JP2003206178A - Mixed conductive multiple oxide for oxygen separation and manufacturing method therefor - Google Patents

Mixed conductive multiple oxide for oxygen separation and manufacturing method therefor

Info

Publication number
JP2003206178A
JP2003206178A JP2002228606A JP2002228606A JP2003206178A JP 2003206178 A JP2003206178 A JP 2003206178A JP 2002228606 A JP2002228606 A JP 2002228606A JP 2002228606 A JP2002228606 A JP 2002228606A JP 2003206178 A JP2003206178 A JP 2003206178A
Authority
JP
Japan
Prior art keywords
oxygen
electron
mixed
mixed conductive
atm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002228606A
Other languages
Japanese (ja)
Other versions
JP4320531B2 (en
Inventor
Itsuki Sasaki
厳 佐々木
Yoshio Ukiyou
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2002228606A priority Critical patent/JP4320531B2/en
Publication of JP2003206178A publication Critical patent/JP2003206178A/en
Application granted granted Critical
Publication of JP4320531B2 publication Critical patent/JP4320531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an electron, oxygen ion mixed conductive oxide having low resistance against oxygen separation and capable of more rapidly separating oxygen than before, and a manufacturing method therefor. <P>SOLUTION: A CeO<SB>2</SB>-ZrO<SB>2</SB>solid solution having a composition expressed by Ce<SB>2-x</SB>Zr<SB>x</SB>O<SB>4-δ</SB>(x=0.125-1.9, δ=0-0.5) is used as the mixed conductive multiple oxide. In the mixed conductive multiple oxide, the main crystal system is a cubic system, Ce and Zr are regularly oriented and the diffraction pattern has peaks respectively in 2θ=13.8-14.6, 36.0-37.4 and 43.2-44.9. The mixed conductive multiple oxide is obtained by heating at ≥1000°C under an atmosphere of ≤10<SP>-8</SP>atm oxygen partial pressure. An electron, oxygen ion mixed conductor has high conductivity and exhibits high performance even when being used not only for the oxygen separation, but for a solid oxygen fuel cell (SOFC), and oxygen sensor, a co-catalyst, or the like, due to its high conductivity. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸素含有混合ガス
から酸素を分離する際に用いる電子、酸素イオン混合伝
導性複合酸化物と、この複合酸化物を製造する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron / oxygen ion mixed conductive composite oxide used for separating oxygen from an oxygen-containing mixed gas, and a method for producing this composite oxide.

【0002】[0002]

【従来の技術】製鉄、冶金、化学、石炭、パルプなどの
多くの工業において酸素が大量に利用されている。また
現在、熱エネルギー利用において一般的に空気による燃
焼が行われているが、燃焼に不必要な多量の窒素を含む
ため熱効率が悪い。また、窒素酸化物の発生や窒素によ
り希釈されて発生する窒素酸化物および炭酸ガス等の有
害ガスの回収に、さらに膨大なエネルギーを必要とする
といった多くの問題を含んでいる。これに対して、純粋
な酸素を用いる酸素燃焼は、空気燃焼の2倍以上の効率
が期待され、排ガス量が少ないことから、炭酸ガスおよ
びその他の有害ガスの回収を小型装置で容易にしかも低
コストで実施することが出来る。また、窒素酸化物の発
生を抑制することも可能である。
2. Description of the Related Art Oxygen is used in large quantities in many industries such as iron making, metallurgy, chemistry, coal and pulp. At present, combustion of air is generally used for utilizing heat energy, but the thermal efficiency is poor because it contains a large amount of nitrogen that is unnecessary for combustion. In addition, there are many problems that enormous energy is required to generate nitrogen oxides and to recover harmful gases such as nitrogen oxides and carbon dioxide gas generated by being diluted with nitrogen. On the other hand, oxyfuel combustion using pure oxygen is expected to be more than twice as efficient as air combustion, and the amount of exhaust gas is small. Therefore, the recovery of carbon dioxide gas and other harmful gases can be performed easily and with a small device. It can be implemented at cost. It is also possible to suppress the generation of nitrogen oxides.

【0003】上記の需要を満たすためには、大量で安価
な酸素を製造することが必要となる。空気などの混合ガ
スから酸素を分離する技術は種々の方法が知られてい
る。例えば液化分離法、圧力スイング吸着方式(PS
A)などである。これらの方法には一長一短がある。例
えば、液化分離法は空気の各成分の沸点の違いを利用し
て蒸留分離する方法で、高純度の酸素が得られる反面、
超低温が必要であるため、大量のエネルギーを必要とす
る。他方圧力スイング吸着方式(PSA)は、加圧原料
ガスをゼオライトのような吸着物質に通して不純物を吸
着分離し、所要純度の目的ガスを得るもので、吸着した
不純物ガスは、大気圧又は真空圧にして開放除去する方
法である。この方法では、液化分離法に比べ省エネルギ
ーは図れるが、高純度の酸素が得られにくい。また、酸
素の吸着・脱着を繰返すので装置が複雑になるなどの問
題点がある。
To meet the above demands, it is necessary to produce a large amount of inexpensive oxygen. Various methods are known for separating oxygen from a mixed gas such as air. For example, liquefaction separation method, pressure swing adsorption method (PS
A) and the like. These methods have advantages and disadvantages. For example, the liquefaction separation method is a method of distilling and separating by utilizing the difference in boiling point of each component of air, while high purity oxygen is obtained,
It requires a very low temperature and therefore requires a large amount of energy. On the other hand, the pressure swing adsorption method (PSA) is a method in which a pressurized raw material gas is passed through an adsorbent such as zeolite to adsorb and separate impurities to obtain a target gas of required purity, and the adsorbed impurity gas is atmospheric pressure or vacuum. This is a method of releasing by pressure. This method can save energy as compared with the liquefaction separation method, but it is difficult to obtain high-purity oxygen. In addition, since the adsorption and desorption of oxygen is repeated, there is a problem that the device becomes complicated.

【0004】上記に示した酸素分離技術に対して、より
高効率で簡便に酸素を分離する方法として、イオン伝導
性物質を利用した酸素分離法が提案されている。これは
酸素イオンを選択的に移動することが出来るイオン伝導
性物質を利用して、混合ガスから酸素のみを取出す方法
である。この方法の利点は、理論的には1段の処理手段
で100%純粋な酸素が得られることである。また、混
合ガスから酸素を分離するのに要するエネルギーは、理
想的には混合の自由エンタルピー変化に相当するエネル
ギーのみでよい。そのため、他の方法に比べて高効率で
また省エネルギーである。
In contrast to the above-mentioned oxygen separation technique, an oxygen separation method using an ion conductive substance has been proposed as a method of separating oxygen with higher efficiency and ease. This is a method of taking out only oxygen from a mixed gas by utilizing an ion conductive substance capable of selectively moving oxygen ions. The advantage of this method is that theoretically 100% pure oxygen can be obtained in a single stage treatment. Further, ideally, the energy required to separate oxygen from the mixed gas is only the energy corresponding to the change in free enthalpy of mixing. Therefore, it is highly efficient and energy saving compared to other methods.

【0005】このイオン伝導物質を利用した酸素分離法
には原理が異なるいくつかの方法がある。大きく分け
て、3種類の方法で、直流通電法、濃淡電池短絡法およ
び混合伝導体隔壁法である。
[0005] There are several methods of different principles in the oxygen separation method using this ion conductive material. The method can be broadly classified into three methods: a direct current method, a concentration battery short circuit method, and a mixed conductor partition method.

【0006】直流通電法は、安定化ジルコニアなど酸素
イオン伝導体を隔壁として、その両面に電子伝導体を取
付け通電する方法である。一方を空気にさらし、この空
気を負極として通電することによって空気中の酸素分子
が還元される。酸素分子は酸素イオンとなり、これが電
解質中を移動して正極で酸化され、再び酸素となる。
The direct current method is a method in which an oxygen ion conductor such as stabilized zirconia is used as a partition wall, and electron conductors are attached to both sides of the partition wall to conduct electricity. By exposing one side to air and applying current to this air as a negative electrode, oxygen molecules in the air are reduced. Oxygen molecules become oxygen ions, which move in the electrolyte and are oxidized at the positive electrode to become oxygen again.

【0007】濃淡電池短絡法は、直流通電法と同じ装置
ではあるが、外部からの通電はせず短絡のみさせるもの
である。隔壁の一方を空気にさらし、他方を減圧する
と、酸素分圧の違いによって起電力が生じ、空気を正極
とする酸素ガス濃淡電池が形成される。外部回路には発
生した起電力に応じた電流が流れ、電解質内では空気極
から減圧極に向って酸素イオンが移動して減圧極表面で
酸素分子となる。
The concentration cell short-circuit method is the same device as the direct current method, but only short-circuits without energization from the outside. When one of the partition walls is exposed to air and the other is depressurized, an electromotive force is generated due to a difference in oxygen partial pressure, and an oxygen gas concentration battery having air as a positive electrode is formed. A current corresponding to the generated electromotive force flows in the external circuit, and oxygen ions move from the air electrode toward the decompression electrode in the electrolyte to become oxygen molecules on the decompression electrode surface.

【0008】さらに、この濃淡電池短絡法の外部回路に
よる短絡の代りに、電解質自身に電子伝導性をもたせて
短絡させる方法が混合伝導体隔壁法である。この方法で
は、酸素イオンと電子の双方が動きうる混合伝導性酸化
物が必要となる。混合伝導性酸化物を隔壁として二室を
区切り、一方に空気などの酸素を含む混合ガスを流し他
方を吸引すれば、短絡された酸素濃淡電池となり酸素イ
オンが移動する。このように、混合伝導体隔壁法は、表
面電極も外部回路の導線も不要であり、隔壁の両側に圧
力差をつけるだけで酸素のみが移動するので酸素分離装
置が簡略化できる、という利点がある。
Further, a mixed conductor partition wall method is a method in which, instead of the short circuit by the external circuit of the concentration battery short circuit method, the electrolyte itself has electronic conductivity to cause a short circuit. This method requires a mixed conducting oxide in which both oxygen ions and electrons can move. By separating the two chambers by using the mixed conductive oxide as a partition and flowing a mixed gas containing oxygen such as air into one of the chambers and sucking the other, a short-circuited oxygen concentration cell is formed and oxygen ions move. As described above, the mixed conductor partition method does not require a surface electrode or a lead wire of an external circuit, and only oxygen is moved only by providing a pressure difference between both sides of the partition, so that the oxygen separation device can be simplified. is there.

【0009】しかし、残念なことに、現状の混合伝導性
物質では充分満足な性能が得られていないため、混合伝
導体隔壁法による酸素分離は未だ実験室の域を出ていな
い。この最大の問題点は、混合伝導体の導電率が不十分
なために大電流を流せないことである。
Unfortunately, however, oxygen separation by the mixed conductor partition wall method has not reached the level of the laboratory because the current mixed conductive materials do not provide satisfactory performance. The biggest problem with this is that a large current cannot flow due to insufficient conductivity of the mixed conductor.

【0010】現在、酸素分離膜に関する混合伝導体物質
は、大きく分けて3つの系統に分類される。先ず第1に
は、安定化ジルコニア等の酸素イオン伝導体に対して、
Pd等の貴金属を複合化、すなわち粉末状体で混合させ
て緻密に焼結し、擬似的に混合伝導体物質的な特性を持
たせた複合体を挙げることが出来る(Solid St
ate Ionics,86−88,569−572
(1996),Solid State Ionic
s,76,23−28(1995))。しかし、この複
合体は酸素イオン伝導体である安定化ジルコニアが、も
ともとイオン伝導性が高くないことから、800℃以下
の低温では大電流を流すことができないため、大量の酸
素を分離することは難しい。
At present, mixed conductor materials for oxygen separation membranes are roughly classified into three systems. First of all, for oxygen ion conductors such as stabilized zirconia,
An example is a composite in which a noble metal such as Pd is compounded, that is, mixed in a powder form and sintered densely to give pseudo mixed conductor material characteristics (Solid St).
ate Ionics, 86-88, 569-572
(1996), Solid State Ionic
s, 76, 23-28 (1995)). However, since the stabilized zirconia, which is an oxygen ion conductor, does not have a high ionic conductivity from the beginning, a large current cannot flow at a low temperature of 800 ° C. or less, so that a large amount of oxygen cannot be separated. difficult.

【0011】次に、ペロブスカイト構造のLaxSr1-x
CoO3-y、SrCo1-xFeO3-yに代表されるLa−
Sr−Co−O系の酸化物(特開2001−10653
2,Solid State Ionics,106,
189−195(1998))があり、3番目として
は、蛍石型関連構造のCe−Zr−M−O系(M=Y,
Ca,Mg等)の酸化物がある(J.Electroc
hem.Soc.,131,2407−2413(19
84)、Solid State Ionics, 86
−88,739−744(1996))。
Next, La x Sr 1-x having a perovskite structure
La- represented by CoO 3-y and SrCo 1-x FeO 3-y
Sr-Co-O-based oxide (Japanese Patent Laid-Open No. 2001-10653)
2, Solid State Ionics, 106,
189-195 (1998)), and the third is the Ce-Zr-MO system (M = Y,
There are oxides of Ca, Mg, etc. (J. Electroc
hem. Soc. , 131, 2407-2413 (19
84), Solid State Ionics, 86
-88, 739-744 (1996)).

【0012】このLa−Sr−Co−O系およびCe−
Zr−M−O系の酸化物は、酸素イオン空孔を介して酸
素イオン伝導性を示す混合伝導体である。両者とも安定
化ジルコニアより高い酸素イオン伝導性を示す。しか
し、これらの物質であってもまだ酸素ガス分離の抵抗が
大きいために、混合ガスから大規模に酸素を抽出する装
置の実用化には至っていない。この原因として、混合伝
導体内での酸素イオンの伝導性が考えられるが、さらに
その表面での酸素分子の吸着乖離と酸素イオンへのイオ
ン化、およびその逆の酸素イオンの放電と酸素分子の生
成脱離過程が律速となっている可能性が指摘されている
(J.Appl.Electrochem.,24,1
222(1994),Solid State Ion
ics, 53,46(1992))。
The La-Sr-Co-O system and Ce-
The Zr-MO oxide is a mixed conductor that exhibits oxygen ion conductivity through oxygen ion vacancies. Both show higher oxygen ion conductivity than the stabilized zirconia. However, even with these substances, the resistance to oxygen gas separation is still high, and therefore, a device for extracting oxygen from a mixed gas on a large scale has not been put into practical use. The cause of this is considered to be the conductivity of oxygen ions in the mixed conductor, but the adsorption dissociation of oxygen molecules on the surface and ionization to oxygen ions, and vice versa, discharge of oxygen ions and generation and desorption of oxygen molecules. It has been pointed out that the separation process may be rate-determining (J. Appl. Electrochem., 24, 1).
222 (1994), Solid State Ion
ics, 53, 46 (1992)).

【0013】以上のように、高効率で簡便な装置による
酸素分離が可能である混合伝導体隔壁法を実用化するに
あたって、現状では、その混合伝導体の酸素分離に対す
る抵抗が大きいため、800℃以下の低温では大電流を
流すことが出来ないことが問題となっている。この問題
は混合伝導体内での酸素イオンの伝導性が不十分である
のみならず、混合伝導体隔壁表面での酸素分子のイオン
化、および酸素イオンの分子化といった反応速度が律速
となっていると考えられている。
As described above, at the time of putting into practical use the mixed conductor partition wall method capable of oxygen separation by a highly efficient and simple device, at present, since the mixed conductor has a large resistance to oxygen separation, 800 ° C. The problem is that a large current cannot flow at the following low temperatures. The problem is that not only is the conductivity of oxygen ions in the mixed conductor insufficient, but the rate of reaction such as the ionization of oxygen molecules on the partition surface of the mixed conductor and the molecularization of oxygen ions is rate-limiting. It is considered.

【0014】また、この電子、酸素イオン混合伝導性複
合酸化物は酸素分離膜のみならず、固体酸素燃料電池
(SOFC)や酸素センサーなどへの応用も期待されて
いるが、この点でも未だ十分な性能が得られる電子、酸
素イオン混合伝導性複合酸化物は見出されてはいない。
Further, the electron / oxygen ion mixed conductive composite oxide is expected to be applied not only to an oxygen separation membrane but also to a solid oxygen fuel cell (SOFC), an oxygen sensor, etc., but this point is still sufficient. An electron / oxygen ion mixed conductive complex oxide capable of obtaining excellent performance has not been found.

【0015】[0015]

【発明が解決しようとする課題】そこで、本発明の目的
は、酸素分離に対する抵抗が小さく、また従来よりも早
く酸素分離が可能な電子、酸素イオン混合伝導性複合酸
化物とその製造方法を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an electron / oxygen ion mixed conductive complex oxide having a low resistance to oxygen separation and capable of oxygen separation faster than ever before, and a method for producing the same. It is to be.

【0016】[0016]

【課題を解決するための手段】本発明は、この混合伝導
体複合酸化物にCe2-xZrx4-δ(x=0.125〜
1.9、δ=0〜0.5)で表される組成をもつCeO
2−ZrO2固溶体を用いることを特徴とする。また、本
発明になる混合伝導性複合酸化物は、主要な結晶系が立
方晶でありCeとZrとが規則的に配列していることを
特徴とする。ここで、CeとZrとが規則的に配列して
いるか否かは、Cuを管球とする粉末X線回折測定にお
いて、回折パターンが、2θ=13.8〜14.6、3
6.0〜37.4、43.2〜44.9にそれぞれ1本
ずつのピークを呈することにより確認できる。
According to the present invention, this mixed conductor composite oxide is added to Ce 2-x Zr x O 4- δ (x = 0.125-
1.9, CeO having a composition represented by δ = 0 to 0.5)
It is characterized by using a 2- ZrO 2 solid solution. Further, the mixed conductive complex oxide according to the present invention is characterized in that the main crystal system is a cubic crystal and Ce and Zr are regularly arranged. Here, whether or not Ce and Zr are regularly arranged is determined by powder X-ray diffraction measurement using Cu as a tube, and the diffraction pattern is 2θ = 13.8 to 14.6, 3 and 3.
This can be confirmed by exhibiting one peak at 6.0 to 37.4 and 43.2 to 44.9, respectively.

【0017】さらに、前記立方晶は、CeとZrとが規
則配列しており、かつ、酸素欠損もある特定の規則配列
をしていることが好ましく、その酸素欠損の規則配列
は、Cuを管球とする粉末X線回折測定において、回折
パターンが、2θ=13.8〜14.6、36.0〜3
7.4、43.2〜44.9にそれぞれ1本ずつのピー
クに加えて、さらに2θ=15.8〜17.2にもピー
クを呈することにより確認することができる。この規則
配列は、空間群がF4 ̄3m(No.216)であり、
基本組成はCeZrO3.75と表すことができる。
Further, it is preferable that the cubic crystal has a regular arrangement of Ce and Zr and also has a specific regular arrangement with oxygen deficiency. In the powder X-ray diffraction measurement using a sphere, the diffraction patterns are 2θ = 13.8 to 14.6, 36.0 to 3
It can be confirmed by adding a single peak at 7.4 and 43.2 to 44.9, and further exhibiting a peak at 2θ = 15.8 to 17.2. This regular array has a space group of F4-3m (No. 216),
The basic composition can be expressed as CeZrO 3.75 .

【0018】CeO2−ZrO2固溶体は、Ce2-xZrx
4-δ(x=0.125〜1.9、δ=0〜0.5)で
表される複合酸化物を、1000℃以上、かつ酸素分圧
02=10-8atm以下の雰囲気で熱処理することによ
り得ることが出来る。
CeO 2 --ZrO 2 solid solution is Ce 2-x Zr x
An atmosphere in which a composite oxide represented by O 4- δ (x = 0.125 to 1.9, δ = 0 to 0.5) is 1000 ° C. or more and an oxygen partial pressure P 02 = 10 −8 atm or less. It can be obtained by heat treatment in.

【0019】また、この複合酸化物を、400〜900
℃に保持し、酸素分圧を10-6atm以下の還元雰囲気
から10-1atm以上の酸化雰囲気まで、4時間以上か
けて上昇させる熱処理を施すことができる。
Further, this composite oxide is added in the range of 400 to 900.
It is possible to perform a heat treatment in which the oxygen partial pressure is maintained at 0 ° C. and the oxygen partial pressure is increased from a reducing atmosphere of 10 −6 atm or less to an oxidizing atmosphere of 10 −1 atm or more for 4 hours or more.

【0020】さらに、この複合酸化物に、酸素分圧P02
=10-6〜100atmとし、50〜300℃で1〜1
200時間の熱処理を施すことも好ましい。
Further, the oxygen partial pressure P 02 is added to the composite oxide.
= A 10 -6 ~10 0 atm, 1~1 at 50 to 300 ° C.
It is also preferable to perform heat treatment for 200 hours.

【0021】[0021]

【発明の実施の形態】本発明の電子、酸素イオン混合伝
導性複合酸化物について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An electron / oxygen ion mixed conductive composite oxide of the present invention will be described.

【0022】前述したように、従来よりCe−Zr−M
−O系(M=Y,Ca,Mg等)の蛍石型関連構造酸化
物は混合導電体として検討されてきた。しかし、Sol
idState Ionics,98,63−72(1
997)のようにCeO2,ZrO2が固溶しておらず、
単に複合材化しているだけの材料もある。また、従来技
術では、必ずCe,Zr以外の第3金属元素(上記組成
式でMと示した)が添加されている。第3金属元素は、
複合酸化物の結晶構造が正方晶に歪むことなく立方晶を
安定化させることや、複合酸化物からなるセラミックス
の焼結密度を向上させることなどを目的として添加され
ている。複合酸化物は、正方晶に歪むことにより酸素イ
オン伝導性が低下するため、立方晶を安定化させること
は重要である。
As described above, Ce-Zr-M has been conventionally used.
-O-based (M = Y, Ca, Mg, etc.) fluorite-type related structure oxides have been investigated as mixed conductors. But Sol
idState Ionics, 98, 63-72 (1
997), CeO 2 and ZrO 2 do not form a solid solution,
Some materials are simply made into composite materials. Further, in the prior art, a third metal element (denoted by M in the above composition formula) other than Ce and Zr is always added. The third metal element is
It is added for the purpose of stabilizing the cubic crystal without distorting the crystal structure of the complex oxide into a tetragonal crystal, and improving the sintering density of the ceramic composed of the complex oxide. It is important to stabilize the cubic crystal in the complex oxide because the tetragonal distortion causes the oxygen ion conductivity to decrease.

【0023】本発明は、上記の従来技術とは異なり、第
3金属元素を添加することなく立方晶を安定化させ、か
つ特定の熱処理を加えることで表面を酸素が吸収放出し
やすいように改質できたものである。
The present invention is different from the above-mentioned prior art in that the cubic crystal is stabilized without adding a third metal element, and a specific heat treatment is applied so that oxygen is easily absorbed and released on the surface. It was a quality.

【0024】本発明者らは1000℃以上の高温で、か
つ酸素分圧が10-8atm以下の還元雰囲気下で熱処理
をすることによって、Ce:Zr=2−x:x(x=
0.125〜1.0)の範囲ではCeとZrの配置が特
有の規則配列を組み、完全に立方晶を保ったままで、酸
素分離に対する抵抗の小さいCeO2−ZrO2固溶体か
らなる混合伝導性複合酸化物が製造できることを見出し
た。
The present inventors have performed heat treatment at a high temperature of 1000 ° C. or higher and in a reducing atmosphere having an oxygen partial pressure of 10 −8 atm or less, whereby Ce: Zr = 2-x: x (x =
In the range of 0.125 to 1.0), a mixed conductivity composed of CeO 2 -ZrO 2 solid solution with a small resistance to oxygen separation while forming a regular ordered arrangement of Ce and Zr and maintaining a perfect cubic crystal. It has been found that a composite oxide can be produced.

【0025】この特有の規則配列は、粉末X線回折測定
によって容易に確認することが出来る。具体的には、C
uを管球とする粉末X線回折測定において、2θ=1
3.8〜14.6、36.0〜37.4、43.2〜4
4.9にそれぞれ1本ずつのピークがあることを特徴と
する。
This peculiar ordered array can be easily confirmed by powder X-ray diffraction measurement. Specifically, C
In powder X-ray diffraction measurement using u as a tube, 2θ = 1
3.8-14.6, 36.0-37.4, 43.2-4
It is characterized by having one peak each at 4.9.

【0026】また、この特有の規則配列は酸化雰囲気中
で900℃以上の熱処理を行うと消失してしまうが、9
00℃以下もしくは還元雰囲気ではその特有の規則配列
性を維持できる。すなわち、1000℃以上の高温で、
かつ酸素分圧10-10atm以下の還元雰囲気中で熱処
理した後でも、酸化雰囲気中で900℃以上の熱処理を
行わなければどのような熱処理を施しても問題はない。
例えば、複合酸化物固溶体粉末からセラミックスを得る
場合に、1000℃以上の高温で、かつ酸素分圧10
-10atm以下の還元雰囲気中で焼成したとしても、そ
の後の熱処理を900℃以下で実施すれば、雰囲気の如
何に関わらずこの特有の規則配列は維持されるというこ
とである。
This peculiar ordered array disappears when heat treatment is performed at 900 ° C. or higher in an oxidizing atmosphere.
At 00 ° C. or lower or in a reducing atmosphere, the unique regular array property can be maintained. That is, at a high temperature of 1000 ° C. or higher,
Further, even after the heat treatment in the reducing atmosphere having an oxygen partial pressure of 10 -10 atm or less, any heat treatment may be performed unless the heat treatment is performed at 900 ° C. or more in the oxidizing atmosphere.
For example, when a ceramic is obtained from a complex oxide solid solution powder, the temperature is higher than 1000 ° C. and the oxygen partial pressure is 10
This means that even if firing is performed in a reducing atmosphere of -10 atm or less, if the subsequent heat treatment is performed at 900 ° C or less, this specific ordered arrangement is maintained regardless of the atmosphere.

【0027】また、Ce:Zr=2−x:x(x=1.
0〜1.9)の範囲においては、熱処理条件、特に冷却
条件によっては一部正方晶相が析出する場合もある。冷
却速度が速い場合には正方晶相の析出は起り難いが、冷
却速度が遅くまた酸素分圧が比較的高い場合には、xが
1.1程度では10%未満の、またxが1.9程度では
50%未満の正方晶相が析出することがある。しかし、
この場合でも主要な結晶相は立方晶であり得られる特性
も従来より優れている。
Further, Ce: Zr = 2-x: x (x = 1.
In the range of 0 to 1.9), a tetragonal phase may be partially precipitated depending on heat treatment conditions, particularly cooling conditions. When the cooling rate is high, the tetragonal phase is unlikely to precipitate, but when the cooling rate is slow and the oxygen partial pressure is relatively high, x is less than 10% at about 1.1, and x is 1. When it is about 9, tetragonal phase of less than 50% may be precipitated. But,
Even in this case, the main crystal phase is cubic and the obtained properties are superior to those in the past.

【0028】このCe、Zrの配列と酸素分離に対する
抵抗低下の相関メカニズムについては明らかではない
が、Zrイオンがある配列を組んだ場合、その周りに酸
素イオンが吸収・脱離しやすいサイトが形成されるもの
と推測される。すなわち、Zrイオンのある配列が複合
酸化物表面での酸素分子の吸着乖離と酸素イオンのイオ
ン化、およびその逆の酸素イオンの放電と分子の生成脱
着過程のどれかを促進していると考えられる。
Although the correlation mechanism of the arrangement of Ce and Zr and the resistance reduction against oxygen separation is not clear, when the arrangement with Zr ions is formed, sites around which oxygen ions are easily absorbed and desorbed are formed. It is supposed to be one. That is, it is considered that a certain arrangement of Zr ions promotes adsorption and dissociation of oxygen molecules on the surface of the composite oxide and ionization of oxygen ions, and vice versa, discharge of oxygen ions and desorption process of molecules. .

【0029】また、Ce2-xZrx4-δにおいて、δの
値は複合酸化物の電荷が電気的に中性となるように決め
られるが、このδの値は、複合酸化物が酸素分離に供さ
れる前の組成に基づいて決められる値であって、実際
に、この複合酸化物を酸素分離に使用するときには、こ
の値より若干異なる場合があるが、δの値は0〜0.5
が適当と考えられる。
Further, in Ce 2-x Zr x O 4- δ, the value of δ is determined so that the electric charge of the composite oxide becomes electrically neutral. It is a value determined based on the composition before being subjected to oxygen separation, and when this composite oxide is actually used for oxygen separation, it may be slightly different from this value, but the value of δ is 0 to 0. 0.5
Is considered appropriate.

【0030】本発明の電子、酸素イオン混合伝導性複合
酸化物は、結晶格子中に酸素欠損が生成することによっ
て良好な電子伝導性、イオン伝導性を示す。そして、C
eとZrの組成と酸素欠損量とがある特定の条件を満た
せば酸素イオンが規則配列化する。例えば、Ce:Zr
=1:1で酸素欠損量が1/8の場合にはCe2Zr2
7となり、この規則配列性はパイロクロア構造として知
られている。また、Ce:Zr=1:1で酸素欠損量が
1/16の場合には、複合酸化物の組成はCe 2Zr2
7.5(すなわち、CeZrO3.75)となり、パイロクロ
ア構造とは別種の酸素欠損の規則配列化が生じる。
Electronic / oxygen ion mixed conductive composite of the present invention
Oxide is caused by the generation of oxygen vacancies in the crystal lattice.
And shows good electron conductivity and ionic conductivity. And C
e and Zr composition and oxygen deficiency satisfy certain conditions
If so, oxygen ions are regularly arranged. For example, Ce: Zr
= 1: 1 and oxygen deficiency is 1/8, Ce2Zr2O
7And this regular arrangement is known as the pyrochlore structure.
Has been. Further, when Ce: Zr = 1: 1, the oxygen deficiency amount is
In the case of 1/16, the composition of the composite oxide is Ce 2Zr2O
7.5(That is, CeZrO3.75), And Pyrocro
(A) Oxygen deficiency, which is different from the structure, is regularly arranged.

【0031】この特殊な酸素欠損の規則配列性は、前記
と同様に粉末X線回折測定によって容易に確認すること
が出来る。具体的には、Cuを管球とする粉末X線回折
測定において、2θ=13.8〜14.6、36.0〜
37.4、43.2〜44.9にそれぞれ1本ずつのピ
ークを呈するCeとZrとの規則配列性に加えて、Ce
ZrO4の1/16の酸素が規則配列的に欠損している
ことによって生じる2θ=15.8〜17.2のピーク
によって確認することができる。
The regular array property of this special oxygen deficiency can be easily confirmed by powder X-ray diffraction measurement as described above. Specifically, in powder X-ray diffraction measurement using Cu as a tube, 2θ = 13.8 to 14.6, 36.0.
In addition to the regular arrangement of Ce and Zr, each of which has one peak at 37.4 and 43.2 to 44.9, Ce
This can be confirmed by the peak at 2θ = 15.8 to 17.2 caused by the lack of regular arrangement of 1/16 oxygen of ZrO 4 .

【0032】また、このCe:Zr=1:1で酸素欠損
量が1/16の電子、酸素イオン混合伝導性複合酸化物
の結晶構造は、空間群F4 ̄3m(No.216)(I
nternational Tables for C
rystallography:VolumeA)とし
て分類される構造であり、Ce2Zr27.5(すなわ
ち、CeZrO3.75)と表記することができる。
Further, the crystal structure of the mixed electron / oxygen ion conductive oxide having Ce: Zr = 1: 1 and the oxygen deficiency amount of 1/16 has a space group F4-3m (No. 216) (I
international Tables for C
It is a structure classified as rystallography: Volume A), and can be expressed as Ce 2 Zr 2 O 7.5 (that is, CeZrO 3.75 ).

【0033】なお、本発明の組成にはCe、Zr以外の
金属元素は含めていないが、YやTiあるいはCaとい
った金属元素でCeもしくはZrを20重量%以下の微
量範囲で置換しても本発明の利点は損われることなく機
能する。
Although the composition of the present invention does not include metal elements other than Ce and Zr, even if Ce or Zr is replaced by a metal element such as Y, Ti or Ca in a trace amount of 20% by weight or less, The advantages of the invention work without loss.

【0034】なお、もちろん実際にセラミックス薄膜と
して酸素分離や固体酸素燃料電池(SOFC)などに使
用する場合には、その薄膜の両側にPd、Ptなどの酸
素分離を促進する触媒を付与してもよい。
Of course, when actually used as a ceramic thin film for oxygen separation or a solid oxygen fuel cell (SOFC), a catalyst for promoting oxygen separation such as Pd or Pt may be provided on both sides of the thin film. Good.

【0035】次に、本発明の電子、酸素イオン混合伝導
複合酸化物およびセラミックスの製造方法について説明
する。
Next, the method for producing the electron-oxygen ion mixed conduction composite oxide and ceramics of the present invention will be described.

【0036】本発明の電子、酸素イオン混合伝導性複合
酸化物およびセラミックスは、基本的には熱処理を含む
方法により調整することが出来る。たとえば、焼結など
の熱処理過程で酸化物に転換しうる、CeやZrといっ
た金属原子を含む化合物、たとえば、CeO2、ZrO2
のような酸化物、あるいは硝酸塩、炭酸塩、その他にC
eCl3、ZrCl4などの無機酸塩、アルコキシドなど
の有機酸塩、CeF3等のハロゲン化物、あるいはCe
(OH)4、Zr(OH)4等の水酸化物を、所望の割合
で混合し、熱処理を行う方法がある。
The electron-oxygen ion mixed conductive composite oxide and ceramics of the present invention can be prepared basically by a method including heat treatment. For example, a compound containing a metal atom such as Ce or Zr, which can be converted into an oxide in a heat treatment process such as sintering, such as CeO 2 or ZrO 2
Oxides such as, or nitrates, carbonates, and other C
Inorganic acid salts such as eCl 3 and ZrCl 4 , organic acid salts such as alkoxides, halides such as CeF 3 , or Ce
There is a method in which hydroxides such as (OH) 4 and Zr (OH) 4 are mixed in a desired ratio and heat treatment is performed.

【0037】また、上記記載のそれぞれの金属塩の混合
水溶液を、アンモニア水などのアルカリ水溶液で加水分
解する、いわゆる共沈法により得た沈殿物に熱処理を加
えて所望の複合酸化物を得てもよい。さらに、それぞれ
の金属の混合物、又は、合金を熱処理して酸化しても良
い。
Further, the mixed aqueous solution of each metal salt described above is hydrolyzed with an alkaline aqueous solution such as ammonia water, and the precipitate obtained by a so-called coprecipitation method is heat-treated to obtain a desired complex oxide. Good. Further, a mixture of respective metals or an alloy may be heat-treated to be oxidized.

【0038】本発明のCeO2−ZrO2固溶体粉末から
セラミックスを得るには次の方法による。すなわち、A
r等の不活性ガス雰囲気中で、加圧圧力50〜500k
gf/cm2、好ましくは100〜250kgf/c
2、加熱温度1100〜1500℃、好ましくは12
00〜1400℃で、加熱時間0.1〜15時間、好ま
しくは2〜5時間の加圧焼結を行う。なお、この時の昇
温速度は1〜20℃/minが望ましい。加圧圧力が5
0kgf/cm2以下ではセラミックスの焼結密度が不
足するためガスがリークする危険性があり、また、50
0kgf/cm2以上では装置上の制約が大きくなり望
ましくない。加熱温度が1100℃以下では緻密な焼結
体が得られず、1500℃以上では結晶系が変化してし
まう危険性がある。加熱時間は0.1時間以下では緻密
なセラミックスが得られず、15時間以上では結晶粒が
粗大化してセラミックスの強度が低下する。
To obtain ceramics from the CeO 2 -ZrO 2 solid solution powder of the present invention, the following method is used. That is, A
Pressurized pressure 50 to 500 k in an inert gas atmosphere such as r
gf / cm 2 , preferably 100 to 250 kgf / c
m 2 , heating temperature 1100 to 1500 ° C., preferably 12
Pressure sintering is performed at 00 to 1400 ° C. for a heating time of 0.1 to 15 hours, preferably 2 to 5 hours. The temperature rising rate at this time is preferably 1 to 20 ° C./min. Pressurized pressure is 5
If it is 0 kgf / cm 2 or less, there is a risk of gas leakage due to insufficient sintered density of ceramics.
When it is 0 kgf / cm 2 or more, the restrictions on the apparatus become large, which is not desirable. If the heating temperature is 1100 ° C. or lower, a dense sintered body cannot be obtained, and if it is 1500 ° C. or higher, the crystal system may change. If the heating time is 0.1 hours or less, a dense ceramic cannot be obtained, and if the heating time is 15 hours or more, the crystal grains become coarse and the strength of the ceramic decreases.

【0039】次に酸素分圧を10-8atm以下、好まし
くは10-8〜10-16atmに制御して、1000℃以
上、好ましくは1100〜1200℃で、0.1〜24
時間焼成する。酸素分圧は、例えばCO2−H2混合ガス
を炉内に導入することにより制御することが出来る。酸
素分圧が10-8atm以上では酸素吸収に伴う体積変化
でクラックが発生し、また、焼成温度が1000℃以下
では本発明に特有な結晶配列が不十分となる場合があ
り、所望のセラミックスを得ることが出来ない。
Next, the oxygen partial pressure is controlled to 10 -8 atm or less, preferably 10 -8 to 10 -16 atm, and 1000 to 1000 ° C., preferably 1100 to 1200 ° C., 0.1 to 24.
Bake for hours. The oxygen partial pressure can be controlled by, for example, introducing a CO 2 —H 2 mixed gas into the furnace. When the oxygen partial pressure is 10 -8 atm or more, a crack occurs due to a volume change due to oxygen absorption, and when the firing temperature is 1000 ° C. or less, the crystal arrangement peculiar to the present invention may be insufficient, so that the desired ceramic Can't get

【0040】さらに、セラミックスのクラック発生を防
止するため、室温までの冷却は次の方法によることが望
ましい。CO2−H2混合ガスの混合比を変えることなく
0.1〜3℃/minの降温速度で400〜900℃ま
でに降温し、この温度に保持したまま、酸素分圧を10
-6atm以下の還元雰囲気から10-1atmの酸化雰囲
気へ4時間以上、好ましくは6〜72時間かけて徐々に
酸素分圧を上げ、最終的には酸素気流中での焼成とす
る。その後、さらに0.1〜3℃/minの速度で徐冷
する。保持温度が900℃以上では不純物相が析出し、
また400℃以下では酸素吸収が不十分となる。保持時
間は、保持温度および酸素分圧の上昇速度により左右さ
れるが、6時間以上が好ましい。保持時間が6時間以下
では、クラックが発生する危険性がある。また、保持後
の降温速度が3℃/min以上でもクラックが発生する
ことがある。一方、降温速度が0.1℃/min以下で
は著しく生産性を阻害するので現実的ではない。
Further, in order to prevent the occurrence of cracks in the ceramics, it is desirable to cool to room temperature by the following method. The temperature was lowered to 400 to 900 ° C. at a temperature lowering rate of 0.1 to 3 ° C./min without changing the mixing ratio of the CO 2 —H 2 mixed gas, and the oxygen partial pressure was adjusted to 10 while keeping this temperature.
The oxygen partial pressure is gradually increased from a reducing atmosphere of -6 atm or less to an oxidizing atmosphere of 10 -1 atm over 4 hours or more, preferably 6 to 72 hours, and finally firing is performed in an oxygen stream. Then, it is further gradually cooled at a rate of 0.1 to 3 ° C./min. When the holding temperature is 900 ° C or higher, the impurity phase precipitates,
Further, if the temperature is 400 ° C. or lower, oxygen absorption becomes insufficient. The holding time depends on the holding temperature and the rising rate of the oxygen partial pressure, but is preferably 6 hours or more. If the holding time is 6 hours or less, there is a risk of cracks. Also, cracks may occur even if the temperature decrease rate after holding is 3 ° C./min or more. On the other hand, when the temperature lowering rate is 0.1 ° C./min or less, productivity is remarkably impaired, which is not realistic.

【0041】以上は、本発明のCeO2−ZrO2固溶体
粉末からセラミックスを得る方法であるが、CeとZr
とが規則配列しており、さらに、酸素欠損をも規則配列
化するセラミックスを得るには次の方法が望ましい。
The above is a method for obtaining ceramics from the CeO 2 --ZrO 2 solid solution powder of the present invention.
The following method is desirable to obtain ceramics in which and are regularly arrayed, and further, oxygen deficiency is regularly arrayed.

【0042】すなわち、前記のCeO2−ZrO2固溶体
粉末を、加圧焼結した後、酸素分圧P02を10-6〜10
0atmとし、50〜300℃で1〜1200時間の熱
処理を施す。酸素分圧P02が10-6atm未満では、作
製に1200時間以上の熱処理時間を要することとなり
現実的ではなく、また、100atm(すなわち1気
圧)以上では、加圧が必要なためコストが上昇するので
好ましくない。処理温度が50℃未満では目的とする規
則配列性の生成速度が遅く生産性を大きく阻害するので
適当ではなく、300℃を越えると酸素欠損が消失して
しまうことがあるので好ましくない。
That is, after the above CeO 2 --ZrO 2 solid solution powder was pressure-sintered, the oxygen partial pressure P 02 was 10 -6 -10.
And 0 atm, subjected to a heat treatment of 1 to 1200 hours at 50~300 ℃. When the oxygen partial pressure P 02 is less than 10 −6 atm, it takes 1200 hours or more for heat treatment to manufacture, which is not realistic. Further, when the oxygen partial pressure P 02 is 10 0 atm (that is, 1 atm) or more, pressurization is required, which results in cost reduction. Is increased, which is not preferable. If the treatment temperature is lower than 50 ° C., the production rate of the target ordered array is slow and the productivity is greatly impaired, which is not suitable, and if it exceeds 300 ° C., oxygen vacancies may disappear, which is not preferable.

【0043】本発明では所望の立方晶を得るために、上
記のように好ましい焼結条件および焼成条件を規定し
た。これは、上記規定の諸条件以外の条件では、立方晶
系とならなかったり、他の結晶系が混在したりして、酸
素イオン伝導性が低下するとともに、クラックや割れが
発生して所望のセラミックスが得られないためである。
In the present invention, in order to obtain a desired cubic crystal, preferable sintering conditions and firing conditions are specified as described above. This is because, under conditions other than the above-specified conditions, the cubic system does not become a cubic system, or other crystal systems coexist, and the oxygen ion conductivity decreases, and cracks or cracks occur, which is desirable. This is because ceramics cannot be obtained.

【0044】以上のようにして得られる複合酸化物およ
びセラミックスは、空気などの酸素含有混合ガスから、
酸素を分離する酸素分離膜として好適に使用することが
できる。さらに、この複合酸化物は、酸素吸蔵材料とし
て助触媒に使用することができ、酸素センサー、燃料電
池などの電気化学的な機構を利用したデバイスに使用し
て好適である。
The composite oxide and ceramics obtained as described above are prepared from an oxygen-containing mixed gas such as air.
It can be suitably used as an oxygen separation membrane for separating oxygen. Further, this composite oxide can be used as a co-catalyst as an oxygen storage material, and is suitable for use in a device utilizing an electrochemical mechanism such as an oxygen sensor and a fuel cell.

【0045】[0045]

【実施例】以下、本発明を実施例によりさらに詳細に説
明する。 (実施例1)実施例1としてCeZrO4を合成した。
すなわち、x=1、δ=0の場合である。硝酸セリウム
(Ce(NO33)と硝酸ジルコニウム(Zr(N
33)を、モル比でCe/Zr=5/5となるように
混合した水溶液を調製し、攪拌しながらアンモニア水を
滴下して中和し沈殿物を生成させた。続いてこの混合水
溶液に含まれるセリウムイオンの1/2のモル数の過酸
化水素を含む過酸化水素水と、得られる複合酸化物の1
0重量%のアルキルベンゼンスルホン酸を含む水溶液を
添加し、混合攪拌した。得られたスラリーを入ガス40
0℃、出ガス250℃の雰囲気中に噴霧し、スプレード
ライ法で乾燥させるとともに共存する硝酸アンモニウム
を蒸発・分解して、複合酸化物固溶体粉末を調製した。
さらにこの粉末を黒鉛ヒータ加熱式の雰囲気加圧焼結炉
を用いて、静止Arガス置換した後、黒鉛のプレス型を
用いて、500kgf/cm2の押圧で1400℃、1
2時間の加圧焼結を行い、φ150mm、高さ約5mm
の焼結体を得た。
EXAMPLES The present invention will now be described in more detail with reference to examples. (Example 1) As Example 1, CeZrO 4 was synthesized.
That is, this is the case where x = 1 and δ = 0. Cerium nitrate (Ce (NO 3 ) 3 ) and zirconium nitrate (Zr (N
An aqueous solution was prepared by mixing O 3 ) 3 ) in a molar ratio of Ce / Zr = 5/5, and ammonia water was added dropwise with stirring to neutralize to form a precipitate. Subsequently, a hydrogen peroxide solution containing hydrogen peroxide in a mole number of 1/2 of the cerium ion contained in this mixed aqueous solution, and 1 of the obtained composite oxide.
An aqueous solution containing 0% by weight of alkylbenzene sulfonic acid was added and mixed and stirred. The obtained slurry is charged with gas 40
The complex oxide solid solution powder was prepared by spraying in an atmosphere of 0 ° C. and an outlet gas of 250 ° C., drying by a spray drying method, and evaporating and decomposing coexisting ammonium nitrate.
Further, this powder was subjected to stationary Ar gas substitution using a graphite heater heating type atmospheric pressure sintering furnace, and then, using a graphite press die, at 1400 ° C. under a pressure of 500 kgf / cm 2.
Pressure sintering for 2 hours, φ150mm, height about 5mm
A sintered body of was obtained.

【0046】この焼結体をさらに雰囲気焼結炉内に配置
し、CO2−H2混合ガス(CO2/H2=9.5)を流す
ことで、炉内の酸素分圧P02を10-9atmに制御しな
がら、1200℃で12時間の焼成を行った。さらに、
このCO2−H2混合比を変えることなく、800℃まで
温度を下げ、800℃に保ったまま48時間かけて徐々
に酸素分圧を上げ、最終的には酸素気流中での焼成とし
た。その後、1℃/minの降温速度で徐冷し、目的の
セラミックス試料を得た。この多段の熱処理は、クラッ
クなしに、本発明で特定した組成および構造の試料を得
るために必要な熱処理である。得られたセラミックス試
料をφ20mm、厚さ1mmの円盤状の薄片に切出し、
酸素分離用の試料とした。
The sintered body is further placed in an atmosphere sintering furnace, and a CO 2 -H 2 mixed gas (CO 2 / H 2 = 9.5) is flown to reduce the oxygen partial pressure P 02 in the furnace. Firing was performed at 1200 ° C. for 12 hours while controlling at 10 −9 atm. further,
Without changing the CO 2 -H 2 mixing ratio, the temperature was lowered to 800 ° C., the oxygen partial pressure was gradually increased over 48 hours while maintaining the temperature at 800 ° C., and finally firing was performed in an oxygen stream. . Then, it was gradually cooled at a temperature decrease rate of 1 ° C./min to obtain a target ceramic sample. This multi-step heat treatment is a heat treatment necessary to obtain a sample having the composition and structure specified in the present invention without cracks. The obtained ceramic sample is cut into a disk-shaped thin piece with a diameter of 20 mm and a thickness of 1 mm,
The sample was used for oxygen separation.

【0047】また、このセラミックスの試料を粉砕して
粉末X線回折測定を行った。結果を図1に示す。得られ
た回折パターンのピークは、全て立方晶に帰属され、1
4.5゜、37.1゜、44.7゜付近(図中▼)にC
eとZrが規則配列していることを示すピークが認めら
れた。
Further, this ceramic sample was pulverized and subjected to powder X-ray diffraction measurement. The results are shown in Fig. 1. All the peaks of the obtained diffraction pattern were assigned to cubic crystals and 1
C near 4.5 °, 37.1 °, 44.7 ° (▼ in the figure)
A peak indicating that e and Zr were regularly arranged was observed.

【0048】上記のように切出したセラミックス試料に
ついて、図2に示す評価装置を用いて酸素透過速度を評
価した。ガス1入口より、乾燥空気を20cc/min
の速度で導入し、高酸素濃度側とした。また、ガス2入
口より、高純度ヘリウムガス(酸素分圧10-3atm以
下)を20cc/minの速度で導入し、低酸素濃度側
とした。作製したセラミックス試料は、ガラスシールに
よってアルミナチューブに接着し、高酸素濃度側と低酸
素濃度側とを完全に隔離した。ガス1出口およびガス2
出口から放出されるガスを、それぞれ四重極型質量分析
装置と酸素センサーを用いて分析した。セラミックス試
料を通過した酸素量は、ガス出口2から放出されるガス
の酸素濃度とヘリウムガスの流量とから求めた。高酸素
濃度側と低酸素濃度側との隔離は、ガス1出口から放出
されるガスにヘリウムガスが検出されないことによって
確認した。
With respect to the ceramic sample cut out as described above, the oxygen permeation rate was evaluated using the evaluation apparatus shown in FIG. 20 cc / min of dry air from the gas 1 inlet
Was introduced at the rate of, and the high oxygen concentration side was set. Further, high-purity helium gas (oxygen partial pressure of 10 −3 atm or less) was introduced from the gas 2 inlet at a rate of 20 cc / min to make the low oxygen concentration side. The produced ceramic sample was adhered to an alumina tube by a glass seal to completely separate the high oxygen concentration side and the low oxygen concentration side. Gas 1 outlet and gas 2
The gas discharged from the outlet was analyzed using a quadrupole mass spectrometer and an oxygen sensor, respectively. The amount of oxygen passing through the ceramic sample was determined from the oxygen concentration of the gas released from the gas outlet 2 and the flow rate of the helium gas. The separation between the high oxygen concentration side and the low oxygen concentration side was confirmed by not detecting helium gas in the gas released from the gas 1 outlet.

【0049】酸素透過の実験は、この装置を電気炉によ
り加熱して、750℃、入側酸素分圧0.2atm、出
側酸素分圧10-6atmの条件下で実施した。その結
果、酸素透過性能は、2.3cc・min-1cm-2であ
った。 (比較例1)比較例として、従来から知られている電
子、酸素イオン伝導体であるLa0.6Sr0.4Co03-
δを合成した。酸化ランタン、炭酸ストロンチウム、四
三酸化コバルトを上記組成のモル比になるように秤量
し、これらの混合物を自動乳鉢でよく混合した。この混
合物を空気中、850℃で12時間仮焼した。この仮焼
体を静水圧プレスにより厚さ約2mmの円盤状に加圧成
形し、成形体を1300℃で6時間、空気中で焼成して
焼結させた。この焼結体を実施例1と同様にφ20m
m、厚さ1mmの円盤状の薄片に切出し、酸素分離用の
試料とした。
The experiment of oxygen permeation was carried out by heating this apparatus with an electric furnace, under the conditions of 750 ° C., an inlet oxygen partial pressure of 0.2 atm, and an outlet oxygen partial pressure of 10 −6 atm. As a result, the oxygen permeability was 2.3 cc · min −1 cm −2 . (Comparative Example 1) As a comparative example, La 0.6 Sr 0.4 Co 0 O 3 − which is a conventionally known electron and oxygen ion conductor.
δ was synthesized. Lanthanum oxide, strontium carbonate, and cobalt trioxide were weighed so that the above composition had a molar ratio, and these mixtures were well mixed in an automatic mortar. This mixture was calcined in air at 850 ° C. for 12 hours. This calcined body was pressure-molded by a hydrostatic press into a disk shape having a thickness of about 2 mm, and the molded body was fired in air at 1300 ° C. for 6 hours to be sintered. This sintered body was φ20 m in the same manner as in Example 1.
The sample was cut into a disc-shaped thin piece having a thickness of 1 mm and a thickness of 1 mm to obtain a sample for oxygen separation.

【0050】実施例1と同様の条件で酸素透過の試験を
実施した。その結果、酸素透過性能は、1.2cc・m
in-1cm-2であった。 (実施例2)実施例2としてCeZrO3.75を合成し
た。すなわち、x=1、δ=0.25の場合である。
An oxygen permeation test was carried out under the same conditions as in Example 1. As a result, the oxygen permeability is 1.2 cc · m.
It was in -1 cm -2 . (Example 2) As Example 2, CeZrO 3.75 was synthesized. That is, this is the case where x = 1 and δ = 0.25.

【0051】まず、硝酸セリウム(Ce(NO33)と
硝酸ジルコニウム(Zr(NO33)との混合水溶液か
ら、実施例1と同様に処理して複合酸化物固溶体粉末を
調整した。さらに、この固溶体粉末に実施例1と同様の
加圧焼結を施してφ150mm、高さ約5mmの焼結体
を得た。
First, a mixed solution of cerium nitrate (Ce (NO 3 ) 3 ) and zirconium nitrate (Zr (NO 3 ) 3 ) was treated in the same manner as in Example 1 to prepare a composite oxide solid solution powder. Further, this solid solution powder was subjected to pressure sintering in the same manner as in Example 1 to obtain a sintered body having a diameter of 150 mm and a height of about 5 mm.

【0052】次に、この焼結体をさらに雰囲気焼成炉に
おいて、200℃で酸素ガスで4時間焼成を行った後、
5℃/minの速度で冷却して、目的の焼結体を得た。
この焼結体から実施例1と同様のφ20mm、厚さ1m
mの円盤状の薄片を切出し、酸素分離用の試料とした。
Next, this sintered body was further fired in an atmosphere firing furnace at 200 ° C. for 4 hours with oxygen gas, and then,
The target sintered body was obtained by cooling at a rate of 5 ° C./min.
From this sintered body, the same φ20 mm as in Example 1 and a thickness of 1 m
A disk-shaped thin piece of m was cut out and used as a sample for oxygen separation.

【0053】また、この焼結体の試料を粉砕して粉末X
線回折測定を行った。結果を図3に示す。得られた回折
パターンのピークは、全て立方晶に帰属され、14.4
゜、36.7゜、44.2゜(図中▼)にCeとZrが
規則配列していることを示すピークが認められた。さら
に、CeZrO4の1/16の酸素が規則配列的に欠損
していることによって生じるピーク(図中▽)が16.
6゜に現れている。
Also, a sample of this sintered body was crushed to obtain powder X.
A line diffraction measurement was performed. The results are shown in Fig. 3. All the peaks of the obtained diffraction pattern were assigned to cubic crystals and were 14.4.
Peaks indicating that Ce and Zr were regularly arranged were observed at 3 °, 36.7 °, and 44.2 ° (in the figure). Furthermore, the peak (∇ in the figure) caused by the lack of regular arrangement of 1/16 oxygen of CeZrO 4 is 16.
It appears at 6 °.

【0054】実施例1と同様に図2に示す評価装置を用
いて酸素透過試験を行った。酸素透過試験は、この装置
を電気炉で200℃に加熱して、入側酸素分圧0.2a
tm、出側酸素分圧10-6atmの条件下で実施した。
その結果、酸素透過性能は、0.1cc・min-1cm
-2であった。これは従来から知られている電子、酸素イ
オン伝導体であるLa0.6Sr0.4Co03-δ(比較例
1)を用いて同一条件で得られる酸素透過性能が、0c
c・min-1cm-2であったのに対して、本実施例は極
めて優れた酸素透過性能を有するということができる。
An oxygen permeation test was carried out using the evaluation apparatus shown in FIG. 2 as in Example 1. For the oxygen permeation test, this equipment was heated to 200 ° C. in an electric furnace to obtain an oxygen partial pressure of 0.2 a
It was carried out under the conditions of tm and outlet oxygen partial pressure of 10 −6 atm.
As a result, the oxygen permeability is 0.1 cc · min −1 cm
It was -2 . This is because the oxygen permeation performance obtained under the same conditions using La 0.6 Sr 0.4 Co 0 O 3 − δ (Comparative Example 1), which is a conventionally known electron and oxygen ion conductor, is 0c.
While it was c · min −1 cm −2 , it can be said that this example has an extremely excellent oxygen permeability.

【0055】[0055]

【発明の効果】本発明によれば、電子、酸素イオンとも
に高い伝導性を有する混合伝導体を製造することができ
る。したがって、混合電導体隔壁法による酸素分離装置
に、実用に耐えうる性能を有する混合伝導性複合酸化物
を提供することがでる。また、これにより従来よりもエ
ネルギー消費量が少なく、低コストで酸素製造ができる
技術を提供することができる。
According to the present invention, a mixed conductor having high conductivity for both electrons and oxygen ions can be manufactured. Therefore, it is possible to provide a mixed conductive complex oxide having a performance that can be practically used for an oxygen separation device by the mixed conductor partition wall method. In addition, as a result, it is possible to provide a technique that consumes less energy than before and that enables oxygen production at low cost.

【0056】さらに、本発明の電子、酸素イオン混合伝
導体は、その高い伝導性ゆえに、酸素分離膜のみならず
その他の用途、例えば、固体酸素燃料電池(SOF
C)、酸素センサー、助触媒などに適用しても高い性能
を発揮することができる。
Further, the electron / oxygen ion mixed conductor of the present invention, due to its high conductivity, is used not only for the oxygen separation membrane but also for other applications such as a solid oxygen fuel cell (SOF).
Even when applied to C), oxygen sensor, co-catalyst, etc., high performance can be exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になるCeZrO4の粉末X線回折パタ
ーンであり、CeとZrの規則配列を示す(図中▼)。
FIG. 1 is a powder X-ray diffraction pattern of CeZrO 4 according to the present invention, showing a regular arrangement of Ce and Zr (▼ in the figure).

【図2】本発明の混合伝導性複合酸化物からなる焼結体
の酸素透過速度を評価した評価装置の概略図である。
FIG. 2 is a schematic diagram of an evaluation apparatus for evaluating the oxygen permeation rate of a sintered body made of the mixed conductive complex oxide of the present invention.

【図3】本発明になるCeZrO3.75(Ce2Zr2
7.5)の粉末X線回折パターンであり、CeとZrが規
則配列していることと、1/16の酸素が規則配列的に
欠損していること(図中▽)とを示している。
FIG. 3 shows CeZrO 3.75 (Ce 2 Zr 2 O according to the present invention).
It is a powder X-ray diffraction pattern of 7.5 ), and shows that Ce and Zr are regularly arrayed and that 1/16 oxygen is regularly arrayed (∇ in the figure).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/02 H01M 8/02 K 8/12 8/12 Fターム(参考) 4G031 AA07 AA12 BA02 BA03 BA07 CA01 GA16 GA17 4G048 AA03 AB02 AC04 AD03 AE07 5G301 CA02 CA28 CA30 CD01 5H026 AA06 BB01 CX04 EE13 HH00 HH05 HH08 HH09 HH10 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 8/02 H01M 8/02 K 8/12 8/12 F term (reference) 4G031 AA07 AA12 BA02 BA03 BA07 CA01 GA16 GA17 4G048 AA03 AB02 AC04 AD03 AE07 5G301 CA02 CA28 CA30 CD01 5H026 AA06 BB01 CX04 EE13 HH00 HH05 HH08 HH09 HH10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】Ce2-xZrx4-δ(x=0.125〜
1.9、δ=0〜0.5)で表され、かつ、主要な結晶
系が立方晶であることを特徴とする電子、酸素イオン混
合伝導性複合酸化物。
1. Ce 2-x Zr x O 4- δ (x = 0.125-
1.9, δ = 0 to 0.5), and a major crystal system is a cubic crystal, which is an electron / oxygen ion mixed conductive complex oxide.
【請求項2】前記立方晶は、Cuを管球とする粉末X線
回折測定において、2θ=13.8〜14.6、36.
0〜37.4、43.2〜44.9にそれぞれ1本ずつ
のピークを呈する請求項1記載の電子、酸素イオン混合
伝導性複合酸化物。
2. The cubic crystal is 2θ = 13.8 to 14.6, 36.36 in powder X-ray diffraction measurement using Cu as a tube.
The electron-oxygen mixed conductive complex oxide according to claim 1, which has one peak each at 0-37.4 and 43.2-44.9.
【請求項3】前記立方晶は、CeとZrとが規則配列し
ており、かつ、酸素欠損も規則配列している請求項1に
記載の電子、酸素イオン混合伝導性複合酸化物。
3. The mixed electron-oxygen ion conductive complex oxide according to claim 1, wherein Ce and Zr are regularly arranged in the cubic crystal, and oxygen vacancies are also regularly arranged.
【請求項4】前記立方晶は、Cuを管球とする粉末X線
回折測定において、2θ=13.8〜14.6、36.
0〜37.4、43.2〜44.9にそれぞれ1本ずつ
のピークに加えて、さらに2θ=15.8〜17.2に
もピークを呈する請求項3に記載の電子、酸素イオン混
合伝導性複合酸化物。
4. The cubic crystal is 2θ = 13.8 to 14.6, 36.36 in powder X-ray diffraction measurement using Cu as a tube.
The electron-oxygen ion mixture according to claim 3, which has a peak at 2θ = 15.8 to 17.2 in addition to one peak at 0 to 37.4 and 43.2 to 44.9, respectively. Conductive complex oxide.
【請求項5】空間群がF4 ̄3m(No.216)であ
り、基本組成がCeZrO3.75で表される請求項3また
は4に記載の電子、酸素イオン混合伝導性複合酸化物。
5. The electron-oxygen ion mixed conductive complex oxide according to claim 3 or 4, wherein the space group is F4-3m (No. 216) and the basic composition is CeZrO 3.75 .
【請求項6】Ce2-xZrx4-δ(x=0.125〜
1.9、δ=0〜0.5)で表される複合酸化物を、1
000℃以上、かつ酸素分圧P02=10-8atm以下の
雰囲気で熱処理することを特徴とする請求項1から5の
いずれかに記載の電子、酸素イオン混合伝導性複合酸化
物の製造方法。
6. Ce 2-x Zr x O 4- δ (x = 0.125-
1.9, δ = 0 to 0.5) 1
6. The method for producing an electron / oxygen ion mixed conductive complex oxide according to claim 1, wherein the heat treatment is performed in an atmosphere having a temperature of 000 ° C. or more and an oxygen partial pressure P 02 = 10 −8 atm or less. .
【請求項7】前記複合酸化物を、400〜900℃に保
持し、酸素分圧を10 -6atm以下の還元雰囲気から1
-1atm以上の酸化雰囲気まで、4時間以上かけて上
昇させる熱処理を含む請求項6に記載の電子、酸素イオ
ン混合伝導性複合酸化物の製造方法。
7. The composite oxide is kept at 400 to 900 ° C.
Hold, oxygen partial pressure 10 -61 from reducing atmosphere below atm
0-1It takes 4 hours or more to oxidize the atmosphere above atm
The electron or oxygen ion according to claim 6, which includes a heat treatment for raising the temperature.
Method for producing mixed conductive complex oxide.
【請求項8】前記複合酸化物を、酸素分圧P02=10-6
〜100atmとし、50〜300℃で1〜1200時
間の熱処理を含む請求項6に記載の電子、酸素イオン混
合伝導性複合酸化物の製造方法。
8. The oxygen partial pressure P 02 = 10 −6 in the composite oxide.
To 10 0 atm and then, electrons of claim 6 including the heat treatment of 1 to 1200 hours at 50 to 300 ° C., the manufacturing method of the oxygen ion mixed conductive composite oxide.
JP2002228606A 2001-11-12 2002-08-06 Mixed conductive composite oxide for oxygen separation and method for producing the same Expired - Fee Related JP4320531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228606A JP4320531B2 (en) 2001-11-12 2002-08-06 Mixed conductive composite oxide for oxygen separation and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001345760 2001-11-12
JP2001-345760 2001-11-12
JP2002228606A JP4320531B2 (en) 2001-11-12 2002-08-06 Mixed conductive composite oxide for oxygen separation and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003206178A true JP2003206178A (en) 2003-07-22
JP4320531B2 JP4320531B2 (en) 2009-08-26

Family

ID=27667100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228606A Expired - Fee Related JP4320531B2 (en) 2001-11-12 2002-08-06 Mixed conductive composite oxide for oxygen separation and method for producing the same

Country Status (1)

Country Link
JP (1) JP4320531B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277059A (en) * 2002-03-22 2003-10-02 Toyota Central Res & Dev Lab Inc Ceria-zirconia compound oxide
JP2008034290A (en) * 2006-07-31 2008-02-14 Sharp Corp Fuel cell
WO2010131536A1 (en) * 2009-05-13 2010-11-18 日本電気株式会社 Catalyst electrode, fuel cell, air cell and method for generating electric power
JP2011220776A (en) * 2010-04-07 2011-11-04 Noritake Co Ltd Method for producing oxygen separation membrane material and method for measuring reduction expansion rate of the material
JP2018129215A (en) * 2017-02-09 2018-08-16 株式会社日本触媒 Zirconia electrolyte and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277059A (en) * 2002-03-22 2003-10-02 Toyota Central Res & Dev Lab Inc Ceria-zirconia compound oxide
JP2008034290A (en) * 2006-07-31 2008-02-14 Sharp Corp Fuel cell
WO2010131536A1 (en) * 2009-05-13 2010-11-18 日本電気株式会社 Catalyst electrode, fuel cell, air cell and method for generating electric power
JPWO2010131536A1 (en) * 2009-05-13 2012-11-01 日本電気株式会社 Catalyst electrode, fuel cell, air cell and power generation method
JP2011220776A (en) * 2010-04-07 2011-11-04 Noritake Co Ltd Method for producing oxygen separation membrane material and method for measuring reduction expansion rate of the material
JP2018129215A (en) * 2017-02-09 2018-08-16 株式会社日本触媒 Zirconia electrolyte and method for manufacturing the same

Also Published As

Publication number Publication date
JP4320531B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP5126535B2 (en) Composite type mixed conductor
US20160122886A1 (en) Electrode composition, apparatus and method for removing nitrogen oxide
JP6242807B2 (en) Composite oxide, method for producing the same, and catalyst for exhaust gas purification
US6235187B1 (en) Oxygen separation method using a mixed conducting cubic perovskite ceramic ion transport membrane
JP5509077B2 (en) Hydrogen ion conducting ceramic membranes for hydrogen separation
Wang et al. Chemical stability, ionic conductivity of BaCe0. 9− xZrxSm0. 10O3− α and its application to ammonia synthesis at atmospheric pressure
EP3537524B1 (en) Composite particle powder, electrode material for solid oxide cell, and electrode for solid oxide cell made thereof
JP6223354B2 (en) Composite oxide, method for producing the same, and catalyst for purification of exhaust gas
Zhao et al. Carbonates formed during BSCF preparation and their effects on performance of SOFCs with BSCF cathode
JP4320531B2 (en) Mixed conductive composite oxide for oxygen separation and method for producing the same
Meng et al. Synthesis and properties of Ba0. 5Sr0. 5 (Co0. 6Zr0. 2) Fe0. 2O3− δ perovskite cathode material for intermediate temperature solid-oxide fuel cells
JP3758084B2 (en) Ceramics for oxygen separation and oxygen separator
JP7237048B2 (en) Oxygen storage material and its manufacturing method
JP2014188479A (en) Oxygen permeable membrane, oxygen separation method, and fuel cell system
JP2001106532A (en) Mixed conductive mutiple oxide, ceramic for oxygen separation or chemical reaction comprising the same, and their producing methods
JP2020142194A (en) Oxygen adsorbent
KR101787811B1 (en) Method of manufacturing electrode, electrode manufactured by the method and fuel cell comprising the same
JP4748089B2 (en) Composite type mixed conductor
JP5228353B2 (en) Composite type mixed conductor
JP3564693B2 (en) Perovskite-type composite oxide, method for producing the same, and solid oxide electrolyte fuel cell using the same
Chen et al. Synthesis and Characterization of 40 wt% Ce₀. ₉Pr₀. ₁O₂− δ− 60 wt% NdxSr₁₋ ₓFe₀. ₉Cu₀. ₁O₃− δ Dual-Phase Membranes for Efficient Oxygen Separation
JP2005015320A (en) Mixed conductive complex oxide and method for producing the same, and method for producing oxygen and method for reforming gas using the mixed conductive complex oxide
JP2020049412A (en) Perovskite type oxide oxygen absorber capable of low temperature actuation, and manufacturing method and oxygen separation method therefor
CN115992387A (en) Stable cubic crystal perovskite structure for ceramic ionic membrane element
JP2011190149A (en) Composite ceramic powder and method for producing the same, and solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140612

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees