JP4016319B2 - Processing method of raw consludge into stable or stable type waste and its processed waste - Google Patents

Processing method of raw consludge into stable or stable type waste and its processed waste Download PDF

Info

Publication number
JP4016319B2
JP4016319B2 JP2002107262A JP2002107262A JP4016319B2 JP 4016319 B2 JP4016319 B2 JP 4016319B2 JP 2002107262 A JP2002107262 A JP 2002107262A JP 2002107262 A JP2002107262 A JP 2002107262A JP 4016319 B2 JP4016319 B2 JP 4016319B2
Authority
JP
Japan
Prior art keywords
waste
blast furnace
furnace slag
mass fraction
stable type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002107262A
Other languages
Japanese (ja)
Other versions
JP2003300094A (en
Inventor
聖 村上
敬 佐々貴
Original Assignee
聖 村上
敬 佐々貴
酒井 博
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聖 村上, 敬 佐々貴, 酒井 博 filed Critical 聖 村上
Priority to JP2002107262A priority Critical patent/JP4016319B2/en
Publication of JP2003300094A publication Critical patent/JP2003300094A/en
Application granted granted Critical
Publication of JP4016319B2 publication Critical patent/JP4016319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Treatment Of Sludge (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、生コンスラッジの安定型あるいは安定型に準じた廃棄物への加工方法及びその加工廃棄物に関する。
【0002】
【従来の技術】
生コン工場におけるミキサーの洗浄やアジテータトラック中の残りコン・戻りコンの洗浄による洗い排水から細骨材・粗骨材を回収した残りの懸濁水(スラッジ水)あるいはそれを脱水機により脱水したものは、生コンスラッジと呼ばれ、産業廃棄物の取り扱い上、汚泥に属し、例えば地中にコンクリート擁壁を構築して地下水等に浸透しないように遮断した厳重な管理下でする廃棄処理のみが許容されていた。近時、この生コンスラッジは固化したモルタルと同等の性能の生コンスラッジの固化体であれば、ガラス・陶磁器くずに該当する安定型廃棄物に指定変更が可能となっている。安定型廃棄物であれば、例えば単に地面を掘削して埋め立てのみで廃棄物処理が行なえる。
【0003】
【発明が解決しようとする課題】
しかしながら、通常の生コンスラッジで固化したモルタルと同等の性能を確保することは難しく、結局のところ管理型廃棄物として処理されているのが現状であり、処分場確保や処理費用等の多くの問題を抱えている。すなわち、処分場の確保が困難で現実には不法投棄される場合も多く、周辺住民とのトラブルを生じさせるばかりでなく、地下水に浸潤して環境汚染を生起する問題があった。また、これらの生コンスラッジは通常、産業廃棄物の専門処理業者に委託して処理され、脱水、乾燥、運搬等の処理に要するコストが生コン自体の生産コストよりも高額となってコンクリート製造メーカや建設会社側のコスト対効果を著しく損なうものとなっていた。これに対し、従来、残りコン・戻りコン及び洗浄排水が発生した当日に脱水したスラッジケーキを用いて、含水率を高性能脱水機により約50%以下に調整したものについて固化したモルタルと同等の性能の生コンスラッジの硬化体を得るものが知られているが、対象が当日脱水のスラッジケーキに限定され、また、含水率を約50%以下にするための脱水機が高価であって、現実には採用できないものであった。
【0004】
本発明は上記従来の課題に鑑みてなされたものであり、その目的は、その加工処理に現実上、特段の設備の構築や処理コストをかけることができない廃棄物としての生コンスラッジを極めて低コストでコンクリート製造業者や建設業者等が処理コスト負担増を受けずに固化したモルタルと同等の性能の生コンスラッジの硬化体として加工処理でき、同時に環境汚染を防止させ得る生コンスラッジの安定型あるいは安定型に準じた廃棄物への加工方法及びその加工廃棄物を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明は、生コンスラッジの安定型あるいは安定型に準じた廃棄物への加工方法であって、処理すべき生コンスラッジのスラッジ固形分と、水分(生コンスラッジに含まれる含水量と加水量を含む)と、高炉スラグ微粉末体と、からなる主調合要素であり、該主調合要素のそれぞれの質量分率Sd,W,Sgの総計に対する高炉スラグ微粉末体の質量分率が下記(A)式の関係により設定されるように配分され、主調合要素に、(A)式により求まるスラッジ固形分と高炉スラグ微粉末体の質量和に対して5ないし20(wt%)の廃石膏からなる副調合要素を混入させて混練させることにより生コンスラッジを安定型あるいは安定型に準じた廃棄物として加工させることを特徴とする生コンスラッジの安定型あるいは安定型に準じた廃棄物への加工方法から構成される。
(A式)Sg=100−W(1+1/α)[wt%]{但し、含水率α=W/Sd}
【0006】
その際、水分の質量分率Wが前記質量分率総計に対して30ないし60(wt%)に設定するとよい。
【0007】
より好適には、スラッジ固形分の質量分率Sdが15ないし25(wt%)、水分の質量分率Wが60ないし40(wt%)、高炉スラグ微粉末体の質量分率Sgが25ないし35(wt%)に設定するとよい。
【0008】
また、主調合要素の各質量分率に対応する加工物の強度が、式(A)との関係で設定されて混入される廃石膏の所定の質量を固定して、三角形の各辺に主調合要素のいずれかの要素を各々割り当ててそれらの質量分率目盛りをそれぞれの各辺に配し、隣接する辺に沿う平行な線の交点に所定の強度を基準としてそれを越える対象と越えない対象とを区別して表示させた三角成分グラフにより判別させるようにするとよい。
【0009】
また、本発明は、請求項1ないし4のいずれかに記載の加工方法により加工された生コンスラッジの安定型あるいは安定型に準じた加工廃棄物から構成される。
【0010】
さらに、本発明は、処理すべき生コンスラッジのスラッジ固形分と、水分(生コンスラッジに含まれる含水量と加水量を含む)と、高炉スラグ微粉末体と、のそれぞれの質量分率Sd,W,Sgの総計に対して高炉スラグ微粉末体の質量分率を下記(A)式により求め、かつ(A)式により求まるスラッジ固形分と高炉スラグ微粉末体の質量和に対して5ないし20(wt%)の廃石膏を、(A)式により求まる質量のそれぞれスラッジ固形分と、水分(生コンスラッジに含まれる含水量と加水量を含む)と、高炉スラグ微粉末体と、に加える混入量とする生コンスラッジの安定型あるいは安定型に準じた廃棄物として加工させる際の各要素の配合設定方法から構成される。。
(A式)Sg=100−W(1+1/α)[wt%]{但し、含水率α=W/Sd}
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。本発明は、処理すべき生コンスラッジのスラッジ固形分と、水分(生コンスラッジに含まれる含水量と加水量を含む)と、高炉スラグ微粉末体と、からなる群を主調合要素とし、該主調合要素のそれぞれの質量分率Sd,W,Sgの総計に対する高炉スラグ微粉末体の質量分率が所定の関係式により設定されるように配分し、主調合要素に、所定の関係式により設定されたスラッジ固形分と高炉スラグ微粉末体の質量和に対して5ないし20(wt%)の廃石膏からなる副調合要素を混入させて混練させ、生コンスラッジを安定型あるいは安定型に準じた廃棄物として加工させるものである。すなわち、処理すべき生コンスラッジと、水と、高炉スラグ微粉末体と、石膏ボード廃材から得られる廃石膏粉と、を基本的な配合要素とし、そのうち、生コンスラッジと、水と、高炉スラグ微粉末体を主調合要素としてそれらの各質量分率と質量分率総計との関係式を設定し、さらに、それによって求まるスラッジ固形分と高炉スラグ微粉末体の質量和に対して5ないし20(wt%)の廃石膏からなる副調合要素を主調合要素に混入させて混練させることにより生コンスラッジを加工廃棄物として処理する。主調合要素の各要素の質量分率は上記の廃石膏混入質量とそれ以外のいずれかの要素の質量を設定することにより関係式より一意に求められる。スラッジ固形分と高炉スラグ微粉末体の質量和に対する所定の比率の質量の廃石膏を加えることにより、それに対応する主調合要素の質量分率を簡単に求めることができ、それによって、有価物としての高炉スラグ微粉末量を少なくし、かつ、混練可能で固化後の破砕不要の加工物を生コンスラッジより簡単に生成させ得る。
【0012】
本実施形態の生コンスラッジの加工調合材料は、主調合要素と副調合要素のうちで実質的な有価物は高炉スラグ微粉末体のみである。生コンスラッジは、貯蔵状態により含水率が大きく異なるが、天日乾燥や空圧式の簡易脱水により含水率をある程度低減させたものは勿論、全く脱水処理を行なっていない無脱水の例えば1000%以下含水率のものでも加工処理可能である。また、当日脱水に限らず貯水槽に沈殿したままで外気との接触による炭酸化によりアルカリ量が低減していないものであれば同様に利用できる。
【0013】
高炉スラグ微粉末体は高炉スラグ微粉末ばかりでなく、高炉セメントでもよい。高炉スラグ微粉末は、実験では比表面積が約6000cm2 /g程度のものを
用いているが、それ以下あるいはそれ以上のものを使用してもよい。
【0014】
石膏ボード廃材は、例えば表面紙分離後粉砕処理されたものが用いられ、その粒径が1.2mm以下程度のものが好ましいがそれ以上、あるいはそれ以下のものでも良い。また、石膏ボード廃材は、非加熱のもので全量ニ水石膏でも、乾式加熱により半水石膏としたものでもよい。非加熱石膏ボード廃材は、二水石膏と高炉スラグの反応によるエトリンガイトの生成により生コンスラッジの加工硬化体の強度発現を促進させる。
【0015】
上記したように、本実施形態において、主調合要素は、スラッジ固形分、水分(スラッジの含水量及び加水量を含む)、高炉スラグ微粉末の三成分からなる硬化体と考える。そして、それらの硬化体の強度を発現させやすい廃石膏の調合配分を設定し、それぞれの種々の配分量に対応して主調合要素のスラッジ固形分、水分、高炉スラグ微粉末体の質量分率を総計が100%になるように変化させ、それぞれの調合配分における主調合要素と廃石膏との混合体の圧縮強度を測定することにより、廃棄物として望ましい強度を保持した加工物を製造するための各質量分率を知ることができる。
【0016】
主調合要素における生コンスラッジのスラッジ固形分と、水分と、高炉スラグ微粉末体と、のそれぞれの質量分率Sd,W,Sgの総計に対する高炉スラグ微粉末体の質量分率の関係式は、例えば高炉スラグ微粉末体を求める式でSg=100−W(1+1/α)[wt%](A式)として設定される。図1は、各調合要素の関係を示しており、生コンスラッジのスラッジ固形分の質量分率Sd(wt%)と、生コンスラッジに含まれる含水量と加水量を含む水分の質量分率W(wt%)と、高炉スラグ微粉末体の質量分率Sg(wt%)と、の総計を100(wt%)とする。そして、含水率αは水分Wをスラッジ固形分Sdで除したα=W/Sdで求められる。この関係から高炉スラグ微粉末体Sgは、Sg=100ーW/αーW[wt%]式(A−2)で配合量が定まる。具体的には、含水率αは処理すべき生コンスラッジの例えば複数箇所をサンプリング測定して求められ、これに対して水分量を設定することにより各要素の質量分率とともに必要な高炉スラグ微粉末体の量が決まる。この場合、所要の圧縮強度が得られる範囲で廃棄物である生コンスラッジの消費量を多く設定し、かつ、その際の有価物である高炉スラグ微粉末の使用量を少なく設定するように各分率を決めることができる。式(A−2)から、このためには水分量を多く設定すると良いことがわかる。
【0017】
上記の主調合要素の関係式から求まるスラッジ固形分と高炉スラグ微粉末体の質量和に対して5ないし20(wt%)の廃石膏からなる副調合要素を主調合要素に混入させて混練させることにより生コンスラッジを加工廃棄物として処理する。この範囲は、廃石膏混入による圧縮強度の変化の関係や主調合要素との混練可能性等を考慮して実験より求めて設定される。そして、できるだけ有価物としての高炉スラグ微粉末量を少なくしつつ望ましい強度を確保できる各要素の質量分率を決定し、これによって、実用可能な生コンスラッジの加工廃棄物を製造し得る。
【0018】
主調合要素の三成分の各質量分率に対応する加工物の強度を知るために、図2ないし図4に示すような三角形の各辺に各要素を割り当てた三角成分グラフが有効に用いられる。この三角成分グラフは式(A)との関係で設定されて混入される廃石膏の所定の質量を固定し、三角形の各辺に割り当てられた各要素の質量分率目盛りをそれぞれ等分目盛りで各辺に表示し、隣接する辺に沿う平行な線の交点に所定の強度を基準としてそれを越える対象と越えない対象とを区別して表示させたものである。例えば、図3では、図8の調合配分により廃石膏(石膏ボード廃材)混入率を10wt%とした場合で、20℃水中養生材齢7日経過のものについて5N/mm2 以上の圧縮強度を有する供試体を基準とし、5N/mm2 を越えるものを丸印表示し、未満のものを×印で表示したものである。これにより、容易に所定強度を保持しうる加工物の高炉スラグ微粉末体の質量と、水分量との関係が図式的に把握でき、特に実用上の利便性が高い。
【0019】
図3に示すように、圧縮強度5N/mm2 以上のもので最も高炉スラグ微粉末体の量が少ないのは、図8より、生コンスラッジのスラッジ固形分Sd=20(wt%)、水分W=60(wt%)、高炉スラグ微粉末体Sg=20(wt%)の調合組み合わせの場合である。一方、5N/mm2 以上の強度を有するものとして、例えばSd=5(wt%)、W=25(wt%)、Sg=70(wt%)の組み合わせのものもあるが、強度が31.3N/mm2 であり、他の材料との
混練が困難になるとともに、逆に固まり過ぎて破砕処理用に別途のコストを掛ける必要が出てくるので採用できない。結局、水分の質量分率Wを質量分率総計に対して30ないし60(wt%)に設定することにより高炉スラグ微粉末体の使用量を可能な限り低い率で且つ所望の強度を保持する範囲を特定することができる。図3の例では、廃石膏混入率10(wt%)として、その際の主調合要素の種々の配分時の強度を測定しているが、5〜20(wt%)の範囲でそれぞれ供試体を作成して行なうことにより、ほとんどすべての調合態様の具体的な質量分率設定が簡単に行なえる。なお、図4は、参考例として図8の調合配分により廃石膏無混入のもので、20℃水中養生材齢7日経過のものについて5N/mm2以上の圧縮強度を有する供試体を基準とし、5N/mm2 を越えるものを丸印表示し、未満のものを×印で表示したものである。いずれも5N/mm2 以上の圧縮強度を保持するためには高炉スラグ微粉末量が最低50(wt%)必要であることがわかり、無価物に近い廃石膏を混入することにより高炉スラグ微粉末使用量を低くして加工廃棄物の所定の強度を得られることがわかる。
【0020】
具体的には、図3、図8で、減水剤を使用しないで混練可能な範囲はWが約30%以上、20℃水中養生材齢7日の圧縮強度が5N/mm2 以上の範囲は、石膏ボード廃材無混入ではWが約40%以下、石膏ボード廃材混入率=10%の場合はWが約60%以下となり、生コンスラッジの含水率α=W/Sdを測定し、上記のWの範囲でSd=W/αおよびSg=100−W(1+1/α)により、スラッジ固形分及び高炉スラグ微粉末の質量分率(%)が求められる。そして、スラッジ固形分Sdと水Wを含むスラッジケーキTを実際に処理する生コンスラッジの質量とし、このTすなわち{Sd+W(wt%)}と高炉スラグ微粉末Sg(wt%)とを混合するとき、T=Sd(wt%)×(1+α)、Sd(wt%)=T/(1+α)、Sg(wt%)をXとして、(Sd+W):Sg=T:Xより、高炉スラグ微粉末の質量は、T[Sg/(Sd+W)]により得られ、また石膏ボード廃材の質量は、混入率を10%とした場合、スラッジケーキの質量{T/(1+α)}と高炉スラグ微粉末の質量{T[Sg/(Sd+W)]}の和の10%として決まる。このように、処理する生コンスラッジの含水率の測定値と圧縮強度が例えば5N/mm2 以上となる水量Wの範囲により、調合を定めることができる。
【0021】
より好ましくは、スラッジ固形分の質量分率Sdが15ないし25(wt%)
、水分の質量分率Wが60ないし40(wt%)、高炉スラグ微粉末体の質量分率Sgが25ないし35(wt%)に設定するとよい。例えば図8で、Sd=20(wt%)、W=50(wt%)、Sg=30(wt%)の組み合わせのものは、高炉スラグ微粉末体の使用量は30(wt%)であるが、圧縮強度は11.3N/mm2 であり、これであれば管理型廃棄物ではなく、公的に認定されている安定型廃棄物として廃棄が可能である。安定型廃棄物は、固化したモルタルと同等の性能、すなわち、一軸圧縮強度で8N/mm2 以上の生コンスラッジは、ガラス・陶磁器屑に該当するものとして安定型廃棄物として認められ、擁護壁等を設けずに単なる掘削穴内に埋め立て処理するだけで良く、処理が大幅に簡単でしかも処理コストも低廉である。したがって、生コンスラッジを安定型廃棄物として処理でき、かつ、その処理加工コストも低廉であれば、コンクリート製造メーカや、建設業者などの経済的負担は軽く、進んでそれらの処理を行なう結果、地下水汚染や不法投棄等による環境問題あるいは周辺住民とのトラブルも少なくなり、生コンスラッジ処理に関する問題を一気に解決し得る。
【0022】
前述のように、副調合要素としての廃石膏の原料の石膏ボード廃材は、スラッジ固形分と高炉スラグ微粉末の質量和に対して質量比で5〜20wt%の範囲で一定となるように、主調合要素のうちの2つの要素の質量和に対する外割として設定されて混入される。副調合要素としての廃石膏は、その混入率が多くなるほど強度発現促進及び収縮低減効果も大きくなるが、流動性の低下により成形性が悪くなり、主調合要素との練り混ぜが困難となる。この点から、石膏混入率は(A)式により求まるスラッジ固形分と高炉スラグ微粉末体の質量和に対して5ないし20(wt%)が好ましい。図5は、生コンスラッジのスラッジ固形分質量分率Sd=22.5wt%、水分質量分率W=57.5wt%、高炉スラグ微粉末Sg=20.0wt%に設定し、20℃の水中養生で材齢が3日のものと同7日のものとについての石膏ボード廃材の混入率と圧縮強度との関係を示すグラフであり、いずれも石膏ボード廃材混入率が10%まで圧縮強度は比例的に増加し、混入率5%では材齢3日のもので既に強度5N/mm2 を越え、10日では8N/mm2 程度の強度を確保する。石膏混入率が10%以上で圧縮強度の増加が頭打ちとなり、石膏混入率が大きい場合には短期強度は大きくなるが、長期強度の発現は小さいことが確認されている。図6の材齢が7日と28日のものについての強度と石膏ボード廃材混入率の関係のグラフからもわかるように、石膏ボード混入率は5%から上限は流動性の点を考慮して20%の範囲が混合体の強度発現に効果的に寄与し得ると判断される。
【0023】
【実験例】
以下に、実験例を示し、本発明の特徴をより具体的に説明する。
実験例 図7の表の使用材料で、生コンスラッジは含水率が235%のスラッジケーキを用い、図8の内容で調合した。調合は含水率が235%の範囲の数点を選定し、混練が不可能なものや液状で沈下が大きく供試体を形成できないものは除いた。なお、石膏ボード廃材は外割で混入し、石膏混入率は10%一定とした。混練方法は容量5l(リットル)のオムニミキサーを用い、スラッジケーキを空練り90秒、高炉スラグ微粉末、石膏、水を投入し2分間練り混ぜた。圧縮強度試験には、Φ50×100mmの円柱供試体を各3個ずつ作成し、20℃および40℃水中養生材齢3、7、14、21、28日後試験に供した。
結果及び考察
図3、図4に実験結果を示す。石膏ボード廃材無混入の場合、標準養生材齢7日で圧縮強度8N/mm2 以上を得るためには、水分率Wを約40wt%以下に、スラッジケーキの使用量を減らし、高炉スラグ微粉末の使用量を多くする必要がある。一方、石膏混入率を10%とした場合、水分率Wを約50〜60wt%以下に、石膏無混入に比べて高炉スラグ微粉末の使用量を少なく、その分スラッジケーキの使用量を多くすることができることがわかる。
【0024】
以上、説明した本発明の生コンスラッジの安定型あるいは安定型に準じた廃棄物への加工方法及びその加工廃棄物は、上記した実験例に限定されるものではない。
【0025】
【発明の効果】
以上説明したように、本発明の生コンスラッジの安定型あるいは安定型に準じた廃棄物への加工方法、加工廃棄物あるいは要素の配合設定方法によれば、所定の関連式で生コンスラッジのスラッジ固形分と、水分と、高炉スラグ微粉末体と、をそれらの質量分率で関連づけた主調合要素と、廃石膏からなる副調合要素と、を調合材料とし、廃石膏を所定の関連式により求まるスラッジ固形分と高炉スラグ微粉末体の質量和に対して5ないし20(wt%)の量として、主調合要素に混入させて混練させ、生コンスラッジを安定型あるいは安定型に準じた廃棄物として加工させるから、生コンスラッジを極めて低コストでコンクリート製造業者や建設業者等が処理コスト負担増を受けずに固化したモルタルと同等の性能の生コンスラッジの硬化体として加工処理でき、同時に不法投棄による六価クロム等の有害物の地下水浸潤や環境汚染を防止させることが可能である。特に、主調合要素の各質量分率の総計と各質量分率との関係式並びに外割配合による廃石膏量決定を行なうようにしているから、含水率1000%程度の無脱水の生コンスラッジでも原理的に処理可能である。
【0026】
その際、水分の質量分率Wが質量分率総計に対して30ないし60(wt%)として設定することにより、高炉スラグ微粉末体の使用量を可能な限り低い率で且つできるだけ多くの生コンスラッジ処理量を確保し、さらに所望の強度を保持をする範囲を特定することができる。
【0027】
より好ましくは、スラッジ固形分の質量分率Sdが15ないし25(wt%)、水分の質量分率Wが60ないし40(wt%)、高炉スラグ微粉末体の質量分率Sgが25ないし35(wt%)に設定することにより、8N/mm2 以上の圧縮強度を保持して安定型廃棄物として廃棄が可能であり、処理加工コストが低廉でコンクリート製造メーカや、建設業者などの経済的負担は軽く、進んでそれらの処理を行なう結果、地下水汚染や不法投棄等による環境問題あるいは周辺住民とのトラブルも少なくなり、生コンスラッジ処理に関する問題を解決し得る。
【図面の簡単な説明】
【図1】本発明の生コンスラッジの安定型あるいは安定型に準じた廃棄物への加工方法の実施形態に係る各調合要素の関係を示す説明図である。
【図2】主調合要素の関係式を図で示す三角成分グラフを表わす図である。
【図3】石膏ボード廃材混入率を10%として三角成分グラフにより実験結果を示す図である。
【図4】石膏ボード廃材無混入の場合で、三角成分グラフにより実験結果を示す図である。
【図5】石膏ボード廃材混入率と圧縮強度との関係をグラフで示した図である。
【図6】図5とは異なる他の条件で石膏ボード廃材混入率と圧縮強度との関係をグラフで示した図である。
【図7】実施形態に係る実験例の使用材料の内容を示す図である。
【図8】実施形態に係る実験例の使用調合配分を示す図である。
【符号の説明】
Sd スラッジ固形分
W 水分
Sg 高炉スラグ微粉末体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for processing raw consludge into a stable type or a waste according to the stable type and the processed waste.
[0002]
[Prior art]
Remaining suspended water (sludge water) from which fine aggregates and coarse aggregates are recovered from washing wastewater by washing mixers in the ready-mix factory and washing the remaining and return condensers in the agitator truck, or those dehydrated using a dehydrator This is called raw consludge and belongs to sludge in the handling of industrial waste.For example, it is only allowed to dispose of waste under strict control by building a concrete retaining wall in the ground and blocking it from penetrating into groundwater etc. It was. Recently, it is possible to change the designation of the raw consludge to a stable waste corresponding to glass and ceramic waste, as long as it is a solid product of raw consludge having the same performance as solidified mortar. If it is a stable type waste, for example, the waste can be treated simply by excavating the ground and reclaiming it.
[0003]
[Problems to be solved by the invention]
However, it is difficult to secure the same performance as mortar solidified with ordinary raw consludge, and after all it is currently treated as managed waste, and there are many problems such as securing disposal sites and disposal costs. Have In other words, it is difficult to secure a disposal site and there are many cases where it is illegally dumped in reality, which not only causes troubles with the residents in the vicinity, but also infiltrates into groundwater and causes environmental pollution. In addition, these ready-mixed sludge is usually processed by contracting a specialized industrial waste disposal company, and the cost required for dehydration, drying, transportation, etc. is higher than the production cost of ready-mixed concrete itself. The cost effectiveness of the construction company was significantly impaired. On the other hand, the sludge cake dehydrated on the same day when the remaining and returning condensate and washing wastewater are generated, and the water content adjusted to about 50% or less by a high-performance dehydrator is equivalent to the solidified mortar. Although it is known to obtain a hardened body of high-performance raw sludge, the target is limited to sludge cakes that are dewatered on the day, and a dehydrator for reducing the moisture content to about 50% or less is expensive. Could not be adopted.
[0004]
The present invention has been made in view of the above-described conventional problems, and the object of the present invention is to reduce raw consludge as waste, which cannot be practically constructed with special equipment or costly for processing. Can be processed as a hardened body of raw consludge with the same performance as solidified mortar without increasing the processing cost, and at the same time a stable or stable type of raw consludge that can prevent environmental pollution It is in providing the processing method to the waste according to JIS, and its processing waste.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a raw consludge stable type or a processing method for waste according to a stable type, wherein the sludge solid content of the raw consludge to be treated and moisture (included in the raw consludge) And a blast furnace slag fine powder body, and a blast furnace slag fine powder body with respect to the total mass fraction Sd, W, Sg of each of the main blend elements. The mass fraction is distributed so as to be set according to the relationship of the following formula (A), and the main blending element is 5 to 20 (with respect to the mass sum of the sludge solid content and the blast furnace slag fine powder obtained by the formula (A). The stable type of ready-mixed sludge is characterized by processing the ready-mixed sludge as a stable type or a waste conforming to the stable type by mixing and kneading a sub-mixing element consisting of waste gypsum (wt%). There is composed of a processing method of the waste according to the stable.
(Formula A) Sg = 100−W (1 + 1 / α) [wt%] {however, moisture content α = W / Sd}
[0006]
At this time, the mass fraction W of water is preferably set to 30 to 60 (wt%) with respect to the total mass fraction.
[0007]
More preferably, the mass fraction Sd of the sludge solid content is 15 to 25 (wt%), the mass fraction W of the water is 60 to 40 (wt%), and the mass fraction Sg of the blast furnace slag fine powder is 25 to 25%. It is good to set to 35 (wt%).
[0008]
In addition, the strength of the work piece corresponding to each mass fraction of the main blending element is set in relation to the formula (A), and a predetermined mass of waste gypsum mixed therein is fixed, and the main mass is fixed to each side of the triangle. Assign each element of the compounding element and place the mass fraction scale on each side, and do not exceed the target exceeding the predetermined strength at the intersection of parallel lines along the adjacent side It is good to make it discriminate | determine by the triangular component graph displayed distinguishing and object.
[0009]
Moreover, this invention is comprised from the processing waste according to the stable type | mold of the raw consludge processed by the processing method in any one of Claim 1 thru | or 4, or a stable type.
[0010]
Furthermore, the present invention provides the mass fractions Sd, W of the sludge solid content of the raw consludge to be treated, the moisture (including the water content and the amount of water contained in the raw consludge), and the blast furnace slag fine powder. The mass fraction of the ground granulated blast furnace slag is obtained from the following formula (A) with respect to the total of Sg, and 5 to 20 with respect to the sum of the solid content of the sludge solids and the ground granulated blast furnace slag obtained by the formula (A). (Wt%) waste gypsum added to each of the sludge solid content, water (including the water content and water content contained in the raw concrete sludge), and the blast furnace slag fine powder mass determined by the formula (A) It consists of a composition setting method of each element when processing as a waste according to a stable type or a stable type of raw consludge as a quantity. .
(Formula A) Sg = 100−W (1 + 1 / α) [wt%] {however, moisture content α = W / Sd}
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. The present invention comprises as a main blending element a group consisting of sludge solids of raw consludge to be treated, moisture (including water content and water content contained in the raw consludge), and ground granulated blast furnace slag. Distribute the mass fraction of the blast furnace slag fine powder to the total mass fraction Sd, W, Sg of the blending elements so that they are set according to a predetermined relational expression, and set them according to the predetermined relational expression to the main blending element A mixture of sub-preparation elements consisting of 5 to 20 (wt%) waste gypsum with respect to the mass sum of the sludge solid content and the blast furnace slag fine powder was mixed and kneaded, and the ready-mixed sludge conformed to a stable type or a stable type. It is to be processed as waste. In other words, raw consludge to be treated, water, blast furnace slag fine powder, and waste gypsum powder obtained from gypsum board waste material are the basic blending elements, of which raw consludge, water, blast furnace slag fines The relational expression between the respective mass fractions and the total mass fraction is set with the powder body as a main blending element, and further, 5 to 20 (with respect to the mass sum of the sludge solid content and the blast furnace slag fine powder body obtained thereby. The mixed raw sludge is treated as a processing waste by mixing and mixing a sub-preparation element made of waste gypsum (wt%) into the main preparation element. The mass fraction of each element of the main blending element can be uniquely obtained from the relational expression by setting the above-described waste gypsum mixed mass and the mass of any other element. By adding waste gypsum with a predetermined ratio to the total mass of sludge solids and ground granulated blast furnace slag, the corresponding mass fraction of the main blending element can be easily determined, thereby providing valuable resources. The amount of fine powder of blast furnace slag can be reduced, and a kneaded and solidified processed material that does not need to be crushed can be easily produced from raw consludge.
[0012]
In the raw blended sludge processing and blending material of the present embodiment, the substantial valuable material is only the blast furnace slag fine powder among the main blending element and the sub blending element. The raw water content of raw consludge varies greatly depending on the storage condition, but the water content has been reduced to some extent by sun drying or pneumatic simple dehydration. Even those with a rate can be processed. In addition, not only dehydration on the day, but also can be used in the same manner as long as the alkali amount is not reduced by carbonation by contact with outside air while remaining in the water tank.
[0013]
The blast furnace slag fine powder may be not only blast furnace slag fine powder but also blast furnace cement. In the experiment, a blast furnace slag fine powder having a specific surface area of about 6000 cm 2 / g is used in the experiment.
[0014]
The gypsum board waste material is, for example, one that has been crushed after separation of the surface paper, and preferably has a particle size of about 1.2 mm or less, but may be more or less. Further, the gypsum board waste material may be non-heated and the whole amount may be dihydrated gypsum, or may be half-hydrated gypsum by dry heating. Non-heated gypsum board waste material promotes the development of strength of raw hardened sludge work-hardened body by the production of ettringite by the reaction of dihydrate gypsum and blast furnace slag.
[0015]
As described above, in the present embodiment, the main blending element is considered to be a cured body composed of three components of sludge solid content, moisture (including the water content and water content of sludge), and blast furnace slag fine powder. And set the distribution of waste gypsum that can easily develop the strength of those hardened bodies, corresponding to each distribution amount of sludge solid content, moisture, mass fraction of blast furnace slag fine powder of the main preparation elements In order to produce a workpiece that has the desired strength as waste by measuring the compressive strength of the mixture of the main blending elements and waste gypsum in each blending distribution. Each mass fraction of can be known.
[0016]
The relational expression of the mass fraction of the blast furnace slag fine powder with respect to the sum of the mass fractions Sd, W, Sg of the sludge solid content, moisture, and blast furnace slag fine powder of the raw consludge in the main blending element is as follows: For example, it is set as Sg = 100−W (1 + 1 / α) [wt%] (formula A) in the formula for obtaining the blast furnace slag fine powder. FIG. 1 shows the relationship between each blending element. The mass fraction Sd (wt%) of the sludge solid content of the raw consludge and the water mass fraction W containing the water content and water content contained in the raw consludge ( wt%) and the mass fraction Sg (wt%) of the blast furnace slag fine powder body is 100 (wt%). The water content α is obtained by α = W / Sd obtained by dividing the water W by the sludge solid content Sd. From this relationship, the blending amount of the blast furnace slag fine powder Sg is determined by Sg = 100−W / α−W [wt%] formula (A-2). Specifically, the moisture content α is obtained by sampling and measuring, for example, a plurality of portions of the raw consludge to be treated, and by setting the moisture content, the necessary blast furnace slag fine powder together with the mass fraction of each element The amount of body is determined. In this case, each amount is set so that the consumption of raw consludge, which is a waste product, is increased within the range where the required compressive strength can be obtained, and the amount of blast furnace slag fine powder, which is a valuable resource at that time, is set to a small amount. You can decide the rate. From formula (A-2), it can be seen that it is better to set a larger amount of water for this purpose.
[0017]
A sub-mixing element composed of 5 to 20 (wt%) waste gypsum is mixed into the main mixing element and kneaded with respect to the total mass of the sludge solid content and the blast furnace slag fine powder obtained from the relational expression of the above main mixing element. To treat raw consludge as processing waste. This range is determined by experiment in consideration of the relationship of change in compressive strength due to waste gypsum mixing and the possibility of kneading with the main blending elements. And the mass fraction of each element which can ensure a desirable intensity | strength, reducing the amount of blast furnace slag fine powder as valuables as much as possible is determined, and, thereby, the processing waste of practical raw consludge can be manufactured.
[0018]
In order to know the strength of the workpiece corresponding to each mass fraction of the three components of the main blending element, a triangular component graph in which each element is assigned to each side of the triangle as shown in FIGS. 2 to 4 is effectively used. . This triangular component graph fixes the predetermined mass of waste gypsum set and mixed in relation to the formula (A), and the mass fraction scale of each element assigned to each side of the triangle is an equally divided scale. It is displayed on each side, and at the intersection of parallel lines along the adjacent side, a target exceeding the predetermined intensity and a target not exceeding are displayed separately. For example, in FIG. 3, when the mixing rate of waste gypsum (gypsum board waste material) is set to 10 wt% according to the distribution of FIG. 8, 20 ° C. underwater curing material has a compressive strength of 5 N / mm 2 or more after 7 days of age. Based on the specimen, those exceeding 5 N / mm 2 are indicated by circles, and those below are indicated by x. Thus, the relationship between the mass of the ground granulated blast furnace slag and the amount of water that can easily maintain a predetermined strength can be grasped schematically, and the practical convenience is particularly high.
[0019]
As shown in FIG. 3, the amount of the blast furnace slag fine powder having the compressive strength of 5 N / mm 2 or more is the smallest because the sludge solid content Sd = 20 (wt%) and the water W = This is a case of a combination of 60 (wt%) and blast furnace slag fine powder Sg = 20 (wt%). On the other hand, there is a combination of Sd = 5 (wt%), W = 25 (wt%), Sg = 70 (wt%), for example, having a strength of 5 N / mm 2 or more, but the strength is 31.3 N / Mm 2, and it becomes difficult to knead with other materials, and on the contrary, it is too hard to be used, and it becomes necessary to devise additional costs for crushing treatment, so that it cannot be employed. Eventually, by setting the mass fraction W of water to 30 to 60 (wt%) with respect to the total mass fraction, the amount of blast furnace slag fine powder used is kept at the lowest possible rate and at the desired strength. A range can be specified. In the example of FIG. 3, the strength at the time of various distributions of the main blending elements at that time is measured as the waste gypsum mixing rate 10 (wt%), but each specimen in the range of 5 to 20 (wt%). By creating and carrying out the above, it is possible to easily set specific mass fractions for almost all preparation modes. As a reference example, FIG. 4 is based on a specimen having a compressive strength of 5 N / mm 2 or more for a reference material having no waste gypsum mixed according to the formulation distribution of FIG. Those exceeding 5 N / mm 2 are indicated by a circle, and those less than 5 N / mm 2 are indicated by an x mark. In both cases, it was found that a minimum amount of blast furnace slag fine powder (50% by weight) was necessary to maintain a compressive strength of 5 N / mm 2 or more. It can be seen that the predetermined strength of the processing waste can be obtained by reducing the amount used.
[0020]
Specifically, in FIG. 3 and FIG. 8, the range in which kneading can be performed without using a water reducing agent is such that W is about 30% or more, and the compressive strength at 20 ° C. under water curing material age 7 days is 5 N / mm 2 or more. When gypsum board waste material is not mixed, W is about 40% or less, and when gypsum board waste material mixture rate is 10%, W is about 60% or less, and the moisture content α = W / Sd of raw consludge is measured. By the range, Sd = W / α and Sg = 100−W (1 + 1 / α), the mass fraction (%) of the sludge solid content and the blast furnace slag fine powder is obtained. Then, when the sludge cake T containing the sludge solid content Sd and the water W is used as the mass of the raw consludge to be actually processed, this T, that is, {Sd + W (wt%)} and the blast furnace slag fine powder Sg (wt%) are mixed. , T = Sd (wt%) × (1 + α), Sd (wt%) = T / (1 + α), and Sg (wt%) as X, (Sd + W): Sg = T: From X, the blast furnace slag fine powder The mass is obtained by T [Sg / (Sd + W)], and the mass of the gypsum board waste is the mass of the sludge cake {T / (1 + α)} and the mass of the blast furnace slag fine powder when the mixing rate is 10%. It is determined as 10% of the sum of {T [Sg / (Sd + W)]}. In this way, the formulation can be determined by the measured value of the moisture content of the raw consludge to be treated and the range of the water amount W in which the compressive strength is, for example, 5 N / mm 2 or more.
[0021]
More preferably, the mass fraction Sd of the sludge solid content is 15 to 25 (wt%).
The mass fraction W of water is preferably set to 60 to 40 (wt%), and the mass fraction Sg of the blast furnace slag fine powder is set to 25 to 35 (wt%). For example, in FIG. 8, in the combination of Sd = 20 (wt%), W = 50 (wt%), and Sg = 30 (wt%), the amount of blast furnace slag fine powder used is 30 (wt%). However, the compressive strength is 11.3 N / mm 2, and in this case, it is possible to dispose as not a managed waste but an officially certified stable waste. Stable waste has the same performance as solidified mortar, that is, raw consludge with a uniaxial compressive strength of 8 N / mm2 or more is recognized as stable waste as being equivalent to glass and ceramic waste. It is only necessary to perform the landfill process in the excavation hole without providing it, and the process is greatly simplified and the processing cost is low. Therefore, if raw consludge can be processed as stable waste and its processing cost is low, the economic burden on concrete manufacturers and construction companies is light, and as a result of proceeding with such processing, groundwater Environmental problems due to pollution and illegal dumping, and troubles with the surrounding residents are reduced, and problems related to the treatment of raw consludge can be solved at once.
[0022]
As described above, the gypsum board waste material of the waste gypsum as a sub-mixing element is constant in a mass ratio of 5 to 20 wt% with respect to the mass sum of the sludge solid content and the blast furnace slag fine powder, It is set and mixed as an outer ratio with respect to the mass sum of two elements of the main blending elements. The waste gypsum as a sub-mixing element increases the strength development and shrinkage reduction effect as the mixing ratio increases, but the moldability deteriorates due to a decrease in fluidity, and mixing with the main mixing element becomes difficult. From this point, the gypsum mixing rate is preferably 5 to 20 (wt%) with respect to the mass sum of the sludge solid content determined by the formula (A) and the blast furnace slag fine powder. FIG. 5 shows that the raw sludge mass fraction Sd = 22.5 wt%, the moisture mass fraction W = 57.5 wt%, the blast furnace slag fine powder Sg = 20.0 wt%, and the water curing at 20 ° C. It is a graph showing the relationship between the mixing rate of gypsum board waste material and the compressive strength for those with a material age of 3 days and those with the same age as 7 days, both of which compressive strength is proportional to the gypsum board waste material mixing rate of 10% When the mixing rate is 5%, the strength is already over 5N / mm2 at the age of 3 days, and the strength of about 8N / mm2 is secured in 10 days. It has been confirmed that when the gypsum contamination rate is 10% or more, the increase in compressive strength reaches its peak, and when the gypsum contamination rate is large, the short-term strength increases, but the expression of long-term strength is small. As can be seen from the graph of the relationship between the strength and the gypsum board waste material contamination rate for the ages of 7 and 28 days in FIG. 6, the gypsum board contamination rate is 5% and the upper limit is in consideration of fluidity It is judged that the range of 20% can effectively contribute to the strength development of the mixture.
[0023]
[Experimental example]
In the following, experimental examples are shown to describe the features of the present invention more specifically.
Experimental Example The raw consludge used in the table of FIG. 7 was a sludge cake having a moisture content of 235%, and was prepared according to the contents of FIG. For the blending, several points with a moisture content in the range of 235% were selected, and those that could not be kneaded and those that were liquid and could not form a specimen because of large settlement. In addition, the gypsum board waste material was mixed in an external ratio, and the gypsum mixing rate was fixed at 10%. As a kneading method, an omni mixer having a capacity of 5 l (liter) was used. The sludge cake was kneaded for 90 seconds, blast furnace slag fine powder, gypsum and water were added and kneaded for 2 minutes. In the compressive strength test, three cylindrical specimens each having a diameter of 50 × 100 mm were prepared and subjected to tests after 3, 7, 14, 21, 28 days of curing at 20 ° C. and 40 ° C. in water.
Results and discussion Fig. 3 and Fig. 4 show the experimental results. In the case of no gypsum board waste mixed, in order to obtain a compressive strength of 8 N / mm2 or more at a standard curing material age of 7 days, the water content W is reduced to about 40 wt% or less, the amount of sludge cake used is reduced, and the blast furnace slag fine powder It is necessary to increase the amount used. On the other hand, when the gypsum mixing rate is 10%, the water content W is about 50-60 wt% or less, the amount of blast furnace slag fine powder used is less than that without gypsum mixing, and the amount of sludge cake used is increased accordingly. You can see that
[0024]
As described above, the processing method of the raw consludge of the present invention described above into the stable type or the waste according to the stable type and the processed waste are not limited to the above experimental examples.
[0025]
【The invention's effect】
As described above, according to the raw consludge stable type of the present invention or the processing method into the waste conforming to the stable type, the processing waste or the composition setting method of the element, the sludge solids of the raw consludge with the predetermined relational expression The main blending element in which the mass, moisture, and blast furnace slag fine powder are related by their mass fraction, and the sub-mixing element made of waste gypsum are used as the blending material, and the waste gypsum is obtained by a predetermined relational expression. As the amount of 5 to 20 (wt%) based on the total mass of sludge solids and ground granulated blast furnace slag, it is mixed into the main blending element and kneaded, and the raw consludge is treated as a stable type or as a waste conforming to a stable type. Because it is processed, the ready-mixed sludge can be cured at a very low cost and has the same performance as mortar that has been solidified without increasing the processing costs of concrete manufacturers and construction companies. Machining can be treated as, it is possible to prevent the ground water infiltration and environmental pollution harmful substances such as hexavalent chromium by illegal dumping simultaneously. In particular, since the relational expression between each mass fraction of the main blending elements and each mass fraction and the amount of waste gypsum determined by external blending are determined, even non-dehydrated raw consludge with a moisture content of about 1000% It can be processed in principle.
[0026]
At that time, by setting the mass fraction W of water as 30 to 60 (wt%) with respect to the total mass fraction, the amount of blast furnace slag fine powder used is as low as possible and as much as possible It is possible to secure a sludge treatment amount and further specify a range that maintains a desired strength.
[0027]
More preferably, the mass fraction Sd of the sludge solid content is 15 to 25 (wt%), the mass fraction W of the water is 60 to 40 (wt%), and the mass fraction Sg of the blast furnace slag fine powder is 25 to 35. By setting (wt%), it is possible to dispose as a stable waste while maintaining a compressive strength of 8N / mm2 or more, the processing cost is low, and the economic burden on concrete manufacturers and construction companies As a result of being light and proceeding with the treatment, environmental problems due to groundwater contamination, illegal dumping, etc. or troubles with the surrounding residents are reduced, and problems related to the treatment of raw consludge can be solved.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing the relationship among various blending elements according to an embodiment of a stable type of raw consludge of the present invention or a processing method for waste according to a stable type.
FIG. 2 is a diagram showing a triangular component graph showing a relational expression of main blending elements.
FIG. 3 is a diagram showing experimental results using a triangular component graph with a gypsum board waste material mixing rate of 10%.
FIG. 4 is a diagram showing experimental results by a triangular component graph in the case of no gypsum board waste mixed.
FIG. 5 is a graph showing the relationship between the gypsum board waste material mixing ratio and the compressive strength.
6 is a graph showing the relationship between the gypsum board waste material mixing rate and the compressive strength under other conditions different from those in FIG. 5;
FIG. 7 is a diagram showing the contents of materials used in experimental examples according to the embodiment.
FIG. 8 is a diagram showing distribution of usage blends in an experimental example according to the embodiment.
[Explanation of symbols]
Sd Sludge solid content W Moisture Sg Blast furnace slag fine powder

Claims (6)

生コンスラッジの安定型あるいは安定型に準じた廃棄物への加工方法であって、
処理すべき生コンスラッジのスラッジ固形分と、水分(生コンスラッジに含まれる含水量と加水量を含む)と、高炉スラグ微粉末体と、からなる主調合要素であり、該主調合要素のそれぞれの質量分率Sd,W,Sgの総計に対する高炉スラグ微粉末体の質量分率が下記(A)式の関係により設定されるように配分され、
主調合要素に、(A)式により求まるスラッジ固形分と高炉スラグ微粉末体の質量和に対して5ないし20(wt%)の廃石膏からなる副調合要素を混入させて混練させることにより生コンスラッジを安定型あるいは安定型に準じた廃棄物として加工させることを特徴とする生コンスラッジの安定型あるいは安定型に準じた廃棄物への加工方法。
(A式)Sg=100−W(1+1/α)[wt%]{但し、含水率α=W/Sd}
A method for processing raw consludge into a stable type or a waste according to a stable type,
A main blending element comprising sludge solids of raw consludge to be treated, moisture (including water content and water content contained in the raw consludge), and ground granulated blast furnace slag, each of the main blending elements The mass fraction of the ground granulated blast furnace slag with respect to the sum of the mass fractions Sd, W, Sg is distributed so as to be set according to the relationship of the following formula (A):
By mixing the main blending element with a sub-mixing element consisting of 5 to 20 (wt%) waste gypsum with respect to the total mass of the sludge solid content determined by the formula (A) and the blast furnace slag fine powder, A method of processing raw sludge into stable or stable waste, characterized in that the sludge is processed as stable or stable waste.
(Formula A) Sg = 100−W (1 + 1 / α) [wt%] {however, moisture content α = W / Sd}
水分の質量分率Wが前記質量分率総計に対して30ないし60(wt%)に設定された請求項1記載の生コンスラッジの安定型あるいは安定型に準じた廃棄物への加工方法。The processing method to the waste according to the stable type or the stable type | mold of the raw consludge of Claim 1 with which the mass fraction W of the water | moisture content was set to 30 thru | or 60 (wt%) with respect to the said mass fraction total. スラッジ固形分の質量分率Sdが15ないし25(wt%)、水分の質量分率Wが60ないし40(wt%)、高炉スラグ微粉末体の質量分率Sgが25ないし35(wt%)に設定された請求項1または2記載の生コンスラッジの安定型あるいは安定型に準じた廃棄物への加工方法。The mass fraction Sd of sludge solids is 15 to 25 (wt%), the mass fraction W of water is 60 to 40 (wt%), and the mass fraction Sg of the blast furnace slag fine powder is 25 to 35 (wt%). The processing method to the waste according to the stable type | mold of the raw consludge of Claim 1 or 2 set to these, or a stable type | mold. 主調合要素の各質量分率に対応する加工物の強度が、 式(A)との関係で設定されて混入される廃石膏の所定の質量を固定して、 三角形の各辺に主調合要素のいずれかの要素を各々割り当ててそれらの質量分率目盛りをそれぞれの各辺に配し、隣接する辺に沿う平行な線の交点に所定の強度を基準としてそれを越える対象と越えない対象とを区別して表示させた三角成分グラフにより判別される請求項1ないし3のいずれかに記載の生コンスラッジの安定型あるいは安定型に準じた廃棄物への加工方法。The strength of the work piece corresponding to each mass fraction of the main compounding element is set in relation to the formula (A), and the predetermined mass of waste gypsum mixed is fixed, and the main compounding element is fixed to each side of the triangle Each of these elements is assigned and their mass fraction scales are arranged on each side, and at the intersection of parallel lines along the adjacent sides, the target exceeding the predetermined strength and the target not exceeding The processing method to the waste according to the stable type or the stable type | mold of the raw consludge in any one of Claim 1 thru | or 3 discriminated by the triangular component graph displayed by distinguishing. 請求項1ないし4のいずれかに記載の加工方法により加工された生コンスラッジの安定型あるいは安定型に準じた加工廃棄物。A processing waste according to a stable type or a stable type of raw consludge processed by the processing method according to any one of claims 1 to 4. 処理すべき生コンスラッジのスラッジ固形分と、水分(生コンスラッジに含まれる含水量と加水量を含む)と、高炉スラグ微粉末体と、のそれぞれの質量分率Sd,W,Sgの総計に対して高炉スラグ微粉末体の質量分率を下記(A)式により求め、かつ(A)式により求まるスラッジ固形分と高炉スラグ微粉末体の質量和に対して5ないし20(wt%)の廃石膏を、(A)式により求まる質量のそれぞれスラッジ固形分と、水分(生コンスラッジに含まれる含水量と加水量を含む)と、高炉スラグ微粉末体と、に加える混入量とする生コンスラッジの安定型あるいは安定型に準じた廃棄物として加工させる際の各要素の配合設定方法。
(A式)Sg=100−W(1+1/α)[wt%]{但し、含水率α=W/Sd}
For the total mass fractions Sd, W, Sg of the sludge solid content, moisture (including the water content and water content contained in the raw con sludge) and the ground granulated blast furnace slag to be treated The mass fraction of the ground granulated blast furnace slag is obtained by the following formula (A), and the waste of 5 to 20 (wt%) with respect to the sum of the sludge solid content and the mass of the ground granulated blast furnace slag obtained by the formula (A) The gypsum is mixed with sludge solids of the mass determined by the formula (A), moisture (including water content and water content in the raw consludge), and blast furnace slag fine powder. A method for setting the composition of each element when processing as a stable type or a waste conforming to the stable type.
(Formula A) Sg = 100−W (1 + 1 / α) [wt%] {however, moisture content α = W / Sd}
JP2002107262A 2002-04-10 2002-04-10 Processing method of raw consludge into stable or stable type waste and its processed waste Expired - Lifetime JP4016319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002107262A JP4016319B2 (en) 2002-04-10 2002-04-10 Processing method of raw consludge into stable or stable type waste and its processed waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002107262A JP4016319B2 (en) 2002-04-10 2002-04-10 Processing method of raw consludge into stable or stable type waste and its processed waste

Publications (2)

Publication Number Publication Date
JP2003300094A JP2003300094A (en) 2003-10-21
JP4016319B2 true JP4016319B2 (en) 2007-12-05

Family

ID=29391312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002107262A Expired - Lifetime JP4016319B2 (en) 2002-04-10 2002-04-10 Processing method of raw consludge into stable or stable type waste and its processed waste

Country Status (1)

Country Link
JP (1) JP4016319B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631045B2 (en) * 2004-06-30 2011-02-16 国立大学法人徳島大学 Solidified concrete composition, method for producing the same, and solidified concrete
JP7296839B2 (en) * 2019-09-26 2023-06-23 太平洋セメント株式会社 Cement manufacturing method

Also Published As

Publication number Publication date
JP2003300094A (en) 2003-10-21

Similar Documents

Publication Publication Date Title
Seco et al. Sustainable unfired bricks manufacturing from construction and demolition wastes
Chatveera et al. Use of ready-mixed concrete plant sludge water in concrete containing an additive or admixture
Zhan et al. Study on feasibility of reutilizing textile effluent sludge for producing concrete blocks
Sojobi et al. Optimization of gas-solid carbonation conditions of recycled aggregates using a linear weighted sum method
Rozière et al. Valorisation of sediments in self-consolidating concrete: Mix-design and microstructure
Saleh et al. Sustainable composite of improved lightweight concrete from cement kiln dust with grated poly (styrene)
Shaikh et al. Effect of nano silica on properties of concretes containing recycled coarse aggregates
Babu et al. Feasibility of wastewater as mixing water in cement
Owaid et al. Physical and mechanical properties of high performance concrete with alum sludge as partial cement replacement
Bassani et al. Environmental assessment and geomechanical properties of controlled low-strength materials with recycled and alternative components for cements and aggregates
Arshad et al. The wastes utility in concrete
JP4665259B2 (en) Effective use of construction sludge
Hilal et al. Improvement of eco-efficient self-compacting concrete manufacture by recycling high quantity of waste materials
Verma et al. Influence of mixing approaches on strength and durability properties of treated recycled aggregate concrete
Elbasri et al. Performance of self-compacting concrete incorporating wastepaper sludge ash and pulverized fuel ash as partial substitutes
Gared et al. Feasibility study of Jarosite as cement replacement in rigid pavement
Alqedra et al. Influence of Lovv and high organic wastevvater sludge on physical and mechanical properties of concrete mixes
Dhanalaxmi et al. Study on the properties of concrete incorporated with various mineral admixtures–limestone powder and marble powder
Yeganeh et al. The feasibility study of stabilizing the automotive paint sludge by recycling, to produce green concrete blocks, considering environmental and mechanical factors
JP4016319B2 (en) Processing method of raw consludge into stable or stable type waste and its processed waste
JP2014218860A (en) Soil improvement method using sludge powder
KR100889393B1 (en) Recycling composition of sewage or waste water sludge, sidewalk block and making method of sidewalk block using it
KR100620602B1 (en) Mixed cement composition containing incinerator ash and pozzolan material as ingredients and mortar and concrete containing the same
Ledhem et al. Reuse of waste oils in the treatment of wood aggregates
CN114873878A (en) Lake sediment curing material and pavement performance evaluation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5