
ため、胴内圧力を検出することで澱み部8を類推するこ
とができる。また、温度も上昇するため、温度を検出す
ることでも澱み部8を類推することができる。By the way, when the steam flow has a large distribution due to the operating condition of the turbine, or when the turbine is replaced or the heat transfer tube 3 is increased in plugging, the condensation is not completed as designed. However, there is a possibility that the non-condensable gas cannot be discharged from the air extraction pipe 7. That is, as shown in FIG. 4, the condensation-completed portion is located at a position different from the air extraction pipe 7, and the non-condensable gas is not properly discharged, and the stagnation portion 8 of the non-condensable gas is generated.
May occur. When the stagnation part 8 occurs, the stagnation part 8
Since the heat transfer performance of the portion of the heat transfer tube 3 is lowered and the degree of vacuum is lowered, the stagnation portion 8 can be analogized by detecting the in-body pressure. Further, since the temperature also rises, the stagnation portion 8 can be analogized by detecting the temperature.
【0019】このため、本実施形態例では、澱み部8に
対応する位置の伝熱管3に代えて、伝熱管3と同径で流
体としての不凝縮ガスを外部を抽出する流体抽出管11
を備えている。流体抽出管11には不凝縮ガスを吸い込
むための穴12が多数設けられ、澱み部8が管群4の軸
方向にも存在している時には、流体抽出管11の澱み部
8が発生した部位に対応して穴12が形成されている。Therefore, in this embodiment, instead of the heat transfer tube 3 at the position corresponding to the stagnation portion 8, a fluid extraction tube 11 having the same diameter as the heat transfer tube 3 for extracting the noncondensable gas as a fluid to the outside.
Is equipped with. The fluid extraction pipe 11 is provided with a large number of holes 12 for sucking the non-condensable gas, and when the stagnation part 8 also exists in the axial direction of the tube group 4, the part where the stagnation part 8 of the fluid extraction pipe 11 is generated. A hole 12 is formed corresponding to
【0020】図6に示すように、流体抽出管11を設置
する場合には、水室5を胴1から外し、澱み部8と想定
される位置の(複数の)伝熱管3をまず管板2から外
し、次いで復水器から引き抜き、その部位に流体抽出管
11を挿入して管板2に接続固定する。そして、流体抽
出管11は水室5外部で空気抽出管7に連結する。この
ため、流体抽出管11を設けるための改良工事を最小限
に抑えることができ、運転している復水装置にも容易に
流体抽出管11を設けることが可能となる。As shown in FIG. 6, when the fluid extraction pipe 11 is installed, the water chamber 5 is removed from the body 1, and the heat transfer pipes 3 at a position supposed to be the stagnation portion 8 are first attached to the tube plate. 2 and then pulled out from the condenser, and the fluid extraction pipe 11 is inserted into that portion and connected and fixed to the tube plate 2. The fluid extraction pipe 11 is connected to the air extraction pipe 7 outside the water chamber 5. For this reason, the improvement work for providing the fluid extraction pipe 11 can be minimized, and the fluid extraction pipe 11 can be easily provided in the operating condenser.
【0021】澱み部8に流体抽出管11を設けたことに
より、空気抽出管7とは別の位置で不凝縮ガスが穴12
から流体抽出管11に吸い込まれ、澱み部8の不凝縮ガ
スを外部に排出することができる。このため、凝縮完了
部位が空気抽出管7とは別の位置となっても、不凝縮ガ
スが外部に排出されて伝熱管3の伝熱性能を維持して復
水装置を所望の真空状態に維持することができ、性能の
低下をなくすことが可能になる。Since the stagnation portion 8 is provided with the fluid extraction pipe 11, the non-condensable gas is formed in the hole 12 at a position different from the air extraction pipe 7.
The non-condensed gas in the stagnation portion 8 can be discharged to the outside by being sucked into the fluid extraction pipe 11 from the above. Therefore, even if the condensation completion portion is located at a position different from that of the air extraction pipe 7, the non-condensed gas is discharged to the outside, the heat transfer performance of the heat transfer pipe 3 is maintained, and the condenser is brought to a desired vacuum state. It can be maintained, and it is possible to eliminate performance degradation.
【0022】尚、図4には、澱み部8が空気抽出管7の
下方の一箇所に発生した例を挙げて説明したが、澱み部
8はタービンの運転状況や径年劣化の状況により任意の
場所に発生する虞があるので、管群4のいかなる場所に
発生しても、またどの管群4に発生しても、その位置に
流体抽出管11を設けることで、不凝縮ガスを外部に排
出することができる。また、流体抽出管11は一つの管
群4に対して複数箇所設けることも可能である。また、
澱み部8の伝熱管3に代えて流体抽出管11を設けた
が、予め任意の位置に流体抽出管11を設けておくこと
も可能である。In FIG. 4, the stagnation part 8 has been described as an example at one location below the air extraction pipe 7. However, the stagnation part 8 is optional depending on the operating condition of the turbine and the deterioration over time. No matter where it occurs in the tube group 4 or in which tube group 4, the non-condensed gas is provided outside by arranging the fluid extraction tube 11 at that position. Can be discharged to. Further, the fluid extraction pipes 11 can be provided at a plurality of locations for one pipe group 4. Also,
Although the fluid extraction pipe 11 is provided in place of the heat transfer pipe 3 of the stagnation portion 8, the fluid extraction pipe 11 may be provided at an arbitrary position in advance.
【0023】図7に基づいて他の実施形態例に係る凝縮
装置としての復水装置及びこの復水装置を用いた復水方
法(凝縮方法)を説明する。図7には本発明の他の実施
形態例に係る凝縮装置としての復水装置の概略構成を表
す斜視状況を示してある。尚、図1乃至図6に示した復
水装置の部材と同一部材には同一符号を付して重複する
説明は省略してある。A condensing device as a condensing device according to another embodiment and a condensing method (condensing method) using this condensing device will be described with reference to FIG. FIG. 7 shows a perspective view showing a schematic configuration of a condenser as a condenser according to another embodiment of the present invention. The same members as those of the condensing device shown in FIGS. 1 to 6 are designated by the same reference numerals, and a duplicate description is omitted.
【0024】図7に示した復水装置は、管群4の伝熱管
3と同径で流体としての不凝縮ガスを外部に抽出する流
体抽出管15が伝熱管3に代えて任意の複数の位置に備
えられている。流体抽出管15には不凝縮ガスを吸い込
むための穴16が多数設けられている。それぞれの流体
抽出管15は復水装置の外部に導かれて空気抽出管7に
つながれ、流体抽出管15の外部位置には選択手段とし
ての開閉弁17がそれぞれ設けられている。開閉弁17
は判定手段としての制御手段18の指令により選択的に
開閉され、制御手段18には復水装置の胴1の内部の圧
力を検出する圧力検出手段19の検出情報が入力され
る。In the condensing device shown in FIG. 7, a plurality of fluid extraction pipes 15 having the same diameter as the heat transfer pipes 3 of the tube group 4 for extracting noncondensable gas as a fluid to the outside are used instead of the heat transfer pipes 3. It is equipped with a position. The fluid extraction pipe 15 is provided with a large number of holes 16 for sucking the non-condensable gas. Each of the fluid extraction pipes 15 is guided to the outside of the condensing device and connected to the air extraction pipe 7, and an opening / closing valve 17 as a selection means is provided at an outside position of the fluid extraction pipe 15. On-off valve 17
Is selectively opened / closed by a command from the control means 18 as the determination means, and the detection information of the pressure detection means 19 for detecting the pressure inside the body 1 of the condenser is input to the control means 18.
【0025】上述した復水装置における復水方法の一例
を説明する。An example of the condensing method in the above-mentioned condensing device will be described.
【0026】全ての開閉弁17を閉じた状態で、海水が
流通する伝熱管3からなる管群4に蒸気を流通させるこ
とにより、管群4の外周側から内周側に凝縮が進み蒸気
が冷却されて復水とされる。復水は図示しない復水ポン
プによりくみ上げられてボイラの給水に使用される。When all the on-off valves 17 are closed, the steam is circulated through the tube group 4 composed of the heat transfer tubes 3 through which seawater flows, whereby condensation proceeds from the outer peripheral side of the tube group 4 to the inner peripheral side, and steam is generated. It is cooled and made into condensate. Condensed water is pumped up by a not-shown condensate pump and used for supplying water to the boiler.
【0027】凝縮完了部位が空気抽出管7とは別の位置
となって不凝縮ガスが排出されず、不凝縮ガスの澱み部
が発生すると、澱み部の伝熱管3の部位の伝熱性能が低
下して真空度が低下するため、圧力検出手段19により
圧力が高くなったことが検出される。圧力検出手段19
により胴1の内部の圧力が高くなったことが検出される
と、胴1の内部に澱み部が発生したと判断される。When the non-condensable gas is not discharged and the non-condensable gas is not discharged because the condensation-completed part is located at a position different from the air extraction pipe 7, the heat transfer performance of the part of the heat transfer pipe 3 in the stagnation part is improved. Since the pressure decreases and the degree of vacuum decreases, the pressure detecting means 19 detects that the pressure has increased. Pressure detecting means 19
When it is detected that the pressure inside the body 1 has increased, it is determined that a stagnation portion has occurred inside the body 1.
【0028】この状態で、開閉弁17を個別に順次開く
と、開いた開閉弁17の流体抽出管15の周囲に澱み部
が発生していた時にのみ流体抽出管15から不凝縮ガス
が吸い込まれて伝熱管3の部位の伝熱性能が回復しはじ
めて圧力検出手段19により胴1の内部の圧力が低下し
たことが検出される。開いた開閉弁17の流体抽出管1
5の周囲に澱み部が発生していない時には伝熱管3の部
位の伝熱性能は変わらないため圧力の低下は検出されな
い。In this state, when the on-off valves 17 are individually opened sequentially, the non-condensed gas is sucked from the fluid extraction pipes 15 only when the stagnation portion is generated around the fluid extraction pipes 15 of the opened on-off valves 17. Then, the heat transfer performance of the portion of the heat transfer tube 3 starts to recover, and the pressure detecting means 19 detects that the pressure inside the case 1 has dropped. Fluid extraction pipe 1 of open on-off valve 17
When there is no stagnation around 5, the heat transfer performance of the heat transfer tube 3 remains unchanged and no pressure drop is detected.
【0029】このため、開閉弁17を選択的に開き、圧
力検出手段19により胴1の内部の圧力が低下したこと
を検出した際に選択されている開閉弁17の流体抽出管
15の周囲が澱み部の発生部位であると判定することが
できる。従って、流体抽出管15の内部の圧力を低くす
ることで、澱み部を的確に特定して不凝縮ガスを外部に
排出することができ、伝熱管3の伝熱性能を維持して復
水装置を所望の真空状態に維持することができ、澱み部
が任意の位置に発生しても性能の低下をなくすことが可
能になり、タービン設備等の制約を大幅に少なくするこ
とが可能となる。For this reason, when the on-off valve 17 is selectively opened and the pressure detecting means 19 detects that the pressure inside the case 1 has dropped, the surroundings of the fluid extraction pipe 15 of the on-off valve 17 selected are detected. It can be determined that this is the site where the stagnation occurs. Therefore, by lowering the internal pressure of the fluid extraction pipe 15, the stagnation portion can be accurately identified and the non-condensed gas can be discharged to the outside, and the heat transfer performance of the heat transfer pipe 3 can be maintained and the condensing device. Can be maintained in a desired vacuum state, performance deterioration can be eliminated even if a stagnation portion occurs at an arbitrary position, and it is possible to significantly reduce restrictions on turbine equipment and the like.
【0030】尚、本願発明は上述した復水装置に適用す
る他に、吸収冷凍機等の凝縮装置に適用することが可能
である。The present invention can be applied to a condenser such as an absorption refrigerating machine in addition to the above-mentioned condenser.
【0031】[0031]
【発明の効果】本発明の凝縮装置は、冷却媒体が流通す
る伝熱管の管群を胴内に備え、胴内に蒸気を流入させる
ことにより蒸気を冷却して凝縮水とする凝縮装置におい
て、管群の任意の位置の伝熱管の位置に伝熱管と同径で
胴内流体を外部に抽出する流体抽出管を配置したので、
簡単な改良で、不凝縮流体を流体抽出管に吸い込ませて
外部に排出することができる。この結果、不凝縮ガスの
澱みを抑制して胴内を所望の真空状態に維持することが
でき、性能の低下をなくすことが可能になる。The condenser of the present invention is provided with a tube group of heat transfer tubes through which a cooling medium flows, and cools the steam by flowing steam into the cylinder to form condensed water. Since a fluid extraction pipe having the same diameter as the heat transfer pipe and extracting the fluid inside the body to the outside is arranged at the position of the heat transfer pipe at any position of the tube group,
With a simple modification, the non-condensable fluid can be sucked into the fluid extraction pipe and discharged to the outside. As a result, it is possible to suppress the stagnation of the non-condensable gas and maintain the inside of the cylinder in a desired vacuum state, and it is possible to eliminate the deterioration of performance.
【0032】そして、流体抽出管は管群の不凝縮流体が
澱んだ部位に配置されるので、不凝縮流体を確実に排出
することができる。Further, since the fluid extraction pipe is arranged at the portion of the tube group where the non-condensable fluid has settled, the non-condensable fluid can be reliably discharged.
【0033】また、流体抽出管は管群の複数箇所に配置
され、複数の流体抽出管を選択して流体を外部に抽出す
る選択手段を備えたので、不凝縮流体を確実に排出する
ことができる。Further, the fluid extraction pipes are arranged at a plurality of positions in the pipe group, and the selection means for extracting the fluid to the outside by selecting the plurality of fluid extraction pipes is provided, so that the non-condensed fluid can be reliably discharged. it can.
【0034】また、選択手段で選択された流体抽出管か
ら流体を抽出して胴内の圧力が低下したことを判断した
際に不凝縮流体が澱んだ部位であると判定する判定手段
を備えたので、澱み部を的確に検出して不凝縮流体を排
出することができる。Further, when the fluid is extracted from the fluid extraction pipe selected by the selection means and it is determined that the pressure in the cylinder has dropped, it is determined that the uncondensed fluid is a stagnation site. Therefore, the uncondensed fluid can be discharged by accurately detecting the stagnation portion.
【0035】また、冷却媒体が流通する伝熱管の管群を
備え、胴内に蒸気を流通させることにより蒸気を冷却し
て凝縮水とする凝縮装置において、不凝縮流体が澱んだ
部位における管群の伝熱管に代えて伝熱管と同径の流体
抽出管を配置したので、澱み部の不凝縮流体を流体抽出
管に吸い込ませて外部に排出することができる。この結
果、不凝縮ガスの澱みをなくして胴内を所望の真空状態
に維持することができ、性能の低下をなくすことが可能
になる。Further, in a condenser equipped with a tube group of heat transfer tubes through which a cooling medium flows, the steam is circulated in the barrel to cool the steam into condensed water, and the tube group in the portion where the non-condensable fluid has settled. Since the fluid extraction pipe having the same diameter as that of the heat transfer pipe is arranged instead of the heat transfer pipe of No. 1, the non-condensable fluid in the stagnation portion can be sucked into the fluid extraction pipe and discharged to the outside. As a result, stagnation of the non-condensable gas can be eliminated and the inside of the cylinder can be maintained in a desired vacuum state, so that it is possible to eliminate deterioration of performance.
【0036】また、請求項1乃至請求項5のいずれか一
項に記載の凝縮装置は、伝熱管に冷却水が流通し、管群
を流通する蒸気は蒸気タービンの排気でこれを凝縮液化
する復水装置であるので、復水装置における胴内を所望
の真空状態に維持することができ、性能の低下をなくす
ことが可能になる。Further, in the condenser according to any one of claims 1 to 5, cooling water flows through the heat transfer tubes, and the steam flowing through the tube group is condensed and liquefied by the exhaust of the steam turbine. Since it is a condenser, the inside of the body of the condenser can be maintained in a desired vacuum state, and deterioration of performance can be eliminated.
【0037】本発明の凝縮方法は、冷却媒体が流通する
伝熱管の管群を胴内に備え、胴内に蒸気を流入させるこ
とにより蒸気を冷却して凝縮水とする凝縮装置における
凝縮方法であって、管群の複数箇所で流体を選択的に抽
出し、胴内の圧力が低下したことを判断した際に選択さ
れている抽出部位が不凝縮流体が澱んだ部位であると判
定するようにしたので、澱み部を的確に検出して不凝縮
流体を確実に排出することができる。この結果、不凝縮
ガスの澱みをなくして胴内を所望の真空状態に維持する
ことができ、性能の低下をなくすことが可能になる。The condensing method of the present invention is a condensing method in a condenser in which a tube group of heat transfer tubes through which a cooling medium flows is provided in a cylinder, and steam is allowed to flow into the cylinder to cool the steam into condensed water. Therefore, when fluid is selectively extracted at multiple points in the tube group and it is determined that the pressure inside the cylinder has dropped, it is determined that the selected extraction site is the site where the non-condensed fluid has settled. Since the stagnation portion is accurately detected, the non-condensed fluid can be surely discharged. As a result, stagnation of the non-condensable gas can be eliminated and the inside of the cylinder can be maintained in a desired vacuum state, so that it is possible to eliminate deterioration of performance.
【図1】本発明の一実施形態例に係る凝縮装置としての
復水装置の概略構成を表す斜視図。FIG. 1 is a perspective view showing a schematic configuration of a condensing device as a condensing device according to an embodiment of the present invention.
【図2】復水装置の縦断面図。FIG. 2 is a vertical cross-sectional view of a condenser.
【図3】復水装置の側断面図。FIG. 3 is a side sectional view of the condenser.
【図4】管群の縦断面図。FIG. 4 is a vertical cross-sectional view of a tube group.
【図5】流体抽出管の斜視図。FIG. 5 is a perspective view of a fluid extraction tube.
【図6】流体抽出管の設置状況を説明する側断面図。FIG. 6 is a side sectional view for explaining the installation situation of the fluid extraction pipe.
【図7】本発明の他の実施形態例に係る凝縮装置として
の復水装置の概略構成を表す斜視図。FIG. 7 is a perspective view showing a schematic configuration of a condensing device as a condensing device according to another embodiment of the present invention.
1 胴 2 管板 3 伝熱管 4 管群 5 水室 6 穴 7 空気抽出管 8 澱み部 9 弁 11,15 流体抽出管 12,16 穴 17 開閉弁 18 制御手段 19 圧力検出手段 1 torso 2 tube sheet 3 heat transfer tubes 4 tube group 5 water chamber 6 holes 7 Air extraction tube 8 stagnation part 9 valves 11,15 Fluid extraction tube 12, 16 holes 17 on-off valve 18 Control means 19 Pressure detection means
フロントページの続き (72)発明者 井上 浩一 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂製作所内Continued front page (72) Inventor Koichi Inoue 2-1-1 Niihama, Arai-cho, Takasago City, Hyogo Prefecture Takasago Works, Mitsubishi Heavy Industries, Ltd.
Claims (7)
に備え、胴内に蒸気を流入させることにより蒸気を冷却
して凝縮水とする凝縮装置において、管群の任意の位置
の伝熱管の位置に伝熱管と同径で胴内流体を外部に抽出
する流体抽出管を配置したことを特徴とする凝縮装置。1. A condenser comprising a tube group of heat transfer tubes, through which a cooling medium flows, provided inside a case, and the steam is allowed to flow into the case to cool the steam to form condensed water. A condensing device characterized in that a fluid extraction pipe having the same diameter as the heat transfer pipe and having the same diameter as that of the heat transfer pipe is arranged to extract the fluid in the body to the outside.
不凝縮流体が澱んだ部位に配置されることを特徴とする
凝縮装置。2. The condensing device according to claim 1, wherein the fluid extraction pipe is arranged at a portion of the tube group where the non-condensed fluid has settled.
複数箇所に配置され、複数の流体抽出管を選択して流体
を外部に抽出する選択手段を備えたことを特徴とする凝
縮装置。3. The condensing device according to claim 1, wherein the fluid extraction pipes are arranged at a plurality of locations of the pipe group, and the fluid extraction pipes are provided with a selection unit that selects the plurality of fluid extraction pipes and extracts the fluid to the outside. .
た流体抽出管から流体を抽出して胴内の圧力が低下した
ことを判断した際に不凝縮流体が澱んだ部位であると判
定する判定手段を備えたことを特徴とする凝縮装置。4. The method according to claim 3, wherein the fluid is extracted from the fluid extraction pipe selected by the selection means, and when it is determined that the pressure in the body has dropped, it is determined that the uncondensed fluid is a stagnation site. A condensing device comprising a determination means.
え、胴内に蒸気を流入させることにより蒸気を冷却して
凝縮水とする凝縮装置において、不凝縮流体が澱んだ部
位における管群の伝熱管に代えて伝熱管と同径の流体抽
出管を配置したことを特徴とする凝縮装置。5. A condenser comprising a tube group of heat transfer tubes through which a cooling medium flows, wherein steam is allowed to flow into the body to cool the steam into condensed water, and the tube group is at a portion where the non-condensable fluid has settled. A condensing device characterized in that a fluid extraction tube having the same diameter as the heat transfer tube is arranged in place of the heat transfer tube.
記載の凝縮装置は、伝熱管に冷却水が流通し、管群を流
通する蒸気は蒸気タービンの排気でこれを凝縮液化する
復水装置であることを特徴とする凝縮装置。6. The condenser according to any one of claims 1 to 5, wherein the cooling water flows through the heat transfer tubes, and the steam flowing through the tube group is condensed and liquefied by the exhaust of the steam turbine. A condensing device characterized by being a condensing device.
に備え、胴内に蒸気を流入させることにより蒸気を冷却
して凝縮水とする凝縮装置における凝縮方法であって、
管群の複数箇所で流体を選択的に抽出し、胴内の圧力が
低下したことを判断した際に選択されている抽出部位が
不凝縮流体が澱んだ部位であると判定することを特徴と
する凝縮方法。7. A condensing method in a condenser in which a tube group of heat transfer tubes, through which a cooling medium flows, is provided in a barrel, and steam is allowed to flow into the barrel to cool the vapor into condensed water.
It is characterized in that the fluid is selectively extracted at a plurality of locations in the tube group, and when it is determined that the pressure inside the body has dropped, it is determined that the selected extraction site is a site where the non-condensed fluid has settled. How to condense.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002008428A JP2003207284A (en) | 2002-01-17 | 2002-01-17 | Condenser and condensing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002008428A JP2003207284A (en) | 2002-01-17 | 2002-01-17 | Condenser and condensing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003207284A true JP2003207284A (en) | 2003-07-25 |
Family
ID=27646693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002008428A Withdrawn JP2003207284A (en) | 2002-01-17 | 2002-01-17 | Condenser and condensing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003207284A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005326065A (en) * | 2004-05-13 | 2005-11-24 | Mitsubishi Heavy Ind Ltd | Condenser |
JP2006153425A (en) * | 2004-05-28 | 2006-06-15 | Toshiba Corp | Steam condenser |
WO2017179631A1 (en) * | 2016-04-15 | 2017-10-19 | 三菱重工サーマルシステムズ株式会社 | Condenser, and turbo-refrigerating apparatus equipped with same |
CN117781726A (en) * | 2023-04-23 | 2024-03-29 | 江苏旺洲电力设备有限公司 | Condenser of steam turbine unit |
-
2002
- 2002-01-17 JP JP2002008428A patent/JP2003207284A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005326065A (en) * | 2004-05-13 | 2005-11-24 | Mitsubishi Heavy Ind Ltd | Condenser |
JP2006153425A (en) * | 2004-05-28 | 2006-06-15 | Toshiba Corp | Steam condenser |
JP4607664B2 (en) * | 2004-05-28 | 2011-01-05 | 株式会社東芝 | Condenser |
WO2017179631A1 (en) * | 2016-04-15 | 2017-10-19 | 三菱重工サーマルシステムズ株式会社 | Condenser, and turbo-refrigerating apparatus equipped with same |
JP2017190927A (en) * | 2016-04-15 | 2017-10-19 | 三菱重工サーマルシステムズ株式会社 | Condenser, and turbo refrigerator equipped with the same |
CN108700354A (en) * | 2016-04-15 | 2018-10-23 | 三菱重工制冷空调系统株式会社 | Condenser and the turbine refrigerating plant for having the condenser |
US20190041100A1 (en) * | 2016-04-15 | 2019-02-07 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Condenser, and centrifugal chiller equipped with the same |
CN117781726A (en) * | 2023-04-23 | 2024-03-29 | 江苏旺洲电力设备有限公司 | Condenser of steam turbine unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2199720B1 (en) | Double-pressure type condenser, and condensate reheating method | |
CN103673675A (en) | Heat exchanger | |
EP1856456B1 (en) | Hot-water supply system having dual pipe | |
US9453428B2 (en) | Water/steam cycle and method for operating the same | |
FI120557B (en) | Heat Exchanger Unit for recovering heat from a hot gas stream | |
JP2003207284A (en) | Condenser and condensing method | |
JP2010071485A (en) | Condenser | |
JP2008256279A (en) | Condensing facility | |
US8151460B2 (en) | Heat exchanger deep bundle air extractor and method for modifying | |
JP6262040B2 (en) | Condenser and turbine equipment | |
US20130048245A1 (en) | Heat Exchanger Having Improved Drain System | |
CN105973018A (en) | Shell-tube type condenser | |
JP4977398B2 (en) | A economizer and an exhaust heat recovery boiler equipped with the economizer | |
JP2007309555A (en) | Absorption-type heat pump | |
JP2007247554A (en) | Exhaust heat recovery device | |
CN219121119U (en) | Anti-interference quick gas condenser | |
JP5596216B1 (en) | Waste treatment facility | |
CN218672236U (en) | Combined flue gas condensing device | |
Nadig | Condensing Turbine Exhaust Steam in a Steam Surface Condenser Using Multiple Sources of Cooling Water | |
JPH11118362A (en) | Heat exchanger | |
JP2003279148A (en) | Pressure reducing type fluid heating system | |
JP2000320804A (en) | Condensate recovery apparatus | |
JP3625609B2 (en) | Steam turbine equipment | |
RU2293916C1 (en) | Heater | |
KR20160016012A (en) | Cooling system using sea water, and cooling method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050405 |