JP2003206527A - Concrete resource circulating system - Google Patents

Concrete resource circulating system

Info

Publication number
JP2003206527A
JP2003206527A JP2002002011A JP2002002011A JP2003206527A JP 2003206527 A JP2003206527 A JP 2003206527A JP 2002002011 A JP2002002011 A JP 2002002011A JP 2002002011 A JP2002002011 A JP 2002002011A JP 2003206527 A JP2003206527 A JP 2003206527A
Authority
JP
Japan
Prior art keywords
soil
regenerated
concrete
fine powder
recycled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002002011A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kuroda
泰弘 黒田
Shin Uchiyama
伸 内山
Toshio Yamashita
利夫 山下
Kazuyuki Nakamura
和行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Shimizu Construction Co Ltd
Tokyo Electric Power Co Inc
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Tokyo Electric Power Co Inc, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2002002011A priority Critical patent/JP2003206527A/en
Publication of JP2003206527A publication Critical patent/JP2003206527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Road Paving Structures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To use a regenerated material obtained from a concrete waste material as a ground improvement material for effectively circularly using concrete resources. <P>SOLUTION: This concrete resource circulating system performs ground improvement work of object soil by mixedly using the regenerated material composed mainly of regenerated fine powder among these materials in an original position as the ground improvement material of the object soil of the weak cohesive soil ground by manufacturing a regenerated coarse aggregate, a regenerated fine aggregate, and the regenerated material of the regenerated fine powder by heating, grinding, and classifying the concrete waste material. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はコンクリート資源循
環システムに係り、特にコンクリート廃材から得た各種
寸法の骨材や微粉末の再生材料を所定割合で地盤改良材
として使用して対象の地盤改良工を行うようにし、解体
コンクリートから発生したコンクリート資源の循環を有
効に進めるようにしたコンクリート資源循環システムに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a concrete resource circulation system, and in particular, it is used as a ground improvement material by using a predetermined amount of aggregates of various sizes obtained from waste concrete and recycled materials of fine powder as a ground improvement material. The present invention relates to a concrete resource circulation system for effectively circulating concrete resources generated from demolition concrete.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
軟弱地盤の地盤改良工において、各種のセメント系固化
材を用いた多くの改良工法が開発され、また実績をあげ
てきている。改良工においてセメント系固化材が用いら
れ対象土の改良を図るケースは多様であるが、具体的に
は浅層改良,深層改良,建設発生土の改良等を目的とす
ることが考えられる。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
In the ground improvement work of soft ground, many improvement methods using various cement-based solidifying materials have been developed and have been proven. There are various cases in which cement-based solidifying material is used in the improvement work to improve the target soil. Specifically, it is considered that the purpose is to improve the shallow layer, the deep layer, and the soil generated by construction.

【0003】これらの改良工に用いられるセメント系固
化材は、普通ポルトランドセメント、高炉セメント等を
母材とし、固化効果を高めるための各種添加材を含有し
ている。そして、これらは現場において、掘削前あるい
は掘削時に地盤や掘削土に添加混合され、所定範囲に改
良土層が造成されるのが一般的である。
The cement-based solidifying material used for these improvement works is usually made of Portland cement, blast furnace cement or the like as a base material and contains various additives for enhancing the solidifying effect. These are generally added to and mixed with the ground or excavated soil before or during excavation at the site to form an improved soil layer in a predetermined range.

【0004】ところで、建設廃棄物処理の問題がクロー
ズアップされており、出願人もコンクリート廃材を再度
コンクリート構造物へと適用するために、コンクリート
廃材から、バージン骨材と同等の品質を有する再生骨材
や微粉末を製造することが可能な「コンクリート資源循
環システム」に関する研究開発を進めている。このコン
クリート資源循環システムにおける再生骨材製造プラン
トでは、破砕された解体コンクリートを加熱塔において
300℃程度に加熱し、内部の残留水分を除去して脱水
状態にし、内部の結合状態を脆弱にしてから磨砕するこ
とで粗骨材、細骨材を粒径ごとに分類でき、さらに微粉
末を集塵することですべての材料を再利用の対象とする
ことができる。
By the way, the problem of construction waste treatment has been highlighted, and in order to apply the concrete waste material to the concrete structure again, the applicant has made it possible to use recycled waste material having the same quality as virgin aggregate from the concrete waste material. We are conducting research and development on a "concrete resource circulation system" that can produce wood and fine powder. In the recycled aggregate manufacturing plant in this concrete resource circulation system, the crushed demolition concrete is heated to about 300 ° C in the heating tower to remove the residual water inside to make it dehydrated, and to weaken the internal bonding state. Coarse aggregates and fine aggregates can be classified according to particle size by grinding, and all materials can be reused by collecting fine powder.

【0005】これらの再生材料のうち、再生微粉末はセ
メント水和物を主成分とするため、セメント原料として
再利用可能であるが、セメント工場への輸送費の他、多
大な処理費用も払わなければならず、リサイクルがコス
トアップヘつながるといった問題があった。この再生微
粉末は比表面積が4,000cm2/g以上の安定した品質
を有している。そこで、出願人は、この微粉末を主材と
してその他の再生材料を適宜所定の割合で用いて、上述
のセメント系固化材として用いることを想起した。これ
により、リサイクル資源としての微粉末を再生プラント
が設置された現場あるいはその近くの現場で使用するこ
とが可能となり、輸送費およびセメント工場での受入れ
費を削減できるだけでなく、有価物である地盤改良材と
して取り扱うことができ、前述した「コンクリート資源
循環システム」の環を効率よく回すことが可能となる。
Among these recycled materials, recycled fine powder is mainly composed of cement hydrate, and therefore can be reused as a raw material for cement. However, in addition to transportation cost to the cement factory, a great amount of processing cost is also paid. There was a problem that recycling would increase costs. The regenerated fine powder has a stable quality with a specific surface area of 4,000 cm 2 / g or more. Therefore, the applicant recalled to use the fine powder as a main material and other recycled materials at a predetermined ratio as appropriate to use as the cement-based solidifying material. This makes it possible to use fine powder as a recycling resource at or near the site where the recycling plant is installed, which not only reduces transportation costs and acceptance costs at cement plants, but is also a valuable resource. It can be handled as an improved material, and the above-mentioned “concrete resource circulation system” ring can be efficiently turned.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明はコンクリート廃材を加熱、磨砕して分級
し、再生粗骨材、再生細骨材及び再生微粉末を製造し、
次工程資源として循環使用するコンクリート資源循環シ
ステムであって、前記再生材料が所定割合で、軟弱粘性
土地盤の対象土の地盤改良材として原位置混合され、対
象土の地盤改良工に用いられることを特徴とする。
In order to achieve the above object, the present invention heats, grinds and classifies concrete waste material to produce recycled coarse aggregate, recycled fine aggregate and recycled fine powder,
It is a concrete resource circulation system that is circulated and used as the next process resource, and the recycled material is mixed in-situ as a soil improvement material for the target soil of the soft and viscous ground in a predetermined ratio and used for the ground improvement work of the target soil. Is characterized by.

【0007】前記再生材料が所定割合で、軟弱粘性土地
盤の発生掘削土と原位置混合され、前記軟弱粘性土地盤
に改良土層を形成するのに用いられることが好ましい。
It is preferable that the regenerated material is mixed in situ with the excavated soil of the soft and cohesive soil in a predetermined ratio to form an improved soil layer on the soft and cohesive soil.

【0008】前記再生材料が所定割合で、軟弱な路床、
路盤材料と原位置混合され、前記路床、路盤材料を改良
し、改良路床層、改良路盤層を形成するのに用いられる
ことが好ましい。
[0008] The recycled material is contained in a predetermined proportion on a soft roadbed,
It is preferably mixed in-situ with the roadbed material and used to improve the roadbed, roadbed material to form an improved roadbed layer, improved roadbed layer.

【0009】前記再生材料が所定割合で、軟弱粘性土地
盤の掘削で発生した掘削土に原位置混合され、前記掘削
土を、場外搬出される建設発生土に再利用することが好
ましい。
It is preferable that the regenerated material is mixed in a predetermined ratio with the excavated soil generated by excavation of the soft and viscous ground, and the excavated soil is reused as construction generated soil that is carried out of the site.

【0010】[0010]

【発明の実施の形態】以下、本発明のコンクリート資源
循環システムの一実施の形態について、添付図面を参照
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the concrete resource circulation system of the present invention will be described below with reference to the accompanying drawings.

【0011】[再生材料の製造]本発明のコンクリート
資源循環システムにおいて、特に地盤改良材として用い
る再生材料の製造工程について説明する。本発明ではコ
ンクリート廃材から粗骨材、細骨材、微粉末等の所望の
再生材料を得るために、公知の再生骨材製造プラントで
「加熱すりもみ法」を採用している。この加熱すりもみ
法では、まず破砕したコンクリート廃材(いわゆるコン
クリートがら)を加熱塔の炉内に投入し、約300℃程
度に加熱する。その後、特殊磨砕設備により物理的にす
りもむ(擦り揉む)ことで磨砕し、さらに公知の分級装
置を介して分級し、所望の再生微粉末を得ることができ
る。なお、このとき同時に製造される再生細骨材、再生
粗骨材は、従来の骨材と同等の品質を有するため、一般
の構造コンクリートの骨材として使用することができ
る。特にこの加熱すりもみ法によって製造される再生微
粉末は、その比表面積が4,000〜10,000cm2/
g程度あり、通常のセメントより極めて細かい粒子であ
る。また組成としてはCaOを単位質量当たり10〜3
0%含有することから、使用時において安定した水硬性
が得られ、地盤改良材として好適である。
[Manufacture of Recycled Material] In the concrete resource circulation system of the present invention, a process of manufacturing a recycled material used as a ground improvement material will be described. In the present invention, in order to obtain a desired recycled material such as a coarse aggregate, a fine aggregate, and a fine powder from a concrete waste material, a "heated grinding method" is adopted in a known recycled aggregate manufacturing plant. In this heating-rubbing method, first, crushed concrete waste material (so-called concrete waste) is put into the furnace of a heating tower and heated to about 300 ° C. After that, it is ground by being physically ground (rubbed) by a special grinding facility, and further classified by a known classifying device to obtain a desired regenerated fine powder. The recycled fine aggregate and recycled coarse aggregate produced at the same time have the same quality as conventional aggregates, and thus can be used as aggregates for general structural concrete. Particularly, the regenerated fine powder produced by the heat-rubbing method has a specific surface area of 4,000 to 10,000 cm 2 /
It is about g, which is a finer particle than ordinary cement. Moreover, as the composition, CaO is 10 to 3 per unit mass.
Since it contains 0%, stable hydraulic properties can be obtained during use and it is suitable as a ground improvement material.

【0012】[再生材料の事前調査]このコンクリート
資源循環システムでは、製造時の組成が不明なコンクリ
ート廃材を使用することになる。そこで、再生材料とし
てリサイクル使用する場合に所定の品質が確保されてい
るかどうかを事前調査によって確認する。 (事前調査項目及び管理基準値) ・コンクリート中の塩化物イオン量:0.3kg/m3以下 ・骨材のアルカリ骨材反応性:無害であること ・微粉末の六価クロム量:0.05ppm未満 (事前調査試験手順)この事前調査では、以上の項目に
対して図1に示したような調査手順及び準拠規準に基づ
いて各試験を行う。再生されるコンクリートの塩化物量
はあらかじめコンクリート構造物から採取したサンプル
による試験を行う。その後、「加熱すりもみ法」によっ
て製造された再生粗骨材、細骨材のそれぞれについて所
定の試料を作製してアルカリ骨材反応試験(化学法、迅
速法)を行う。一方、0.15mmふるいを通過する微粉
末については六価クロムの溶出試験を行う。 (六価クロムの溶出抑制効果)この六価クロムの溶出試
験で確認される顕著な効果として、「加熱すりもみ法」
で得られた微粉末は、元のセメントに含まれている六価
クロムが溶出しにくくなることが確認されている。この
ため、地盤改良材として使用した場合にも土壌汚染が生
じることを防止できる。その定量的な効果として、常温
ですりもみして得られた微粉末と300℃で加熱すりも
みした微粉末の六価クロム溶出量および後者を500℃
に加熱した場合の六価クロム溶出量を比較した場合、3
00℃で加熱すりもみした微粉末の六価クロム溶出量が
少ないことが確認されている。これは、普通セメントで
同様の試験を行った場合、六価クロムが0.3〜0.4
ppm程度溶出されることからして十分な効果としてとら
えることができる。
[Preliminary Investigation of Recycled Material] In this concrete resource circulation system, concrete waste material whose composition at the time of production is unknown is used. Therefore, it is confirmed by a preliminary survey whether or not the prescribed quality is ensured when recycled as a recycled material. (Preliminary survey items and control standard values) -Amount of chloride ions in concrete: 0.3 kg / m 3 or less-Reactivity of aggregate to alkali aggregate: harmless-Amount of hexavalent chromium in fine powder: 0. Less than 05 ppm (preliminary survey test procedure) In this preliminary survey, each test is performed on the above items based on the survey procedure and the compliance criteria as shown in FIG. The amount of chloride in recycled concrete is tested by using a sample taken from the concrete structure in advance. After that, a predetermined sample is prepared for each of the recycled coarse aggregate and fine aggregate produced by the "heat-grinding method", and an alkali-aggregate reaction test (chemical method, rapid method) is performed. On the other hand, the hexavalent chromium elution test is performed on the fine powder that passes through the 0.15 mm sieve. (Effect of Hexavalent Chromium Elution Suppression) As a remarkable effect confirmed by this hexavalent chromium elution test, the "heated rubbing method"
It has been confirmed that in the fine powder obtained in step 6, the hexavalent chromium contained in the original cement becomes difficult to elute. Therefore, soil contamination can be prevented even when used as a soil improvement material. As its quantitative effect, the hexavalent chromium elution amount of the fine powder obtained by milling at room temperature and the fine powder obtained by milling at 300 ° C and the latter at 500 ° C
When comparing the elution amount of hexavalent chromium when heated to 3
It has been confirmed that the amount of hexavalent chromium eluted from the fine powder ground and ground at 00 ° C was small. This is because hexavalent chromium is 0.3 to 0.4 when the same test is performed with ordinary cement.
Since it is eluted at about ppm, it can be considered as a sufficient effect.

【0013】[再生微粉末の硬化メカニズム]上述した
再生材料のうち、特に再生微粉末を、軟弱地盤の地盤改
良材として用いた場合、再生微粉末の吸水反応および再
生微粉末の示すポゾラン活性により、所定の硬化メカニ
ズムが確認された。これにより、軟弱地盤としての対象
土に所定量を添加することにより、強度等の改良効果を
得ることができる。以下、各種の地盤改良工において、
再生微粉末が地盤改良材として使用される態様について
説明する。本発明では、再生微粉末のみによって十分な
効果を奏することができるが、再生微粉末を主材とし
て、必要に応じてその他の再生骨材を所定の割合で混合
して地盤改良材としての特性を向上させることも好まし
い。また、再生微粉末のみで所定の地盤改良材強度が確
保できない場合や、地盤改良材として高い強度を期待す
る場合には、各種のセメントやセメント系固化材を所定
割合で混合し、所定の強度を確保することも好ましい。 (浅層改良工)浅層改良においては、機械混合撹拌を前
提とし、固化材としての再生微粉末を対象土に対して所
定添加量を粉体投入することとした。固化材添加量は、
対象掘削土の性状、改良目的、改良土に求められている
設計値によって異なるが、掘削土1m3に対して300〜
500kg程度の範囲で設計されることが好ましい。ま
た、掘削土との混合、撹拌、締固めは公知の粉体方式で
の施工手順と同様に行える。また、再生微粉末の粉末度
が高いため、スラリー化も容易に行えるので、スラリー
プラントを設置し、スラリーポンプを用いて再生微粉末
を対象土と混合撹拌することも可能である。
[Hardening Mechanism of Recycled Fine Powder] Among the above-mentioned regenerated materials, particularly when regenerated fine powder is used as a ground improvement material for soft ground, the water absorption reaction of the regenerated fine powder and the pozzolanic activity of the regenerated fine powder cause The predetermined curing mechanism was confirmed. Thereby, by adding a predetermined amount to the target soil as the soft ground, it is possible to obtain the effect of improving the strength and the like. Below, in various ground improvement works,
A mode in which the recycled fine powder is used as a ground improvement material will be described. In the present invention, although sufficient effects can be obtained only by using the recycled fine powder, the recycled fine powder is used as a main material, and other recycled aggregates are mixed in a predetermined ratio as necessary, and the characteristics as a ground improvement material are obtained. It is also preferable to improve. In addition, when it is not possible to secure the required strength of the ground improvement material only with recycled fine powder, or when high strength is expected as the ground improvement material, various cements and cement-based solidifying materials are mixed at a predetermined ratio to obtain the predetermined strength. It is also preferable to secure (Shallow layer improvement work) In the shallow layer improvement, mechanical mixing and agitation was premised on the assumption that regenerated fine powder as a solidifying material was added to the target soil in a predetermined amount. The amount of solidifying agent added is
Depending on the property of the target excavated soil, the purpose of improvement, and the design value required for the improved soil, 300 to 1 m 3 of excavated soil
It is preferably designed in the range of about 500 kg. Further, the mixing with the excavated soil, the stirring, and the compaction can be performed in the same manner as the construction procedure using the known powder method. Further, since the fineness of the regenerated fine powder is high, it can be easily slurried. Therefore, it is possible to install a slurry plant and mix the regenerated fine powder with the target soil by using a slurry pump.

【0014】(深層改良工)深層改良土層においても、
公知の機械撹拌方法において、固化材としての再生微粉
末の粉体混合を行うことが可能である。なお、深層改良
工は、地中に形成される改良土範囲に構造物としての所
定の強度が要求される場合が多い。その場合には固化材
としての再生微粉末と普通ポルトランドセメント等の母
材セメントとを混合して十分な強度を確保することが好
ましい。この場合、改良土範囲での必要強度が得られる
混合比を試験により設定しておくことが好ましい。
(Deep improvement work) Even in the deep improvement soil layer,
In the known mechanical stirring method, it is possible to mix the regenerated fine powder as the solidifying material. In addition, deep improvement works often require a predetermined strength as a structure in the area of improved soil formed in the ground. In that case, it is preferable to mix regenerated fine powder as a solidifying agent and a base material cement such as ordinary Portland cement to ensure sufficient strength. In this case, it is preferable to set the mixing ratio by the test so that the required strength in the improved soil range can be obtained.

【0015】(路床、路盤改良工)従来、路盤材として
解体コンクリートを破砕して得られた「コンクリートが
ら」を所定範囲で粒度調整した再生骨材が用いられた
が、その場合、地盤強度を高めるという改良効果は期待
できなかった。それに対して、本発明では固化材として
の再生微粉末による安定処理効果を期待できる。改良工
においては、対象土に所定量の再生微粉末を散布し、公
知のスタビライザ等の混合敷均し機械によって混合から
転圧までを行うか、バックホウを用いた簡易工程により
混合させてもよい。
(Roadbed and roadbed improvement work) Conventionally, recycled aggregates obtained by crushing demolished concrete and adjusting the grain size within a predetermined range were used as roadbed materials. I could not expect the improvement effect of increasing. On the other hand, in the present invention, the stabilizing treatment effect by the recycled fine powder as the solidifying material can be expected. In the improvement work, a predetermined amount of regenerated fine powder is sprayed on the target soil, and the mixing and leveling may be performed by a mixing and leveling machine such as a known stabilizer, or may be performed by a simple step using a backhoe. .

【0016】(建設発生土改良)掘削工事によって発生
した建設発生土としての掘削土の場外搬出において、掘
削土が高含水状態にある不良土である場合が多い。そこ
で、固化材としての再生微粉末を用いて対象土を改良
し、ダンプトラック等で運搬できるようにし、さらに次
工程現場において、有効な土質材料として再利用を図る
ことが好ましい。掘削発生土の性状は地盤によって様々
である。このため、対象建設発生土の力学性状等を土質
試験等によって把握し、また再利用される際に求められ
ている設計値との調整を行うことが好ましい。
(Improvement of soil generated by construction) When excavated soil generated as soil generated by excavation work is carried out of the field, the soil excavated is often defective soil having a high water content. Therefore, it is preferable to improve the target soil by using the regenerated fine powder as the solidifying material so that it can be transported by a dump truck or the like, and further reuse it as an effective soil material at the next process site. The properties of excavated soil vary depending on the ground. For this reason, it is preferable to grasp the mechanical properties of the target construction soil by a soil test or the like, and make adjustments with the design values required for reuse.

【0017】[0017]

【実施例1】以下、実施例を通じて本発明のうち、固化
材としての再生微粉末を用いて浅層改良工を行った場合
の改良効果について確認する。 [土質試験]改良効果を確認するために、対象軟弱粘性
土の原位置、掘削を想定した乱した状態、および改良後
(改良土I、改良土II)のせん断強さを測定するため
に、ポータブルベーン試験を行い、せん断抵抗値
(τv)を算出し、その結果を表−1に示した。なお、
ベーン試験は、非圧密非排水せん断試験であり、τv
c=qu/2(qu:一軸圧縮強度)として地盤支持力の指
標として取り扱える。
Example 1 Hereinafter, the improvement effect in the case of performing a shallow layer improving process using regenerated fine powder as a solidifying material in the present invention will be confirmed through examples. [Soil test] In order to confirm the improvement effect, in order to measure the in situ position of the target soft cohesive soil, the disturbed state assuming excavation, and the shear strength after improvement (improved soil I, improved soil II), A portable vane test was conducted to calculate the shear resistance value (τ v ) and the results are shown in Table-1. In addition,
The vane test is an unconsolidated undrained shear test, where τ v =
c = q u / 2 (q u : uniaxial compressive strength) can be treated as an index of ground bearing capacity.

【0018】[表1] [Table 1]

【0019】[改良施工及び効果の確認]本試験では、
再生微粉末を所定量だけ混合し、硬化の確認後に、改良
後(改良土I、改良土II)の状態に対して上記試験をお
こなった。 [改良効果の評価]予定する改良土の性状として場外搬
出を想定し、ダンプトラックによる運搬が可能であるこ
と、あるいは次工程での埋立材料として再利用可能であ
る状態として、せん断抵抗値τv=25kN/m2(=c=q
u/2=50kN/m2)以上であることとした。このとき、図
2に示した固化材としての再生微粉末混合量と改良土の
せん断抵抗関係図から明らかなように、固化材添加量と
して掘削土1m3当たり、300〜500kg程度を対象土
に混合して処理することで所望の改良効果を得ることが
できる。また、図3に示した関係曲線をもとに対象改良
土の所望強度に応じた固化材添加量をおさえることがで
きる。
[Improvement construction and confirmation of effect] In this test,
The regenerated fine powder was mixed in a predetermined amount, and after the hardening was confirmed, the above-mentioned test was conducted on the state after the improvement (improved soil I, improved soil II). [Evaluation of improvement effect] The shear resistance value τ v is assumed as a property of the planned improved soil that can be transported by a dump truck or reused as a landfill material in the next process. = 25 kN / m 2 (= c = q
u / 2 = 50 kN / m 2 ) or more. At this time, as is clear from the diagram of the relationship between the mixing amount of the recycled fine powder as the solidifying material and the shear resistance of the improved soil shown in FIG. 2, the solidifying material addition amount is about 300 to 500 kg per 1 m 3 of excavated soil as the target soil. A desired improvement effect can be obtained by mixing and processing. Further, the amount of the solidifying agent added according to the desired strength of the target improved soil can be suppressed based on the relationship curve shown in FIG.

【0020】以上の、試験効果を踏まえ、実際の軟弱地
盤の掘削工事において、再生微粉を用いて建設発生土の
改良を行った。対象土は自然含水比が100%前後、か
つ液性限界を超える程度の軟弱な粘土質シルトであっ
た。この土は地山状態では適切な強度を確保しているも
のの、掘削過程で乱されたり、あるいは重機などが往来
すると部分的に泥土化が発生していた。この状態では掘
削残土として適切に処理できないため、再生微粉で改良
した。施工手順としては、まず掘削重機による地山掘削
の前に、あるいは掘削途中に所定のパック容器に収容さ
れた上述の再生微粉末を、地山に直接散布した。このと
きの散布量は、掘削土1.0m3当たり約300〜500
kgとした。散布した再生微粉は公知の撹拌装置により掘
削土と適度に撹拌混合し、24時間据え置き放置した。
据え置き後、改良土上を歩行することが可能となった。
微粉末の緩やかな水和反応による土砂の硬化進行が確認
された。これらの土砂はダンプトラックに容易に積載で
き、泥土化することなく目的地までの運搬が可能な状態
となった。
Based on the above test results, in the actual excavation work for soft ground, regenerated fine powder was used to improve the soil generated by construction. The target soil was a soft clayey silt having a natural water content of about 100% and exceeding the liquid limit. Although this soil has secured adequate strength in the natural state, it was partially mudified when it was disturbed during the excavation process or when heavy machinery came and went. In this state, it cannot be properly treated as excavated soil, so it was improved with recycled fine powder. As a construction procedure, first, before the ground excavation by a heavy excavator or during the excavation, the above-mentioned regenerated fine powder contained in a predetermined pack container was directly sprayed on the ground. The spraying amount at this time is about 300 to 500 per 1.0 m 3 of excavated soil.
It was set to kg. The dispersed fine powder was appropriately mixed with the excavated soil by a well-known agitator, and left standing for 24 hours.
After standing, it became possible to walk on the improved soil.
It was confirmed that the sedimentation progressed due to the gradual hydration reaction of the fine powder. These sediments could be easily loaded on the dump truck and could be transported to the destination without becoming mud.

【0021】[0021]

【発明の効果】以上に述べたように、本システムによっ
て得られた再生材料のうち再生微粉末を主材とし、各種
地盤改良材として使用することにより、それぞれの改良
工において、従来のセメント系固化材と同等の効果を得
ることができ、本システムの目的とするコンクリート資
源のリサイクルを可能にでき、有効な資源の循環利用を
果たすことができるという効果を奏する。
As described above, by using regenerated fine powder as a main material among the regenerated materials obtained by the present system and using it as various ground improvement materials, the conventional cement-based It is possible to obtain the same effect as that of the solidifying material, to enable the recycling of concrete resources, which is the purpose of this system, and to achieve effective recycling of resources.

【図面の簡単な説明】[Brief description of drawings]

【図1】コンクリート資源循環システムにおける再生材
料の事前調査の作業フローチャート。
FIG. 1 is a work flowchart of a preliminary survey of recycled materials in a concrete resource circulation system.

【図2】コンクリート資源循環システムを適用した実施
の形態を示した作業フローチャート。
FIG. 2 is a work flowchart showing an embodiment to which a concrete resource circulation system is applied.

【図3】浅層改良工試験における再生微粉末混合量と改
良土のせん断抵抗関係図。
FIG. 3 is a diagram showing the relationship between the amount of recycled fine powder mixed and the shear resistance of the improved soil in the shallow layer improvement work test.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内山 伸 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 (72)発明者 山下 利夫 東京都千代田区内幸町一丁目1番3号 東 京電力株式会社内 (72)発明者 中村 和行 東京都千代田区内幸町一丁目1番3号 東 京電力株式会社内 Fターム(参考) 2D040 AB03 AB07 AB11 AC04 AC05 BA11 BA12 BB02 CA01 CA10 CB01 CB03 CC07 2D051 AA09 AD07 AE05 AF01 AF03 AH02 AH05 CA09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shin Uchiyama             Shimizu Construction 1-3-2 Shibaura, Minato-ku, Tokyo             Within the corporation (72) Inventor Toshio Yamashita             1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo East             Inside Kyoden Electric Co., Ltd. (72) Inventor Kazuyuki Nakamura             1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo East             Inside Kyoden Electric Co., Ltd. F-term (reference) 2D040 AB03 AB07 AB11 AC04 AC05                       BA11 BA12 BB02 CA01 CA10                       CB01 CB03 CC07                 2D051 AA09 AD07 AE05 AF01 AF03                       AH02 AH05 CA09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】コンクリート廃材を加熱、磨砕して分級
し、再生粗骨材、再生細骨材及び再生微粉末を再生材料
として製造し、次工程資源として循環使用するコンクリ
ート資源循環システムであって、前記再生微粉末を主材
とした前記再生材料が所定割合で、軟弱粘性土地盤の対
象土の地盤改良材として原位置混合され、対象土の地盤
改良工に用いられることを特徴とするコンクリート資源
循環システム。
1. A concrete resource circulation system in which waste concrete is heated, ground and classified to produce recycled coarse aggregate, recycled fine aggregate and recycled fine powder as recycled material, and is recycled as a resource for the next process. The regenerated material mainly composed of the regenerated fine powder is mixed in-situ as a ground improvement material for the target soil of the soft and viscous ground, and is used for the ground improvement work of the target soil. Concrete resource circulation system.
【請求項2】前記再生材料が所定割合で、軟弱粘性土地
盤の発生掘削土と原位置混合され、前記軟弱粘性土地盤
に改良土層を形成するのに用いられることを特徴とする
請求項1記載のコンクリート資源循環システム。
2. The regenerated material is mixed in situ with the excavated soil of the soft cohesive soil at a predetermined ratio and is used to form an improved soil layer on the soft cohesive soil. The concrete resource circulation system according to 1.
【請求項3】前記再生材料が所定割合で、軟弱な路床、
路盤材料と原位置混合され、前記路床、路盤材料を改良
し、改良路床層、改良路盤層を形成するのに用いられる
ことを特徴とする請求項1記載のコンクリート資源循環
システム。
3. The regenerated material is a soft roadbed at a predetermined ratio,
The concrete resource circulation system according to claim 1, wherein the concrete resource circulation system is in-situ mixed with a roadbed material and is used for improving the roadbed and the roadbed material to form an improved roadbed layer and an improved roadbed layer.
【請求項4】前記再生材料が所定割合で、軟弱粘性土地
盤の掘削で発生した掘削土に原位置混合され、前記掘削
土を、場外搬出される建設発生土に再利用するようにし
たことを特徴とする請求項1記載のコンクリート資源循
環システム。
4. The regenerated material is mixed in a predetermined ratio with excavated soil generated by excavation of a soft and viscous ground, and the excavated soil is reused as construction generated soil that is carried out of the site. The concrete resource circulation system according to claim 1, wherein
JP2002002011A 2002-01-09 2002-01-09 Concrete resource circulating system Pending JP2003206527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002002011A JP2003206527A (en) 2002-01-09 2002-01-09 Concrete resource circulating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002002011A JP2003206527A (en) 2002-01-09 2002-01-09 Concrete resource circulating system

Publications (1)

Publication Number Publication Date
JP2003206527A true JP2003206527A (en) 2003-07-25

Family

ID=27641986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002002011A Pending JP2003206527A (en) 2002-01-09 2002-01-09 Concrete resource circulating system

Country Status (1)

Country Link
JP (1) JP2003206527A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320442A (en) * 2004-05-10 2005-11-17 Shimizu Corp Ground amending and solidifying material using waste concrete fine powder and method for producing the same
JP2016075080A (en) * 2014-10-07 2016-05-12 株式会社大林組 Cement slurry and soil improvement method
CN106758709A (en) * 2016-11-28 2017-05-31 北京市政建设集团有限责任公司 A kind of method for express highway roadbed building castoff breaking, regenerating
CN108149553A (en) * 2018-01-08 2018-06-12 中交三公局第工程有限公司 Cement stabilizing crushed-gravel layer and its construction method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320442A (en) * 2004-05-10 2005-11-17 Shimizu Corp Ground amending and solidifying material using waste concrete fine powder and method for producing the same
JP2016075080A (en) * 2014-10-07 2016-05-12 株式会社大林組 Cement slurry and soil improvement method
CN106758709A (en) * 2016-11-28 2017-05-31 北京市政建设集团有限责任公司 A kind of method for express highway roadbed building castoff breaking, regenerating
CN108149553A (en) * 2018-01-08 2018-06-12 中交三公局第工程有限公司 Cement stabilizing crushed-gravel layer and its construction method

Similar Documents

Publication Publication Date Title
Al-Rawas et al. A comparative evaluation of various additives used in the stabilization of expansive soils
Obla et al. Crushed returned concrete as aggregates for new concrete
Waheed et al. Soil improvement using waste marble dust for sustainable development
JP4665259B2 (en) Effective use of construction sludge
Singh et al. Strength evaluation of concrete using marble powder and waste crushed tile aggregates
JP2012229376A (en) Wet sand of coal ash and various construction methods utilizing the wet sand of coal ash
CN109574575A (en) A kind of quarrel earth concrete and preparation method thereof
JP2003206527A (en) Concrete resource circulating system
JP4630690B2 (en) Cement recovery method, cement recovered by the method, and cement reuse method
JPH07157761A (en) Soil stabilization treating material and method for soil stabilization treatment
JP2018127529A (en) Fluid backfilling material
JP2004218337A (en) Soil-cement wall reclamation material
JP2001019956A (en) Lime-improved soil mortar, its production and fluidization treating method of construction using the same
CN112118943A (en) Method for feeding hardening accelerator for concrete surface finishing
JP2001040652A (en) Soil improvement method and solidifying material
JP2018127794A (en) Ground improvement method using steel slag and ground construction method using steel slag
JP2014091662A (en) Low strength concrete for pump pressure feed, and method for producing low strength concrete for pump pressure feed
JP4014400B2 (en) Soil treatment material composition and method for producing the same
JP2004115999A (en) Method for improving low-strength subsurface layer
JP2003002725A (en) Construction material using site generated rock material
Laksono et al. ANALYSIS OF THE EFFECT OF COARSE AGGREGATE PARTIAL SUBSTITUTION WITH GRANITE FRAGMENTS IN THE COMPOSITION OF CONCRETE MIXTURE MATERIALS TOWARD CONCRETE COMPRESSIVE STRENGTH
JP2004197356A (en) Soil column material, soil column, and construction method for soil column
JP4016319B2 (en) Processing method of raw consludge into stable or stable type waste and its processed waste
JP2003261962A (en) Fluidized soil and method for determining composition thereof
JP2002227237A (en) Method for improving soil generated by construction

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Effective date: 20060207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

A131 Notification of reasons for refusal

Effective date: 20060502

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A02 Decision of refusal

Effective date: 20061128

Free format text: JAPANESE INTERMEDIATE CODE: A02