JP2003204631A - Charging control circuit - Google Patents

Charging control circuit

Info

Publication number
JP2003204631A
JP2003204631A JP2002002532A JP2002002532A JP2003204631A JP 2003204631 A JP2003204631 A JP 2003204631A JP 2002002532 A JP2002002532 A JP 2002002532A JP 2002002532 A JP2002002532 A JP 2002002532A JP 2003204631 A JP2003204631 A JP 2003204631A
Authority
JP
Japan
Prior art keywords
voltage
battery
circuit
charge control
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002002532A
Other languages
Japanese (ja)
Inventor
Etsushi Sato
悦士 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002002532A priority Critical patent/JP2003204631A/en
Publication of JP2003204631A publication Critical patent/JP2003204631A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging control circuit, capable of minimizing the heat loss due to a charging control transistor and further reducing the heat loss, without reducing the charging current. <P>SOLUTION: The charging control circuit 6 is used to charge a battery 5 from a power supply terminal 1. The charging control circuit 6 is provided between a power supply and the charging control transistor 3 with a constant- voltage circuit 9. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、携帯電話、携帯情
報端末等に付属する電池を充電する際に用いられる充電
制御回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge control circuit used when charging a battery attached to a mobile phone, a mobile information terminal or the like.

【0002】[0002]

【従来の技術】以下、従来の充電制御回路について図面
を参照しながら説明する。図4は従来の充電制御回路の
一例を示す回路図、図5はリチウムイオン電池における
充電電圧及び充電電流波形を示すグラフである。
2. Description of the Related Art A conventional charge control circuit will be described below with reference to the drawings. FIG. 4 is a circuit diagram showing an example of a conventional charge control circuit, and FIG. 5 is a graph showing charge voltage and charge current waveforms in a lithium ion battery.

【0003】図4において、電源端子1は充電制御回路
6の出力回路に用いられ、充電制御トランジスタとなる
Pチャネル型MOSトランジスタ(以下Pch−MOS
という)3の一端(ソース)に接続され、Pch−MO
S3の他端(ドレーン)は充電電流検出抵抗4の一端に
接続され、充電電流検出抵抗4の他端は電池5の正電圧
端子に接続され、電池5の負電圧端子は接地端子2に接
続されている。充電制御回路6は電源端子1から電源を
供給され、充電電流検出抵抗4の両端から充電電流に応
じた電圧を検出してPch−MOS3のゲートに印加
し、Pch−MOS3を流れる充電電流を制御するよう
に構成されている。
In FIG. 4, a power supply terminal 1 is used as an output circuit of a charge control circuit 6 and serves as a charge control transistor. A P channel type MOS transistor (hereinafter referred to as Pch-MOS)
3) is connected to one end (source) of Pch-MO
The other end (drain) of S3 is connected to one end of the charging current detection resistor 4, the other end of the charging current detection resistor 4 is connected to the positive voltage terminal of the battery 5, and the negative voltage terminal of the battery 5 is connected to the ground terminal 2. Has been done. The charging control circuit 6 is supplied with power from the power supply terminal 1, detects a voltage corresponding to the charging current from both ends of the charging current detection resistor 4, applies it to the gate of the Pch-MOS 3, and controls the charging current flowing through the Pch-MOS 3. Is configured to.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな構成では、携帯電話および携帯情報端末におけるセ
ットの小型化に対応してセット基板の縮小化が進んでき
ている昨今において、電池充電時のセットの熱損失が問
題となっている。即ち、この回路構成では、電源端子1
の電圧は電池電圧、充電電流にかかわらず常に一定であ
り、例えば、図5に示す定電流・定電圧制御を行った際
に、Pch−MOS3での熱損失は電源端子1の電圧を
5.4V(充電電流にかかわらず常に一定)とするとそ
れぞれ以下のように計算できる。 (1)電池電圧2.0V以下の時の熱損失P1 P1=50mA×(5.4V−V1) V1:電池電圧が2.0Vに達するまでの電池平均電圧 ここで、V1=1.5VとするとP1=170mW (2)電池電圧2.0V以上3.2V以下の時の熱損失
P2 P2=100mA×(5.4V−V2) V2:電池電圧が2.0Vから3.2Vに達するまでの
電池平均電圧 ここで、V1=3.0VとするとP2=240mW (3)電池電圧3.2V以上の時(充電電流最大時)の
熱損失P3 P3=700mA×(5.4V−V3) V3:電池電圧が3.2V以上で充電電流最大時の電池
平均電圧 ここで、V3=3.6VとするとP3=1260mW (4)電池電圧3.2V以上の時(充電電流減少時)の
熱損失P4 P4=I4×(5.4V−V4) I4:充電終了までの平均充電電流 V4:電池電圧が3.2V以上で充電電流減少時の電池
平均電圧 ここで、V4=4.15V、I4=70mAとするとP
4=87.5mW 以上の結果から充電時のPch−MOS3での総熱損失
量Pは P=P1+P2+P3+P4 で表され、上記結果からP=1757.5mWとなる。
However, in such a structure, the set board is being reduced in size in response to the miniaturization of the set in the mobile phone and the portable information terminal, and the set when the battery is charged is being set. Heat loss is a problem. That is, in this circuit configuration, the power supply terminal 1
The voltage is always constant regardless of the battery voltage and the charging current. For example, when the constant current / constant voltage control shown in FIG. 5 is performed, the heat loss in the Pch-MOS 3 changes the voltage of the power supply terminal 1 to 5. If it is set to 4 V (always constant regardless of the charging current), it can be calculated as follows. (1) Heat loss when battery voltage is 2.0 V or less P1 P1 = 50 mA × (5.4 V−V1) V1: Battery average voltage until battery voltage reaches 2.0 V Here, V1 = 1.5 V Then, P1 = 170 mW (2) Heat loss when battery voltage is 2.0 V or more and 3.2 V or less P2 P2 = 100 mA × (5.4 V−V2) V2: From battery voltage reaching 2.0 V to 3.2 V Battery average voltage Here, assuming that V1 = 3.0V, P2 = 240 mW (3) Heat loss P3 when battery voltage is 3.2 V or more (at maximum charging current) P3 P3 = 700 mA × (5.4 V−V3) V3: Battery average voltage when battery voltage is 3.2 V or higher and charging current is maximum Here, when V3 = 3.6 V, P3 = 1260 mW (4) Heat loss P4 when battery voltage is 3.2 V or higher (charging current decreases) P4 = I4 × (5.4V-V4) I4: Average charging current until the end of charging V4: Average voltage of the battery when the battery voltage is 3.2 V or higher and the charging current is decreased. Here, when V4 = 4.15 V and I4 = 70 mA, P
4 = 87.5 mW From the above result, the total heat loss amount P in the Pch-MOS 3 at the time of charging is represented by P = P1 + P2 + P3 + P4, and from the above result, P = 1757.5 mW.

【0005】この充電制御トランジスタの熱損失は電池
の破壊、液漏れなどの危険性を伴うため減少させる必要
があるが、そのために充電電流を減らそうとすると充電
時間が長くなるという問題点がある。
The heat loss of the charge control transistor needs to be reduced because it involves the risk of battery damage, liquid leakage, etc. However, if it is attempted to reduce the charge current, the charging time becomes long. .

【0006】本発明は、上記従来の問題点を解決するも
のであり、充電制御トランジスタによる熱損失を最小限
に抑え、且つ充電電流を減らすことなく熱損失を少なく
することができる充電制御回路を提供することを目的と
する。
The present invention solves the above-mentioned conventional problems and provides a charge control circuit capable of minimizing the heat loss due to the charge control transistor and reducing the heat loss without reducing the charging current. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明の充電制御回路
は、電源から電池を充電する際に用いられる充電制御回
路であって、電源と充電制御トランジスタとの間に定電
圧回路を設けたものである。
A charge control circuit according to the present invention is a charge control circuit used when a battery is charged from a power supply, in which a constant voltage circuit is provided between the power supply and a charge control transistor. Is.

【0008】この発明によれば、充電制御トランジスタ
による熱損失を最小限に抑えることができる。
According to the present invention, the heat loss due to the charge control transistor can be minimized.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施の形態につ
いて、図面を参照しながら説明する。なお、前記従来の
ものと同一の部分については同一符号を用いるものとす
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. The same parts as those of the conventional one are designated by the same reference numerals.

【0010】図1は本発明の充電制御回路の一実施の形
態における基本構成を示す回路図、図2は本発明の充電
制御回路の一実施の形態における具体的構成を示す回路
図、図3は本発明の充電制御回路の一実施の形態におい
て用いる定電圧回路の具体例を示す回路図である。
FIG. 1 is a circuit diagram showing a basic configuration of an embodiment of a charge control circuit of the present invention, FIG. 2 is a circuit diagram showing a concrete configuration of an embodiment of a charge control circuit of the present invention, and FIG. FIG. 6 is a circuit diagram showing a specific example of a constant voltage circuit used in an embodiment of a charge control circuit of the present invention.

【0011】まず、図1に示す回路の基本構成について
説明する。電源端子1は定電圧回路9と充電制御回路6
に接続されると共に、充電制御回路6の充電制御トラン
ジスタとなるPch−MOS3の一端(ソース)に接続
され、Pch−MOS3の他端(ドレーン)は充電電流
検出抵抗4の一端に接続され、充電電流検出抵抗4の他
端は電池5の正電圧端子に接続され、電池5の負電圧端
子は接地端子2に接続されている。
First, the basic structure of the circuit shown in FIG. 1 will be described. The power supply terminal 1 has a constant voltage circuit 9 and a charge control circuit 6
Is connected to one end (source) of the Pch-MOS 3 serving as a charge control transistor of the charge control circuit 6, and the other end (drain) of the Pch-MOS 3 is connected to one end of the charging current detection resistor 4 for charging. The other end of the current detection resistor 4 is connected to the positive voltage terminal of the battery 5, and the negative voltage terminal of the battery 5 is connected to the ground terminal 2.

【0012】ここで、充電制御回路6は充電電流検出抵
抗4の両端から充電電流に応じた電圧を検出しPch−
MOS3のゲートを制御するよう構成され、また、定電
圧回路9は電池検出電圧7により電池5の電圧を検出
し、電池5の電圧に応じた出力電圧を得、定電圧出力端
子8の電圧を安定化するように動作する。
Here, the charging control circuit 6 detects a voltage corresponding to the charging current from both ends of the charging current detecting resistor 4 and detects Pch-
The constant voltage circuit 9 is configured to control the gate of the MOS 3 and detects the voltage of the battery 5 with the battery detection voltage 7 to obtain an output voltage according to the voltage of the battery 5 and to obtain the voltage of the constant voltage output terminal 8. Works to stabilize.

【0013】この定電圧回路9の動作により、充電制御
トランジスタによる熱損失を最小限に抑えることがで
き、且つ充電制御トランジスタでの熱損失を低減した
分、充電電流を増やせるため、充電時間の短縮も可能と
なるのであるが、次に図2の具体的回路を参照して更に
詳細に説明する。なお、図1に示した回路と共通する部
分の説明は省略する。
Due to the operation of the constant voltage circuit 9, the heat loss due to the charge control transistor can be minimized, and the heat loss at the charge control transistor can be reduced, so that the charging current can be increased, so that the charging time can be shortened. However, it will be described in more detail with reference to the specific circuit of FIG. The description of the parts common to those of the circuit shown in FIG. 1 will be omitted.

【0014】図2に示す回路は、図1の破線枠内の回路
をより具体的に示しており、電源端子1は充電電流検出
用のPch−MOS11の一端(ソース)に接続され、
Pch−MOS11の他端(ドレーン)はPch−MO
S3の一端(ソース)に接続されると共に、出力電圧負
帰還12が定電圧回路9にかけられている。Pch−M
OS11のゲート10は定電圧回路9に接続され、更
に、定電圧出力端子8には接地端子2に対してショット
キーダイオード13と出力安定化容量14が接続されて
おり、その他の回路は図1に示した回路と同等である。
The circuit shown in FIG. 2 more specifically shows the circuit inside the broken line frame in FIG. 1, in which the power supply terminal 1 is connected to one end (source) of the Pch-MOS 11 for detecting the charging current.
The other end (drain) of Pch-MOS 11 is Pch-MO.
The output voltage negative feedback 12 is connected to the constant voltage circuit 9 while being connected to one end (source) of S3. Pch-M
The gate 10 of the OS 11 is connected to the constant voltage circuit 9, and the constant voltage output terminal 8 is connected to the Schottky diode 13 and the output stabilizing capacitor 14 with respect to the ground terminal 2, and other circuits are shown in FIG. It is equivalent to the circuit shown in.

【0015】このように構成することにより、定電圧回
路9は電池検出電圧7により電池5の電圧を検出すると
同時に出力電圧負帰還12により電池5の電圧に応じた
出力電圧を得て、Pch−MOS11のゲート10を制
御し、定電圧出力端子8の電圧を安定化させる。このよ
うに定電圧出力端子8の電圧を安定化させた状態で、電
池5と定電圧出力端子8間をPch−MOS3が充電電
流を流せるだけのゲート・ソース間電圧、ソース・ドレ
イン電圧を確保してソース・ドレイン電圧を最小になる
ように設定することにより、Pch−MOS3による損
失を最小限に抑えることができる。
With such a configuration, the constant voltage circuit 9 detects the voltage of the battery 5 by the battery detection voltage 7, and at the same time obtains the output voltage according to the voltage of the battery 5 by the output voltage negative feedback 12, and Pch- The gate 10 of the MOS 11 is controlled to stabilize the voltage of the constant voltage output terminal 8. With the voltage of the constant voltage output terminal 8 stabilized in this manner, a gate-source voltage and a source-drain voltage are secured between the battery 5 and the constant voltage output terminal 8 so that the Pch-MOS 3 can flow the charging current. Then, by setting the source / drain voltage to the minimum, the loss due to the Pch-MOS 3 can be minimized.

【0016】さらに、前記定電圧回路内容の詳細につい
て図3を用いてさらに詳細に説明する。図3に示す回路
は、図2の破線枠内の定電圧回路9の回路をより具体的
に示しており、定電圧回路9は直流−直流変換器となっ
ており、電池検出電圧7により検出された電池5の電圧
と電圧設定抵抗19と定電流源20によりあらかじめ設
定された電圧とを電圧比較器21によって比較し、可変
基準電圧23の電圧を制御する。また、出力電圧負帰還
12の電圧は負帰還抵抗24と負帰還抵抗25により分
圧され誤差増幅器22に入力される。誤差増幅器22は
電池電圧によって可変制御される可変基準電圧23と出
力電圧負帰還12の分圧値とを比較し積分容量17と積
分抵抗18によって増幅し、パルス幅変調回路16に出
力する。パルス幅変調回路16は三角波発振器15によ
って形成される三角波と誤差増幅器22の出力電圧を比
較しPch−MOS11の駆動バッファ26に出力す
る。この駆動バッファ26はパルス幅変調回路16の出
力パルスを電力増幅し、Pch−MOS11をオン/オ
フ制御する。
Further, details of the contents of the constant voltage circuit will be described in more detail with reference to FIG. The circuit shown in FIG. 3 more specifically shows the circuit of the constant voltage circuit 9 in the broken line frame of FIG. 2, and the constant voltage circuit 9 is a DC-DC converter and is detected by the battery detection voltage 7. The voltage of the battery 5 and the voltage preset by the voltage setting resistor 19 and the constant current source 20 are compared by the voltage comparator 21, and the voltage of the variable reference voltage 23 is controlled. The voltage of the output voltage negative feedback 12 is divided by the negative feedback resistor 24 and the negative feedback resistor 25 and input to the error amplifier 22. The error amplifier 22 compares the variable reference voltage 23 variably controlled by the battery voltage with the divided voltage value of the output voltage negative feedback 12, amplifies it by the integrating capacitor 17 and the integrating resistor 18, and outputs it to the pulse width modulation circuit 16. The pulse width modulation circuit 16 compares the triangular wave formed by the triangular wave oscillator 15 with the output voltage of the error amplifier 22 and outputs it to the drive buffer 26 of the Pch-MOS 11. The drive buffer 26 power-amplifies the output pulse of the pulse width modulation circuit 16 and controls ON / OFF of the Pch-MOS 11.

【0017】電池5の電圧に応じてPch−MOS11
のゲート端子10をパルス幅制御することにより定電圧
出力端子8を電池電圧に応じた電圧に安定化する。電池
5と定電圧出力端子8間をPch−MOS3が充電電流
を流せるだけのゲート・ソース間電圧、ソース・ドレイ
ン電圧を確保してソース・ドレイン電圧を最小になるよ
うに設定することによってPch−MOS3による損失
を最小限に抑えると共に充電電流を最大限に増やすこと
ができる。
Depending on the voltage of the battery 5, the Pch-MOS 11
By controlling the pulse width of the gate terminal 10 of, the constant voltage output terminal 8 is stabilized to a voltage corresponding to the battery voltage. By setting the gate-source voltage and the source-drain voltage sufficient to allow the charging current to flow through the Pch-MOS 3 between the battery 5 and the constant voltage output terminal 8 and setting the source-drain voltage to the minimum, the Pch- It is possible to minimize the loss due to the MOS3 and maximize the charging current.

【0018】図3では電池電圧と定電圧回路の出力電圧
値との差は電圧設定抵抗19と定電流源20によって
(数1)で表される。
In FIG. 3, the difference between the battery voltage and the output voltage value of the constant voltage circuit is represented by (Equation 1) by the voltage setting resistor 19 and the constant current source 20.

【0019】[0019]

【数1】(定電圧出力電圧−電池電圧)=電圧設定抵抗
×定電流源電流値 ここで図4に示すような定電圧出力電圧の制御と充電制
御を行った場合にPch−MOS3での損失はそれぞれ
以下のように計算される。 (1)電池電圧2.0V以下の時の熱損失P1 P1=50mA×(2.5V−V1) V1:電池電圧が2.0Vに達するまでの電池平均電圧 ここで、V1=1.5VとするとP1=50mW (2)電池電圧2.0V以上3.2V以下の時の熱損失
P2 P2=100mA×(3.6V−V2) V2:電池電圧が2.0Vから3.2Vに達するまでの
電池平均電圧 ここで、V1=3.0VとするとP2=60mW (3)電池電圧3.2V以上の時(充電電流最大時)の
熱損失P3 P3=700mA×(4.2V−V3) V3:電池電圧が3.2V以上で充電電流最大時の電池
平均電圧 ここで、V3=3.6VとするとP3=420mW (4)電池電圧3.2V以上の時(充電電流減少時)の
熱損失P4 P4=I4×(4.4V−V4) I4:充電終了までの平均充電電流 V4:電池電圧が3.2V以上で充電電流減少時の電池
平均電圧 ここで、V4=4.15V、I4=70mAとするとP
4=17.5mW 以上の結果から充電時のPch−MOS3での総損失量
Pは P=P1+P2+P3+P4 で表され、上記結果からP=547.5mWとなる。従
来の回路構成での計算結果P=1757.5mWに対し
て約68.8%の改善がなされたことになる。
## EQU1 ## (constant voltage output voltage-battery voltage) = voltage setting resistance × constant current source current value Here, when the constant voltage output voltage control and the charging control as shown in FIG. Each loss is calculated as follows. (1) Heat loss when battery voltage is 2.0V or less P1 P1 = 50mA × (2.5V-V1) V1: Battery average voltage until battery voltage reaches 2.0V Here, V1 = 1.5V Then, P1 = 50 mW (2) Heat loss when battery voltage is 2.0 V or more and 3.2 V or less P2 P2 = 100 mA × (3.6 V−V2) V2: From battery voltage reaching 2.0 V to 3.2 V Battery average voltage Here, assuming V1 = 3.0V, P2 = 60 mW (3) Heat loss P3 when battery voltage is 3.2 V or higher (at maximum charging current) P3 P3 = 700 mA × (4.2 V−V3) V3: Battery average voltage when battery voltage is 3.2 V or higher and charging current is maximum Here, when V3 = 3.6 V, P3 = 420 mW (4) Heat loss P4 when battery voltage is 3.2 V or higher (when charging current decreases) P4 = I4 * (4.4V-V4) I4: Average charging current V4 until the end of charging: Battery average voltage when the battery voltage is 3.2 V or higher and the charging current decreases Here, when V4 = 4.15 V and I4 = 70 mA, P
4 = 17.5 mW From the above result, the total loss amount P in the Pch-MOS3 at the time of charging is represented by P = P1 + P2 + P3 + P4, and from the above result, P = 547.5 mW. This is an improvement of about 68.8% with respect to the calculation result P = 1757.5 mW in the conventional circuit configuration.

【0020】以上のように、本実施の形態によれば、充
電制御トランジスタによる熱損失を最小限に抑えること
ができ、且つ充電制御トランジスタでの熱損失を低減し
た分充電電流を増やせるため、充電時間を短縮すること
が可能となる。
As described above, according to the present embodiment, the heat loss due to the charge control transistor can be minimized, and the heat loss at the charge control transistor can be reduced, so that the charging current can be increased. It is possible to shorten the time.

【0021】なお、本実施の形態において例示した充電
制御出力トランジスタはPチャネル型MOSトランジス
タを用いているが、PNPトランジスタや、回路構成に
よってはNチャネル型MOSトランジスタ、NPNトラ
ンジスタを用いた充電制御回路においても同様な効果が
得られる。また、図2において定電圧回路9は回路の効
率を考慮して直流電源−直流電源変換器としたが、定電
圧出力であれば他の回路構成でも同様な結果が得られ
る。
Although the P-channel MOS transistor is used as the charge control output transistor illustrated in this embodiment, a PNP transistor or a charge control circuit using an N-channel MOS transistor or an NPN transistor depending on the circuit configuration is used. The same effect can be obtained in. Further, in FIG. 2, the constant voltage circuit 9 is a DC power supply-DC power supply converter in consideration of the efficiency of the circuit, but the same result can be obtained with other circuit configurations as long as it is a constant voltage output.

【0022】[0022]

【発明の効果】以上のように本発明によれば、充電制御
トランジスタによる熱損失を最小限に抑えることがで
き、且つ充電制御トランジスタでの熱損失を低減した分
充電電流を増やせるため、充電時間を短縮することが可
能となるという有利な効果が得られる。
As described above, according to the present invention, the heat loss due to the charge control transistor can be minimized, and the heat loss at the charge control transistor can be reduced to increase the charging current. It is possible to obtain the advantageous effect that it becomes possible to shorten.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の充電制御回路の一実施の形態における
基本構成を示す回路図
FIG. 1 is a circuit diagram showing a basic configuration in an embodiment of a charge control circuit of the present invention.

【図2】本発明の充電制御回路の一実施の形態における
具体例を示す回路図
FIG. 2 is a circuit diagram showing a specific example of an embodiment of a charge control circuit of the present invention.

【図3】本発明の充電制御回路の一実施の形態において
用いる定電圧回路の具体例を示す回路図
FIG. 3 is a circuit diagram showing a specific example of a constant voltage circuit used in an embodiment of a charge control circuit of the present invention.

【図4】従来の充電制御回路の一例を示す回路図FIG. 4 is a circuit diagram showing an example of a conventional charge control circuit.

【図5】リチウムイオン電池における充電電圧及び充電
電流波形を示すグラフ
FIG. 5 is a graph showing charge voltage and charge current waveforms in a lithium-ion battery.

【符号の説明】[Explanation of symbols]

1 電源端子 2 接地端子 3,11 Pチャネル型MOSトランジスタ 4 充電電流検出抵抗 5 電池 6 充電制御回路 7 電池検出電圧 8 定電圧出力端子 9 定電圧回路 10 Pチャネル型MOSトランジスタのゲート 12 出力電圧負帰還 13 ショットキーダイオード 14 出力安定化容量 15 三角波発振器 16 パルス幅変調回路 17 積分容量 18 積分抵抗 19 電圧設定抵抗 20 定電流源 21 電圧比較器 22 誤差増幅回路 23 可変基準電圧 24 電圧設定抵抗A 25 電圧設定抵抗B 26 駆動バッファ 1 power supply terminal 2 Ground terminal 3,11 P-channel MOS transistor 4 Charging current detection resistor 5 batteries 6 Charge control circuit 7 Battery detection voltage 8 constant voltage output terminal 9 constant voltage circuit 10 P-channel MOS transistor gate 12 Output voltage negative feedback 13 Schottky diode 14 Output stabilization capacity 15 Triangle wave oscillator 16 pulse width modulation circuit 17 Integral capacity 18 Integral resistance 19 Voltage setting resistor 20 constant current source 21 Voltage comparator 22 Error amplification circuit 23 Variable reference voltage 24 Voltage setting resistor A 25 Voltage setting resistor B 26 Drive buffer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5G003 AA01 BA01 CA12 CC02 GA01 GB03 5H030 AA03 AS14 BB01 FF43 5H430 BB01 BB09 BB11 BB12 EE06 EE12 FF01 FF08 FF11 GG17 HH03 LA10 5H730 AA14 AS01 AS02 AS17 BB13 BB86 CC25 DD04 DD26 EE07 FD03 FD33 FF02 FG05 FG25   ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5G003 AA01 BA01 CA12 CC02 GA01                       GB03                 5H030 AA03 AS14 BB01 FF43                 5H430 BB01 BB09 BB11 BB12 EE06                       EE12 FF01 FF08 FF11 GG17                       HH03 LA10                 5H730 AA14 AS01 AS02 AS17 BB13                       BB86 CC25 DD04 DD26 EE07                       FD03 FD33 FF02 FG05 FG25

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電源から電池を充電する際に用いられる
充電制御回路であって、電源と充電制御トランジスタと
の間に定電圧回路を設けたことを特徴とする充電制御回
路。
1. A charge control circuit used when charging a battery from a power supply, wherein a constant voltage circuit is provided between the power supply and the charge control transistor.
【請求項2】 定電圧回路の出力電圧は充電される電池
電圧に応じて設定されるようにしたことを特徴とする請
求項1記載の充電制御回路。
2. The charge control circuit according to claim 1, wherein the output voltage of the constant voltage circuit is set according to the battery voltage to be charged.
JP2002002532A 2002-01-09 2002-01-09 Charging control circuit Pending JP2003204631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002002532A JP2003204631A (en) 2002-01-09 2002-01-09 Charging control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002002532A JP2003204631A (en) 2002-01-09 2002-01-09 Charging control circuit

Publications (1)

Publication Number Publication Date
JP2003204631A true JP2003204631A (en) 2003-07-18

Family

ID=27642362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002002532A Pending JP2003204631A (en) 2002-01-09 2002-01-09 Charging control circuit

Country Status (1)

Country Link
JP (1) JP2003204631A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035013A1 (en) * 2007-09-12 2009-03-19 Ricoh Company, Ltd. Constant current supply type of switching regulator
JP2010239857A (en) * 2009-02-10 2010-10-21 Chroma Ate Inc Battery charging and discharging device, and method
US8362748B2 (en) 2007-09-12 2013-01-29 Rohm Co., Ltd. Voltage comparison circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035013A1 (en) * 2007-09-12 2009-03-19 Ricoh Company, Ltd. Constant current supply type of switching regulator
US8294433B2 (en) 2007-09-12 2012-10-23 Ricoh Company, Ltd. Constant current supply type of switching regulator
US8362748B2 (en) 2007-09-12 2013-01-29 Rohm Co., Ltd. Voltage comparison circuit
JP2010239857A (en) * 2009-02-10 2010-10-21 Chroma Ate Inc Battery charging and discharging device, and method
US8222867B2 (en) 2009-02-10 2012-07-17 Chroma Ate Inc. Battery charging and discharging apparatus and method

Similar Documents

Publication Publication Date Title
US10862316B2 (en) Balanced charge and discharge control for asymmetric dual battery system
JP3259262B2 (en) Voltage regulator
JP3501491B2 (en) Control circuit and method for maintaining high efficiency over a wide current range in a switching regulator circuit
US9735600B2 (en) Method for limiting battery discharging current in battery charger and discharger circuit
US7852046B2 (en) Power source switchover apparatus and method
US8766616B2 (en) Comparator, control circuit of switching regulator using the same, switching regulator, and electronic equipment
US5526253A (en) Low power voltage boost circuit with regulated output
US20050116697A1 (en) Method and apparatus for power supply controlling capable of effectively controlling switching operations
JP3732173B2 (en) Power supply device and liquid crystal display device using the same
JP2003009515A (en) Power system
CN100479310C (en) Switching power supply apparatus
US20230066436A1 (en) Multi-Input Voltage Regulation
JP2003079139A (en) Automatic switching constant current and constant voltage circuit
JP2000197349A (en) Dc-to-dc converter circuit
JP2000217252A (en) Circuit and method of power supply
CN114094824A (en) Switching power supply circuit and control method
TWI490506B (en) Circuit and method for determining a current
JP2013229969A (en) Charge control circuit
US9007035B2 (en) Charge control circuit
JP2003204631A (en) Charging control circuit
US10797596B2 (en) Transient booster for zero static loadline switching regulator
JP2005312169A (en) Voltage-inverting charge pump circuit
JP2002223562A (en) Dc-to-dc converter
JP4517579B2 (en) Current control circuit
JP3652903B2 (en) Power supply circuit and inrush current prevention method