JP2003202179A - Drain water evaporating disposition device for freezing and refrigerator show case - Google Patents

Drain water evaporating disposition device for freezing and refrigerator show case

Info

Publication number
JP2003202179A
JP2003202179A JP2001403104A JP2001403104A JP2003202179A JP 2003202179 A JP2003202179 A JP 2003202179A JP 2001403104 A JP2001403104 A JP 2001403104A JP 2001403104 A JP2001403104 A JP 2001403104A JP 2003202179 A JP2003202179 A JP 2003202179A
Authority
JP
Japan
Prior art keywords
water
tank
atomization
radiator
drain water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001403104A
Other languages
Japanese (ja)
Inventor
Masashi Otsubo
正志 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sendak Corp
Original Assignee
Sendak Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sendak Corp filed Critical Sendak Corp
Priority to JP2001403104A priority Critical patent/JP2003202179A/en
Publication of JP2003202179A publication Critical patent/JP2003202179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Water From Condensation And Defrosting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate water drain operation by an operator by 100% evaporating and disposing drain water such as condensation water or defrosting water (hereafter referred to drain water) generated from a show case with a freezing and refrigerating device built in used in small and medium size shops or the like with an apparatus additionally installed in the show case and to save total energy of the shop with this device installed by using drain water for cooling the radiator of the freezing and refrigerating device to save extra energy consumption for evaporation and improving cooling efficiency of the freezing and refrigerating device. <P>SOLUTION: Drain water generated from a cooler of the freezing and refrigerating device of the show case is atomized with an ultrasonic oscillator and atomized water is blown out right before the radiator of the freezing and refrigerating device to cool the radiator and evaporate atomized water with heat thereof for completely evaporated the same. Since just blowing out atomized water causes re-condensation, leak and contamination by unwanted bacteria, a storage tank and an atomization tank are separated and conditions to avoid reproduction of unwanted bacterial as much as possible and to perform efficient atomization are maintained, and atomized water is supplied when the radiator is under a high temperature condition. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、スーパーマーケッ
トやショッピングセンターの食品売り場等に設置され、
主に冷凍または冷蔵装置を内蔵したショーケースに於い
て発生する、冷却器による空気中水分の結露水や解氷霜
取り時に発生する解氷水などの排水、いわゆるドレン水
と称する排水の蒸発処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is installed in a food counter of a supermarket or a shopping center,
The present invention relates to an evaporation treatment device for drainage of dew condensation water of air in a cooler or defrosting water generated when defrosting defrosting occurs in a showcase mainly having a freezing or refrigeration device, so-called drain water. It is a thing.

【0002】[0002]

【従来の技術】従来、大型店舗等でショーケースを多数
台使用する場合は、冷凍冷蔵用の圧縮機や冷却装置を別
置き設置し、冷媒配管やドレン水排水管を集中配管して
使用する冷凍冷蔵機別置形ショーケースが使用されてい
る。この場合はドレン水処理の問題は発生しないが、配
管設備や大型の冷凍冷蔵装置設置のための専門工事等が
必要になり多大な初期投資費用と長期の償却期間が必要
となっている。昨今、超大型店舗と小規模分散型店舗へ
の両極化が進むなかで、市場ニーズに合わせて店舗を展
開する必要が強くなり、初期投資の負担が軽く、レイア
ウト変更等が容易な冷凍冷蔵機内蔵形ショーケースの要
求が増えつつある。ところが、内蔵式を設置する場合に
問題となったのがドレン水の処理であった。ドレン水は
その性格上、陳列する商品、季節、時間帯、設置場所、
等々で発生する量が大きく変動する。従って、単純に定
期的にドレン水タンクの排水作業を行えば済む問題では
なかった。その為、ドレン水タンクの水量をセンサーで
検知し、排水作業を促す警報装置等を設置する必要があ
った。この場合、警報が鳴るたびに作業者が排水作業を
行う必要があり、ドレン水の排水管理を煩わしいものに
していた。そして、その煩わしい排水作業を軽減するた
めに、ドレン水タンクに溜まったドレン水を、冷凍冷蔵
用圧縮機による発熱および専用の電熱ヒーター等で加熱
し、送風機による送風で気化蒸発を促進するなどの対策
が行われていた。図2に冷凍冷蔵機内蔵形ショーケース
の概略断面構造図を、図3に従来の自然蒸発型ドレン水
処理装置の一例を図示する。ショーケースの冷却器で発
生する結露水や除霜解氷水、陳列品の鮮度を保つために
供給される加湿器の再結露水は、底のトレイ1で集めら
れ、配管2により上方が開放した蒸発皿3に導かれる。
蒸発皿3に溜まったドレン水は、一端を浸した不織布な
ど浸透性のある蒸発板4により蒸発させていた。蒸発を
促進させるために、蒸発皿底部に放熱器の一部や電熱器
を設置して加熱、送風機による送風等が行われていた。
そして蒸発しきれないドレン水は基準水位を越えて流
れ、下部に設置されたドレン水タンク5に溜まる様にな
っていた。この場合、ドレン水は積極的に蒸発排水され
る事はなく、溜まる一方である。そして、溜まったドレ
ン水は、以前と同様に、センサー等で満水検知をし作業
者が都度すてる作業を行っていた。この様な従来の蒸発
処理装置では、蒸発させるために更なる余分なエネルギ
ーを消費することになり、効率的でなく、省エネルギー
に相反するものであった。また、完全蒸発が困難なため
に作業者による排水作業が残り、設備導入コストの割に
は管理コストの発生が残り、無視できない状態であっ
た。更に、暖まったドレン水が長時間滞留することは、
タンク内での細菌の繁殖につながり、衛生面からも問題
があった。
2. Description of the Related Art Conventionally, when a large number of showcases are used in a large store or the like, a compressor for freezing and refrigeration and a cooling device are separately installed, and a refrigerant pipe and a drain water drain pipe are centrally used. A separate freezer refrigerator showcase is used. In this case, the problem of drain water treatment does not occur, but a large amount of initial investment cost and a long depreciation period are required due to the need for specialized work such as installation of piping equipment and large-scale refrigeration equipment. As the polarization of ultra-large stores and small-scale decentralized stores has advanced in recent years, it is becoming increasingly necessary to open stores to meet market needs, the burden of initial investment is light, and the layout of refrigerating machines can be changed easily. The demand for built-in showcases is increasing. However, when installing the built-in type, the problem was the treatment of drain water. Due to the nature of drain water, the products to be displayed, season, time zone, installation location,
The amount generated by etc. varies greatly. Therefore, it was not a problem that simply draining the drain water tank would be sufficient. Therefore, it was necessary to install an alarm device that detects the amount of water in the drain water tank with a sensor and prompts drainage work. In this case, the worker needs to perform drainage work each time the alarm sounds, which makes drainage drainage management cumbersome. Then, in order to reduce the troublesome drainage work, the drain water collected in the drain water tank is heated by a compressor for freezing and refrigeration and heated by a dedicated electric heater or the like, and vaporization and evaporation are promoted by blowing air by a blower. Measures were being taken. FIG. 2 is a schematic sectional structural view of a freezer-refrigerator-equipped showcase, and FIG. 3 shows an example of a conventional natural evaporation type drain water treatment device. Condensation water generated in the cooler of the showcase, defrosting deicing water, and recondensation water of the humidifier supplied to maintain the freshness of the display are collected in the tray 1 on the bottom and opened upward by the pipe 2. It is guided to the evaporation dish 3.
The drain water collected in the evaporating dish 3 was evaporated by the evaporating plate 4 having permeability such as a nonwoven fabric with one end dipped. In order to promote evaporation, a part of a radiator or an electric heater is installed at the bottom of the evaporation dish to heat and blow air by a blower.
Then, the drain water that could not be evaporated flows over the standard water level and collects in the drain water tank 5 installed in the lower part. In this case, the drain water is not evaporated and drained positively, but is only accumulated. Then, the accumulated drain water is detected by a sensor or the like as in the same manner as before, and the worker is carrying out a work to drop it every time. In such a conventional evaporation processing apparatus, further extra energy is consumed for evaporation, which is not efficient and contradicts energy saving. Moreover, since complete evaporation is difficult, drainage work by workers remains, and management costs remain for the equipment introduction costs, which is in a state that cannot be ignored. Furthermore, the fact that warm drain water stays for a long time
There was also a problem in terms of hygiene, which led to the propagation of bacteria in the tank.

【0003】[0003]

【発明が解決しようとする課題】本発明は、冷凍冷蔵装
置を組み込んだ内蔵形ショーケースから発生するドレン
水を、ショーケース内に追加設置する器具装置で100
%蒸発処理して、作業者による排水作業を不要とするこ
とを目的とする。更に、ドレン水を冷凍冷蔵装置の放熱
器冷却に利用し、蒸発させる際の余分なエネルギー消費
を押さえると共に、冷凍冷蔵装置の冷却効率をも向上さ
せ、設置店舗等の総合的な省エネルギーを目指す。
DISCLOSURE OF THE INVENTION The present invention is an instrument device for additionally installing drain water generated from a built-in type showcase incorporating a refrigerating and refrigerating apparatus in the showcase.
% The purpose is to eliminate the drainage work by the worker by performing the evaporation process. Furthermore, the drain water is used for cooling the radiator of the refrigerating and refrigerating equipment to suppress the extra energy consumption when evaporating, and also improve the cooling efficiency of the refrigerating and refrigerating equipment, aiming at comprehensive energy saving of the installation store.

【0004】[0004]

【課題を解決するための手段】その為に本発明は、ショ
ーケースの冷凍冷蔵装置の冷却器から発生するドレン水
を、超音波振動子で霧化し、霧化水を冷凍冷蔵装置の放
熱器の直前に吹き出し、放熱器を冷却すると共にその熱
で霧化水を気化させ完全蒸発させる構造等を採用する。
Therefore, according to the present invention, the drain water generated from the cooler of the freezer-refrigerator of the showcase is atomized by the ultrasonic vibrator, and the atomized water is radiated by the radiator of the freezer-refrigerator. Immediately before, the structure is adopted in which the atomized water is vaporized by the heat while cooling the radiator and completely evaporating it.

【0005】[0005]

【発明の実施の形態】以下、本発明の詳細を記述説明す
るが、基本的には既存の冷凍冷蔵装置を組み込んだ内蔵
形ショーケースに、本発明による機器等を追加設置ある
いは一部改造することで具体化、実用に供するものであ
る。本考案の基本構成は、概略次の組立構成品で成り立
つ。 (1)メインタンク部分。ショーケースのドレン水を一
時的に受け溜めるタンク。既存のタンクを流用すること
も可能。霧化するための霧化用タンク7とは細管8でつ
ながる。基本的には雑菌の繁殖を防ぐために低温を保
つ。 (2)霧化ユニット。メインタンク6と細管8でつなが
った霧化用タンク7と、電源及び発振制御回路10、超
音波振動子11、送風ファン12、等を備える。超音波
振動子11は霧化用タンク7の中にフロート13で浮
き、適正水深を保つ。電源及び発振制御回路10は、水
位検知信号、放熱器14の表面温度、放熱器冷却ファン
15のON/OFF、の各信号を取り込み霧化水が放熱
器通過において安全な状態で気化するかを判断して、超
音波振動子11への出力をON/OFFして霧化動作を
制御する。また、この霧化用タンク7は温水状態を保
ち、霧化効率を上げると共に長時間の滞留を避け雑菌の
繁殖を防ぐ。 (3)放出器ユニット。霧化ユニットの吹き出し口16
と太径のフレキシブルダクト17で連結された放出器9
を備える。放出器9は先端をふさいだパイプで良いが、
既存の冷凍冷蔵装置の放熱器14直前で霧化水を均一に
拡散させるための複数の放出口18を備える。放出器9
の下側底部には再結露水溜まりを設け、霧化用タンク7
と戻り細管19でつなぎ、再結露水を確実に戻し、放熱
器14付近への漏水を防止する。 (4)熱交換器部。金属製のパイプ等による専用装置を
組み込んでも良いが、細管を複数回折り返し、既存の冷
凍冷蔵装置の圧縮機21表面に密着張り付けることで目
的とする効果を得る。再結露水が通過する際に、加温吸
熱し再結露水を暖めて霧化用タンク7へ戻す。熱交換器
部20は、圧縮機21の表面温度や加温する温度により
材質・構造を選定すればよい。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention will be described below. Basically, an apparatus or the like according to the present invention is additionally installed or partially modified in a built-in type showcase incorporating an existing refrigerating and refrigerating apparatus. By doing so, it is used for practical use. The basic configuration of the present invention is composed of the following assembly components. (1) Main tank part. A tank that temporarily holds the drain water of the showcase. It is also possible to use the existing tank. A thin tube 8 connects with the atomizing tank 7 for atomizing. Basically, keep the temperature low to prevent the growth of germs. (2) Atomization unit. An atomization tank 7 connected to the main tank 6 by a thin tube 8, a power supply and oscillation control circuit 10, an ultrasonic transducer 11, a blower fan 12, and the like are provided. The ultrasonic transducer 11 floats in the atomization tank 7 by the float 13 and maintains an appropriate water depth. The power supply and oscillation control circuit 10 takes in each signal of the water level detection signal, the surface temperature of the radiator 14 and the ON / OFF of the radiator cooling fan 15, and determines whether the atomized water vaporizes in a safe state when passing through the radiator. Based on the judgment, the output to the ultrasonic transducer 11 is turned on / off to control the atomization operation. Further, the atomizing tank 7 maintains a warm water state, improves atomization efficiency, and avoids residence for a long time to prevent the propagation of various bacteria. (3) Ejector unit. Atomizing unit outlet 16
9 connected to the flexible duct 17 having a large diameter
Equipped with. The emitter 9 may be a pipe with a closed tip,
Immediately before the radiator 14 of the existing refrigerating machine, a plurality of outlets 18 for uniformly dispersing atomized water are provided. Emitter 9
A recondensation pool is provided on the bottom of the
The return thin tube 19 is connected to surely return the re-condensed water to prevent water leakage to the vicinity of the radiator 14. (4) Heat exchanger section. Although a dedicated device such as a metal pipe may be incorporated, a desired effect can be obtained by bending back a plurality of thin tubes and adhering them closely to the surface of the compressor 21 of the existing refrigerating machine. When the recondensation water passes, it heats and absorbs heat to warm the recondensation water and return it to the atomization tank 7. The material and structure of the heat exchanger unit 20 may be selected according to the surface temperature of the compressor 21 and the temperature to be heated.

【0006】[0006]

【実施例】以上のような基本構成の基に、本発明は下記
詳述する構造を具体化する。本発明の装置器具を組み込
むショーケースは従来品のため詳細な説明は省略する
が、本発明で処理するドレン水は陳列棚の最底部に設け
られたトレイ1で集められ、メインタンク6へ集められ
る。本発明に於いてメインタンク6はドレン水を一時的
に溜める機能で済むため、材質形状は自由に設定でき、
狭いショーケース底部の有効活用に役立つが、上部にシ
ョーケースからのドレン水を受ける開口を設けるのは従
来と同様である。既存ショーケースのタンクをそのまま
流用しても良いが、雑菌等の繁殖を抑える目的で、ドレ
ン水の低温状態を長く保つため必要に応じて断熱材を巻
く等の処理を行う。このメインタンク6のドレン水は、
相互に底部を細8管で連結された霧化用タンク7に導か
れる。既存のタンクを流用する場合は穴をあけ配管接続
器で細管を繋ぐことになり部分改造が発生する。この細
管8は霧化動作を行う霧化用タンク7に霧化する分の水
量を供給できればよく、外部荷重に対して強く、屈曲に
よる閉塞が生じなければ良い。細管の途中に異物混入を
防ぐためのフィルターを設けても良い。メインタンク6
と霧化用タンク7を細管8で結合するのは、両タンク間
のドレン水の移動あるいは対流による熱の移動を避け、
水温上昇に伴って霧化能力が上がる超音波振動子の特性
を活かすため霧化用タンク7を高温にするためと、レジ
オネラ菌を代表とする雑菌の繁殖を防ぐ効果を得るため
にメインタンク6内を極力低温状態に保つためである。
両タンクを分離し、霧化用タンク7を極力小形にし、暖
まったドレン水を速やかに霧化搬送し、放熱器14の熱
で蒸発させることにより、温水部での滞留を短くし、前
述雑菌の繁殖と飛散を防ぐものである。一例ではある
が、超音波振動子11の霧化能力は図7に示す様に、水
温10℃を基準にした場合、50℃になると約45%向
上する。一方のレジオネラ菌は、36℃を至適温度とし
25℃〜45℃が発育可能と知られている。また上記温
度での長期間滞留水に発生しやすい事が知られている。
この目的を更に効率よく実現するために、本発明の装置
を、最初からショーケースに組み込んで設計製造を行う
場合等に於いては、メインタンク6を断熱材で覆い低温
のドレン水の水温上昇を防いだり、霧化用タンク7を高
温になる冷凍冷蔵用圧縮機21と隣接あるいは接触させ
て積極的に加温する等の工夫が可能である。また、各部
の動作温度や冷凍冷蔵装置等の運転状況信号を詳細に利
用することができ、例えば圧縮機21と放熱器ファン1
5が動作したあと放熱器温度が上昇してから霧化運転を
行わせ、霧化運転を止めた後に圧縮機21と放熱器ファ
ン15の動作を停止させる、等の制御が容易になり、本
考案の効果を最も発揮させることができる。更に、低温
のメインタンク6による表面結露等を避けることがで
き、霧化用タンク7による圧縮機21の冷却も可能にな
り、総じて効率アップにつながると共に衛生面での改善
も期待できる。本発明の例として説明する汎用型、いわ
ゆる後取付型の場合には、制御用信号として得られるも
のが限られるが、前述した衛生面からの制約を達成する
ため、最低限の信号として、放熱器14の温度と、その
冷却の為の放熱器ファン15の動作(ON/OFF)を
検知する。放熱器14の温度は熱検知器22で拾い、放
熱器ファン15の動作は放熱器ファンリード線23から
接続コネクター24で分岐した電力供給の有無を拾い、
制御用信号としている。これらの信号は霧化ユニットの
電源及び発振制御回路10に入り、論理処理することに
よって、放熱器14の温度が十分に上昇し、且つ、放熱
器冷却ファン15が動作して、霧化水が放熱器フィン2
5を通過することで安全に気化すると判断できた場合に
のみ霧化動作を行う。放熱器14の温度が低い場合は霧
化水が気化できないで再結露し放熱器14の底部を濡ら
し、更には設置床面への漏水が考えられ、雑菌の繁殖に
つながる。同様に、温度が高くても放熱器ファン15が
止まり、霧化水が滞留することで低温部との接触による
再結露の問題が発生する。従って放熱器ファン15が止
まった場合は、即時に霧化動作を止める必要がある。従
来、放熱器フィン25にドレン水を直接吹き付ける、あ
るいは一般の超音波加湿器で蒸散させる等の実施例があ
るが、放熱器フィン25内で目詰まりを起こしたり、再
結露水による漏水などの問題が発生した。本発明は、そ
れらを対策改善するために、フレキシブルダクト17と
放出器9を設け、放熱器14の直前で霧化水を放出器9
から発散放出し、前述の霧化動作制御と併せて、高温の
放熱器フィン25内を通過させることで熱交換を行わ
せ、気化蒸発させることを特徴とする。そしてこの時の
気化熱で放熱器14は冷却され、圧縮機21の負荷も減
少させることができる。この霧化用タンク7のドレン水
加温は、ドレン水が多量に発生する季節が梅雨から夏季
であることを考えると容易に達成でき、発生量が減少す
る冬季との霧化能力のバランスが取れ、小形の超音波振
動子を採用することが可能になり経済的で安全な装置の
供給ができる。霧化水の放出器9は、先端を塞いだパイ
プに霧化水の出口となる穴をあけ、既存設備である放熱
器14に取付金具26で固定する。この時、放出器9の
先端をわずかに上方に向けることと、フレキシブルダク
ト17の中間を屈曲させないことに注意し、再結露水が
フレキシブルダクト17との結合部に溜まるようにす
る。そして、その結合部に、霧化用タンク7への戻り細
管19を配置している。それにより、放出器9やフレキ
シブルダクト17内で発生した再結露水を外に漏水させ
ることなく、戻り細管19で霧化用タンク7に戻すこと
ができ、その途中に放熱器14あるいは圧縮機表面の高
熱を吸収する熱交換器部20を配置して再結露水を加熱
するようにしてある。そうする事で、再結露が発生しや
すい低温状態等から速やかに脱し、霧化能力が向上する
温水状態へ移行し自動的に処理能力が増加する。具体的
な霧化動作は、霧化ユニットで行われ、超音波振動子1
1を内臓した霧化用タンク7と、タンクと隔壁で区分さ
れた収納部には超音波振動子11を駆動制御する電源及
び発振制御回路10を配置し、霧化水を送風搬送するた
めのファン12を備える。メインタンク6からドレン水
を導き込む霧化用タンク7の大きさは、超音波振動子1
1の寸法と要求される霧化能力から決定される。この霧
化ユニットは物理的に大きな増設物になり、極力小型化
が要求される。その為にメインタンク6を残し、霧化用
タンク7は振動子部を納める最小限のサイズとするため
に、液面を一定にするポンプや制御装置を廃し、代わり
に超音波振動子11等がタンク内を上下に移動するフロ
ーティング構造とした。超音波振動子11と電源及び発
振制御回路10等とはフレキシブル出力ケーブル27で
接続され一定範囲の往復移動を可能としている。霧化用
タンク7は、メインタンク6と細管8で連結されてい
て、同一水面位置を維持するが、霜取り動作等の有無で
時々刻々変化する。この水面の変化に追従し、超音波振
動子11の水深を一定に保つために、超音波振動子11
を取り付けた基板28とその底カバー29をフロート1
3で概略囲み浮かす構造を採る。タンク内水平断面形状
をフロート水平断面形状と概略一致させ上下移動を可能
とすると共に、水位が減少した時に余分な隙間にドレン
水が残らない様にするため、超音波振動子11を組み付
けた基板28,底カバー29そしてそれらを囲うフロー
ト13で形作る底面および周囲形状と、霧化用タンクの
底面および周囲形状とを合わせる構造とした。これは前
述の雑菌等の繁殖を防ぎ超音波振動子の効率を上げる目
的で加温する場合の、最小限のドレン水を暖め霧化さ
せ、不必要な滞留を防ぐとする目的とも一致させること
ができる。既存の冷凍冷蔵装置の運転状況は前述の通り
であるが、ドレン水の状況つまりメインタンク6内のド
レン水の状況は連動する霧化用タンク7内の水位状況を
把握して霧化用の電源及び発振制御回路10出力を制御
する。霧化用タンク7の水位の増減は、フロート13に
埋め込んだ磁石30とタンクを構成している非磁性体壁
の外側に設置した磁気感応型のリードスイッチ31で検
出し、水位の状況による出力制御と水位減少時の空運転
を防止して超音波振動子11の長寿命化と焼き付きを防
ぐ。リードスイッチ31を複数個用いることで出力制御
の多段化ができ細かな制御が可能となる。霧化用タンク
7の中の磁石30はフロート13の中に埋め込むことが
できるため腐食等から守ることが容易になり、タンク内
の超音波振動子等を組み込んだフロート13の動きを妨
げない。またその磁力を感じてON/OFFするリード
スイッチ31は霧化用タンク7の外に置くことができる
ので錆や防水処置を行う必要が無く、検知感度を落とす
こともない。超音波振動子単体の霧化能力より要求され
る処理量が多い場合は、超音波振動子11の複数個使用
を行うが干渉を避けるため、霧化用タンク7を底部にで
つながった隔壁32で複数個分に区切り、一区画に一振
動子を設置する。超音波振動子11を取り付ける基板2
8、裏カバー29、フロート13も各々独立させて干渉
を避ける構造とする。この超音波振動子11の複数個設
置は、重要な霧化動作の冗長設計となり信頼性向上につ
ながる。また、霧化ユニット部の複数台設置によっても
同様の効果が得られ、その際は複数台を僅かな高低差を
設けて設置することによってメインタンク内水位の増減
により総合的な霧化能力の可変動作が可能となる。なお
水位検出は前述の磁気的な手段に限らず、従来から用い
られているフロートスイッチなどを用いてもよいが、構
造が単純で信頼性の高い構造を優先する。本実施例で
は、メインタンク6から霧化用タンク7へのドレン水移
送は細管による自然流動で行う場合を説明したが、一体
構造のタンクの場合は中間に仕切壁または縊れを設けれ
ば良く、分離タンクの場合の高低差がある場合は送水ポ
ンプを使用することを妨げるものではない。その際は、
前述の水位検出結果により送水ポンプを制御すれば良
い。更に、本発明の精密な制御を行う場合は、霧化用タ
ンク7の水温を検出し、所定の水温になるよう例えば電
気ヒーターのON/OFF制御を行い、所定水温以下で
の電源及び発振制御回路10の発振出力の抑制等を行
い、適温状態での高効率運転を行う、などの制御を行っ
ても良い。
EXAMPLES The present invention embodies the structures described in detail below based on the above basic constitution. Although the showcase incorporating the device of the present invention is a conventional product, detailed description thereof will be omitted, but the drain water treated by the present invention is collected in the tray 1 provided at the bottom of the display shelf and collected in the main tank 6. To be In the present invention, since the main tank 6 has only the function of temporarily storing drain water, the material shape can be freely set,
Although it is useful for effectively utilizing the narrow bottom of the showcase, it is the same as the conventional one that an opening for receiving drain water from the showcase is provided on the upper portion. The tank of the existing showcase may be used as it is, but in order to keep the drainage water from growing for a long time, a heat insulating material may be added to prevent the growth of various bacteria. The drain water of this main tank 6 is
They are guided to the atomizing tank 7 whose bottoms are connected to each other by a thin 8-tube. When diverting an existing tank, a hole will be opened and a thin pipe will be connected with a pipe connector, and partial modification will occur. It is sufficient that the thin tube 8 can supply the amount of water to be atomized to the atomization tank 7 that performs the atomization operation, is strong against an external load, and does not cause blockage due to bending. A filter for preventing foreign matter from entering may be provided in the middle of the thin tube. Main tank 6
The atomizing tank 7 and the atomizing tank 7 are connected by a thin tube 8 in order to prevent the movement of drain water between both tanks or the movement of heat due to convection,
The main tank 6 is used to keep the atomizing tank 7 at a high temperature in order to utilize the characteristics of the ultrasonic transducer whose atomization capacity increases as the water temperature rises, and to prevent the growth of miscellaneous bacteria represented by Legionella bacteria. This is to keep the inside as cold as possible.
Both tanks are separated, the atomization tank 7 is made as small as possible, the warmed drain water is quickly atomized and transported, and the heat of the radiator 14 evaporates to shorten the retention in the hot water part and to eliminate the above-mentioned miscellaneous bacteria. It prevents the breeding and scattering of. As an example, as shown in FIG. 7, when the water temperature is 10 ° C., the atomizing ability of the ultrasonic transducer 11 is improved by about 45% at 50 ° C. On the other hand, it is known that Legionella bacteria can grow at 25 ° C to 45 ° C with an optimum temperature of 36 ° C. Further, it is known that it is likely to be generated in the accumulated water at the above temperature for a long period of time.
In order to more efficiently achieve this purpose, when the apparatus of the present invention is designed and manufactured by incorporating it into a showcase from the beginning, the main tank 6 is covered with a heat insulating material to raise the temperature of drain water at low temperature. It is possible to prevent the above, or to positively heat the atomizing tank 7 adjacent to or in contact with the refrigerating and refrigerating compressor 21 which becomes high temperature. Further, the operating temperature of each part and the operation status signal of the refrigerating equipment can be used in detail, and for example, the compressor 21 and the radiator fan 1 can be used.
5 makes it possible to perform the atomizing operation after the radiator temperature rises after the operation of 5, and stop the operation of the compressor 21 and the radiator fan 15 after stopping the atomizing operation. The effect of the invention can be maximized. Further, it is possible to avoid surface dew condensation due to the low temperature main tank 6 and to cool the compressor 21 by means of the atomizing tank 7, which leads to an increase in efficiency as a whole and an improvement in hygiene can be expected. In the case of a general-purpose type explained as an example of the present invention, that is, a so-called post-mounting type, what can be obtained as a control signal is limited, but in order to achieve the above-mentioned restrictions from the viewpoint of hygiene, the minimum signal is heat radiation. The temperature of the container 14 and the operation (ON / OFF) of the radiator fan 15 for cooling the container 14 are detected. The temperature of the radiator 14 is picked up by the heat detector 22, and the operation of the radiator fan 15 is picked up by the presence or absence of power supply branched from the radiator fan lead wire 23 by the connection connector 24.
It is used as a control signal. These signals enter the power supply and oscillation control circuit 10 of the atomization unit, and by being logically processed, the temperature of the radiator 14 is sufficiently increased, and the radiator cooling fan 15 operates to generate atomized water. Radiator fin 2
The atomization operation is performed only when it can be determined that the vaporization can be safely performed by passing through 5. When the temperature of the radiator 14 is low, the atomized water cannot be vaporized and re-condenses to wet the bottom of the radiator 14, and further water leaks to the installation floor surface, which may lead to the propagation of various bacteria. Similarly, even if the temperature is high, the radiator fan 15 stops and the atomized water stays, causing a problem of recondensation due to contact with the low temperature part. Therefore, when the radiator fan 15 stops, it is necessary to immediately stop the atomization operation. Conventionally, there have been examples in which drain water is directly sprayed onto the radiator fins 25 or vaporized by a general ultrasonic humidifier, but there are problems such as clogging in the radiator fins 25 and leakage of water due to re-condensed water. Problem has occurred. In the present invention, in order to improve the countermeasures against them, the flexible duct 17 and the emitter 9 are provided, and the atomized water is released immediately before the radiator 14.
It is characterized in that the heat is exchanged by passing through the high temperature radiator fins 25 and vaporized and evaporated together with the atomization operation control described above. The heat of vaporization at this time cools the radiator 14, and the load on the compressor 21 can be reduced. This drain water heating of the atomization tank 7 can be easily achieved considering that the season when a large amount of drain water is generated is from the rainy season to the summer, and the atomization capacity is balanced with the winter season when the generation amount decreases. It becomes possible to adopt a small ultrasonic vibrator, and it is possible to supply an economical and safe device. The atomized water discharger 9 has a pipe whose end is closed to form a hole serving as an outlet for the atomized water, and is fixed to the radiator 14 which is an existing facility with a mounting bracket 26. At this time, be careful not to bend the middle of the flexible duct 17 so that the tip of the emitter 9 is slightly upward, and recondensate water should be collected at the joint with the flexible duct 17. Then, the return thin tube 19 to the atomizing tank 7 is arranged at the connecting portion. Thereby, the recondensation water generated in the emitter 9 or the flexible duct 17 can be returned to the atomizing tank 7 by the return thin tube 19 without leaking outside, and the radiator 14 or the compressor surface may be provided on the way. The heat exchanger portion 20 that absorbs the high heat is disposed so as to heat the recondensation water. By doing so, the low-temperature condition where re-condensation is likely to occur is promptly removed, the atomization capacity is improved, and the processing capacity is automatically increased. The specific atomization operation is performed by the atomization unit, and the ultrasonic transducer 1
Atomization tank 7 containing 1 and a power supply and an oscillation control circuit 10 for driving and controlling an ultrasonic transducer 11 are arranged in a storage section separated from the tank and a partition wall to blow and convey atomized water. A fan 12 is provided. The size of the atomizing tank 7 that draws the drain water from the main tank 6 is equal to that of the ultrasonic transducer 1.
It is determined from the size of 1 and the required atomization capacity. This atomization unit is physically a large extension, and needs to be miniaturized as much as possible. Therefore, in order to keep the main tank 6 and the atomization tank 7 to the minimum size for accommodating the vibrator part, the pump and the control device for keeping the liquid level constant are eliminated, and instead the ultrasonic vibrator 11 or the like is used. Has a floating structure that moves up and down in the tank. The ultrasonic transducer 11 and the power supply / oscillation control circuit 10 and the like are connected by a flexible output cable 27 to enable reciprocal movement within a certain range. The atomizing tank 7 is connected to the main tank 6 by a thin tube 8 and maintains the same water surface position, but it changes momentarily depending on the presence or absence of a defrosting operation. In order to follow this change in the water surface and keep the water depth of the ultrasonic transducer 11 constant, the ultrasonic transducer 11
Float the substrate 28 with the attached and its bottom cover 29
A structure that is roughly surrounded by 3 and floats is adopted. A substrate on which an ultrasonic transducer 11 is assembled in order to make the horizontal cross-sectional shape in the tank approximately match the horizontal cross-sectional shape of the float to enable vertical movement and to prevent drain water from remaining in an extra gap when the water level decreases. 28, the bottom cover 29, and the bottom and peripheral shapes formed by the float 13 that surrounds them, and the bottom and peripheral shapes of the atomization tank are combined. This should be the same as the purpose of warming the minimum drain water and atomizing it to prevent unnecessary retention when heating to increase the efficiency of the ultrasonic transducer by preventing the growth of various bacteria. You can The operation status of the existing refrigeration equipment is as described above, but the status of drain water, that is, the status of drain water in the main tank 6 is determined by grasping the water level status in the atomizing tank 7 that is interlocked. It controls the power supply and the output of the oscillation control circuit 10. The increase / decrease in the water level of the atomization tank 7 is detected by the magnet 30 embedded in the float 13 and the magnetically sensitive reed switch 31 installed outside the non-magnetic material wall forming the tank, and output depending on the water level. The control and the idle operation when the water level is reduced are prevented to prolong the life of the ultrasonic transducer 11 and prevent seizure. By using a plurality of reed switches 31, output control can be performed in multiple stages and fine control can be performed. Since the magnet 30 in the atomizing tank 7 can be embedded in the float 13, it is easy to protect it from corrosion and the like, and does not hinder the movement of the float 13 incorporating the ultrasonic vibrator or the like in the tank. Further, since the reed switch 31 that senses the magnetic force and turns on / off can be placed outside the atomizing tank 7, it is not necessary to perform rusting or waterproofing, and the detection sensitivity is not reduced. If the amount of processing required is greater than the atomization capacity of the ultrasonic vibrator alone, a plurality of ultrasonic vibrators 11 are used, but in order to avoid interference, a partition 32 connecting the atomization tank 7 to the bottom is used. Divide into multiple parts and install one transducer in each section. Substrate 2 to which ultrasonic transducer 11 is attached
8, the back cover 29, and the float 13 are also independent from each other to avoid interference. The installation of a plurality of the ultrasonic transducers 11 becomes a redundant design of the important atomization operation and leads to the improvement of reliability. In addition, the same effect can be obtained by installing multiple atomization unit parts, in which case the multiple atomization units can be installed with a slight difference in height to increase or decrease the water level in the main tank to improve the overall atomization capacity. Variable operation is possible. The water level detection is not limited to the above-mentioned magnetic means, and a conventionally used float switch or the like may be used, but a simple structure and high reliability is prioritized. In this embodiment, the drain water is transferred from the main tank 6 to the atomization tank 7 by a natural flow using a thin tube, but in the case of an integrated structure tank, if a partition wall or a ridge is provided in the middle. Well, if there is a difference in height in the case of a separation tank, it does not prevent the use of water pumps. In that case,
The water pump may be controlled according to the water level detection result. Further, when performing the precise control of the present invention, the water temperature of the atomization tank 7 is detected, and, for example, ON / OFF control of an electric heater is performed so as to reach a predetermined water temperature, and power supply and oscillation control below the predetermined water temperature are performed. Control such as suppressing the oscillation output of the circuit 10 and performing high-efficiency operation in an appropriate temperature state may be performed.

【0007】[0007]

【発明の効果】本発明は上記の構造等により、メインタ
ンク内での雑菌の発生を抑制防止する事ができ、霧化用
タンクの加温により超音波振動子の能力を高め、超音波
振動子の小型化あるいは装備設置個数の削減を行い、短
時間で霧化を行い、雑菌の繁殖を防止抑制することがで
き、安全にドレン水等の排水処理が可能となる。また、
霧化水で冷凍冷蔵装置の放熱器を冷却することで、放熱
器の冷却効率を上げることができ、総合的な省エネルギ
ーを達成することができる。そして本来の目的である、
作業者等による排水作業を削減することが可能となり、
管理コストの大幅な削減が可能となる。
EFFECTS OF THE INVENTION The present invention can prevent the generation of various bacteria in the main tank due to the above-described structure, etc., and the ability of the ultrasonic vibrator to be enhanced by heating the atomizing tank to increase the ultrasonic vibration. The size of the child can be reduced or the number of equipment installed can be reduced, atomization can be performed in a short time, the growth of various bacteria can be prevented and suppressed, and drain water such as drain water can be safely treated. Also,
By cooling the radiator of the freezer-refrigerator with atomized water, it is possible to increase the cooling efficiency of the radiator and achieve total energy saving. And the original purpose,
It is possible to reduce drainage work by workers,
It is possible to significantly reduce management costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による蒸発処理装置の全体構成図であ
る。
FIG. 1 is an overall configuration diagram of an evaporation processing apparatus according to the present invention.

【図2】冷凍冷蔵装置内蔵形ショーケースの概略構造図
の一例である。
FIG. 2 is an example of a schematic structural diagram of a showcase with a built-in refrigerator / freezer.

【図3】従来の自然蒸発型ドレン水処理装置の一例であ
る。
FIG. 3 is an example of a conventional natural evaporation type drain water treatment device.

【図4】既存の冷凍冷蔵装置の放熱器に霧化水放出器を
取り付けた外観図である。
FIG. 4 is an external view in which an atomized water discharger is attached to a radiator of an existing refrigeration system.

【図5】本発明による超音波霧化ユニットの部分破断図
と付属構成部品である。
FIG. 5 is a partial cutaway view and accompanying components of an ultrasonic atomizing unit according to the present invention.

【図6】複数の超音波振動子使用時の隔壁および密着形
状の底形状図である。
FIG. 6 is a bottom view of a partition wall and a contact shape when a plurality of ultrasonic transducers are used.

【図7】ある超音波振動子の水温対霧化能力の特性図で
ある。
FIG. 7 is a characteristic diagram of water temperature vs. atomization ability of an ultrasonic transducer.

【符号の説明】[Explanation of symbols]

1 ショーケース底のトレイ 21 圧縮機 2 排水用配管 22 熱検知機 3 蒸発皿 23 放熱器ファ
ンリード線 4 蒸発板 24 接続コネク
ター 5 ドレン水タンク 25 放熱器フィ
ン 6 メインタンク 26 取付金具 7 霧化用タンク 27 出力ケーブ
ル 8 細管 28 基板 9 放出器 29 底カバー 10 電源及び発振制御回路 30 磁石 11 超音波振動子 31 磁気感応
型リードスイッチ 12 送風ファン 32 隔壁 13 フロート 14 放熱器 15 放熱器冷却ファン 16 霧化ユニット吹き出し口 17 フレキシブルダクト 18 放出器の放出穴 19 戻り細管 20 熱交換器部
1 Showcase bottom tray 21 Compressor 2 Drain pipe 22 Heat detector 3 Evaporating tray 23 Radiator fan lead wire 4 Evaporating plate 24 Connection connector 5 Drain water tank 25 Radiator fin 6 Main tank 26 Mounting bracket 7 For atomization Tank 27 Output cable 8 Capillary tube 28 Substrate 9 Discharger 29 Bottom cover 10 Power supply and oscillation control circuit 30 Magnet 11 Ultrasonic transducer 31 Magnetically sensitive reed switch 12 Blower fan 32 Partition wall 13 Float 14 Radiator 15 Radiator cooling fan 16 Fog Degassing unit outlet 17 Flexible duct 18 Discharger discharge hole 19 Return thin tube 20 Heat exchanger section

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】冷凍冷蔵装置を筐体内に内蔵する用ショー
ケースに於いて、少なくとも、冷却器による結露及び解
氷除霜によって発生する排水(ドレン水)を溜め受ける
メインタンクと、細管等で連結され、超音波霧化装置の
振動子部を収納した霧化用タンクと、霧化用タンク外郭
吹き出し口とフレキシブルダクト等で連結されて冷凍冷
蔵装置の放熱器直前に配置される霧化水吹き出し口と、
吹き出し口およびフレキシブルダクトの底部に溜まった
再結露水を霧化用タンクに戻すための細管等を備え、少
なくとも冷凍冷蔵装置の放熱器表面温度と放熱器冷却用
ファンの駆動有無の少なくとも2種類の制御信号を検出
し、霧化水を安全に蒸発させることが出来る条件を判断
して、超音波振動による霧化動作を制御する事を特徴と
する超音波霧化装置を組み込んだ排水等の蒸発処理装
置。
1. A showcase for incorporating a refrigerating and refrigerating device in a housing, which comprises at least a main tank for storing drainage (drain water) generated by dew condensation and defrosting and defrosting by a cooler, and a thin tube or the like. The atomization water that is connected and is connected to the atomization tank that houses the transducer part of the ultrasonic atomization device, and is connected to the atomization tank outer outlet and a flexible duct, and is placed immediately before the radiator of the refrigerating machine. With a balloon
Equipped with a thin tube for returning re-condensed water collected at the bottom of the outlet and flexible duct to the atomization tank, at least two types of radiator surface temperature of the refrigerating and refrigerating equipment and whether or not the radiator cooling fan is driven Evaporation of wastewater, etc. incorporating an ultrasonic atomizer characterized by detecting a control signal and judging the conditions under which atomized water can be safely evaporated, and controlling the atomization operation by ultrasonic vibration. Processing equipment.
【請求項2】電源及び発振制御回路等を近接配置し、超
音波による霧化動作のための超音波振動子等を内蔵設置
した霧化用タンク部分と、ショーケース等の冷却器から
発生するドレン水(排水)を直接受け溜めるメインタン
ク部分とを分離し、両タンク部分を細管で連結してドレ
ン水の緩慢な流動を可能にし、メインタンクの水温を冷
水状態に保つと共に、霧化用タンクを加温状態に設置設
定したことを特徴とする請求項1記載の蒸発処理装置。
2. A power source, an oscillation control circuit and the like are arranged in close proximity to each other, and an atomizing tank portion in which an ultrasonic transducer for atomizing operation by ultrasonic waves is installed and a cooler such as a showcase are generated. Separates the main tank part that directly receives drain water (drain water) and connects both tank parts with a thin tube to enable a slow flow of drain water, keeping the main tank water temperature cold and for atomization The evaporation treatment apparatus according to claim 1, wherein the tank is installed and set in a heated state.
【請求項3】超音波振動子部を取り付けた基板及び底カ
バー等を、発泡材等で成形したフロート等で霧化用タン
ク内の水面に浮かせ、水面から振動子までの水深を水位
変動に対して常に一定適正な水深を維持する振動子等の
設置構造に於いて、振動子等を取り付ける基板,基板を
覆う底カバー,両者の周囲あるいは底面部を概略覆うフ
ロートにより、組立後の周囲および底部の形状を設置収
納する霧化用タンクの少なくとも底部とその周囲の内面
形状に概略一致させ、水位減少時に双方が概略密着し残
留水量が最小限になる構造としたことを特徴とした請求
項1記載の蒸発処理装置。
3. A substrate to which an ultrasonic transducer is attached, a bottom cover, etc. are floated on the surface of water in an atomization tank with a float or the like formed of foam material or the like, and the water depth from the surface of the water to the transducer is changed to change the water level. On the other hand, in the installation structure of the oscillator etc. that always maintains a constant and appropriate water depth, the substrate after the oscillator etc. is attached, the bottom cover covering the substrate, and the float that roughly covers the periphery or bottom part of both A structure in which the shape of the bottom portion is approximately matched to the shape of at least the bottom portion of the atomizing tank for accommodating and storing the bottom portion and the surroundings thereof, and when the water level is reduced, both are substantially in close contact with each other to minimize the residual water amount. 1. The evaporation treatment apparatus according to 1.
【請求項4】霧化水放出器の吹出口およびフレキシブル
ダクトの底部に溜まった再結露水を霧化用タンクに戻す
ための細管等を備え、その途中に冷凍冷蔵装置の圧縮機
表面等に密着吸熱する熱交換器部を設け圧縮機を冷却す
ると共に戻り再結露水を加熱し、必要に応じて霧化用タ
ンク底部に追加設置された電熱加熱装置と共に、霧化用
タンク内の水温を対象とする雑菌繁殖適温外に概略加温
維持することを特徴とする請求項1記載の排水等の蒸発
処理装置。
4. A thin pipe or the like for returning recondensed water collected at the outlet of the atomized water discharger and the bottom of the flexible duct to the atomizing tank, and on the way to the surface of the compressor of the refrigerating machine, etc. A heat exchanger part that closely absorbs heat is provided to cool the compressor, heat the returned recondensed water, and, if necessary, an electric heating device additionally installed at the bottom of the atomization tank to control the water temperature in the atomization tank. The evaporation treatment apparatus for waste water and the like according to claim 1, wherein the evaporation treatment apparatus for waste water and the like is maintained at a temperature outside the optimum temperature for breeding various germs.
【請求項5】超音波振動子部をフロートで浮かせ適正水
深を維持する超音波振動子組立部を同一水面上に近接設
置する超音波霧化装置に於いて、各々の超音波振動子組
立部の周囲を隔壁で囲い、または超音波霧化装置タンク
内を収納する複数振動子に応じて隔壁等で区画し、干渉
障害を排除低減したことを特徴とする請求項1記載の排
水等の蒸発処理装置。
5. An ultrasonic atomization device in which ultrasonic transducer assembly units, which float the ultrasonic transducer unit in a float and maintain an appropriate water depth, are installed close to each other on the same water surface. The evaporation of waste water, etc. according to claim 1, characterized in that the surroundings are surrounded by partition walls, or are partitioned by partition walls or the like in accordance with a plurality of transducers for accommodating the inside of the tank of the ultrasonic atomizer, and interference interference is eliminated and reduced. Processing equipment.
JP2001403104A 2001-12-28 2001-12-28 Drain water evaporating disposition device for freezing and refrigerator show case Pending JP2003202179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001403104A JP2003202179A (en) 2001-12-28 2001-12-28 Drain water evaporating disposition device for freezing and refrigerator show case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001403104A JP2003202179A (en) 2001-12-28 2001-12-28 Drain water evaporating disposition device for freezing and refrigerator show case

Publications (1)

Publication Number Publication Date
JP2003202179A true JP2003202179A (en) 2003-07-18

Family

ID=27640453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001403104A Pending JP2003202179A (en) 2001-12-28 2001-12-28 Drain water evaporating disposition device for freezing and refrigerator show case

Country Status (1)

Country Link
JP (1) JP2003202179A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047785A1 (en) * 2003-11-12 2005-05-26 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration device with improved condensed water elimination
ES2301411A1 (en) * 2006-12-15 2008-06-16 Fco. Javier Santana Leon Automatic system for evaporation of condensates
GB2447628A (en) * 2007-03-17 2008-09-24 Kevin Gulliver Ultrasonic nebulising system for evaporating the waste water created by a refrigerated cabinet during defrost
WO2010012967A1 (en) * 2008-07-31 2010-02-04 Kevin Gulliver Bond ultrasonic nebuliser system
JP2010181121A (en) * 2009-02-09 2010-08-19 Okamura Corp Device for evaporation of drain water
ITVI20130270A1 (en) * 2013-11-08 2015-05-09 Carel Ind Spa REFRIGERATING MACHINE
CN105020966A (en) * 2014-04-18 2015-11-04 广州市穗凌电器有限公司 Refrigerator defrosting water heat dissipation system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047785A1 (en) * 2003-11-12 2005-05-26 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration device with improved condensed water elimination
CN100427858C (en) * 2003-11-12 2008-10-22 Bsh博世和西门子家用器具有限公司 Refrigeration device with improved condensed water elimination
ES2301411A1 (en) * 2006-12-15 2008-06-16 Fco. Javier Santana Leon Automatic system for evaporation of condensates
WO2008071824A1 (en) * 2006-12-15 2008-06-19 Francisco Javier Santana Leon Automatic system for evaporation of condensates
GB2447628A (en) * 2007-03-17 2008-09-24 Kevin Gulliver Ultrasonic nebulising system for evaporating the waste water created by a refrigerated cabinet during defrost
WO2010012967A1 (en) * 2008-07-31 2010-02-04 Kevin Gulliver Bond ultrasonic nebuliser system
JP2010181121A (en) * 2009-02-09 2010-08-19 Okamura Corp Device for evaporation of drain water
ITVI20130270A1 (en) * 2013-11-08 2015-05-09 Carel Ind Spa REFRIGERATING MACHINE
CN105020966A (en) * 2014-04-18 2015-11-04 广州市穗凌电器有限公司 Refrigerator defrosting water heat dissipation system

Similar Documents

Publication Publication Date Title
CN104764095B (en) The processing method of the condensed water of integral air conditioner and integral air conditioner
EP1510767B1 (en) Low-volume ice-making machine
US20160370092A1 (en) Apparatus and method for making ice in refrigeration equipment
US20160370085A1 (en) Apparatus and method for making ice in refrigeration equipment
JP2003202179A (en) Drain water evaporating disposition device for freezing and refrigerator show case
EP1592936A1 (en) Cooling system
JPH0842960A (en) Vegetable storeroom humidifier for refrigerator
CN102997528B (en) Refrigerator
CN102287998A (en) Refrigerator
CN110470093A (en) A kind of integrally cooling unit can be used for automatic vending machine
CN101479545B (en) Cooling storage
CN215597871U (en) Refrigerating and freezing device
KR100684114B1 (en) Structure for removal defrost water of refrigerator
CN208765341U (en) Refrigerator is used in a kind of processing of fermentation wax-made product
RU2486750C2 (en) Energy saving holdover device for cooling milk
RU2340169C1 (en) Refrigerating plant for milk cooling using natural cold
JP5239467B2 (en) vending machine
JPH0682145A (en) Refrigerator
JP2003279229A (en) Cooling storage house
CN220015583U (en) Fan and refrigerator
CN210861758U (en) Refrigerator for vending machine
RU2239993C1 (en) Apparatus for combined cooling of agricultural product by means of natural and artificial cold
SU1671205A1 (en) Milk cooling plant
RU2314681C1 (en) Energy-saving accumulation plant for milk cooling in farms using natural cold
KR200337744Y1 (en) Freezer including water purifier