JP2003206103A - Fuel reforming apparatus - Google Patents

Fuel reforming apparatus

Info

Publication number
JP2003206103A
JP2003206103A JP2002004433A JP2002004433A JP2003206103A JP 2003206103 A JP2003206103 A JP 2003206103A JP 2002004433 A JP2002004433 A JP 2002004433A JP 2002004433 A JP2002004433 A JP 2002004433A JP 2003206103 A JP2003206103 A JP 2003206103A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
temperature difference
heat exchanger
remover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002004433A
Other languages
Japanese (ja)
Other versions
JP3747855B2 (en
Inventor
Akira Shimozono
亮 下薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002004433A priority Critical patent/JP3747855B2/en
Publication of JP2003206103A publication Critical patent/JP2003206103A/en
Application granted granted Critical
Publication of JP3747855B2 publication Critical patent/JP3747855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel reforming apparatus in which the efficiency of a carbon monoxide removing equipment is improved. <P>SOLUTION: In the fuel reforming apparatus provided with a reforming reactor (5) for producing a reformed gas and CO removing equipment (6) for decreasing CO in the reformed gas to have a prescribed concentration, the CO removing equipment is provided with a 1st circulation pump (11) for circulating a coolant of a fixed quantity to the CO removing equipment, a means (15b) for detecting the reformed gas discharged from the CO removing equipment, a 1st flow passage (1a) for circulating the coolant discharged from the CO removing equipment to the CO removing equipment through the 1st circulation pump (11), a 2nd flow passage (1b) provided parallel to the 1st flow passage and provided with a radiator and a 1st three-way valve (12) for controlling the mixing ratio of the coolant from the 1st flow passage with the coolant from the 2nd flow passage in the coolant flowing in the CO removing equipment at a branch point where the 1st flow passage and the 2nd flow passage are branched. The 1st three-way valve controls the mixing ratio so that the temperature of the reformed gas discharged from the CO removing equipment becomes a prescribed temperature. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は燃料改質装置に関
し、特に、燃料電池システムに設けられる燃料改質装置
の冷却方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel reformer, and more particularly to a method for cooling a fuel reformer provided in a fuel cell system.

【0002】[0002]

【従来の技術】燃料改質装置の冷却方法について、例え
ば特開平10−302824号公報は、燃料改質装置の
構成であるところの一酸化炭素(以下、単にCOと示
す。)除去器の冷却に関する技術を開示する。
2. Description of the Related Art Regarding a method of cooling a fuel reformer, for example, Japanese Patent Laid-Open No. 10-302824 discloses cooling a carbon monoxide (hereinafter, simply referred to as CO) remover which is a structure of the fuel reformer. The technology regarding is disclosed.

【0003】前記公報では、CO除去器(反応器6)の
内部に冷却管を配設して、冷却管の一端を循環ポンプを
介して冷却水タンクに連通し、他端は放熱器を介して冷
却水タンクに連通させ、循環ポンプの作用により、冷却
水タンク内の冷却水はCO除去器内の冷却管内を流通
し、CO除去器を冷却し、昇温した冷却水は放熱器で冷
却され、冷却水タンクに戻る構成を開示する。したがっ
て、冷却水はCO除去器内を流通することで、改質ガス
中のCO選択酸化反応によって生じた熱を吸熱し、CO
除去器内の温度上昇を抑制することができる。
In the above-mentioned publication, a cooling pipe is provided inside the CO remover (reactor 6), one end of the cooling pipe is connected to a cooling water tank via a circulation pump, and the other end is connected via a radiator. The cooling water in the cooling water tank circulates in the cooling pipe in the CO remover by the action of the circulation pump to cool the CO remover, and the heated cooling water is cooled in the radiator. Then, the configuration for returning to the cooling water tank is disclosed. Therefore, the cooling water flows through the CO remover to absorb the heat generated by the CO selective oxidation reaction in the reformed gas, thereby reducing the CO
The temperature rise in the remover can be suppressed.

【0004】また、特開平07−185303号公報に
は、選択触媒を担持する触媒層と冷却水が流通する冷却
層とが交互に積層された触媒積層体と、箱型ケーシング
内に選択酸化触媒が充填される触媒充填体とが改質ガス
の流れ方向にメッシュ板を介して接合されたCO除去装
置が開示され、触媒積層体が冷却可能な構成となってい
る。
Further, Japanese Patent Laid-Open No. 07-185303 discloses a catalyst laminate in which a catalyst layer carrying a selective catalyst and a cooling layer through which cooling water flows are alternately laminated, and a selective oxidation catalyst in a box-shaped casing. Disclosed is a CO removing device in which a catalyst packed body filled with is bonded via a mesh plate in the flow direction of the reformed gas, and the catalyst laminate can be cooled.

【0005】さらに、特開2000−72403号公報
には、改質ガス生成部と改質ガスに含有されるCOの除
去するCO除去器との間に改質ガスを冷却する手段を設
けた燃料電池システムが開示され、これはCO除去器に
供給される改質ガスの温度を適正に制御する構成であ
る。
Further, in Japanese Patent Laid-Open No. 2000-72403, a fuel provided with a means for cooling the reformed gas is provided between the reformed gas generation section and a CO remover for removing CO contained in the reformed gas. A battery system is disclosed, which has a configuration for appropriately controlling the temperature of the reformed gas supplied to the CO remover.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開平
10−302824号公報に記載の技術にあっては、放
熱器で冷却された冷却水がタンクからCO除去器に流入
するため、CO除去器入口の温度が低くなり、出口温度
との温度差が大きくなり、CO除去器内の触媒の温度が
均一とならないで、活性温度に達しない領域が多くな
り、全体としてのCO除去効率が低下することが問題と
なる。
However, in the technique described in Japanese Patent Laid-Open No. 10-302824, the cooling water cooled by the radiator flows into the CO remover from the tank, so the CO remover inlet Temperature becomes low, the temperature difference from the outlet temperature becomes large, the temperature of the catalyst in the CO remover does not become uniform, the area where the activation temperature is not reached increases, and the overall CO removal efficiency decreases. Is a problem.

【0007】また、特開平07−185303号公報の
技術では、CO選択酸化反応が激しい触媒積層体の冷却
は可能であるけれども、下流に位置する触媒充填体は冷
却手段を備えていないために、CO選択酸化反応自体は
少ないものの、触媒充填体の触媒温度は触媒の活性温度
域を越える恐れがある。
Further, in the technique disclosed in Japanese Patent Laid-Open No. 07-185303, it is possible to cool the catalyst laminate having a strong CO selective oxidation reaction, but the catalyst packing located downstream has no cooling means. Although the CO selective oxidation reaction itself is small, the catalyst temperature of the catalyst packing may exceed the activation temperature range of the catalyst.

【0008】特開2000−72403号公報の技術
は、改質ガスの温度を冷却水(冷媒)の流量制御で行っ
ているため、冷却手段の出入口間での温度差が最小とは
ならず、冷却手段の出口での改質ガスの温度が不均一と
なり、この改質ガスが導入されるCO除去器の性能効率
が低下することになる。
In the technique of Japanese Patent Laid-Open No. 2000-72403, the temperature of the reformed gas is controlled by controlling the flow rate of the cooling water (refrigerant), so the temperature difference between the inlet and outlet of the cooling means is not minimized, The temperature of the reformed gas at the outlet of the cooling means becomes non-uniform, and the performance efficiency of the CO remover into which this reformed gas is introduced decreases.

【0009】すなわち、これまでの従来技術の制御では
いずれもが、CO除去器内の温度が触媒の活性温度域に
精度よく制御できず、たとえば、CO除去器の下流側で
活性温度となるように温度制御すると、上流側でCOの
選択酸化反応が生じることがなく、CO除去性能が十分
に発揮することができない。また入口側で触媒活性温度
となるように温度制御すると下流側での触媒温度が活性
温度を越えた温度となり、逆シフト反応が生じ、COの
除去ができなかったり、改質反応器で生成した水素を燃
焼してしまい、改質効率の低下を結果として招くことに
なる。
That is, in any of the conventional control methods so far, the temperature inside the CO remover cannot be accurately controlled within the activation temperature range of the catalyst, and for example, the activation temperature becomes the downstream side of the CO remover. When the temperature is controlled to 1, the CO selective oxidation reaction does not occur on the upstream side, and the CO removal performance cannot be sufficiently exhibited. When the temperature is controlled so that the catalyst activation temperature is on the inlet side, the catalyst temperature on the downstream side exceeds the activation temperature, and a reverse shift reaction occurs and CO cannot be removed or generated in the reforming reactor. Hydrogen is burned, resulting in a reduction in reforming efficiency.

【0010】従来のCO除去器の温度制御について説明
すると、その温度制御の手段としては冷却水の流量を制
御するものとCO除去器の入口での冷却水温度を制御す
るものとがある。
The temperature control of the conventional CO remover will be described. As means for controlling the temperature, there are one for controlling the flow rate of the cooling water and one for controlling the temperature of the cooling water at the inlet of the CO remover.

【0011】冷却水の流量を循環ポンプの負荷に応じて
制御する場合には、循環ポンプの負荷にかかわらず、C
O除去器の入口での冷却水温度と出口での冷却水温度は
常に一定の温度差を有することになる。したがって、前
述したように制御温度の設定によって、入口側でCOの
除去が促進されなかったり、逆に出口側で逆シフト反応
が生じたりすることになる。
When the flow rate of the cooling water is controlled according to the load of the circulation pump, C
The cooling water temperature at the inlet of the O remover and the cooling water temperature at the outlet always have a constant temperature difference. Therefore, as described above, depending on the setting of the control temperature, the removal of CO is not promoted on the inlet side, or conversely, the reverse shift reaction occurs on the outlet side.

【0012】対して、CO除去器入口での冷却水の温度
を制御する場合、たとえばCO除去器の上流に熱交換器
を設置し、その出口にサーモスタットを設けることでC
O除去器入口の冷却水温度を制御する場合には、下流側
の触媒温度が高負荷のときに活性温度となるように制御
すると、CO除去器の負荷が低いときに除去器内の温度
が活性温度に達せずCOの除去ができない状態となる恐
れが生じる。
On the other hand, when controlling the temperature of the cooling water at the inlet of the CO remover, for example, a heat exchanger is installed upstream of the CO remover and a thermostat is provided at the outlet of the CO remover.
When controlling the temperature of the cooling water at the inlet of the O remover, if the temperature of the catalyst on the downstream side is controlled to reach the activation temperature when the load is high, the temperature inside the remover is reduced when the load of the CO remover is low. There is a possibility that CO cannot be removed because the activation temperature is not reached.

【0013】CO除去器は、選択酸化触媒が活性温度に
達すると改質ガス中に含有されたCOを選択的に酸化
し、除去するが、このときの触媒活性温度は、所定の温
度範囲で与えられるが、前記した従来技術では、このよ
うな温度範囲にCO除去器内の触媒の温度を制御するこ
とが適正にできない。
The CO eliminator selectively oxidizes and removes CO contained in the reformed gas when the selective oxidation catalyst reaches the activation temperature. At this time, the catalyst activation temperature is within a predetermined temperature range. However, the above-mentioned conventional technique cannot properly control the temperature of the catalyst in the CO remover in such a temperature range.

【0014】本発明は、このような課題に鑑み、CO除
去器内の収装された選択酸化触媒を活性温度範囲内に制
御することのできる燃料改質装置を提案する。
In view of the above problems, the present invention proposes a fuel reformer capable of controlling the contained selective oxidation catalyst in the CO remover within an activation temperature range.

【0015】[0015]

【課題を解決するための手段】第1の発明は、前記一酸
化炭素除去器は、改質ガスとの間で熱交換する機能を備
え、前記一酸化炭素除去器に冷媒を定量循環させるため
の第1循環ポンプと、前記一酸化炭素除去器から排出さ
れる改質ガスまたは冷媒の温度を検出する手段と、前記
一酸化炭素除去器から排出される冷媒を第1循環ポンプ
を介して一酸化炭素除去器に循環する第1流路と、前記
第1流路と並列に設けられ、放熱器を備えた第2流路
と、前記第1流路と第2流路の分岐点に、一酸化炭素除
去器に流入する冷媒の第1流路からの冷媒と第2流路か
らの冷媒との混合率を制御する第1三方弁とを備え、前
記第1三方弁は、前記一酸化炭素除去器から排出される
改質ガスの温度または冷媒の温度が所定温度となるよう
に混合率を制御する。
According to a first aspect of the invention, the carbon monoxide remover has a function of exchanging heat with a reformed gas, and the refrigerant is circulated in a fixed amount in the carbon monoxide remover. First circulation pump, means for detecting the temperature of the reformed gas or the refrigerant discharged from the carbon monoxide remover, and the refrigerant discharged from the carbon monoxide remover through the first circulation pump. A first flow path that circulates in the carbon oxide remover, a second flow path that is provided in parallel with the first flow path and that includes a radiator, and a branch point between the first flow path and the second flow path, A first three-way valve for controlling a mixing ratio of the refrigerant flowing into the carbon monoxide remover from the first flow passage and the refrigerant from the second flow passage, wherein the first three-way valve is provided The mixing ratio is controlled so that the temperature of the reformed gas or the temperature of the refrigerant discharged from the carbon remover becomes a predetermined temperature.

【0016】第2の発明は、第1の発明において、改質
ガスを冷却する熱交換器と、前記熱交換器に冷媒を循環
させるための第2循環ポンプと、前記熱交換器から排出
される改質ガスまたは冷媒の温度を検出する手段と、前
記熱交換器から排出される冷媒を熱交換器に循環する第
3流路と、前記第3流路をバイパスして設けられ、放熱
器を備えた第4流路と、前記第3流路と第4流路の下流
側分岐点に、熱交換器に流入する冷媒の第3流路からの
冷媒と第4流路からの冷媒との混合率を制御する第2三
方弁とを備え、前記第2循環ポンプを所定流量で運転
し、前記第2三方弁は、前記熱交換器から排出される冷
媒の温度が所定温度となるように混合率を制御する。
In a second aspect based on the first aspect, the heat exchanger for cooling the reformed gas, the second circulation pump for circulating the refrigerant through the heat exchanger, and the heat exchanger for discharging the reformed gas are discharged from the heat exchanger. Means for detecting the temperature of the reformed gas or the refrigerant, a third passage for circulating the refrigerant discharged from the heat exchanger to the heat exchanger, and a radiator provided by bypassing the third passage. And a refrigerant from the third channel and a refrigerant from the fourth channel of the refrigerant flowing into the heat exchanger, at a downstream branch point of the third channel and the fourth channel. And a second three-way valve for controlling the mixing ratio of the second circulation pump, the second circulation pump is operated at a predetermined flow rate, and the second three-way valve causes the temperature of the refrigerant discharged from the heat exchanger to reach a predetermined temperature. Control the mixing ratio.

【0017】第3の発明は、第1または2の発明におい
て、前記CO除去器の運転負荷が最大のときにCO除去
器内に収装された触媒の温度が活性温度となるように、
前記第1循環ポンプを最大定格流量で運転するととも
に、前記第1三方弁の混合率を制御する。
In a third aspect based on the first or second aspect, when the operating load of the CO remover is maximum, the temperature of the catalyst contained in the CO remover becomes the activation temperature.
The first circulation pump is operated at the maximum rated flow rate, and the mixing ratio of the first three-way valve is controlled.

【0018】第4の発明は、第2または3の発明におい
て、前記熱交換器の運転負荷が最大のときに熱交換器か
ら排出される冷媒の温度が許容温度となるように、前記
第2循環ポンプを最大定格流量で運転するとともに、前
記第2三方弁の混合率を制御する。
In a fourth aspect based on the second or third aspect, when the operating load of the heat exchanger is maximum, the temperature of the refrigerant discharged from the heat exchanger becomes an allowable temperature. The circulation pump is operated at the maximum rated flow rate, and the mixing ratio of the second three-way valve is controlled.

【0019】第5の発明は、第1の発明において、改質
ガスを冷却する熱交換器と、前記熱交換器に冷媒を循環
させるための第2循環ポンプと、前記熱交換器から排出
される改質ガスまたは冷媒の温度を検出する手段と、前
記熱交換器から排出される冷媒を熱交換器に循環する第
3流路と、前記第1三方弁と第2三方弁を連結する第5
流路と、第2流路に設置された第3循環ポンプと、前記
第2流路と前記第3流路とを連通する第6流路と、前記
第2流路を連通する第7流路とを備え、前記放熱器に流
入する冷媒流量を前記第3循環ポンプで調整しつつ、前
記放熱器出口での冷媒が所定の温度となるように制御す
る。
In a fifth aspect based on the first aspect, the heat exchanger for cooling the reformed gas, the second circulation pump for circulating the refrigerant through the heat exchanger, and the exhaust gas discharged from the heat exchanger. Means for detecting the temperature of the reformed gas or the refrigerant, a third flow path for circulating the refrigerant discharged from the heat exchanger to the heat exchanger, and a third flow passage for connecting the first three-way valve and the second three-way valve. 5
A flow path, a third circulation pump installed in the second flow path, a sixth flow path that connects the second flow path and the third flow path, and a seventh flow that connects the second flow path And a passage for adjusting the flow rate of the refrigerant flowing into the radiator by the third circulation pump, and controlling the refrigerant at the radiator outlet to a predetermined temperature.

【0020】第6の発明は、第1の発明において、前記
CO除去器の出入口での冷媒温度を検出し、その温度差
を検出する第1温度差検出手段と、前記第1放熱器の出
口での冷媒温度を検出する手段と、この第1放熱器出口
での冷媒温度とCO除去器出口での冷媒温度との温度差
を検出する第2温度差検出手段と、第1温度差検出手段
と第2温度差検出手段の出力に基づき、CO除去器に供
給する冷媒の混合率を演算する循環率計算手段とを備
え、この循環率計算手段で演算された混合率となるよう
に第1三方弁を制御する。
In a sixth aspect based on the first aspect, first temperature difference detecting means for detecting the temperature of the refrigerant at the inlet / outlet of the CO remover and detecting the temperature difference, and the outlet of the first radiator. And a second temperature difference detecting means for detecting a temperature difference between the refrigerant temperature at the outlet of the first radiator and the refrigerant temperature at the outlet of the CO remover, and a first temperature difference detecting means. And a circulation rate calculating means for calculating the mixing rate of the refrigerant to be supplied to the CO remover based on the output of the second temperature difference detecting means, and the first mixing rate is calculated by the circulation rate calculating means. Control the three-way valve.

【0021】第7の発明は、第2の発明において、前記
熱交換器の出入口での冷媒温度を検出し、その温度差を
検出する第4温度差検出手段と、前記第2放熱器の出口
での冷媒温度を検出する手段と、この第2放熱器出口で
の冷媒温度と熱交換器出口での冷媒温度との温度差を検
出する第5温度差検出手段と、第4温度差検出手段と第
5温度差検出手段の出力に基づき、熱交換器に供給する
冷媒の混合率を演算する第2循環率計算手段とを備え、
この第2循環率計算手段で演算された混合率となるよう
に第2三方弁を制御する。
In a seventh aspect based on the second aspect, the fourth temperature difference detecting means for detecting the temperature of the refrigerant at the inlet and outlet of the heat exchanger and the temperature difference between the refrigerant temperature and the outlet of the second radiator. Means for detecting the refrigerant temperature at the second heat radiator, a fifth temperature difference detecting means for detecting a temperature difference between the refrigerant temperature at the second radiator outlet and the refrigerant temperature at the heat exchanger outlet, and a fourth temperature difference detecting means. And second circulation rate calculation means for calculating the mixing rate of the refrigerant supplied to the heat exchanger based on the output of the fifth temperature difference detection means,
The second three-way valve is controlled so that the mixing rate calculated by the second circulation rate calculating means is obtained.

【0022】第8の発明は、第1の発明において、前記
CO除去器の出入口での冷媒温度を検出し、その温度差
を検出する第1温度差検出手段と、前記第1放熱器の出
口での冷媒温度を検出する手段と、この第1放熱器出口
での冷媒温度とCO除去器出口での冷媒温度との温度差
を検出する第2温度差検出手段と、第1温度差検出手段
と第2温度差検出手段の出力に基づき、CO除去器に供
給する冷媒の混合率を演算する循環率計算手段と、前記
CO除去器の出口での冷媒の温度とその目標温度との温
度差を演算する第3温度差検出手段と、この第3温度差
検出手段が演算した温度差に基づき混合率の補正率を演
算するPID制御計算手段と、前記循環率計算手段が演
算した混合率にPID制御計算手段が演算した補正率を
加算し、補正混合率を演算する加算手段とを備え、この
加算手段で演算された補正混合率となるように第1三方
弁を制御する。
In an eighth aspect based on the first aspect, first temperature difference detecting means for detecting the temperature of the refrigerant at the inlet / outlet of the CO remover and detecting the temperature difference, and the outlet of the first radiator. And a second temperature difference detecting means for detecting a temperature difference between the refrigerant temperature at the outlet of the first radiator and the refrigerant temperature at the outlet of the CO remover, and a first temperature difference detecting means. And a circulation rate calculating means for calculating the mixing rate of the refrigerant supplied to the CO remover based on the output of the second temperature difference detecting means, and a temperature difference between the temperature of the refrigerant at the outlet of the CO remover and its target temperature. The third temperature difference detecting means, the PID control calculating means for calculating the correction rate of the mixing rate based on the temperature difference calculated by the third temperature difference detecting means, and the mixing rate calculated by the circulation rate calculating means. The correction factors calculated by the PID control calculation means are added, and the correction mixture is added. And an adding means for calculating a controls the first three-way valve so that the calculated corrected mixing ratio in the adding means.

【0023】第9の発明は、第2または8の発明におい
て、前記熱交換器の出入口での冷媒温度を検出し、その
温度差を検出する第4温度差検出手段と、前記第2放熱
器の出口での冷媒温度を検出する手段と、この第2放熱
器出口での冷媒温度と熱交換器出口での冷媒温度との温
度差を検出する第5温度差検出手段と、第4温度差検出
手段と第5温度差検出手段の出力に基づき、熱交換器に
供給する冷媒の混合率を演算する第2循環率計算手段
と、前記熱交換器の出口での冷媒の温度とその目標温度
との温度差を演算する第6温度差検出手段と、この第6
温度差検出手段が演算した温度差に基づき混合率の補正
率を演算する第2PID制御計算手段と、前記循環率計
算手段が演算した混合率に第2PID制御計算手段が演
算した補正率を加算し、補正混合率を演算する第2加算
手段とを備え、この第2加算手段で演算された補正混合
率となるように第2三方弁を制御する。
In a ninth aspect based on the second or eighth aspect, fourth temperature difference detecting means for detecting the temperature of the refrigerant at the inlet / outlet of the heat exchanger and detecting the temperature difference, and the second radiator. Means for detecting the refrigerant temperature at the outlet of the heat exchanger, a fifth temperature difference detecting means for detecting a temperature difference between the refrigerant temperature at the second radiator outlet and the refrigerant temperature at the heat exchanger outlet, and a fourth temperature difference. Second circulation rate calculating means for calculating the mixing rate of the refrigerant supplied to the heat exchanger based on the outputs of the detecting means and the fifth temperature difference detecting means, and the temperature of the refrigerant at the outlet of the heat exchanger and its target temperature. And a sixth temperature difference detecting means for calculating a temperature difference between
Second PID control calculation means for calculating a correction rate of the mixing rate based on the temperature difference calculated by the temperature difference detection means, and the correction rate calculated by the second PID control calculation means are added to the mixing rate calculated by the circulation rate calculation means. And a second adding means for calculating the corrected mixing ratio, and the second three-way valve is controlled so that the corrected mixing ratio calculated by the second adding means is obtained.

【0024】[0024]

【発明の効果】第1と3の発明では、循環ポンプを所定
流量で運転することでCO除去器に流通する冷媒の流路
を第1流路と放熱器を備えた第2流路とに分け、第1流
路と第2流路の分岐点に三方弁を設置し、第1流路を流
れるCO除去器からの冷媒と第2流路を流れる放熱器に
よって低温化された冷媒とをCO除去器から排出される
改質ガスの温度または冷媒の温度が所定温度となる混合
率に基づいて三方弁により混合されてCO除去器に導入
される。
According to the first and third aspects of the present invention, by operating the circulation pump at a predetermined flow rate, the flow path of the refrigerant flowing through the CO remover is divided into the first flow path and the second flow path including the radiator. Separately, a three-way valve is installed at the branch point of the first flow path and the second flow path, and the refrigerant from the CO remover flowing through the first flow path and the refrigerant cooled by the radiator flowing through the second flow path are separated. The reformed gas or the refrigerant discharged from the CO remover is mixed by a three-way valve based on a mixing ratio at which the temperature of the reformed gas or the temperature of the refrigerant reaches a predetermined temperature, and the mixed gas is introduced into the CO remover.

【0025】したがって、CO除去器に介装された選択
酸化触媒を所定温度(例えば、活性温度の上限温度)に
精度よく制御できる。
Therefore, the selective oxidation catalyst installed in the CO remover can be accurately controlled to a predetermined temperature (for example, the upper limit temperature of the activation temperature).

【0026】第2と4の発明では、第1および3の発明
と同様の構成を改質ガスを冷却する熱交換器に適用した
ことにより、熱交換器から排出される改質ガスの温度を
適正に制御することができる。
In the second and fourth inventions, the same structure as the first and third inventions is applied to the heat exchanger for cooling the reformed gas, so that the temperature of the reformed gas discharged from the heat exchanger is changed. It can be controlled properly.

【0027】第5の発明では、熱交換器を流通する冷媒
を冷却する放熱器とCO除去器を流通する冷媒を冷却す
る放熱器とを共用することにより、構成を簡潔にし、装
置の低コスト化を図ることができる。
According to the fifth aspect of the invention, the radiator for cooling the refrigerant flowing through the heat exchanger and the radiator for cooling the refrigerant flowing through the CO remover are shared, so that the structure is simplified and the cost of the apparatus is low. Can be realized.

【0028】第6と7の発明では、各部の温度差を演算
して、演算結果に基づき混合率を求め、三方弁を制御す
るので、温度に応じて変化する負荷変化を迅速に混合率
に変換できるので、応答性の良好な温度制御を実施する
ことが可能となる。
In the sixth and seventh inventions, the temperature difference between the respective parts is calculated, the mixing ratio is obtained based on the calculation result, and the three-way valve is controlled. Therefore, the load change which changes depending on the temperature is promptly converted into the mixing ratio. Since conversion is possible, it is possible to perform temperature control with good responsiveness.

【0029】第8と9の発明では、各部の温度差を演算
して、演算結果に基づき混合率を求め、演算した混合率
を目標温度に基づいて補正したうえで三方弁を制御する
ので、温度に応じて変化する負荷変化を迅速に混合率に
変換できるので、応答性の良好なかつ高精度の温度制御
を実施することが可能となる。
In the eighth and ninth aspects of the invention, the temperature difference between the respective parts is calculated, the mixing ratio is obtained based on the calculation result, and the calculated mixing ratio is corrected based on the target temperature before controlling the three-way valve. Since the load change that changes according to the temperature can be quickly converted into the mixing ratio, it is possible to perform the temperature control with good responsiveness and high accuracy.

【0030】[0030]

【発明の実施の形態】以下、本発明の燃料改質装置につ
いて、図面を参照しながら説明する。図1は本発明の燃
料改質装置を用いた燃料電池システムであり、空気供給
源としてのブロア1からの空気は、流量制御弁2を介し
て改質反応器3に供給される。改質反応器3には空気に
加えて燃料(例えば、炭化水素系燃料と水)が供給され
て水素リッチの改質ガスが生成されて、下流に位置する
熱交換器5に供給される。改質ガスは熱交換器5におい
て、熱交換器5の下流に設置されたCO除去器6内に収
装された選択酸化触媒が活性温度となる温度に調整され
てCO除去器6に導入される。CO除去器6は、選択酸
化触媒としてPtまたはRuが担持されており、触媒が
活性温度に達すると改質ガス中に含有されたCOを選択
的に酸化し、除去するが、このときの触媒活性温度は、
図2に示すように150℃前後の温度範囲として与えら
れ、この温度範囲中にCO除去器6内の温度が、その負
荷を問わずに維持されることが改質ガス中のCO除去の
観点から望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION A fuel reforming apparatus of the present invention will be described below with reference to the drawings. FIG. 1 is a fuel cell system using the fuel reforming apparatus of the present invention. Air from a blower 1 as an air supply source is supplied to a reforming reactor 3 via a flow control valve 2. Fuel (for example, hydrocarbon fuel and water) is supplied to the reforming reactor 3 in addition to air to generate a hydrogen-rich reformed gas, which is supplied to the heat exchanger 5 located downstream. In the heat exchanger 5, the reformed gas is introduced into the CO remover 6 after being adjusted to a temperature at which the selective oxidation catalyst contained in the CO remover 6 installed downstream of the heat exchanger 5 reaches an activation temperature. It The CO remover 6 carries Pt or Ru as a selective oxidation catalyst, and selectively oxidizes and removes CO contained in the reformed gas when the catalyst reaches the activation temperature. The activation temperature is
As shown in FIG. 2, it is given as a temperature range of around 150 ° C., and the temperature inside the CO remover 6 is maintained within this temperature range regardless of the load, from the viewpoint of removing CO in the reformed gas. From desirable.

【0031】CO除去器6には、ブロア1からの空気が
流量制御弁4を介して供給される。この空気と供給され
た改質ガス中に3.5%程度含まれたCOをCO除去器
6の触媒の作用によって選択的に酸化させ、改質ガス中
のCO濃度を40ppm以下まで低下させることができ
る。したがって、低CO濃度の改質ガスがCO除去器6
からが燃料電池スタック7に供給されるため、燃料電池
スタック7を構成する単セルの触媒、たとえばPt系の
触媒のCO被毒を抑制することができる。
Air from the blower 1 is supplied to the CO remover 6 via the flow control valve 4. To selectively oxidize the air and the CO contained in the supplied reformed gas in an amount of about 3.5% by the action of the catalyst of the CO remover 6 to reduce the CO concentration in the reformed gas to 40 ppm or less. You can Therefore, the reformed gas having a low CO concentration is used as the CO remover 6
Since the fuel cell stack 7 is supplied to the fuel cell stack 7, CO poisoning of a single cell catalyst, for example, a Pt-based catalyst that constitutes the fuel cell stack 7 can be suppressed.

【0032】燃料電池スタック7では、燃料極に低CO
濃度で水素リッチな改質ガスが供給され、空気極にはブ
ロア1から空気が流量制御弁8によって流量を制御され
て供給され、発電を行う。燃料電池スタック7から排出
される排ガス(排水素と排空気)は、燃焼器9に送られ
て流量制御弁10を介して供給されるブロア1からの空
気と混合して燃焼され、大気中に放出される。
In the fuel cell stack 7, low CO
A reformed gas rich in hydrogen at a concentration is supplied, and air is supplied from the blower 1 to the air electrode with the flow rate controlled by the flow rate control valve 8 to generate power. The exhaust gas (exhaust hydrogen and exhaust air) discharged from the fuel cell stack 7 is sent to the combustor 9 and mixed with the air from the blower 1 supplied through the flow rate control valve 10 to be burned to the atmosphere. Is released.

【0033】以上が燃料電池システムの主要な構成であ
って、引き続き改質反応器3、熱交換器5、CO除去器
6を主要構成とする燃料改質装置100の詳細について
説明する。
The above is the main structure of the fuel cell system, and the details of the fuel reformer 100, which mainly has the reforming reactor 3, the heat exchanger 5, and the CO remover 6, will be described below.

【0034】まずCO除去器6は、その温度調節のため
の冷媒(例えば、水)が流通する冷却層と、改質ガスが
流通する触媒層を積層して構成される。冷却層に供給さ
れる冷媒は、第1循環ポンプ11から供給され、そのと
き第1循環ポンプ11は最大定格容量(流量)で運転
し、冷却層に最大流量の冷媒を供給する。冷媒は、CO
除去器6のCO選択酸化反応で生じた熱を吸熱し、第1
流路1aを介して第1三方弁12および第1流路1aか
ら分岐する第2流路1bを介して第1放熱器13に送ら
れる。第1放熱器13で冷却された冷媒は第2流路1b
を通じて第1三方弁12に送られる。
First, the CO remover 6 is constructed by laminating a cooling layer through which a refrigerant (for example, water) for controlling the temperature thereof flows and a catalyst layer through which a reformed gas flows. The refrigerant supplied to the cooling layer is supplied from the first circulation pump 11, at which time the first circulation pump 11 operates at the maximum rated capacity (flow rate) and supplies the cooling layer with the maximum flow rate. Refrigerant is CO
The heat generated by the CO selective oxidation reaction of the remover 6 is absorbed, and the first
It is sent to the first radiator 13 via the first three-way valve 12 via the flow passage 1a and the second flow passage 1b branched from the first flow passage 1a. The coolant cooled by the first radiator 13 is the second flow path 1b.
Through the first three-way valve 12.

【0035】第1三方弁12は、第1放熱器13を通過
して冷却された低温の冷媒とCO除去器6から排出され
たままの高温の冷媒とをCO除去器6の触媒の設定温度
に応じて所定の割合(混合率)で混合し、CO除去器6
に供給するようにコントローラ30によって制御され
る。なおコントローラ30にはCO除去器下流の改質ガ
スの温度が温度検出器14から、またCO除去器6の上
流及び下流の冷媒の温度が温度検出器15a、15bか
ら入力され、これらのデータに基づき第1三方弁12の
設定が決定される。
The first three-way valve 12 supplies the low temperature refrigerant cooled by passing through the first radiator 13 and the high temperature refrigerant still discharged from the CO remover 6 to the set temperature of the catalyst of the CO remover 6. The CO remover 6 is mixed at a predetermined ratio (mixing ratio) according to
Controlled by the controller 30. The temperature of the reformed gas downstream of the CO remover is input to the controller 30 from the temperature detector 14, and the temperatures of the refrigerants upstream and downstream of the CO remover 6 are input from the temperature detectors 15a and 15b. Based on this, the setting of the first three-way valve 12 is determined.

【0036】CO除去器6から第1三方弁12に連通す
る第1流路1aから分岐してリザーバタンク16が設置
されており、冷媒の熱膨張が吸収されるとともに、冷媒
中の気泡が除去される。
A reservoir tank 16 is installed branching from the first flow path 1a communicating with the first three-way valve 12 from the CO remover 6 to absorb thermal expansion of the refrigerant and remove bubbles in the refrigerant. To be done.

【0037】コントローラ30は、前述したようにCO
除去器下流の改質ガスの温度が温度検出器14から、ま
たはCO除去器6下流の冷媒の温度が温度検出器15b
から入力され、これらの検出値に基づいて第1放熱器1
3で冷却された冷媒とCO除去器6から排出されたまま
の冷媒との混合の割合、循環率(混合率)をCO除去器
6から排出される改質ガスまたは冷媒の温度が所定温度
となるように演算し、この演算された循環率となるよう
に第1三方弁12の開度を制御する。このとき改質ガス
または冷媒の所定温度は、例えば、触媒の活性温度であ
る150℃となるようにフィードバック制御される。
The controller 30 uses the CO
The temperature of the reformed gas downstream of the remover is from the temperature detector 14, or the temperature of the refrigerant downstream of the CO remover 6 is from the temperature detector 15b.
Input from the first radiator 1 based on these detected values.
The mixing ratio and the circulation rate (mixing rate) of the refrigerant cooled in step 3 and the refrigerant that has been discharged from the CO remover 6 are such that the temperature of the reformed gas or the refrigerant discharged from the CO remover 6 is a predetermined temperature. And the opening degree of the first three-way valve 12 is controlled so as to obtain the calculated circulation rate. At this time, the predetermined temperature of the reformed gas or the refrigerant is feedback-controlled so as to be, for example, 150 ° C. which is the activation temperature of the catalyst.

【0038】改質反応器3とCO除去器6との間に設置
された熱交換器5は、改質反応器3から導入される高温
の改質ガスを、所定温度に冷却する。つまり、改質ガス
が導入された熱交換器5から排出された冷媒が、第3流
路2aを通じて第2三方弁18と第3流路2aから分岐
した第4流路2bを通じて第2放熱器19に送られる。
第2放熱器19に送られた冷媒は、熱を奪われて低温と
なり、第2三方弁18に送られる。対して第2三方弁1
8に直接送られた冷媒は高温を維持する。熱交換器5の
下流の改質ガスの温度を検出する温度検出器20、また
は熱交換器5の下流の冷媒の温度を検出する温度検出器
21のデータが、コントローラ31に入力され、コント
ローラ31が、熱交換器5下流の改質ガスまたは冷媒の
温度が所定温度となるように、第2放熱器19を通過し
て冷却された低温の冷媒と熱交換器5からそのまま第2
三方弁18に送られた高温の冷媒との循環率を算出し、
この演算された循環率に基づいてコントローラ31が、
第2三方弁18の設定を制御する。このとき改質ガスま
たは冷媒の所定温度は、例えば、140℃となるように
フィードバック制御される。これは下流に位置するCO
除去器6での所定温度を活性温度の150℃と想定した
ときに、CO除去器6の触媒の温度が150℃となるよ
うに選択酸化反応による加熱分を加味して設定した温度
である。なお、第2三方弁18と熱交換器5との間に第
2循環ポンプ22が設置される。
The heat exchanger 5 installed between the reforming reactor 3 and the CO remover 6 cools the high temperature reformed gas introduced from the reforming reactor 3 to a predetermined temperature. That is, the refrigerant discharged from the heat exchanger 5 into which the reformed gas is introduced passes through the third flow passage 2a, the second three-way valve 18 and the fourth flow passage 2b branched from the third flow passage 2a, and then the second radiator. Sent to 19.
The refrigerant sent to the second radiator 19 is deprived of heat to become a low temperature, and is sent to the second three-way valve 18. For the second three-way valve 1
The refrigerant sent directly to 8 maintains a high temperature. The data of the temperature detector 20 that detects the temperature of the reformed gas downstream of the heat exchanger 5 or the data of the temperature detector 21 that detects the temperature of the refrigerant downstream of the heat exchanger 5 is input to the controller 31 and the controller 31. However, so that the temperature of the reformed gas or the refrigerant downstream of the heat exchanger 5 reaches a predetermined temperature, the low temperature refrigerant that has passed through the second radiator 19 and is cooled from the heat exchanger 5 to the second
Calculate the circulation rate with the high temperature refrigerant sent to the three-way valve 18,
Based on the calculated circulation rate, the controller 31
The setting of the second three-way valve 18 is controlled. At this time, the predetermined temperature of the reformed gas or the refrigerant is feedback-controlled so as to be 140 ° C., for example. This is a CO located downstream
This is a temperature that is set in consideration of the heating amount by the selective oxidation reaction so that the temperature of the catalyst of the CO remover 6 becomes 150 ° C. when the predetermined temperature in the remover 6 is assumed to be the activation temperature of 150 ° C. A second circulation pump 22 is installed between the second three-way valve 18 and the heat exchanger 5.

【0039】したがって、第1、第2三方弁12、18
を用いてCO除去器6または熱交換器5からそのまま送
られた冷媒と第1、第2放熱器13、19を通して冷却
された冷媒とを混合し、循環率をCO除去器6または熱
交換器5から排出された冷媒または改質ガスの温度と、
改質ガスまたは冷媒の目標温度に基づいて算出し、この
循環率となるようにコントローラ30、31が第1、第
2三方弁13、18の開度を制御する。このように制御
することにより、図3に示すように、CO除去器6出口
側の触媒温度を負荷率によらず、常に活性温度に維持す
ることができ、一方、入口側の触媒温度は、低負荷時に
は出口側とほぼ同じ温度、つまり触媒活性温度に維持さ
れ、高負荷ほど温度は流入する冷媒の温度が低下するた
め低下する傾向を示す。同様に熱交換器5の出口側の冷
媒温度を一定に制御することができる。このように、本
発明のCO除去器6にあっては、低負荷のCO選択率が
最も高い触媒活性温度上限側で、しかも狭い温度域に制
御することができる。
Therefore, the first and second three-way valves 12, 18
Is used to mix the refrigerant directly sent from the CO remover 6 or the heat exchanger 5 with the refrigerant cooled through the first and second radiators 13 and 19, and the circulation rate is adjusted to the CO remover 6 or the heat exchanger. The temperature of the refrigerant or reformed gas discharged from 5,
It is calculated based on the target temperature of the reformed gas or the refrigerant, and the controllers 30 and 31 control the opening degrees of the first and second three-way valves 13 and 18 so as to achieve this circulation rate. By controlling in this way, as shown in FIG. 3, the catalyst temperature on the outlet side of the CO remover 6 can always be maintained at the activation temperature regardless of the load factor, while the catalyst temperature on the inlet side is When the load is low, the temperature is almost the same as that on the outlet side, that is, the catalyst activation temperature, and the higher the load is, the lower the temperature of the inflowing refrigerant is. Similarly, the temperature of the refrigerant on the outlet side of the heat exchanger 5 can be controlled to be constant. As described above, in the CO remover 6 of the present invention, it is possible to control to a narrow temperature range on the upper side of the catalyst activation temperature where the CO selectivity with a low load is the highest.

【0040】しかしながら、図4に示した冷媒の流量を
制御した場合のCO除去器6の出入口での冷媒の温度
差、もしくは図5に示すCO除去器6の入口での冷媒温
度を制御した場合の冷媒の入口と出口での温度差と比べ
ると、本発明では、触媒の活性温度に出口側が常に達し
ているとともに、入口側でも低負荷から中負荷で活性温
度に達することができ、他の制御方法より明らかにCO
除去効率が向上される。さらに、CO除去器6の出口側
冷媒の温度を一定に制御できるので、CO除去器6から
排出される改質ガスの温度を常に一定とすることがで
き、発電効率向上に寄与する。
However, when the temperature difference of the refrigerant at the inlet and outlet of the CO remover 6 when controlling the flow rate of the refrigerant shown in FIG. 4 or the refrigerant temperature at the inlet of the CO remover 6 shown in FIG. 5 is controlled Compared with the temperature difference between the inlet and outlet of the refrigerant of the present invention, in the present invention, the activation temperature of the catalyst is always reached on the outlet side, and the activation temperature on the inlet side can also be reached from low load to medium load. Clearly from control method CO
The removal efficiency is improved. Furthermore, since the temperature of the refrigerant on the outlet side of the CO remover 6 can be controlled to be constant, the temperature of the reformed gas discharged from the CO remover 6 can always be kept constant, which contributes to the improvement of power generation efficiency.

【0041】また図2に示す如く、CO除去器6は高負
荷ほど、CO選択酸化反応が促進されるためCO除去器
6を昇温する入力熱量が増大し、CO除去器6が過温さ
れる恐れがある。したがって、CO除去器6の温度を調
整するため、第1放熱器13を通過し、冷却された冷媒
の割合が高い冷媒を、CO除去器6に供給するため、C
O除去器6の入口側が低温となり、結果として入口側と
出口側の触媒の温度差が最大となる。しかし図2に示し
たように触媒活性温度域に温度を維持できれば、CO選
択率の低下は抑制できるので、最大負荷時の温度を維持
するように冷媒の流量を定め、このときの流量が第1循
環ポンプ11の最大定格容量となる第1循環ポンプ11
を使用する。このように使用する第1循環ポンプ11を
最大定格容量でCO除去器6の最大負荷時に運転するこ
とで、負荷率最大時においても触媒の活性温度域を維持
することができ、低負荷時にはCO選択率が最も高い、
温度差が小さい温度域で制御できる。
Further, as shown in FIG. 2, the higher the load of the CO remover 6, the more the CO selective oxidation reaction is promoted, so the amount of input heat for raising the temperature of the CO remover 6 increases, and the CO remover 6 is overheated. There is a risk that Therefore, in order to adjust the temperature of the CO remover 6, the refrigerant that passes through the first radiator 13 and has a high proportion of the cooled refrigerant is supplied to the CO remover 6, so that C
The inlet side of the O remover 6 has a low temperature, and as a result, the temperature difference between the inlet side catalyst and the outlet side catalyst becomes maximum. However, as shown in FIG. 2, if the temperature can be maintained in the catalyst activation temperature range, the decrease in CO selectivity can be suppressed. Therefore, the flow rate of the refrigerant is determined so as to maintain the temperature at the maximum load, and the flow rate at this time is 1st circulation pump 11 used as the maximum rated capacity of 1 circulation pump 11
To use. By operating the first circulation pump 11 used in this manner at the maximum rated capacity when the CO remover 6 is at maximum load, the active temperature range of the catalyst can be maintained even when the load factor is maximum, and when the CO load is low, the CO Highest selectivity,
It can be controlled in the temperature range where the temperature difference is small.

【0042】図6に示す第2の実施形態は、図1に示し
た第1の実施形態に対し、第1放熱器13を熱交換器5
とCO除去器6で共用とした構成である。
The second embodiment shown in FIG. 6 differs from the first embodiment shown in FIG. 1 in that the first radiator 13 is replaced by the heat exchanger 5.
And the CO remover 6 are commonly used.

【0043】熱交換器5から排出された冷媒は、第2三
方弁18を通して熱交換器5に戻る循環流路である第3
流路2aと、第3流路2aから分岐して第2流路1bと
連通する第6流路2bに供給される。第2流路1b内に
は第3循環ポンプと第1放熱器13が直列に設置され
る。さらに第1放熱器13の下流の第2流路1bから分
岐して第1三方弁12と第2三方弁18に連通する第5
流路2cが接続され、第5流路2cはさらに、その分岐
点から第1放熱器13の上流の第2流路1bと連通する
第7流路2dが設けられる。
The refrigerant discharged from the heat exchanger 5 passes through the second three-way valve 18 and returns to the heat exchanger 5.
It is supplied to the flow channel 2a and the sixth flow channel 2b which branches from the third flow channel 2a and communicates with the second flow channel 1b. A third circulation pump and a first radiator 13 are installed in series in the second flow path 1b. A fifth branch that branches from the second flow path 1b downstream of the first radiator 13 and communicates with the first three-way valve 12 and the second three-way valve 18.
The flow path 2c is connected, and the fifth flow path 2c is further provided with a seventh flow path 2d that communicates with the second flow path 1b upstream of the first radiator 13 from its branch point.

【0044】このように構成されて、第1放熱器13で
冷却された冷媒は、第3循環ポンプ23の作用により熱
交換器5の冷却系とCO除去器6の冷却系に圧送される
とともに、その一部は第1放熱器13を挟んで第2流路
1b間を連通する第7流路2dを流通して第3循環ポン
プ23に戻る。
With this structure, the refrigerant cooled by the first radiator 13 is pumped to the cooling system of the heat exchanger 5 and the cooling system of the CO remover 6 by the action of the third circulation pump 23. , Part of which flows through the seventh flow passage 2d that communicates between the second flow passages 1b with the first radiator 13 interposed therebetween, and returns to the third circulation pump 23.

【0045】第2流路1bと第5流路2cと第7流路2
dとの分岐には、第1放熱器13の下流での冷媒の温度
を検出する温度検出器24が設置され、この出力がコン
トローラ32に入力される。コントローラ32は、この
データに基づいて第3循環ポンプ23の駆動力または回
転数を制御し、第1放熱器13より流出する冷媒温度を
制御し、結果として熱交換器5とCO除去器6の第1三
方弁12及び第2三方弁18に供給する冷媒の温度を制
御する。例えば、この温度は、熱交換器5とCO除去器
6の設定温度より低い80℃に設定される。
Second channel 1b, fifth channel 2c, and seventh channel 2
A temperature detector 24 that detects the temperature of the refrigerant downstream of the first radiator 13 is installed at the branch with d, and this output is input to the controller 32. The controller 32 controls the driving force or the rotational speed of the third circulation pump 23 based on this data, controls the temperature of the refrigerant flowing out from the first radiator 13, and consequently controls the heat exchanger 5 and the CO remover 6. The temperature of the refrigerant supplied to the first three-way valve 12 and the second three-way valve 18 is controlled. For example, this temperature is set to 80 ° C., which is lower than the set temperatures of the heat exchanger 5 and the CO remover 6.

【0046】このような構成とすることで、第1放熱器
13を熱交換器5の冷却とCO除去器6の冷却とに共用
することができ、構成を簡略化し、燃料改質装置として
の低価格化を図ることができる。
With such a structure, the first radiator 13 can be used for both the cooling of the heat exchanger 5 and the cooling of the CO remover 6, which simplifies the structure and serves as a fuel reformer. The price can be reduced.

【0047】図7は、コントローラ30がCO除去器6
の触媒温度を設定温度に制御するために冷媒温度を制御
する制御内容を説明するためのブロック図である。な
お、熱交換器5の改質ガスの温度を制御するための冷媒
の温度を制御するために用いることも可能である。
In FIG. 7, the controller 30 uses the CO remover 6
FIG. 3 is a block diagram for explaining the control content for controlling the refrigerant temperature in order to control the catalyst temperature to a set temperature. It is also possible to use it for controlling the temperature of the refrigerant for controlling the temperature of the reformed gas in the heat exchanger 5.

【0048】第1温度差検出手段43は、温度検出器1
5bから検出されるCO除去器6の下流の冷媒温度T1
と温度検出器15aから検出されるCO除去器6の入口
での冷媒温度T2とから、その温度差ΔTi=T1−T
2を算出する。
The first temperature difference detecting means 43 is the temperature detector 1
Refrigerant temperature T1 downstream of the CO remover 6 detected from 5b
And the refrigerant temperature T2 at the inlet of the CO remover 6 detected by the temperature detector 15a, the temperature difference ΔTi = T1-T
Calculate 2.

【0049】第2温度差検出手段44は、温度検出器1
5bから検出されるCO除去器6の下流の冷媒温度T1
と、温度検出器24から検出される第1放熱器13の下
流の冷媒温度T3から、その温度差ΔTo=T1−T3
を算出する。
The second temperature difference detecting means 44 is the temperature detector 1
Refrigerant temperature T1 downstream of the CO remover 6 detected from 5b
From the refrigerant temperature T3 downstream of the first radiator 13 detected by the temperature detector 24, the temperature difference ΔTo = T1-T3.
To calculate.

【0050】第1循環率計算手段46は、循環率Rを算
出する手段であり、以下に循環率Rの算出について説明
する。
The first circulation rate calculating means 46 is means for calculating the circulation rate R, and the calculation of the circulation rate R will be described below.

【0051】いま、CO除去器6内で冷媒が吸収する吸
収熱量をQpiとすると、吸収熱量Qpiは、吸収熱量
Qpi=ΔTi×比熱K×CO除去器6を流通する冷媒
流量Qwtで求められる。
Now, assuming that the absorbed heat quantity absorbed by the refrigerant in the CO remover 6 is Qpi, the absorbed heat quantity Qpi is obtained by the absorbed heat quantity Qpi = ΔTi × specific heat K × the refrigerant flow rate Qwt flowing through the CO remover 6.

【0052】また第1放熱器13が放出する放熱熱量Q
poは、放熱熱量Qpo=ΔTo×比熱K×第1放熱器
13を流通する冷媒流量Qwsで算出される。
The amount of heat radiated by the first radiator 13 is Q.
The po is calculated by the heat radiation amount Qpo = ΔTo × specific heat K × the refrigerant flow rate Qws flowing through the first radiator 13.

【0053】いま、吸収熱量Qpi=放熱熱量Qpoと
すれば、第1放熱器13を通過する低温の冷媒の循環率
Rは、 循環率R=ΔTi/ΔTo=Qwt/Qws で求めることができる。
Now, assuming that the absorbed heat quantity Qpi = radiation heat quantity Qpo, the circulation rate R of the low-temperature refrigerant passing through the first radiator 13 can be obtained by the circulation rate R = ΔTi / ΔTo = Qwt / Qws.

【0054】目標循環率Rff=ΔT1/ΔTo となる。Target circulation rate Rff = ΔT1 / ΔTo Becomes

【0055】バルブ開度変換手段48は、予め求めた例
えば図9に示すような循環率Rと第1三方弁12の開度
との関係に基づいて目標循環率Rffに対応するバルブ
開度を算出し、第1三方弁12の開度を制御する。
The valve opening degree converting means 48 determines the valve opening degree corresponding to the target circulation rate Rff based on the relationship between the circulation rate R and the opening degree of the first three-way valve 12 which is obtained in advance as shown in FIG. It is calculated and the opening degree of the first three-way valve 12 is controlled.

【0056】第1の実施形態で説明したように第1循環
ポンプ11は、全負荷状態で運転されており、最大流量
の冷媒がCO除去器6に供給される。したがって、図3
に示したように温度差ΔTiは、CO除去器6の負荷率
が低いほど小さくできるとともに、熱負荷変化を即座に
循環率Rに変換できるので、高応答のCO除去器6の温
度制御が可能となる。
As described in the first embodiment, the first circulation pump 11 is operated in the full load state, and the maximum flow rate of the refrigerant is supplied to the CO remover 6. Therefore, FIG.
As shown in, the temperature difference ΔTi can be made smaller as the load factor of the CO remover 6 is lower, and the heat load change can be immediately converted into the circulation rate R, so that the temperature control of the CO remover 6 with high response is possible. Becomes

【0057】図8は、コントローラ30がCO除去器6
の触媒温度を設定温度に制御するために冷媒温度を制御
する制御内容を説明するための他のブロック図である。
なお、熱交換器5の改質ガスの温度を制御するための冷
媒の温度を制御するために用いることも可能である。
In FIG. 8, the controller 30 uses the CO remover 6
FIG. 7 is another block diagram for explaining the control content for controlling the refrigerant temperature in order to control the catalyst temperature to the set temperature.
It is also possible to use it for controlling the temperature of the refrigerant for controlling the temperature of the reformed gas in the heat exchanger 5.

【0058】第1温度差検出手段43は、温度検出器1
5bから検出されるCO除去器6の下流の冷媒温度T1
と温度検出器15aから検出されるCO除去器6の入口
での冷媒温度T2とから、その温度差ΔTi=T1−T
2を算出する。
The first temperature difference detecting means 43 is the temperature detector 1
Refrigerant temperature T1 downstream of the CO remover 6 detected from 5b
And the refrigerant temperature T2 at the inlet of the CO remover 6 detected by the temperature detector 15a, the temperature difference ΔTi = T1-T
Calculate 2.

【0059】第2温度検出手段44は、温度検出器15
bから検出されるCO除去器6の下流の冷媒温度T1
と、温度検出器24から検出される第1放熱器13の下
流の冷媒温度T3から、その温度差ΔTo=T1−T3
を算出する。
The second temperature detecting means 44 is the temperature detector 15
Refrigerant temperature T1 downstream of the CO remover 6 detected from b
From the refrigerant temperature T3 downstream of the first radiator 13 detected by the temperature detector 24, the temperature difference ΔTo = T1-T3.
To calculate.

【0060】循環率計算手段46は、図7で説明したの
と同様にして目標循環率Rff=ΔTi/ΔToを算出
する。
The circulation rate calculating means 46 calculates the target circulation rate Rff = ΔTi / ΔTo in the same manner as described with reference to FIG.

【0061】第3温度差検出手段42は、設定温度Tr
と冷媒温度T1との温度差ΔTfb=Tr-T1を演算
する。
The third temperature difference detecting means 42 has a set temperature Tr.
And the temperature difference ΔTfb = Tr−T1 between the refrigerant temperature T1 and the refrigerant temperature T1 are calculated.

【0062】PID制御計算手段45は、温度差ΔTf
bと制御ゲインを基にして補正量Rfbを計算する。
The PID control calculation means 45 determines the temperature difference ΔTf.
The correction amount Rfb is calculated based on b and the control gain.

【0063】加算手段27は、目標循環率Rffと補正
量Rfbを加算して、補正循環率Rを求める。
The adding means 27 calculates the corrected circulation rate R by adding the target circulation rate Rff and the correction amount Rfb.

【0064】バルブ開度変換手段48は、予め求めた例
えば図4に示すような循環率Rと第1三方弁12の開度
との関係に基づいて補正循環率Rに対応するバルブ開度
を算出し、第1三方弁12の開度を制御する。
The valve opening degree converting means 48 determines the valve opening degree corresponding to the corrected circulation rate R based on the relationship between the circulation rate R and the opening degree of the first three-way valve 12 which is obtained in advance as shown in FIG. It is calculated and the opening degree of the first three-way valve 12 is controlled.

【0065】第1の実施形態で説明したように第1循環
ポンプ11は、全負荷状態で運転されており、最大流量
の冷媒がCO除去器6に供給される。したがって、図3
に示したように温度差ΔTiは、CO除去器6の負荷率
が低いほど小さくできるとともに、熱負荷変化を即座に
循環率Rに変換できるので、高応答、高精度のCO除去
器6の温度制御が可能となる。
As described in the first embodiment, the first circulation pump 11 is operated in the full load state, and the maximum flow rate of the refrigerant is supplied to the CO remover 6. Therefore, FIG.
As shown in, the temperature difference ΔTi can be made smaller as the load factor of the CO remover 6 is lower, and the heat load change can be immediately converted into the circulation rate R. Therefore, the temperature of the CO remover 6 with high response and high accuracy can be obtained. It becomes possible to control.

【0066】図10は、CO除去装置6の具体的な構成
の一例を示すもので、冷媒が流通する冷媒層と、改質ガ
スが流通する改質ガス流路とが直交(流れ方向で)する
ように、かつ交互に積層して構成されている。ここで、
改質ガスと冷媒が最初に熱交換を行う領域25には、C
O選択酸化触媒を担持しないように構成されている。こ
のような構成とすることで、図11に示すように、改質
ガスの流れ方向上流側の冷媒流路Fを流通する冷媒の温
度は、下流側の冷媒流路Rを流通する冷媒よりCO選択
酸化反応による発熱量が大きいため冷媒の温度の昇温速
度が速くなるが、前述したように触媒の担持領域を制限
することにより、冷媒流路Fの出口で冷媒温度が過温す
ることを防止できる。したがって、CO除去器6内での
選択酸化反応による熱の発生量を均一にすることが可能
となる。
FIG. 10 shows an example of a specific structure of the CO removing device 6, in which the refrigerant layer in which the refrigerant flows and the reformed gas flow path in which the reformed gas flows are orthogonal (in the flow direction). So that they are stacked alternately. here,
In the region 25 where the reformed gas and the refrigerant first exchange heat, C
It is configured not to carry an O selective oxidation catalyst. With such a configuration, as shown in FIG. 11, the temperature of the refrigerant flowing through the refrigerant passage F on the upstream side in the flow direction of the reformed gas is lower than that of the refrigerant flowing through the refrigerant passage R on the downstream side by CO. Since the amount of heat generated by the selective oxidation reaction is large, the rate of temperature increase of the refrigerant is high. However, by limiting the catalyst carrying area as described above, it is possible to prevent the refrigerant temperature from overheating at the outlet of the refrigerant channel F. It can be prevented. Therefore, the amount of heat generated by the selective oxidation reaction in the CO remover 6 can be made uniform.

【0067】図12は、CO除去装置6の具体的な他の
構成の一例を示すもので、図10に示したような積層構
成のCO除去装置6において、図13に示すように冷媒
流路に導入される冷媒の流量分配を改質ガスの入口側ほ
ど多くなるように、冷媒の入口に設置されたダクト26
の形状を改質ガスの上流側ほど、その断面積が大きくな
るようにしたものである。このように改質ガス上流側ほ
ど冷媒が多く流れるようにすることで、選択酸化反応が
促進される改質ガス上流側での冷媒の出口側の温度上昇
を抑制し、CO除去器6内での冷媒の温度分布を均一に
することができる。
FIG. 12 shows an example of another specific structure of the CO removing device 6. In the CO removing device 6 having a laminated structure as shown in FIG. 10, as shown in FIG. So that the flow rate distribution of the refrigerant introduced into the refrigerant increases toward the reformed gas inlet side.
The cross-sectional area of the shape is larger on the upstream side of the reformed gas. By allowing more refrigerant to flow toward the reformed gas upstream side in this way, the temperature rise on the outlet side of the refrigerant on the reformed gas upstream side, where the selective oxidation reaction is promoted, is suppressed, and inside the CO remover 6. The temperature distribution of the refrigerant can be made uniform.

【0068】図14に示すCO除去器6の構成は、流量
の分配をコレクタのような入口部の形状によるものでは
なく、入口部に冷媒の流れを邪魔する多孔質体や針金等
の抵抗物27を設置することで変化させるものである。
図12と同様の思想に基づき、改質ガスの流れ方向下流
側ほど、冷媒の流れに対する抵抗が大きくなるように抵
抗物が設置される。このように改質ガス上流側ほど冷媒
が多く流れるようにすることで、選択酸化反応が促進さ
れる改質ガス上流側での冷媒の出口側の温度上昇を抑制
し、CO除去器6内での冷媒の温度分布を均一にするこ
とができる。
The configuration of the CO remover 6 shown in FIG. 14 does not depend on the shape of the inlet portion such as the collector for distribution of the flow rate, but rather on the inlet portion a resistor such as a porous body or a wire which obstructs the flow of the refrigerant. It is changed by installing 27.
Based on the same concept as in FIG. 12, the resistor is installed so that the resistance to the flow of the refrigerant increases toward the downstream side in the flow direction of the reformed gas. By allowing more refrigerant to flow toward the reformed gas upstream side in this way, the temperature rise on the outlet side of the refrigerant on the reformed gas upstream side, where the selective oxidation reaction is promoted, is suppressed, and inside the CO remover 6. The temperature distribution of the refrigerant can be made uniform.

【0069】図15と図16に示すCO除去器6の構成
は、冷媒流路の形状によって冷媒の流量分配を制御する
ようにしたものである。すなわち、図15に示したもの
では、改質ガスの流れ方向で下流側ほど、塞ぎ板28を
用いて冷媒が冷媒通路に流入してから流出するまでの冷
媒流路の長さを長く設定することで流路抵抗を増加され
ている。このように改質ガス上流側ほど冷媒が多く流れ
るようにすることで、選択酸化反応が促進される改質ガ
ス上流側での冷媒の出口側の温度上昇を抑制し、CO除
去器6内での冷媒の温度分布を均一にすることができ
る。
The configuration of the CO remover 6 shown in FIGS. 15 and 16 is such that the distribution of the flow rate of the refrigerant is controlled by the shape of the refrigerant passage. That is, in the structure shown in FIG. 15, the length of the refrigerant passage from the time when the refrigerant flows into the refrigerant passage to the time when the refrigerant flows out is set to be longer by using the closing plate 28 toward the downstream side in the flow direction of the reformed gas. This increases the flow path resistance. By allowing more refrigerant to flow toward the reformed gas upstream side in this way, the temperature rise on the outlet side of the refrigerant on the reformed gas upstream side, where the selective oxidation reaction is promoted, is suppressed, and inside the CO remover 6. The temperature distribution of the refrigerant can be made uniform.

【0070】本発明は、上記した実施形態に限定される
ものではなく、本発明の技術的思想の範囲内でさまざま
な変更がなしうることは明白である。
The present invention is not limited to the above-mentioned embodiments, and it is obvious that various modifications can be made within the scope of the technical idea of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料改質装置を適用した燃料電池シス
テムの構成を示す図である。
FIG. 1 is a diagram showing a configuration of a fuel cell system to which a fuel reforming device of the present invention is applied.

【図2】冷媒温度とCO選択率の関係を示す図である。FIG. 2 is a diagram showing a relationship between refrigerant temperature and CO selectivity.

【図3】本発明の負荷率とCO除去器出入口部での冷媒
温度との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a load factor and a refrigerant temperature at a CO remover inlet / outlet portion according to the present invention.

【図4】冷媒温度制御の場合の負荷率とCO除去器出入
口部での冷媒温度との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the load factor and the refrigerant temperature at the CO remover inlet / outlet in the case of refrigerant temperature control.

【図5】CO除去器の入口温度制御の場合の負荷率とC
O除去器出入口部での冷媒温度との関係を示す図であ
る。
FIG. 5: Load factor and C in case of inlet temperature control of CO remover
It is a figure which shows the relationship with the refrigerant temperature in an O remover inlet-outlet part.

【図6】燃料改質装置を適用した第2の実施形態の燃料
電池システムの構成を示す図である。
FIG. 6 is a diagram showing a configuration of a fuel cell system of a second embodiment to which a fuel reformer is applied.

【図7】CO除去器の冷却制御方法を説明するための制
御ブロック図である。
FIG. 7 is a control block diagram for explaining a cooling control method for a CO remover.

【図8】CO除去器の他の冷却制御方法を説明するため
の制御ブロック図である。
FIG. 8 is a control block diagram for explaining another cooling control method for the CO remover.

【図9】三方弁の開度と混合率の関係を示す図である。FIG. 9 is a diagram showing the relationship between the opening degree of a three-way valve and the mixing ratio.

【図10】本発明を適用したCO除去器に具体的構成を
示す一例である。
FIG. 10 is an example showing a specific configuration of a CO remover to which the present invention is applied.

【図11】CO除去器内の位置の違いによる冷媒温度の
変化を示す図である。
FIG. 11 is a diagram showing a change in refrigerant temperature due to a difference in position in the CO remover.

【図12】本発明を適用した他のCO除去器に具体的構
成を示す一例である。
FIG. 12 is an example showing a specific configuration of another CO remover to which the present invention is applied.

【図13】CO除去器の冷媒流路と冷媒混合率の関係を
示す図である。
FIG. 13 is a diagram showing a relationship between a refrigerant flow path of the CO remover and a refrigerant mixing ratio.

【図14】本発明を適用した他のCO除去器に具体的構
成を示す一例である。
FIG. 14 is an example showing a specific configuration of another CO remover to which the present invention is applied.

【図15】本発明を適用した他のCO除去器に具体的構
成を示す一例である。
FIG. 15 is an example showing a specific configuration of another CO remover to which the present invention is applied.

【図16】図15の断面A−Aを示す断面図である。16 is a cross-sectional view showing a cross section AA in FIG.

【符号の説明】[Explanation of symbols]

3 改質反応器 5 熱交換器 6 CO除去器 7 燃料電池スタック 12 第1三方弁 13 第1放熱器 18 第2三方弁 19 第2放熱器 3 reforming reactor 5 heat exchanger 6 CO remover 7 Fuel cell stack 12 First three-way valve 13 First radiator 18 second three-way valve 19 Second radiator

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】供給された原燃料と空気を反応させて改質
ガスを生成する改質反応器と、 改質ガス中に含有する一酸化炭素を選択酸化反応により
所定濃度まで低減する一酸化炭素除去器と、を備える燃
料改質装置において、 前記一酸化炭素除去器は、改質ガスとの間で熱交換する
機能を備え、 前記一酸化炭素除去器に冷媒を定量循環させるための第
1循環ポンプと、 前記一酸化炭素除去器から排出される改質ガスまたは冷
媒の温度を検出する手段と、 前記一酸化炭素除去器から排出される冷媒を第1循環ポ
ンプを介して一酸化炭素除去器に循環する第1流路と、 前記第1流路と並列に設けられ、放熱器を備えた第2流
路と、 前記第1流路と第2流路の分岐点に、一酸化炭素除去器
に流入する冷媒の第1流路からの冷媒と第2流路からの
冷媒との混合率を制御する第1三方弁とを備え、 前記第1三方弁は、前記一酸化炭素除去器から排出され
る改質ガスの温度または冷媒の温度が所定温度となるよ
うに混合率を制御することを特徴とする燃料改質装置。
1. A reforming reactor that reacts the supplied raw fuel with air to produce reformed gas, and monoxide that reduces carbon monoxide contained in the reformed gas to a predetermined concentration by a selective oxidation reaction. In a fuel reforming apparatus comprising a carbon remover, the carbon monoxide remover has a function of exchanging heat with a reformed gas, and a first for quantitatively circulating a refrigerant in the carbon monoxide remover. 1 circulation pump, means for detecting the temperature of the reformed gas or the refrigerant discharged from the carbon monoxide remover, and the refrigerant discharged from the carbon monoxide remover through the first circulation pump carbon monoxide A first flow path that circulates in the remover, a second flow path that is provided in parallel with the first flow path and that includes a radiator, and a monoxide at the branch point of the first flow path and the second flow path. Refrigerant from the first flow path and refrigerant from the second flow path of the refrigerant flowing into the carbon remover And a first three-way valve for controlling the mixing rate with the first three-way valve such that the temperature of the reformed gas discharged from the carbon monoxide remover or the temperature of the refrigerant reaches a predetermined temperature. The fuel reformer is characterized by controlling the.
【請求項2】改質ガスを冷却する熱交換器と、 前記熱交換器に冷媒を循環させるための第2循環ポンプ
と、 前記熱交換器から排出される改質ガスまたは冷媒の温度
を検出する手段と、 前記熱交換器から排出される冷媒を熱交換器に循環する
第3流路と、 前記第3流路をバイパスして設けられ、放熱器を備えた
第4流路と、 前記第3流路と第4流路の下流側分岐点に、熱交換器に
流入する冷媒の第3流路からの冷媒と第4流路からの冷
媒との混合率を制御する第2三方弁とを備え、 前記第2循環ポンプを所定流量で運転し、 前記第2三方弁は、前記熱交換器から排出される冷媒の
温度が所定温度となるように混合率を制御することを特
徴とする請求項1に記載の燃料改質装置。
2. A heat exchanger for cooling the reformed gas, a second circulation pump for circulating a refrigerant through the heat exchanger, and a temperature of the reformed gas or the refrigerant discharged from the heat exchanger. Means, a third flow path for circulating the refrigerant discharged from the heat exchanger to the heat exchanger, a fourth flow path that bypasses the third flow path, and includes a radiator, A second three-way valve for controlling the mixing ratio of the refrigerant flowing from the third flow path and the refrigerant flowing from the fourth flow path into the heat exchanger at the downstream branch point of the third flow path and the fourth flow path. The second circulation pump is operated at a predetermined flow rate, and the second three-way valve controls the mixing ratio so that the temperature of the refrigerant discharged from the heat exchanger reaches a predetermined temperature. The fuel reformer according to claim 1.
【請求項3】前記一酸化炭素除去器の運転負荷が最大の
ときに一酸化炭素除去器内に収装された触媒の温度が活
性温度となるように、前記第1循環ポンプを最大定格流
量で運転するとともに、前記第1三方弁の混合率を制御
することを特徴とする請求項1または2に記載の燃料改
質装置。
3. The maximum rated flow rate of the first circulation pump is set so that the temperature of the catalyst contained in the carbon monoxide remover becomes an activation temperature when the operating load of the carbon monoxide remover is maximum. The fuel reformer according to claim 1 or 2, wherein the fuel reformer controls the mixing ratio of the first three-way valve while operating at 1.
【請求項4】前記熱交換器の運転負荷が最大のときに熱
交換器から排出される冷媒の温度が許容温度となるよう
に、前記第2循環ポンプを最大定格流量で運転するとと
もに、前記第2三方弁の混合率を制御することを特徴と
する請求項2または3に記載の燃料改質装置。
4. The second circulation pump is operated at the maximum rated flow rate so that the temperature of the refrigerant discharged from the heat exchanger reaches an allowable temperature when the operating load of the heat exchanger is maximum, and The fuel reformer according to claim 2 or 3, wherein a mixing ratio of the second three-way valve is controlled.
【請求項5】改質ガスを冷却する熱交換器と、 前記熱交換器に冷媒を循環させるための第2循環ポンプ
と、 前記熱交換器から排出される改質ガスまたは冷媒の温度
を検出する手段と、 前記熱交換器から排出される冷媒を熱交換器に循環する
第3流路と、 前記第1三方弁と第2三方弁を連結する第5流路と、 第2流路に設置された第3循環ポンプと、 前記第2流路と前記第3流路とを連通する第6流路と、 前記第2流路を連通する第7流路とを備え、 前記放熱器に流入する冷媒流量を前記第3循環ポンプで
調整しつつ、 前記放熱器出口での冷媒が所定の温度となるように制御
することを特徴とする請求項1に記載の燃料改質装置。
5. A heat exchanger for cooling the reformed gas, a second circulation pump for circulating a refrigerant in the heat exchanger, and a temperature of the reformed gas or the refrigerant discharged from the heat exchanger. Means, a third flow path for circulating the refrigerant discharged from the heat exchanger to the heat exchanger, a fifth flow path connecting the first three-way valve and the second three-way valve, and a second flow path. A third circulation pump installed, a sixth flow passage that communicates the second flow passage and the third flow passage, and a seventh flow passage that communicates the second flow passage. The fuel reformer according to claim 1, wherein the refrigerant at the outlet of the radiator is controlled to have a predetermined temperature while adjusting the flow rate of the refrigerant flowing in by the third circulation pump.
【請求項6】前記一酸化炭素除去器の出入口での冷媒温
度を検出し、その温度差を検出する第1温度差検出手段
と、 前記第1放熱器の出口での冷媒温度を検出する手段と、 この第1放熱器出口での冷媒温度と一酸化炭素除去器出
口での冷媒温度との温度差を検出する第2温度差検出手
段と、 第1温度差検出手段と第2温度差検出手段の出力に基づ
き、一酸化炭素除去器に供給する冷媒の混合率を演算す
る循環率計算手段とを備え、 この循環率計算手段で演算された混合率となるように第
1三方弁を制御することを特徴とする請求項1に記載の
燃料改質装置。
6. A first temperature difference detecting means for detecting a refrigerant temperature at an inlet / outlet port of the carbon monoxide remover, and a means for detecting a refrigerant temperature at an outlet of the first radiator. Second temperature difference detecting means for detecting a temperature difference between the refrigerant temperature at the first radiator outlet and the refrigerant temperature at the carbon monoxide remover outlet, the first temperature difference detecting means and the second temperature difference detecting means. And a circulation rate calculating means for calculating the mixing rate of the refrigerant supplied to the carbon monoxide remover based on the output of the means, and controlling the first three-way valve so that the mixing rate calculated by this circulation rate calculating means is obtained. The fuel reformer according to claim 1, wherein:
【請求項7】前記熱交換器の出入口での冷媒温度を検出
し、その温度差を検出する第4温度差検出手段と、 前記第2放熱器の出口での冷媒温度を検出する手段と、 この第2放熱器出口での冷媒温度と熱交換器出口での冷
媒温度との温度差を検出する第5温度差検出手段と、 第4温度差検出手段と第5温度差検出手段の出力に基づ
き、熱交換器に供給する冷媒の混合率を演算する第2循
環率計算手段とを備え、 この第2循環率計算手段で演算された混合率となるよう
に第2三方弁を制御することを特徴とする請求項2に記
載の燃料改質装置。
7. A fourth temperature difference detecting means for detecting a refrigerant temperature at an inlet / outlet of the heat exchanger and detecting a temperature difference between the heat exchanger and a means for detecting a refrigerant temperature at an outlet of the second radiator. The fifth temperature difference detecting means for detecting the temperature difference between the refrigerant temperature at the second radiator outlet and the refrigerant temperature at the heat exchanger outlet, and the outputs of the fourth temperature difference detecting means and the fifth temperature difference detecting means. And a second circulation rate calculation means for calculating the mixing rate of the refrigerant supplied to the heat exchanger, and controlling the second three-way valve so that the mixing rate calculated by the second circulation rate calculation means is obtained. The fuel reformer according to claim 2, wherein:
【請求項8】前記一酸化炭素除去器の出入口での冷媒温
度を検出し、その温度差を検出する第1温度差検出手段
と、 前記第1放熱器の出口での冷媒温度を検出する手段と、 この第1放熱器出口での冷媒温度と一酸化炭素除去器出
口での冷媒温度との温度差を検出する第2温度差検出手
段と、 第1温度差検出手段と第2温度差検出手段の出力に基づ
き、一酸化炭素除去器に供給する冷媒の混合率を演算す
る循環率計算手段と、 前記一酸化炭素除去器の出口での冷媒の温度とその目標
温度との温度差を演算する第3温度差検出手段と、 この第3温度差検出手段が演算した温度差に基づき混合
率の補正率を演算するPID制御計算手段と、 前記循環率計算手段が演算した混合率にPID制御計算
手段が演算した補正率を加算し、補正混合率を演算する
加算手段とを備え、 この加算手段で演算された補正混合率となるように第1
三方弁を制御することを特徴とする請求項1または2に
記載の燃料改質装置。
8. A first temperature difference detecting means for detecting a refrigerant temperature at an inlet / outlet port of the carbon monoxide remover, and a temperature difference detecting means, and a means for detecting a refrigerant temperature at an outlet of the first radiator. Second temperature difference detecting means for detecting a temperature difference between the refrigerant temperature at the first radiator outlet and the refrigerant temperature at the carbon monoxide remover outlet, the first temperature difference detecting means and the second temperature difference detecting means. Based on the output of the means, a circulation rate calculation means for calculating the mixing rate of the refrigerant supplied to the carbon monoxide remover, and a temperature difference between the temperature of the refrigerant at the outlet of the carbon monoxide remover and its target temperature. A third temperature difference detecting means, a PID control calculating means for calculating a correction rate of the mixing rate based on the temperature difference calculated by the third temperature difference detecting means, and a PID control for the mixing rate calculated by the circulation rate calculating means. The correction mixture calculated by the calculation means is added to calculate the correction mixture ratio. And an adding means for, first so that the calculated corrected mixing ratio in the adding means
The fuel reformer according to claim 1 or 2, wherein a three-way valve is controlled.
【請求項9】前記熱交換器の出入口での冷媒温度を検出
し、その温度差を検出する第4温度差検出手段と、 前記第2放熱器の出口での冷媒温度を検出する手段と、 この第2放熱器出口での冷媒温度と熱交換器出口での冷
媒温度との温度差を検出する第5温度差検出手段と、 第4温度差検出手段と第5温度差検出手段の出力に基づ
き、熱交換器に供給する冷媒の混合率を演算する第2循
環率計算手段と、 前記熱交換器の出口での冷媒の温度とその目標温度との
温度差を演算する第6温度差検出手段と、 この第6温度差検出手段が演算した温度差に基づき混合
率の補正率を演算する第2PID制御計算手段と、 前記循環率計算手段が演算した混合率に第2PID制御
計算手段が演算した補正率を加算し、補正混合率を演算
する第2加算手段とを備え、 この第2加算手段で演算された補正混合率となるように
第2三方弁を制御することを特徴とする請求項2または
8に記載の燃料改質装置。
9. A fourth temperature difference detecting means for detecting a refrigerant temperature at the inlet / outlet of the heat exchanger and detecting a temperature difference between the heat exchanger, and a means for detecting a refrigerant temperature at an outlet of the second radiator. The fifth temperature difference detecting means for detecting the temperature difference between the refrigerant temperature at the second radiator outlet and the refrigerant temperature at the heat exchanger outlet, and the outputs of the fourth temperature difference detecting means and the fifth temperature difference detecting means. Based on the second circulation rate calculation means for calculating the mixing rate of the refrigerant supplied to the heat exchanger, and the sixth temperature difference detection for calculating the temperature difference between the temperature of the refrigerant at the outlet of the heat exchanger and its target temperature. Means, a second PID control calculating means for calculating a correction rate of the mixing rate based on the temperature difference calculated by the sixth temperature difference detecting means, and a second PID control calculating means for calculating the mixing rate calculated by the circulation rate calculating means. Second adding means for adding the corrected correction rates and calculating the corrected mixing rate Provided, fuel reforming apparatus according to claim 2 or 8, wherein the controller controls the second three-way valve so that the calculated corrected mixing ratio in the second addition means.
JP2002004433A 2002-01-11 2002-01-11 Fuel reformer Expired - Fee Related JP3747855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002004433A JP3747855B2 (en) 2002-01-11 2002-01-11 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002004433A JP3747855B2 (en) 2002-01-11 2002-01-11 Fuel reformer

Publications (2)

Publication Number Publication Date
JP2003206103A true JP2003206103A (en) 2003-07-22
JP3747855B2 JP3747855B2 (en) 2006-02-22

Family

ID=27643761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002004433A Expired - Fee Related JP3747855B2 (en) 2002-01-11 2002-01-11 Fuel reformer

Country Status (1)

Country Link
JP (1) JP3747855B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875643A1 (en) * 2004-09-21 2006-03-24 Renault Sas FUEL CELL CATALYTIC REACTION DEVICE WITH TEMPERATURE AND CORRESPONDING METHOD
CN116259799A (en) * 2023-05-10 2023-06-13 浙江重塑能源科技有限公司 Method and system for controlling water temperature of fuel cell in-stack based on temperature change rate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875643A1 (en) * 2004-09-21 2006-03-24 Renault Sas FUEL CELL CATALYTIC REACTION DEVICE WITH TEMPERATURE AND CORRESPONDING METHOD
WO2006032803A1 (en) * 2004-09-21 2006-03-30 Renault S.A.S. Temperature-regulated catalytic reaction device of a fuel cell and corresponding method
CN116259799A (en) * 2023-05-10 2023-06-13 浙江重塑能源科技有限公司 Method and system for controlling water temperature of fuel cell in-stack based on temperature change rate
CN116259799B (en) * 2023-05-10 2023-08-15 浙江重塑能源科技有限公司 Method and system for controlling water temperature of fuel cell in-stack based on temperature change rate

Also Published As

Publication number Publication date
JP3747855B2 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
JP4454824B2 (en) Hydrogen supply device
US7147951B1 (en) Cogeneration device
WO2006126740A1 (en) Fuel cell system
WO2004004034A2 (en) Fuel cell cooling system
JP4178849B2 (en) Fuel cell system
US20040001984A1 (en) Fuel cell cooling system for low coolant flow rate
US20070178347A1 (en) Coolant bypass for fuel cell stack
JP4261679B2 (en) Temperature control device for fuel gas in fuel cell system
JP3575932B2 (en) Cooling system for fuel cell stack
JP3966839B2 (en) Waste heat utilization heat source device
JP4845899B2 (en) Fuel cell system
JP3747855B2 (en) Fuel reformer
JP2004059352A (en) Fuel reforming system
JP2000327303A (en) Fuel reforming apparatus
JP2003286006A (en) Fuel reforming system
JP2002373690A (en) Fuel cell system
JP2000319004A (en) Reforming method and reformer
JP5646221B2 (en) Fuel cell system and operation method thereof
JP5212895B2 (en) Fuel cell system
JP3747761B2 (en) Fuel reformer
JP2003157877A (en) Gasification control of reforming raw material in fuel reforming device
JP2003031252A (en) Fuel cell system
JP4128369B2 (en) Fuel cell warm-up device
JP2002274805A (en) Control of reformer having heat exchanger employing reform material as refrigerant
JP2007063102A (en) Temperature control system and temperature control method for co converter unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees