JP2003202253A - Powder flow measuring instrument, powder flow measuring program, and computer-readable recording medium for recording same program - Google Patents

Powder flow measuring instrument, powder flow measuring program, and computer-readable recording medium for recording same program

Info

Publication number
JP2003202253A
JP2003202253A JP2001358703A JP2001358703A JP2003202253A JP 2003202253 A JP2003202253 A JP 2003202253A JP 2001358703 A JP2001358703 A JP 2001358703A JP 2001358703 A JP2001358703 A JP 2001358703A JP 2003202253 A JP2003202253 A JP 2003202253A
Authority
JP
Japan
Prior art keywords
powder
flow rate
unit
measurement
measurement value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001358703A
Other languages
Japanese (ja)
Other versions
JP3512401B2 (en
Inventor
Keiji Kanai
恵司 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSUTETSUKU KK
Original Assignee
INSUTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSUTETSUKU KK filed Critical INSUTETSUKU KK
Priority to JP2001358703A priority Critical patent/JP3512401B2/en
Publication of JP2003202253A publication Critical patent/JP2003202253A/en
Application granted granted Critical
Publication of JP3512401B2 publication Critical patent/JP3512401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the flow of powder relatively accurately even in a case where the flow speed of the powder varies. <P>SOLUTION: In addition to counter electrodes 13 and 14 between which a flow path 16 for the powder is interposed, an electrode part 1 is equipped with counter electrodes 11 and 12 as reference electrodes between which an atmosphere common to the flow path of the powder is interposed. The pair of electrodes 13 and 14, between which the flow path 16 for the powder is interposed, are provided as measuring electrodes with a fixed space left between them on the upstream and downstream sides of the flow path. A signal processing part 2 outputs, as an upstream measured value, a signal difference between an output signal of the upstream-side measuring electrode and an output signal of the reference electrode while it outputs, as a downstream measured value, a signal difference between an output signal of the downstream-side measuring electrode and the output signal of the reference electrode. A computation part 3 calculates the flow speed of the powder based on a correlation between the upstream measured values and the downstream measured values, and calculates the flow of the powder based on at least one of the upstream and downstream measured values and on the found flow speed of the powder. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粉体流量測定装
置、粉体流量測定プログラム及び当該プログラムを記録
したコンピュータ読み取り可能な記録媒体に係り、特
に、粉体の流路を挟む対向電極間の静電容量の変化に基
づいて粉体の流量を測定する粉体流量測定装置等に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder flow rate measuring device, a powder flow rate measuring program, and a computer-readable recording medium having the program recorded therein, and more particularly, between opposing electrodes sandwiching a powder flow path. The present invention relates to a powder flow rate measuring device or the like that measures a powder flow rate based on a change in capacitance.

【0002】[0002]

【従来の技術】この種の粉体流量測定装置は、例えば、
特開平8−271301号公報に開示されている。粉体
の流路となる円筒管を電極で挟み、この電極間を粉体が
移動することによって、電極間の静電容量に変化を生
じ、この静電容量の変化に応じて粉体の流量を測定する
ようになっている。
2. Description of the Related Art This type of powder flow rate measuring device is, for example,
It is disclosed in Japanese Patent Laid-Open No. 8-271301. A cylindrical tube that serves as a powder flow path is sandwiched between electrodes, and the powder moves between these electrodes, causing a change in the capacitance between the electrodes, and the flow rate of the powder in accordance with this change in capacitance. Is designed to measure.

【0003】粉体の流量は、上記静電容量に応じて算出
される粉体濃度と、粉体の速度と、所定の係数とを掛け
合わせることによって求められる。
The flow rate of the powder is obtained by multiplying the powder concentration calculated according to the electrostatic capacity, the speed of the powder and a predetermined coefficient.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例にあっては、粉体の速度を一定と仮定し、粉体の流
量を求めていたため、流路に粉体が詰まるなど粉体の流
速に変動を生じた場合であっても、流速一定の条件の下
で粉体の流量が算出される。よって、かかる場合は粉体
の流量を正確に測定することができないという不都合が
あった。
However, in the above-mentioned conventional example, the flow rate of the powder is calculated assuming that the velocity of the powder is constant. Even if there is a fluctuation in, the flow rate of the powder is calculated under the condition that the flow velocity is constant. Therefore, in such a case, there is an inconvenience that the flow rate of the powder cannot be accurately measured.

【0005】[0005]

【発明の目的】本発明は、かかる従来例の有する不都合
を改善し、特に、粉体の流速が変動する場合にあって
も、比較的正確に粉体の流量を測定することのできる装
置を提供することを、その目的とする。
It is an object of the present invention to improve the inconvenience of the conventional example, and in particular, to provide an apparatus capable of relatively accurately measuring the flow rate of powder even when the flow velocity of powder fluctuates. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の発明では、粉体の流路を挟む対向電
極から当該対向電極間の静電容量に応じた電気信号を出
力する電極部と、この電極部からの出力信号を調整する
信号処理部とを備えている。また、この信号処理部で調
整された信号に基づいて粉体の流量を算出する演算部
と、この演算部による演算結果を出力装置に出力する出
力部とを有する。
In order to achieve the above object, in the invention according to claim 1, an electric signal corresponding to the electrostatic capacitance between the counter electrodes is output from the counter electrodes sandwiching the powder flow path. An electrode section and a signal processing section that adjusts an output signal from the electrode section are provided. Further, it has an arithmetic unit for calculating the flow rate of the powder based on the signal adjusted by the signal processing unit, and an output unit for outputting the arithmetic result by the arithmetic unit to the output device.

【0007】このうち、電極部は、粉体の流路を挟む対
向電極とは別に、当該粉体の流路と共通の雰囲気を挟む
基準電極としての対向電極を備える。また、少なくと
も、粉体の流路を挟む対向電極は測定電極として当該流
路の上流側と下流側に所定の間隔を隔てて一組を備え
る。
Of these, the electrode portion is provided with a counter electrode as a reference electrode for sandwiching an atmosphere common to the powder flow passage, in addition to the counter electrode for sandwiching the powder flow passage. In addition, at least the counter electrodes sandwiching the powder flow path are provided as a set of measurement electrodes on the upstream side and the downstream side of the flow path with a predetermined space therebetween.

【0008】一方、信号処理部は、上流側の測定電極の
出力信号と基準電極の出力信号との信号差を上流計測値
として出力すると共に、下流側の測定電極の出力信号と
基準電極の出力信号との信号差を下流計測値として出力
する差分出力機能を備える。
On the other hand, the signal processing unit outputs the signal difference between the output signal of the upstream measurement electrode and the output signal of the reference electrode as the upstream measurement value, and also outputs the output signal of the downstream measurement electrode and the output of the reference electrode. It has a difference output function of outputting a signal difference from the signal as a downstream measurement value.

【0009】これに加え、演算部は、上流計測値と下流
計測値との相関に基づいて粉体の流速を算出する流速算
出機能により得た粉体の流速と、上流計測値又は下流計
測値の少なくとも一方に基づいて粉体の流量を算出する
流量算出機能とを備えた、という構成を採っている。
In addition to this, the calculation unit calculates the flow velocity of the powder based on the correlation between the upstream measurement value and the downstream measurement value, and the flow velocity of the powder obtained by the flow velocity calculating function, and the upstream measurement value or the downstream measurement value. And a flow rate calculating function for calculating the flow rate of the powder based on at least one of the above.

【0010】本発明では、上流計測値と下流計測値との
相関に基づいて粉体の速度を逐次算出し、算出した速度
に基づいて粉体の流量を求めるので、粉体の流速に変動
を生じた場合にあっても、時々の粉体の流量を比較的正
確に計測することができる。かつ、基準電極から得られ
る信号と測定電極から得られる信号との差分に基づいて
粉体の流速を求めるので、雰囲気の影響を除去した精度
の高い測定を行うことが出来る。
In the present invention, the velocity of the powder is sequentially calculated based on the correlation between the upstream measurement value and the downstream measurement value, and the flow rate of the powder is calculated based on the calculated velocity. Even if it occurs, it is possible to measure the powder flow rate from time to time relatively accurately. Moreover, since the flow velocity of the powder is obtained based on the difference between the signal obtained from the reference electrode and the signal obtained from the measurement electrode, it is possible to perform the measurement with high accuracy without the influence of the atmosphere.

【0011】また、請求項2記載の発明では、演算部
は、上流計測値又は下流計測値の単位測定時間内におけ
る平均値を算出し、この平均値と,流速算出機能により
得た前記単位測定時間内における粉体の流速と,予め記
憶された所定の係数との積に基づいて単位測定時間内に
おける粉体の流量を算出する、という構成を採ってい
る。
According to the second aspect of the present invention, the calculation unit calculates an average value of the upstream measurement value or the downstream measurement value within the unit measurement time, and the average value and the unit measurement obtained by the flow velocity calculating function. The flow rate of the powder within the unit measurement time is calculated based on the product of the flow velocity of the powder within the time and a predetermined coefficient stored in advance.

【0012】更に、請求項3記載の発明では、請求項2
記載の粉体流量測定装置において、演算部は、単位測定
時間内における粉体の流量を算出した後、更に、この単
位測定時間内における粉体の流量を時間軸に沿って積分
し、当該積分区間内における粉体の流量を算出する、と
いう構成を採っている。
Further, in the invention according to claim 3, the invention according to claim 2
In the powder flow rate measuring device described, the calculation unit, after calculating the flow rate of the powder within the unit measurement time, further integrates the flow rate of the powder within the unit measurement time along the time axis, and the integration The configuration is such that the flow rate of powder in the section is calculated.

【0013】これに加え、請求項4記載の発明では、請
求項1記載の粉体流量測定装置において、演算部にコン
ピュータ及び記憶手段を備え、当該コンピュータに、次
の処理を実行させる。即ち、(a)信号処理部から上流計
測値と下流計測値とを随時取得し、記憶手段に格納する
入力処理と、(b)記憶手段から上流計測値と下流計測値
とを読み出し、これらの相関に基づいて粉体の流速を算
出する流速算出処理と、(c)上流計測値又は下流計測値
の少なくとも一方と流速算出処理により得た粉体の流速
とに基づいて粉体の流量を算出する流量算出処理とを実
行させる。
In addition to this, in the invention according to claim 4, in the powder flow rate measuring device according to claim 1, the arithmetic unit is provided with a computer and a storage means, and causes the computer to execute the following processing. That is, (a) the upstream measurement value and the downstream measurement value are acquired from the signal processing unit at any time, and the input processing for storing in the storage means, and (b) the upstream measurement value and the downstream measurement value are read out from the storage means. A flow velocity calculation process for calculating the flow velocity of the powder based on the correlation, and (c) a flow amount of the powder is calculated based on at least one of the upstream measurement value or the downstream measurement value and the flow velocity of the powder obtained by the flow velocity calculation process. And a flow rate calculation process to be performed.

【0014】また、請求項5記載の発明によると、流量
算出処理は、コンピュータに、次の処理を実行させる。
即ち、上流計測値又は下流計測値の単位測定時間内にお
ける平均値を算出し、この平均値と,流速算出機能によ
り得た単位時間内における粉体の流速と,予め記憶され
た所定の係数との積に基づいて単位時間内における粉体
の流量を算出する処理を実行させる。
According to the fifth aspect of the present invention, the flow rate calculation process causes the computer to execute the following process.
That is, the average value of the upstream measurement value or the downstream measurement value in the unit measurement time is calculated, and the average value, the flow velocity of the powder in the unit time obtained by the flow velocity calculation function, and the predetermined coefficient stored in advance. A process of calculating the powder flow rate in a unit time is executed based on the product of

【0015】更に、請求項6記載の発明では、請求項5
記載の粉体流量測定プログラムにおいて、流量算出処理
が、コンピュータに、次の処理を実行させる。即ち、単
位測定時間内における粉体の流量を算出した後、更に、
この単位測定時間内における粉体の流量を時間軸に沿っ
て積分し、当該積分区間内における粉体の流量を算出す
る処理を実行させる。
Further, in the invention according to claim 6, the invention according to claim 5
In the powder flow rate measurement program described, the flow rate calculation process causes the computer to execute the following process. That is, after calculating the flow rate of the powder within the unit measurement time,
A process of integrating the powder flow rate within the unit measurement time along the time axis and calculating the powder flow rate within the integration section is executed.

【0016】そして、請求項7記載の発明は、請求項4
乃至6記載の粉体流量測定プログラムを記録したコンピ
ュータ読み取り可能な記録媒体である。
The invention of claim 7 is the same as that of claim 4.
It is a computer-readable recording medium in which the powder flow rate measuring program according to any one of 6 to 6 is recorded.

【0017】これにより、前述した目的を達成しようと
するものである。
This is intended to achieve the above-mentioned object.

【0018】[0018]

【発明の実施の形態】以下、本発明の第1の好適な実施
の形態について、図面を参照して詳しく説明する。図1
は、本発明の一実施形態を示すブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first preferred embodiment of the present invention will be described in detail below with reference to the drawings. Figure 1
FIG. 3 is a block diagram showing an embodiment of the present invention.

【0019】図1に示す粉体流量測定装置は、粉体の流
路16を挟む対向電極13,14から当該対向電極間の
静電容量に応じた電気信号を出力する電極部1と、この
電極部1からの出力信号を調整する信号処理部2とを備
えている。また、この信号処理部2で調整された信号に
基づいて粉体の流量を算出する演算部3と、この演算部
3による演算結果を出力装置41に出力する出力部4と
を有する。
The powder flow rate measuring apparatus shown in FIG. 1 includes an electrode section 1 for outputting an electric signal corresponding to the electrostatic capacitance between the counter electrodes 13 and 14 sandwiching a powder flow path 16 and the electrode section 1. The signal processing unit 2 for adjusting the output signal from the electrode unit 1 is provided. Further, it has an arithmetic unit 3 that calculates the flow rate of the powder based on the signal adjusted by the signal processing unit 2, and an output unit 4 that outputs the arithmetic result of the arithmetic unit 3 to the output device 41.

【0020】このうち、電極部1は、粉体の流路16を
挟む対向電極13,14とは別に、当該粉体の流路16
と共通の雰囲気を挟む基準電極としての対向電極11,
12を備えている。また、粉体の流路16を挟む対向電
極13,14は測定電極として当該流路16の上流側と
下流側に所定の間隔を隔てて一組を備えている。
Of these, the electrode portion 1 is separated from the counter electrodes 13 and 14 that sandwich the powder flow path 16 and the powder flow path 16 is provided.
A counter electrode 11 as a reference electrode sandwiching an atmosphere common to
It has twelve. The counter electrodes 13 and 14 that sandwich the powder flow path 16 are provided as a set of measurement electrodes on the upstream side and the downstream side of the flow path 16 with a predetermined interval.

【0021】一方、信号処理部2は、上流側の測定電極
13の出力信号と基準電極11の出力信号との信号差を
上流計測値として出力すると共に、下流側の測定電極1
4の出力信号と基準電極12の出力信号との信号差を下
流計測値として出力する差分出力機能を備えている。
On the other hand, the signal processing unit 2 outputs the signal difference between the output signal of the upstream measurement electrode 13 and the output signal of the reference electrode 11 as an upstream measurement value, and at the same time, the downstream measurement electrode 1
4 has a difference output function of outputting a signal difference between the output signal of No. 4 and the output signal of the reference electrode 12 as a downstream measurement value.

【0022】これに加え、演算部3は、上流計測値と下
流計測値との相関に基づいて粉体の流速を算出する流速
算出機能と、上流計測値又は下流計測値の少なくとも一
方と流速算出機能により得た粉体の流速とに基づいて粉
体の流量を算出する流量算出機能とを備えている。
In addition to this, the calculation unit 3 calculates the flow velocity of the powder based on the correlation between the upstream measurement value and the downstream measurement value, and at least one of the upstream measurement value and the downstream measurement value and the flow velocity calculation. It has a flow rate calculating function for calculating the flow rate of the powder based on the flow velocity of the powder obtained by the function.

【0023】本実施形態において、演算部3は、上流計
測値又は下流計測値の単位測定時間内における平均値を
算出し、この平均値と,流速算出機能により得た単位測
定時間内における粉体の流速と,予め設定記憶された所
定の係数(以下、流量係数という)との積に基づいて単
位測定時間内における粉体の流量を算出するようになっ
ている。
In the present embodiment, the calculation unit 3 calculates the average value of the upstream measurement value or the downstream measurement value within the unit measurement time, and the average value and the powder within the unit measurement time obtained by the flow velocity calculating function. The flow rate of the powder within a unit measurement time is calculated based on the product of the flow velocity and the predetermined coefficient stored in advance (hereinafter referred to as the flow coefficient).

【0024】更に、本実施形態において、演算部3は、
単位測定時間内における粉体の流量を算出した後、更
に、この単位測定時間内における粉体の流量を時間軸に
沿って積分し、当該積分区間内における粉体の流量(総
流量)を算出するようになっている。
Further, in the present embodiment, the arithmetic unit 3 is
After calculating the powder flow rate within the unit measurement time, further integrate the powder flow rate within this unit measurement time along the time axis to calculate the powder flow rate (total flow rate) within the integration section. It is supposed to do.

【0025】これを更に詳述すると、本実施形態におい
て、電極部1は、2本の円筒管を有し、その一方16は
粉体の流路16として機能し、他方15は基準電極1
1,12の固定用として設けられ、両者は共通の雰囲気
(例えば外気)の中に置かれる。粉体の流路16を形成
する円筒管16の上流側には、上流側の測定電極13が
固定されている。また、同じ円筒管16の下流側には、
下流側の測定電極14が固定されている。上流側の測定
電極13と下流側の測定電極14は所定の間隔を隔てて
円筒管16に固定されている。円筒管16は絶縁材料に
より形成されている。一方、基準電極11,12を固定
する他方の円筒管15には、上述した測定電極13,1
4の取り付け方とほぼ同様に、所定の間隔を隔てて2つ
の基準電極11,12が固定されている。こちらの円筒
管15も絶縁材料により形成されている。各測定電極1
3,14及び基準電極11,12は円筒管15,16を
挟む対向電極として構成されているが、対向するうちの
一方の電極11a,12a,13a,14aは、それぞ
れ高周波交流電源に接続され、交流電圧が印加されるよ
うになっている。2つの測定電極13,14は、高周波
交流電源の一方の端子18にそれぞれ接続され、2つの
基準電極11,12は、高周波交流電源の他方の端子1
7にそれぞれ接続されている。また、対向する基準電極
11,12及び測定電極13,14の他方の電極11
b,12b,13b,14bは、信号処理部2に接続さ
れ、それぞれ対向電極11,12,13,14間の静電
容量に応じた出力信号を出力するようになっている。
More specifically, in the present embodiment, the electrode portion 1 has two cylindrical tubes, one of which 16 functions as a powder passage 16 and the other 15 of which is the reference electrode 1.
It is provided for fixing 1 and 12, and both are placed in a common atmosphere (for example, outside air). An upstream measurement electrode 13 is fixed to the upstream side of the cylindrical tube 16 forming the powder flow path 16. Further, on the downstream side of the same cylindrical pipe 16,
The measurement electrode 14 on the downstream side is fixed. The measurement electrode 13 on the upstream side and the measurement electrode 14 on the downstream side are fixed to the cylindrical tube 16 with a predetermined interval. The cylindrical tube 16 is made of an insulating material. On the other hand, in the other cylindrical tube 15 for fixing the reference electrodes 11 and 12, the above-mentioned measurement electrodes 13 and 1 are attached.
Similar to the mounting method of 4, the two reference electrodes 11 and 12 are fixed at a predetermined interval. This cylindrical tube 15 is also made of an insulating material. Each measuring electrode 1
3, 14 and the reference electrodes 11, 12 are configured as counter electrodes sandwiching the cylindrical tubes 15, 16, but one of the opposing electrodes 11a, 12a, 13a, 14a is connected to a high frequency AC power source, respectively. An alternating voltage is applied. The two measuring electrodes 13 and 14 are respectively connected to one terminal 18 of the high frequency AC power supply, and the two reference electrodes 11 and 12 are the other terminals 1 of the high frequency AC power supply.
7 are connected respectively. Further, the other electrode 11 of the reference electrodes 11 and 12 and the measurement electrodes 13 and 14 that face each other.
b, 12b, 13b, and 14b are connected to the signal processing unit 2 and output output signals corresponding to the electrostatic capacitances between the counter electrodes 11, 12, 13, and 14, respectively.

【0026】即ち、測定電極13,14と基準電極1
1,12は、ともに静電容量型の電極である。そして、
測定電極13,14と基準電極11,12には、不図示
のガード電極と静電容量検出回路が形成されており、高
周波正弦波電圧が印加されている。出力は電圧で得られ
るが、出力電圧は検出静電容量に比例する値である。よ
って、測定電極は、流路を通過する粉体及び周辺流体の
静電容量を電圧の出力として出力する。
That is, the measurement electrodes 13 and 14 and the reference electrode 1
Both 1 and 12 are capacitance type electrodes. And
A guard electrode and a capacitance detection circuit (not shown) are formed on the measurement electrodes 13 and 14 and the reference electrodes 11 and 12, and a high frequency sine wave voltage is applied thereto. The output is obtained as a voltage, but the output voltage is a value proportional to the detected capacitance. Therefore, the measurement electrode outputs the electrostatic capacity of the powder and the surrounding fluid passing through the flow path as the voltage output.

【0027】これにより上流側の測定電極13からは、
流路の上流における静電容量に比例した電圧が出力さ
れ、下流側の測定電極14からは、流路の下流における
静電容量に比例した電圧が出力される。また、基準電極
11,12からは、雰囲気内における静電容量に比例し
た電圧が出力される。
As a result, from the measuring electrode 13 on the upstream side,
A voltage proportional to the electrostatic capacity upstream of the flow path is output, and a voltage proportional to the electrostatic capacity downstream of the flow path is output from the measurement electrode 14 on the downstream side. In addition, the reference electrodes 11 and 12 output a voltage proportional to the electrostatic capacitance in the atmosphere.

【0028】続いて、信号処理部2は、上流側の測定電
極13と、下流側の測定電極14にそれぞれ対応する2
系統の信号処理回路を備えている。1系統の信号処理回
路には、一組のバッファアンプ21,22(23,2
4)と、比較回路25(26)と、増幅器27(28)
とが含まれ、そのような信号処理回路が2系統設けられ
ている。第1系統のバッファアンプ21,22には、上
流側の測定電極13の出力と、一方の基準電極11の出
力とがそれぞれ個別に接続されている。そして、各バッ
ファアンプ21,22の出力は、比較回路25の入力端
子に接続されると共に、当該比較回路25の出力が増幅
器27の入力端子に接続されている。増幅器27の出力
は、演算部3に入力されるようになっている。第2系統
の信号処理回路の構成も同様であるが、第2系統のバッ
ファアンプ23,24には、下流側の測定電極14の出
力と、他方の基準電極12の出力とがそれぞれ個別に接
続されている。
Subsequently, the signal processing section 2 corresponds to the upstream measurement electrode 13 and the downstream measurement electrode 14, respectively.
A system signal processing circuit is provided. One system of signal processing circuit includes a pair of buffer amplifiers 21, 22 (23, 2
4), the comparison circuit 25 (26), and the amplifier 27 (28)
, And two such signal processing circuits are provided. The output of the measurement electrode 13 on the upstream side and the output of the one reference electrode 11 are individually connected to the buffer amplifiers 21 and 22 of the first system. The outputs of the buffer amplifiers 21 and 22 are connected to the input terminal of the comparison circuit 25, and the output of the comparison circuit 25 is connected to the input terminal of the amplifier 27. The output of the amplifier 27 is input to the arithmetic unit 3. The configuration of the signal processing circuit of the second system is similar, but the output of the measurement electrode 14 on the downstream side and the output of the other reference electrode 12 are individually connected to the buffer amplifiers 23 and 24 of the second system. Has been done.

【0029】これにより、第1系統の比較回路25は、
上流側の測定電極13と一方の基準電極11との出力信
号の差を上流計測値として算出する一方、第2系統の比
較回路26は、下流側の測定電極14と他方の基準電極
12との出力信号の差を下流計測値として算出する(差
分出力機能)。
As a result, the comparison circuit 25 of the first system is
While the difference between the output signals of the upstream measurement electrode 13 and the one reference electrode 11 is calculated as the upstream measurement value, the comparison circuit 26 of the second system calculates the difference between the downstream measurement electrode 14 and the other reference electrode 12. The difference between the output signals is calculated as the downstream measurement value (difference output function).

【0030】ここで、バッファアンプ21〜24は、入
力された測定電極又は基準電極の信号値を一時的に蓄
え、他のバッファアンプとの出力タイミングとを同調さ
せ、比較回路に出力する。
Here, the buffer amplifiers 21 to 24 temporarily store the input signal value of the measurement electrode or the reference electrode, synchronize the output timing with other buffer amplifiers, and output to the comparison circuit.

【0031】即ち、上流側の測定電極13からの出力信
号値がバッファアンプ21から出力されると共に、一方
の基準電極11からの出力信号値がバッファアンプ22
から出力され、比較回路25の入力端子に入力される。
比較回路25は、増幅器27に接続されており、上記2
入力の比較を行ない、その信号値の差を増幅器27に対
して出力する。また、同様に下流側の測定電極14から
の出力信号値がバッファアンプ23から出力されると共
に、他方の基準電極12からの出力信号値がバッファア
ンプ24から出力され、比較回路26の入力端子に入力
される。比較回路26は、増幅器28に接続されてお
り、上記2入力の比較を行ない、その信号値の差を増幅
器28に対して出力する。
That is, the output signal value from the upstream measurement electrode 13 is output from the buffer amplifier 21, and the output signal value from one reference electrode 11 is output from the buffer amplifier 22.
And is input to the input terminal of the comparison circuit 25.
The comparison circuit 25 is connected to the amplifier 27, and
The inputs are compared, and the difference between the signal values is output to the amplifier 27. Similarly, the output signal value from the measurement electrode 14 on the downstream side is output from the buffer amplifier 23, and the output signal value from the other reference electrode 12 is output from the buffer amplifier 24 to the input terminal of the comparison circuit 26. Is entered. The comparison circuit 26 is connected to the amplifier 28, compares the two inputs, and outputs the difference between the signal values to the amplifier 28.

【0032】これにより、第1系統の増幅器27から
は、上流側の測定電極13と一方の基準電極11との出
力の差が上流計測値として出力されると共に、第2系統
の増幅器28からは、下流側の測定電極14と他方の基
準電極12との出力の差が下流計測値として出力され
る。
As a result, the amplifier 27 of the first system outputs the difference between the outputs of the measurement electrode 13 on the upstream side and the reference electrode 11 on one side as an upstream measurement value, and the amplifier 28 of the second system outputs it. The difference in output between the downstream measurement electrode 14 and the other reference electrode 12 is output as the downstream measurement value.

【0033】第1系統の増幅器27は、入力信号に対し
て所定の増幅を行ない、その増幅後の値である上流計測
値を演算部3の速度測定手段31と濃度測定手段32に
入力する。同様に第2系統の増幅器28も、入力信号に
対して所定の増幅を行ない、その増幅後の値である下流
計測値を速度測定手段31に入力する。ここで、濃度測
定手段32には、上流計測値が入力されるようになって
いるが、上流計測値に代えて下流計測値を入力するよう
に構成してもよい。ここで、速度測定手段31及び濃度
測定手段32は、電気回路で構成される。
The amplifier 27 of the first system performs a predetermined amplification on the input signal and inputs the upstream measurement value, which is the value after the amplification, to the speed measuring means 31 and the concentration measuring means 32 of the arithmetic unit 3. Similarly, the amplifier 28 of the second system also performs a predetermined amplification on the input signal, and inputs the downstream measurement value, which is the value after the amplification, to the speed measuring means 31. Here, the upstream measurement value is input to the concentration measuring unit 32, but the downstream measurement value may be input instead of the upstream measurement value. Here, the speed measuring means 31 and the concentration measuring means 32 are composed of electric circuits.

【0034】続いて、演算部3は、入力された上流計測
値と下流計測値との相関に基づいて粉体の流速を算出す
る流速算出機能を司る流速算出手段31と、上流計測値
の単位測定時間内における平均値(粉体濃度)を算出す
る濃度測定手段32と、この平均値と,流速算出手段3
1により得た単位測定時間内における粉体の流速と,予
め設定記憶された所定の係数(流量係数)との積に基づ
いて単位測定時間内における粉体の流量を算出する流量
算出機能を司る流量算出手段33とを備えている。更
に、演算部3は、流量算出手段33が単位測定時間内に
おける粉体の流量を算出した後、更に、この単位測定時
間内における粉体の流量を時間軸に沿って積分し、当該
積分区間内における粉体の流量(総流量)を算出する流
量積分手段34を有する。単位測定時間は、例えば0.
5[sec]程度の短い時間である。ただし、上流計測値と
下流計測値のサンプル時間はここにいう単位測定時間を
分割した,より短い時間に設定される。
Subsequently, the calculation unit 3 calculates the flow velocity of the powder on the basis of the correlation between the input upstream measurement value and the downstream measurement value. Concentration measuring means 32 for calculating an average value (powder concentration) within the measuring time, this average value, and flow velocity calculating means 3
It controls the flow rate calculation function that calculates the flow rate of the powder in the unit measurement time based on the product of the flow velocity of the powder in the unit measurement time obtained by 1 and the predetermined coefficient (flow coefficient) stored in advance. The flow rate calculation means 33 is provided. Further, after the flow rate calculating means 33 calculates the powder flow rate within the unit measurement time, the calculation unit 3 further integrates the powder flow rate within the unit measurement time along the time axis, and the integration section concerned. It has a flow rate integrating means 34 for calculating the flow rate (total flow rate) of the powder inside. The unit measurement time is, for example, 0.
It is a short time of about 5 [sec]. However, the sampling time of the upstream measurement value and the downstream measurement value is set to a shorter time obtained by dividing the unit measurement time here.

【0035】ここで、各手段31〜34は、電子回路と
して構成され、各手段31〜34が、それぞれ演算用の
マイクロプロセッサを備えていてもよい。
Here, each of the means 31 to 34 may be configured as an electronic circuit, and each of the means 31 to 34 may include a microprocessor for calculation.

【0036】そして、流速算出手段31の入力段には、
第1系統の増幅器27の出力と第2系統の増幅器28の
出力とが接続されている。
Then, at the input stage of the flow velocity calculating means 31,
The output of the amplifier 27 of the first system and the output of the amplifier 28 of the second system are connected.

【0037】ここで、流速算出手段31が、上流計測値
と下流計測値の相関により粉体の流速を算出する方法に
ついて図2を参照しつつ詳述する。流速算出手段31
は、正規化相関係数を利用することにより、時系列にお
いて下流計測値の或る区間と波形の一致する上流計測値
の区間を特定する。具体的には、所定の区間内の上流計
測値をサンプリングタイムごとに時間軸の古い方向移動
して取り出しながら上流計測値と下流計測値の正規化相
関係数を算出する。そして、当該正規化相関係数が所定
の閾値を超えて最大となったときに、双方が一致してい
ると判断し、これを条件として上流計測値と下流計測値
の一致する区間を特定する。特定すると、図2に示すと
おり上流と下流の時間差(T−delay)を算出する
ことができる。ここで、上流側の測定電極と下流側の測
定電極との距離は既知Lであるため、当該距離Lを時間
差(T−delay)で除することにより、粉体の流速
を求めることができる。
Here, the method of calculating the flow velocity of the powder by the flow velocity calculating means 31 by the correlation between the upstream measurement value and the downstream measurement value will be described in detail with reference to FIG. Flow velocity calculating means 31
Uses the normalized correlation coefficient to identify a section of the upstream measurement value whose waveform matches a certain section of the downstream measurement value in time series. Specifically, the normalized correlation coefficient between the upstream measurement value and the downstream measurement value is calculated while moving the upstream measurement value in the predetermined section in the old direction of the time axis at each sampling time and extracting the upstream measurement value. Then, when the normalized correlation coefficient exceeds a predetermined threshold and becomes maximum, it is determined that the two match, and the condition in which the upstream measurement value and the downstream measurement value match is specified. . If specified, the time difference between upstream and downstream (T-delay) can be calculated as shown in FIG. Here, since the distance between the upstream measurement electrode and the downstream measurement electrode is known L, the flow velocity of the powder can be obtained by dividing the distance L by the time difference (T-delay).

【0038】図1に戻り、濃度算出手段32の入力段に
は、第1系統の増幅器27の出力(実線)又は第2系統
の増幅器28の出力(点線)のいずれか一方が接続され
る。ここで、上流計測値又は下流計測値のいずれか一方
のみを入力するのは、上流を通過した粉体は、通常その
まま平行移動して下流を通過するため、所定の周期間内
における上流計測値の平均値と下流計測値の平均値と
は、ほぼ同値であるとみることができるからである。
ここで、上流計測値(又は下流計測値)は、測定電極1
3(14)を通過する粉体の濃度に比例した値となる。
濃度算出手段32は、単位計測時間内にサンプルされる
複数の上流計測値の平均値を算出するが、これは測定電
極13を通過する粉体の濃度に比例した値となる。
Returning to FIG. 1, either the output of the amplifier 27 of the first system (solid line) or the output of the amplifier 28 of the second system (dotted line) is connected to the input stage of the concentration calculating means 32. Here, inputting only one of the upstream measurement value or the downstream measurement value is because the powder that has passed through the upstream normally moves in parallel and passes through the downstream, so that the upstream measurement value within a predetermined period This is because the average value of 1 and the average value of the downstream measurement values can be considered to be almost the same.
Here, the upstream measurement value (or the downstream measurement value) is the measurement electrode 1
It becomes a value proportional to the concentration of the powder passing through 3 (14).
The concentration calculation means 32 calculates an average value of a plurality of upstream measurement values sampled within the unit measurement time, which is a value proportional to the concentration of the powder passing through the measurement electrode 13.

【0039】続いて、流量算出手段33の入力段には、
流速算出手段31の出力と、濃度算出手段32の出力と
が接続されている。流量算出手段33は、濃度算出手段
32が算出した上流計測値又は下流計測値の平均値と、
流速算出手段31が算出した流速と、所定の流量係数と
の積を演算することにより、測定電極13(14)を単
位測定時間内に通過する粉体の流量を算出する。
Then, in the input stage of the flow rate calculation means 33,
The output of the flow velocity calculation means 31 and the output of the concentration calculation means 32 are connected. The flow rate calculation unit 33 has an average value of the upstream measurement value or the downstream measurement value calculated by the concentration calculation unit 32,
The flow rate of the powder passing through the measurement electrode 13 (14) within a unit measurement time is calculated by calculating the product of the flow rate calculated by the flow rate calculation means 31 and a predetermined flow coefficient.

【0040】また、流量係数は、測定する粉体を一定の
流量かつ流速で流しつつ、既知の流量を上流計測値(又
は下流計測値)の平均値と一定の流速で除することによ
り、予めその粉体に固有の値を求めておく。
The flow rate coefficient is obtained by dividing the known flow rate by the average value of the upstream measurement value (or the downstream measurement value) and the constant flow rate while allowing the powder to be measured to flow at a constant flow rate and flow rate. The value unique to the powder is obtained.

【0041】流量積分手段34は、流量算出手段33が
単位測定時間内における粉体の流量を算出した後、更
に、この単位測定時間内における粉体の流量を時間軸に
沿って積分し、当該積分区間内における粉体の流量(総
流量)を算出する。
After the flow rate calculating means 33 calculates the flow rate of the powder within the unit measurement time, the flow rate integrating means 34 further integrates the flow rate of the powder within the unit measurement time along the time axis, and Calculate the powder flow rate (total flow rate) within the integration interval.

【0042】続いて、出力部4について説明する。出力
部4は、演算部3による演算結果を出力装置41に出力
する。出力装置41は、CRTディスプレイや液晶モニ
タなどの表示装置であるが、接続に必要なインターフェ
ースも含む。また、演算結果が出力可能であれば、プリ
ンタなどの印字装置などであってもよい。出力装置41
には、流速算出手段31の出力値と、流量算出手段33
の出力値と、流量積分手段34の出力値が出力されるよ
うになっている。
Next, the output section 4 will be described. The output unit 4 outputs the calculation result of the calculation unit 3 to the output device 41. The output device 41 is a display device such as a CRT display or a liquid crystal monitor, but also includes an interface necessary for connection. Further, a printing device such as a printer may be used as long as the calculation result can be output. Output device 41
Includes the output value of the flow velocity calculating means 31 and the flow rate calculating means 33.
And the output value of the flow rate integrating means 34 are output.

【0043】以上説明した本実施形態によると、粉体の
流路に設けた測定電極13,14の上流計測値と下流計
測値との相関に基づいて粉体の流速を都度演算し、粉体
流量の演算に反映するので、粉体の流速に変動を生じた
場合に従来例と比較して粉体の流量を正確に算出するこ
とができる。かつ、当該演算は、測定電極と基準電極と
の出力の差分に基づいて行うので、雰囲気の変動(例え
ば温度や湿度など)の影響を抑制することができ、これ
がため、雰囲気の不安定な環境や雰囲気の異なる環境に
おいても、精度の高い粉体流量測定を行うことができ
る。
According to the present embodiment described above, the powder flow velocity is calculated each time based on the correlation between the upstream measurement value and the downstream measurement value of the measurement electrodes 13 and 14 provided in the powder flow path, and the powder flow rate is calculated. Since it is reflected in the calculation of the flow rate, the flow rate of the powder can be accurately calculated as compared with the conventional example when the flow rate of the powder fluctuates. Moreover, since the calculation is performed based on the difference between the outputs of the measurement electrode and the reference electrode, it is possible to suppress the influence of fluctuations in the atmosphere (for example, temperature and humidity), which makes the environment unstable. It is possible to measure the powder flow rate with high accuracy even in environments with different atmospheres.

【0044】次に、本発明の他の実施形態を図3及び図
4に基づいて説明する。先に説明した実施形態と同一部
分については、同一符号を付して重複説明を省略する。
Next, another embodiment of the present invention will be described with reference to FIGS. The same parts as those of the above-described embodiment are designated by the same reference numerals, and the duplicated description will be omitted.

【0045】図3は、本実施形態の構成を示すブロック
図である。電極部1、信号処理部2、出力部4の構成は
前述の実施形態と同一である。演算部103の機能も前
述した実施形態の演算部3の機能と同様であるが、本実
施形態では、演算部3をコンピュータ処理により実現す
る点が異なっている。
FIG. 3 is a block diagram showing the configuration of this embodiment. The configurations of the electrode unit 1, the signal processing unit 2, and the output unit 4 are the same as those in the above-described embodiment. The function of the arithmetic unit 103 is similar to that of the arithmetic unit 3 of the above-described embodiment, but the present embodiment is different in that the arithmetic unit 3 is realized by computer processing.

【0046】このため、本実施形態における演算部10
3は、MPUを含む処理手段132と、ROM,RAM,
ハードディスクドライブ等を含む記憶手段131とを備
えている。処理手段132は、所定のインタフェースを
介して信号処理部2と接続され、このインタフェースに
は、信号処理部2から出力される上流計測値及び下流計
測値をデジタル変換するA/D変換器を含んでいる。ま
た、処理手段132は、所定のインタフェースを介し
て、コンピュータディスプレイ又はプリンタである出力
装置41に接続されている。記憶手段131には先の実
施形態で説明したのと同様の流量係数131aが格納さ
れている。
Therefore, the arithmetic unit 10 in the present embodiment.
3 is a processing means 132 including an MPU, ROM, RAM,
The storage means 131 includes a hard disk drive and the like. The processing unit 132 is connected to the signal processing unit 2 via a predetermined interface, and this interface includes an A / D converter that digitally converts the upstream measurement value and the downstream measurement value output from the signal processing unit 2. I'm out. Further, the processing means 132 is connected to the output device 41, which is a computer display or a printer, via a predetermined interface. The storage unit 131 stores the same flow coefficient 131a as that described in the above embodiment.

【0047】ここで、図3では、便宜上1つの記憶手段
のみが記載されているが、複数の記憶媒体を分散配置し
たものであってもよい。
Here, in FIG. 3, only one storage means is shown for convenience, but a plurality of storage media may be dispersedly arranged.

【0048】また、記憶手段131の所定の領域には、
サンプリングタイムごとに信号処理部2から出力された
上流計測値と下流計測値とが格納される。
Further, in a predetermined area of the storage means 131,
The upstream measurement value and the downstream measurement value output from the signal processing unit 2 are stored for each sampling time.

【0049】また、処理手段132は、1つに限られる
ものではなく、複数のMPUや複数種類の演算装置によ
り分散処理を可能としたものであってもよい。
Further, the number of processing means 132 is not limited to one, but may be one which enables distributed processing by a plurality of MPUs or a plurality of types of arithmetic units.

【0050】次に、処理手段132の動作を、図4のフ
ローチャートに基づいて説明する。以下の動作は、コン
ピュータである処理手段132が、予め準備された粉体
流量測定プログラムを実行することにより、実現され
る。粉体流量測定プログラムは、コンピュータ読み取り
可能な記録媒体に記録して配布されてもよい。
Next, the operation of the processing means 132 will be described with reference to the flowchart of FIG. The following operation is realized by the processing unit 132, which is a computer, executing the powder flow rate measurement program prepared in advance. The powder flow rate measuring program may be recorded in a computer-readable recording medium and distributed.

【0051】先ず、処理手段132は、信号処理部2か
ら出力される上流計測値と下流計測値とを連続的にサン
プリングし(S101:入力処理)、取得した上流計測
値と下流計測値とを記憶手段131に随時格納する(S
102)。その後、処理手段132は、単位測定時間内
における上流計測値と下流計測値の連続するサンプルを
記憶手段131から読出し(S103)、当該単位測定
時間内における上流計測値と下流計測値との相関に基づ
いて粉体の流速を算出する(S104:流速算出処
理)。ここで、相関に基づく流速の算出方法は、上述し
た第1の実施形態と同一である。続いて、処理手段13
2は、記憶手段131から単位測定時間内における上流
計測値又は下流計測値を読出し(S105)、当該単位
測定時間内における上流計測値又は下流計測値の平均値
を算出する(S106)。続いて、処理手段132は、
記憶手段131から流量係数131aを読出し(S10
7)、当該流量係数と、先程算出した上流計測値又は下
流計測値の平均値と、先程算出した粉体の流速との積か
ら、単位測定時間における粉体の流量を動的に算出する
(S108:流量算出処理)。そして、処理手段132
は、当該算出した単位測定時間における粉体の流量及び
流速を記憶手段131に格納すると共に、出力装置41
に出力する(S109)。
First, the processing means 132 continuously samples the upstream measurement value and the downstream measurement value output from the signal processing unit 2 (S101: input processing), and obtains the acquired upstream measurement value and downstream measurement value. It is stored in the storage means 131 at any time (S
102). After that, the processing unit 132 reads continuous samples of the upstream measurement value and the downstream measurement value within the unit measurement time from the storage unit 131 (S103), and determines the correlation between the upstream measurement value and the downstream measurement value within the unit measurement time. Based on this, the flow velocity of the powder is calculated (S104: flow velocity calculation process). Here, the method of calculating the flow velocity based on the correlation is the same as that of the first embodiment described above. Then, the processing means 13
2 reads the upstream measurement value or the downstream measurement value within the unit measurement time from the storage means 131 (S105), and calculates the average value of the upstream measurement value or the downstream measurement value within the unit measurement time (S106). Subsequently, the processing means 132
The flow coefficient 131a is read from the storage means 131 (S10
7), The flow rate of the powder per unit measurement time is dynamically calculated from the product of the flow coefficient, the average value of the upstream measurement value or the downstream measurement value calculated previously, and the flow velocity of the powder calculated previously ( S108: Flow rate calculation process). And the processing means 132
Stores the calculated flow rate and flow velocity of the powder in the unit measurement time in the storage means 131 and outputs the output device 41.
(S109).

【0052】処理手段132は、上述した単位測定時間
における粉体の流量の算出を、連続する単位測定時間ご
とに実行し、各単位測定時間における粉体流量を都度記
憶手段131に格納してゆく。そして、単位測定時間ご
との粉体流量を一定区間分記憶すると、処理手段132
は、当該一定区間を積分区間として、各単位測定時間に
対応する粉体流量を積分する(S110)。処理手段1
32は、この積分値を粉体の総流量として出力装置41
に出力する(S111)。
The processing means 132 executes the above-described calculation of the powder flow rate in the unit measurement time for each continuous unit measurement time, and stores the powder flow rate in each unit measurement time in the storage means 131 each time. . When the powder flow rate for each unit measurement time is stored for a certain section, the processing means 132
Integrates the powder flow rate corresponding to each unit measurement time using the certain section as an integration section (S110). Processing means 1
32 is an output device 41 which uses this integrated value as the total flow rate of the powder.
(S111).

【0053】このようにしても、前述した第1の実施形
態と同一の作用効果を奏するほか、演算部103を汎用
のコンピュータにソフトウェアを供給することによって
実現でき、既存のハードウェア資源の有効利用が図れる
と共に、ソフトウェアのバージョンアップによって、容
易に機能追加を行うことができるというメリットがあ
る。
In this way as well, in addition to the same effects as the first embodiment described above, the arithmetic unit 103 can be realized by supplying software to a general-purpose computer, and effective use of existing hardware resources. In addition, there is an advantage that functions can be easily added by upgrading the software version.

【0054】[0054]

【発明の効果】本発明は、以上のように構成され機能す
るので、これによると、上流計測値と下流計測値との相
関に基づいて粉体の速度を逐次算出し、算出した速度に
基づいて粉体の流量を求めるので、粉体の流速に変動を
生じた場合にあっても、時々の粉体の流量を比較的正確
に計測することができる。かつ、基準電極から得られる
信号と測定電極から得られる信号との差分に基づいて粉
体の流速を求めるので、雰囲気の影響を除去した精度の
高い測定を行うことができる、という従来にない優れた
粉体流量測定装置を提供することができる。
Since the present invention is constructed and functions as described above, according to the present invention, the powder velocity is sequentially calculated based on the correlation between the upstream measurement value and the downstream measurement value, and based on the calculated velocity. Since the flow rate of the powder is calculated by using the flow rate of the powder, the flow rate of the powder can be measured with relative accuracy from time to time even when the flow velocity of the powder fluctuates. Moreover, since the flow velocity of the powder is obtained based on the difference between the signal obtained from the reference electrode and the signal obtained from the measurement electrode, it is possible to perform highly accurate measurement without the influence of the atmosphere. It is possible to provide a powder flow rate measuring device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態の構成を示すブロック図で
ある
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.

【図2】上流計測値と下流計測値との相関に基づいて粉
体の流速を求める動作を説明するための説明図である。
FIG. 2 is an explanatory diagram for explaining an operation for obtaining a powder flow velocity based on a correlation between an upstream measurement value and a downstream measurement value.

【図3】本発明の他の実施形態の構成を示すブロック図
である。
FIG. 3 is a block diagram showing the configuration of another embodiment of the present invention.

【図4】図3に示す処理手段が実行する粉体流量測定プ
ログラムのフローチャートである。
4 is a flowchart of a powder flow rate measurement program executed by the processing means shown in FIG.

【符号の説明】[Explanation of symbols]

1 電極部 2 信号処理部 3 演算部 4 出力部 11,12 基準電極 13 上流側の測定電極 14 下流側の測定電極 103 演算部 131 記憶手段 132 処理手段 1 electrode part 2 Signal processing unit 3 operation unit 4 Output section 11,12 Reference electrode 13 Measurement electrode on the upstream side 14 Downstream measurement electrode 103 arithmetic unit 131 storage means 132 processing means

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 粉体の流路を挟む対向電極から当該対向
電極間の静電容量に応じた電気信号を出力する電極部
と、この電極部からの出力信号を調整する信号処理部
と、この信号処理部で調整された信号に基づいて粉体の
流量を算出する演算部と、この演算部による演算結果を
出力装置に出力する出力部とを備えた粉体流量測定装置
において、 前記電極部が、前記粉体の流路を挟む対向電極とは別
に、当該粉体の流路と共通の雰囲気を挟む基準電極とし
ての対向電極を備えると共に、少なくとも、前記粉体の
流路を挟む対向電極は測定電極として当該流路の上流側
と下流側に所定の間隔を隔てて一組を備え、 前記信号処理部は、前記上流側の測定電極の出力信号と
前記基準電極の出力信号との信号差を上流計測値として
出力すると共に、前記下流側の測定電極の出力信号と前
記基準電極の出力信号との信号差を下流計測値として出
力する差分出力機能を備え、 前記演算部は、前記上流計測値と下流計測値との相関に
基づいて前記粉体の流速を算出する流速算出機能と、前
記上流計測値又は下流計測値の少なくとも一方と前記流
速算出機能により得た粉体の流速とに基づいて前記粉体
の流量を算出する流量算出機能とを備えたことを特徴と
する粉体流量測定装置。
1. An electrode section for outputting an electric signal according to a capacitance between the counter electrodes sandwiching a powder flow path, and a signal processing section for adjusting an output signal from the electrode section. A powder flow rate measuring device comprising: a calculation unit for calculating a flow rate of powder based on a signal adjusted by the signal processing unit; and an output unit for outputting a calculation result by the calculation unit to an output device, wherein the electrode And a counter electrode that sandwiches a common atmosphere with the powder flow passage, and at least a counter electrode that sandwiches the powder flow passage. The electrodes are provided as a measurement electrode on the upstream side and the downstream side of the flow path with a predetermined distance therebetween, and the signal processing unit includes an output signal of the upstream measurement electrode and an output signal of the reference electrode. Output the signal difference as an upstream measurement value and With a difference output function for outputting the signal difference between the output signal of the measurement electrode on the side and the output signal of the reference electrode as a downstream measurement value, the calculation unit is based on the correlation between the upstream measurement value and the downstream measurement value. A flow rate calculation function for calculating the flow rate of the powder, and a flow rate calculation for calculating the flow rate of the powder based on at least one of the upstream measurement value and the downstream measurement value and the flow rate of the powder obtained by the flow rate calculation function. A powder flow rate measuring device having a function.
【請求項2】 前記演算部は、前記上流計測値又は下流
計測値の単位測定時間内における平均値を算出し、この
平均値と,前記流速算出機能により得た前記単位測定時
間内における粉体の流速と,予め記憶された所定の係数
との積に基づいて前記単位測定時間内における粉体の流
量を算出することを特徴とした請求項1記載の粉体流量
測定装置。
2. The calculation unit calculates an average value of the upstream measurement value or the downstream measurement value within a unit measurement time, and the average value and the powder within the unit measurement time obtained by the flow velocity calculating function. 2. The powder flow rate measuring device according to claim 1, wherein the flow rate of the powder within the unit measurement time is calculated based on the product of the flow velocity of the above and a predetermined coefficient stored in advance.
【請求項3】 請求項2記載の粉体流量測定装置におい
て、 前記演算部は、前記単位測定時間内における粉体の流量
を算出した後、更に、この単位測定時間内における粉体
の流量を時間軸に沿って積分し、当該積分区間内におけ
る粉体の流量を算出することを特徴とした粉体流量測定
装置。
3. The powder flow rate measuring device according to claim 2, wherein the calculation unit calculates the flow rate of the powder within the unit measurement time, and further calculates the flow rate of the powder within the unit measurement time. A powder flow rate measuring device characterized by integrating along a time axis and calculating a powder flow rate within the integration section.
【請求項4】 請求項1記載の粉体流量測定装置におい
て、 前記演算部にコンピュータ及び記憶手段を備え、 当該コンピュータに、 (a)前記信号処理部から前記上流計測値と下流計測値と
を随時取得し、前記記憶手段に格納する入力処理と、 (b)前記記憶手段から上流計測値と下流計測値とを読み
出し、これらの相関に基づいて前記粉体の流速を算出す
る流速算出処理と、 (c)前記上流計測値又は下流計測値の少なくとも一方と
前記流速算出処理により得た粉体の流速とに基づいて前
記粉体の流量を算出する流量算出処理と、 を実行させることを特徴とした粉体流量測定プログラ
ム。
4. The powder flow rate measuring apparatus according to claim 1, wherein the computing unit includes a computer and a storage unit, and (a) the signal processing unit stores the upstream measurement value and the downstream measurement value in the computer. An input process that is acquired from time to time and stored in the storage unit, and (b) a flow velocity calculation process that reads the upstream measurement value and the downstream measurement value from the storage unit and calculates the flow velocity of the powder based on these correlations. And (c) a flow rate calculation process for calculating the flow rate of the powder based on at least one of the upstream measurement value or the downstream measurement value and the flow velocity of the powder obtained by the flow rate calculation process. And the powder flow rate measurement program.
【請求項5】 前記流量算出処理は、前記コンピュータ
に、 前記上流計測値又は下流計測値の単位測定時間内におけ
る平均値を算出し、この平均値と,前記流速算出機能に
より得た単位時間内における粉体の流速と,予め記憶さ
れた所定の係数との積に基づいて前記単位時間内におけ
る粉体の流量を算出する処理を、 実行させることを特徴とした請求項4記載の粉体流量測
定プログラム。
5. The flow rate calculation process calculates, in the computer, an average value of the upstream measurement value or the downstream measurement value within a unit measurement time, and the average value and the unit time obtained by the flow velocity calculation function. 5. The powder flow rate according to claim 4, wherein a process for calculating a powder flow rate in the unit time based on a product of a flow velocity of the powder in the above and a predetermined coefficient stored in advance is executed. Measurement program.
【請求項6】 請求項5記載の粉体流量測定プログラム
において、 前記流量算出処理は、前記コンピュータに、 前記単位測定時間内における粉体の流量を算出した後、
更に、この単位測定時間内における粉体の流量を時間軸
に沿って積分し、当該積分区間内における粉体の流量を
算出する処理を、 実行させることを特徴とした粉体流量測定プログラム。
6. The powder flow rate measurement program according to claim 5, wherein the flow rate calculation processing causes the computer to calculate a flow rate of the powder within the unit measurement time,
Furthermore, the powder flow rate measuring program characterized by executing a process of integrating the powder flow rate within the unit measurement time along the time axis and calculating the powder flow rate within the integration section.
【請求項7】 請求項4乃至6記載の粉体流量測定プロ
グラムを記録したコンピュータ読み取り可能な記録媒
体。
7. A computer-readable recording medium in which the powder flow rate measuring program according to claim 4 is recorded.
JP2001358703A 2001-11-05 2001-11-26 Powder flow rate measuring device, powder flow rate measuring program, and computer-readable recording medium recording the program Expired - Fee Related JP3512401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001358703A JP3512401B2 (en) 2001-11-05 2001-11-26 Powder flow rate measuring device, powder flow rate measuring program, and computer-readable recording medium recording the program

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001339083 2001-11-05
JP2001-339083 2001-11-05
JP2001358703A JP3512401B2 (en) 2001-11-05 2001-11-26 Powder flow rate measuring device, powder flow rate measuring program, and computer-readable recording medium recording the program

Publications (2)

Publication Number Publication Date
JP2003202253A true JP2003202253A (en) 2003-07-18
JP3512401B2 JP3512401B2 (en) 2004-03-29

Family

ID=27666884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358703A Expired - Fee Related JP3512401B2 (en) 2001-11-05 2001-11-26 Powder flow rate measuring device, powder flow rate measuring program, and computer-readable recording medium recording the program

Country Status (1)

Country Link
JP (1) JP3512401B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077267A (en) * 2004-09-07 2006-03-23 Nippon Steel Corp Facility for injecting powdery material
JP2008139317A (en) * 2006-11-10 2008-06-19 Keiji Kanai Method of setting reference value for powder flow rate measurement and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077267A (en) * 2004-09-07 2006-03-23 Nippon Steel Corp Facility for injecting powdery material
JP2008139317A (en) * 2006-11-10 2008-06-19 Keiji Kanai Method of setting reference value for powder flow rate measurement and device

Also Published As

Publication number Publication date
JP3512401B2 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
EP1424562B1 (en) Sensor capacity sensing apparatus and sensor capacity sensing method
JP3512401B2 (en) Powder flow rate measuring device, powder flow rate measuring program, and computer-readable recording medium recording the program
CN114112169A (en) Pressure detection circuit and blood analysis device
JP2005180927A (en) Impedance-measuring instrument
CN114460360B (en) Detection method, system and device based on ammeter measurement current time integral
JPS61178608A (en) Flatness detector
JP3252366B2 (en) Odor measuring device
JP4418261B2 (en) Gain history device
CN110291391B (en) Ultrasonic gas sensor system using machine learning
JP3502466B2 (en) Method for measuring electrolyte solution and electrolyte measuring device
EP3425389B1 (en) Breath sensing device for a portable electronic device
JP4698014B2 (en) Flow measuring device
US11788873B2 (en) Systems, methods and apparatuses providing noise removal for flow sensing components
JPH10281806A (en) Signal processor and measuring device
JPH05322843A (en) Electrolyte analyzer using ion electrode
JPH04104013A (en) Electromagnetic flowmeter
JP2002162407A (en) Measuring method for distance synchronization system
JPS63145923A (en) Vibration displacement detector
JP2001349795A (en) Tension and distortion measuring device and tension and distortion regulating method
JPH056485Y2 (en)
JP2004354280A (en) Detector for connecting pipe clogging and differential pressure/pressure transmitter containing same
JPH0769246B2 (en) Leakage position detection device
KR20080056816A (en) Method and appratus for estimating amount of flow using difference of input and output pressure
US3982435A (en) Air mass flow measuring apparatus
CN117589342A (en) Method for monitoring the operation of a capacitive pressure measuring cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040106

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees