JP2003200162A - Treatment method for wastewater from cationic electrodeposition coating - Google Patents

Treatment method for wastewater from cationic electrodeposition coating

Info

Publication number
JP2003200162A
JP2003200162A JP2002002839A JP2002002839A JP2003200162A JP 2003200162 A JP2003200162 A JP 2003200162A JP 2002002839 A JP2002002839 A JP 2002002839A JP 2002002839 A JP2002002839 A JP 2002002839A JP 2003200162 A JP2003200162 A JP 2003200162A
Authority
JP
Japan
Prior art keywords
wastewater
filtrate
membrane filtration
filtration device
electrodeposition coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002002839A
Other languages
Japanese (ja)
Inventor
Takayoshi Ito
孝良 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002002839A priority Critical patent/JP2003200162A/en
Publication of JP2003200162A publication Critical patent/JP2003200162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method for stably keeping the filtering capacity of a membrane filter apparatus, in treating wastewater discharged from a final washing process of cationic electrodeposition coating using the membrane filter apparatus. <P>SOLUTION: An antibacterial agent is continuously or intermittently added to wastewater and/or a filtrate and membrane filtration is performed while suppressing the propagation of acid consuming bacteria and preventing a rise in the pH of wastewater. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、カチオン電着塗装
における最終水洗槽からの廃水を膜濾過装置で処理する
方法に関する。 【0002】 【従来の技術】カチオン電着塗装は自動車ボディをはじ
め、自動車部品、電機製品、建材等の塗装に幅広く用い
られている。電着塗装システムは被塗物に電気化学的に
塗膜を形成させる電着工程及び未電着塗料等を洗い落と
すための洗浄工程、さらには塗膜を硬化させるための乾
燥−焼き付け工程から構成されており、一般に水洗工程
はUF濾液回収水洗工程と最終水洗工程に大別される。
前者は電着槽内の塗料をUF(限外濾過膜)で濾過する
ことによって得られるUF濾液を用いて被塗物を洗浄
し、被塗物に物理的に付着した塗料成分を洗い落とすと
共に電着槽に回収する工程である。後者は純水や工水を
用いて仕上げ洗浄を行う工程であり、前記UF濾液回収
水洗工程で洗い落とせなかった微量の塗料成分や侠雑イ
オンが洗い落とされるが、洗浄に用いられた後の水は廃
水として工程外に排出されている。 【0003】仕上げ洗浄である最終水洗には多量の水が
必要であり、被塗物が自動車ボディの場合には新たに1
00L/分以上の水が洗浄水として供給され、洗浄後の
水は工程外に廃水として排出されている。この廃水中に
は少量ではあるが塗料成分や侠雑イオンが含まれている
ため、最終的には何らかの方法で処理する必要があるば
かりでなく、塗料の損失にもなっており、通常、ロス分
は電着本槽から被塗物によって物理的に持ち出される塗
料の5%相当にまで及んでいる。 【0004】近年、このような廃水の処理方法として膜
分離法が提案され、膜濾過装置によって濾液と濃縮液に
分離し、濾液を水洗水として循環使用すると共に濃縮液
を電着本槽に戻し、塗料として回収再使用する方法が一
部で実用化されている。 【0005】 【発明が解決しようとする課題】本発明は電着塗装の最
終水洗工程から排出される廃水を膜濾過装置で処理する
に際し、膜濾過装置の濾過能力を安定に保つための方法
を提供するためになされたものであり、さらに詳しくは
カチオン電着塗装工程の最終水洗槽より排出される廃水
を膜濾過装置にかけ、濾液と濃縮液に分離し、濾液を水
洗水として循環使用すると共に濃縮液を電着本槽に戻
し、塗料として回収再使用する方法において、安定に処
理可能な膜濾過方法の提供を目的とする。 【0006】ところで膜濾過装置の能力を安定に保つた
めの方法としてWO96/07775号には膜濾過装置
にかける廃水に酸を添加し、廃水のpHを調整する方法
が開示されているが、本発明者は該最終水洗工程の水洗
廃水中には例外なく酸を消費するバクテリアが存在し、
夜間あるいは週末に最終水洗工程及び最終水洗工程の膜
濾過装置が停止している間に、即ち滞留することによっ
て廃水のpHが上昇することを見出し、本発明に至っ
た。 【0007】通常の場合、膜濾過装置においては一旦、
最終水洗槽からの廃水をタンクに受け入れた後処理を開
始し、pH調整は該タンクに酸を添加することにより行
われるが、pHの検出は特開2000−263044に
開示されているようにセンサーの汚れによる信頼性の低
下やセンサーの保守管理面の問題から膜濾過装置の濾液
側で行われる。そのため、処理開始からしばらくは所定
のpHに調整されるまでに時間がかかるのが実状であ
る。したがって、適性なpHに調整されるまでの間はよ
り高いpHで運転されることになり、このような運転が
繰り返し行われることで膜濾過装置の処理能力が徐々に
低下するという問題が生じていた。 【0008】しかも、膜濾過装置は通常、塗装工程が稼
動している間のみ廃水の処理がなされ、塗装工程が停止
する夜間や週末は停止されるが、この間、pH調整がな
されない状態で廃水が長時間滞留すると廃水中に生息す
るバクテリアの作用によって最終水洗槽のpHが上昇
し、膜濾過装置の処理開始からしばらくはpHがより高
い側の廃水を処理することを余儀なくされる。そのた
め、膜濾過装置の能力が低下する原因となっていた。 【0009】また、pH上昇による能力低下のみならず
廃水中にバクテリアが繁殖することによる膜汚染の進行
も膜濾過装置の能力を低下させる一因となっていた。さ
らにはpH調整に使われる酸の量が必要以上に多くな
り、経済的損失も無視し得なかった。 【0010】 【課題を解決するための手段】本発明はカチオン電着塗
装工程の最終水洗槽より排出される廃水を膜濾過装置に
かけ、濾液と濃縮液に分離し、濾液を水洗水として循環
使用すると共に濃縮液を電着本槽に戻し、塗料として回
収再使用する方法において、廃水及びまたは濾液に抗菌
剤及びまたは殺菌剤を連続的あるいは間欠的に添加し、
酸を消費するバクテリアの繁殖を抑え、廃水のpHの上
昇を防止することにより前記目的を達成したものであ
る。 【0011】本発明における抗菌剤及び殺菌剤としては
酸を消費するバクテリアの繁殖を抑制できるものやバク
テリアを死滅できるものであれば何でも良く、銀イオ
ン、銅イオン、アルデヒド類、フェノール系化合物、塩
素化合物等を単独あるいは一緒に用いることができるが
(1)塗料中に混入しても特別な問題がなく、(2)濾
液の一部が廃水として最終水洗工程外に排出される場合
でも生物処理等廃水処理への影響が小さいものを選定す
ることが重要である。また、抗菌剤は廃水全体にできる
だけ均一に分散させる必要があり、水溶性のものが好ま
しく、水溶液を使用することが特に好ましい。 【0012】本発明の抗菌剤及び殺菌剤の添加は最終水
洗槽または廃水を膜濾過装置に受け入れためのタンクや
前記受け入れ配管中において直接廃水に加えることもで
きるし、濾液タンク等を利用し濾液に加えることもでき
る。また、廃水及び濾液の両方に添加することでも良
い。抗菌剤及び殺菌剤の添加の時期は特に限定されない
が最終水洗槽以外の所に添加する場合は抗菌剤を廃水全
体に行き渡らせるため、膜濾過装置で処理されている間
に添加するのが好ましく、最終水洗槽に添加する場合は
工程が停止した直後であっても良い。また添加の方法は
微量づつ連続的に加えることもできるし、適量を間欠的
に加えることでも構わないが、必要以上の添加は少なか
らず回収される塗料の品質や廃水処理に影響する懸念が
あるため、pH変化の様子を観察しながら定期的に添加
することが好ましい。 【0013】なお、本発明は最終水洗槽からの廃水を膜
濾過装置によって処理する全ての場合に適用できるが、
特に最終水洗槽の容量が大きい自動車ボディの後水洗工
程に設置される膜濾過装置の安定運転に有用であり、膜
濾過装置に用いられる膜としては限外濾過膜(UF)、
精密濾過膜(MF)が挙げられる。 【0014】 【発明の実施の形態】以下に本発明の実施例を示す。 【0015】 【実施例1】自動車ボディのカチオン電着塗装工程に設
置された最終水洗槽からの廃水を濾液と濃縮液に分離
し、濾液を水洗水として循環使用し、濃縮水を塗料とし
て回収再利用する膜濾過装置の濃縮循環タンクから濃縮
循環液(膜濾過装置にかかっている最終水洗槽の廃水が
濃縮された液)を、濾液タンクから濾液をそれぞれ採取
し、酢酸でpHを調整した後200mlの密栓付き容器
に入れ、滞留させた場合のpH変化を追跡した。同時に
抗菌剤として0.2mol/Lの硝酸銀水溶液を銀の濃
度が5ppmとなるように加えた試料についてもpH変
化を追跡した。結果を表1に示す。なお、10g採取
し、105℃で3時間乾燥して測定した濃縮循環液及び
濾液の固形分濃度はそれぞれ0.17wt%、0.03
wt%であった。 【0016】 【表1】 【0017】 【実施例2】実施例1と同様の膜濾過装置から濃縮循環
液を40L採取し、酢酸を用いてpHを5.7に調整し
た後20Lづつに分け、一方のみ抗菌剤として0.2m
ol/Lの硝酸銀水溶液を銀濃度が5ppmになるよう
添加した。なお、10g採取し105℃で3時間乾燥し
て測定した固形分濃度はともに1.13wt%であっ
た。続いて室温で攪拌しながら5日間放置した後、膜濾
過装置に仕込み、ポリアクリロニトリル系中空糸型限外
濾過モジュール(中空糸外径1.4mmφ、中空糸内径
0.8mmφ、分画分子量13000、有効膜面積0.
2m2、接着層を含む中空糸長255mm)に入口圧力
140KPa、出口圧力60KPa、温度28℃の条件
で通液し、初めの濾液量を測定した。次いで入口圧力を
170KPa、出口圧力を130KPaに変更し、濾液
を循環タンクに戻しながら6時間運転を続けた。6時間
後に再度、入口圧力140KPa、出口圧力60KPa
に調整した後濾液量を測定し、初めの濾液量と6時間運
転後の濾液量の比により濾液量の安定性を評価し表2に
整理した。抗菌剤を添加した試験液は5日間経過した後
もpHが5.7に維持されており、初めの濾液量と6時
間通液した後の濾液量は291ml/分で変化がなかっ
た。一方、抗菌剤を添加しなかった試験液のpHは5日
間経過後6.5まで上昇し、通液初めの濾液量が290
ml/分、6時間通液した後の濾液量は258ml/分
でその比率は0.89であった。 【0018】 【表2】 【0019】 【実施例3】実施例1と同様の膜濾過装置から濃縮循環
液を40L採取し、20Lづつに分けた後一方のみ抗菌
剤として0.2mol/Lの硝酸銀水溶液を銀濃度が5
ppmになるよう添加した。これらを10g採取し、1
05℃で3時間、乾燥して測定した固形分濃度はともに
1.09wt%であった。またpHは5.9であった。
続いて室温で攪拌しながら7日間放置した後のpHは抗
菌剤を添加した試験液は5.9で変化がなかったが抗菌
剤を添加しなかった試験液は6.9まで上昇していたた
め酢酸でpHを5.9に再調整した。上記、抗菌剤を添
加して7日間放置した試験液と抗菌剤を添加しないで7
日間放置後pH調整した試験液を膜濾過装置に仕込み、
実施例2と同様の方法で濾液量の変化を比較した。表3
に示すように抗菌剤を添加した試験液は初めの濾液量と
6時間通液した後の濾液量は297ml/分で変化がな
かった。一方、抗菌剤を添加しなかった試験液の初めの
濾液量は295ml/分、6時間通液した後の濾液量は
283ml/分でその比率は0.96であった。なお、
6時間経過後のpHはともに5.9であり変化がなかっ
た。 【0020】 【表3】 【0021】 【発明の効果】電着塗装の最終水洗工程から排出される
廃水を膜濾過装置で処理する際の、膜濾過装置の濾過能
力が安定する他に、PH調整に使われる酸の量が節約で
きる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating wastewater from a final washing tank in cationic electrodeposition coating with a membrane filtration device. [0002] Cationic electrodeposition coating is widely used for coating automobile bodies, automobile parts, electric products, building materials, and the like. The electrodeposition coating system comprises an electrodeposition step of electrochemically forming a coating film on an object to be coated, a cleaning step of washing off non-electrodeposition paint, etc., and a drying-baking step of curing the coating film. Generally, the washing step is roughly classified into a UF filtrate recovery washing step and a final washing step.
The former uses an UF (ultrafiltration membrane) to filter the paint in the electrodeposition tank to wash the object to be coated using a UF filtrate, which removes paint components physically attached to the object to be coated, and removes the electrode component. This is the step of collecting the liquid in the tank. The latter is a step of performing a final cleaning using pure water or industrial water, and a small amount of paint components and unusual ions that could not be washed away in the UF filtrate recovery water washing step are washed off, but after being used for washing. Water is discharged out of the process as wastewater. [0003] A large amount of water is required for final rinsing, which is a finish cleaning.
Water at a rate of 00 L / min or more is supplied as washing water, and the washed water is discharged out of the process as wastewater. Since this wastewater contains paint components and miscellaneous ions in a small amount, it is necessary not only to eventually treat the wastewater in some way but also to lose paint. The amount is equivalent to 5% of the paint physically taken out of the electrodeposition main tank by the object to be coated. In recent years, a membrane separation method has been proposed as a method for treating such wastewater. The membrane is separated into a filtrate and a concentrated solution by a membrane filtration device, and the filtrate is used as washing water, and the concentrated solution is returned to the electrodeposition tank. In some cases, a method of collecting and reusing the paint has been put to practical use. SUMMARY OF THE INVENTION The present invention relates to a method for stably maintaining the filtration performance of a membrane filtration device when treating wastewater discharged from a final washing step of electrodeposition coating with a membrane filtration device. The wastewater discharged from the final washing tank in the cationic electrodeposition coating process is applied to a membrane filtration device, separated into a filtrate and a concentrated solution, and the filtrate is circulated and used as washing water. It is an object of the present invention to provide a membrane filtration method capable of stably treating a concentrated liquid which is returned to an electrodeposition main tank and recovered and reused as a paint. [0006] As a method for stably maintaining the performance of a membrane filtration device, WO 96/07775 discloses a method of adjusting the pH of wastewater by adding an acid to wastewater applied to the membrane filtration device. The inventor has found that bacteria that consume acids without exception are present in the washing wastewater of the final washing step,
The present inventors have found that the pH of the wastewater rises during the night or on the weekend while the final water washing step and the membrane filtration device in the final water washing step are stopped, that is, due to stagnation, resulting in the present invention. In a normal case, once in a membrane filtration device,
After the wastewater from the final washing tank is received in the tank, the post-treatment is started, and the pH is adjusted by adding an acid to the tank. The pH is detected by a sensor as disclosed in JP-A-2000-263044. This is carried out on the filtrate side of the membrane filtration device due to a decrease in reliability due to dirt on the surface and a problem of maintenance management of the sensor. For this reason, it takes a long time for the pH to be adjusted to the predetermined pH for a while after the start of the treatment. Therefore, the apparatus is operated at a higher pH until the pH is adjusted to an appropriate pH, and the problem is that the processing capacity of the membrane filtration device gradually decreases due to such an operation being repeated. Was. [0008] In addition, the membrane filtration apparatus normally treats wastewater only during the operation of the coating process, and is stopped during the night or on the weekend when the coating process is stopped. If the water stays for a long time, the pH of the final washing tank rises due to the action of bacteria living in the waste water, and for a while after the treatment of the membrane filtration device is started, the waste water on the higher pH side must be treated. For this reason, the performance of the membrane filtration device has been reduced. [0009] In addition to the decrease in capacity due to an increase in pH, the progress of membrane contamination due to the propagation of bacteria in wastewater has also been a factor in reducing the capacity of the membrane filtration device. Furthermore, the amount of acid used for pH adjustment became unnecessarily large, and economic loss could not be ignored. According to the present invention, waste water discharged from the final washing tank in the cationic electrodeposition coating process is passed through a membrane filtration device, separated into a filtrate and a concentrated solution, and the filtrate is circulated as washing water. And return the concentrate to the electrodeposition tank, and in a method of collecting and reusing it as a paint, an antibacterial agent and / or a bactericide is continuously or intermittently added to wastewater and / or the filtrate,
The object has been achieved by suppressing the growth of bacteria that consume acids and preventing the pH of wastewater from increasing. The antibacterial agent and the bactericide according to the present invention may be any as long as they can suppress the proliferation of bacteria consuming acids or can kill bacteria. Silver ions, copper ions, aldehydes, phenolic compounds, chlorine Compounds and the like can be used alone or together, but (1) there is no particular problem when mixed in paints, and (2) biological treatment even when a part of the filtrate is discharged as waste water out of the final washing step. It is important to select one that has little impact on wastewater treatment. Further, the antibacterial agent must be dispersed as uniformly as possible in the entire wastewater, and is preferably a water-soluble one, and particularly preferably an aqueous solution. The antibacterial agent and the bactericide of the present invention can be added directly to the wastewater in a final washing tank or a tank for receiving the wastewater into the membrane filtration device or in the above-mentioned receiving pipe, or by using a filtrate tank or the like. Can also be added. Further, it may be added to both the wastewater and the filtrate. The time of addition of the antibacterial agent and the bactericide is not particularly limited, but when added to a place other than the final washing tank, it is preferable to add the antibacterial agent during the treatment with the membrane filtration device in order to spread the entire antibacterial agent to the wastewater. When adding to the final washing tank, it may be immediately after the process is stopped. In addition, the addition method can be added continuously in small amounts, or an appropriate amount may be added intermittently.However, more than necessary addition may affect the quality of the recovered paint and wastewater treatment. Therefore, it is preferable to add periodically while observing the state of pH change. The present invention can be applied to all cases where wastewater from a final washing tank is treated by a membrane filtration device.
In particular, it is useful for stable operation of a membrane filtration device installed in a post-washing process of an automobile body having a large capacity of a final washing tank, and ultrafiltration membrane (UF) is used as a membrane used in the membrane filtration device.
Microfiltration membrane (MF). Embodiments of the present invention will be described below. EXAMPLE 1 Waste water from a final washing tank installed in a cationic electrodeposition coating process of an automobile body is separated into a filtrate and a concentrated solution, and the filtrate is circulated as washing water, and the concentrated water is recovered as a paint. The concentrated circulating liquid (a liquid obtained by concentrating wastewater from the final washing tank applied to the membrane filtration device) was collected from the concentration circulation tank of the membrane filtration device to be reused, and the filtrate was collected from the filtrate tank, and the pH was adjusted with acetic acid. Thereafter, the mixture was placed in a 200-ml container with a stopper and kept, and a change in pH when the sample was retained was tracked. At the same time, the change in pH was monitored for a sample in which a 0.2 mol / L silver nitrate aqueous solution was added as an antibacterial agent so that the silver concentration was 5 ppm. Table 1 shows the results. The solids concentrations of the concentrated circulating liquid and the filtrate measured by collecting 10 g and drying at 105 ° C. for 3 hours were 0.17 wt% and 0.03 wt%, respectively.
wt%. [Table 1] Example 2 40 L of a concentrated circulating fluid was collected from the same membrane filtration apparatus as in Example 1, adjusted to pH 5.7 with acetic acid, divided into 20 L portions, and only one of them was used as an antibacterial agent. .2m
An ol / L aqueous silver nitrate solution was added so that the silver concentration became 5 ppm. In addition, 10 g was collected, dried at 105 ° C. for 3 hours, and the measured solid content was 1.13 wt%. Subsequently, the mixture was allowed to stand for 5 days while stirring at room temperature, and then charged into a membrane filtration device, and a polyacrylonitrile-based hollow fiber type ultrafiltration module (a hollow fiber outer diameter of 1.4 mmφ, a hollow fiber inner diameter of 0.8 mmφ, a molecular weight cutoff of 13,000, Effective membrane area 0.
2 m 2 , a hollow fiber length of 255 mm including an adhesive layer) was passed under the conditions of an inlet pressure of 140 KPa, an outlet pressure of 60 KPa, and a temperature of 28 ° C., and the initial filtrate amount was measured. Next, the inlet pressure was changed to 170 KPa and the outlet pressure was changed to 130 KPa, and the operation was continued for 6 hours while returning the filtrate to the circulation tank. After 6 hours, the inlet pressure is 140 KPa and the outlet pressure is 60 KPa again.
After adjusting the amount of the filtrate, the stability of the amount of the filtrate was evaluated by the ratio of the amount of the initial filtrate to the amount of the filtrate after 6 hours of operation, and the results are shown in Table 2. The pH of the test solution to which the antibacterial agent was added was maintained at 5.7 even after 5 days, and the amount of the filtrate after passing for 6 hours and the amount of the filtrate after passing for 6 hours remained unchanged at 291 ml / min. On the other hand, the pH of the test solution to which the antibacterial agent was not added increased to 6.5 after 5 days, and the amount of filtrate at the beginning of the passage was 290.
After passing through the solution for 6 hours at a rate of ml / min, the filtrate amount was 258 ml / min and the ratio was 0.89. [Table 2] Example 3 40 L of a concentrated circulating solution was collected from the same membrane filtration apparatus as in Example 1 and divided into 20 L portions. Only one of them was treated with an aqueous solution of 0.2 mol / L silver nitrate as an antibacterial agent at a silver concentration of 5%.
ppm. 10 g of these are collected and 1
The solid content measured by drying at 05 ° C. for 3 hours was 1.09 wt%. The pH was 5.9.
Subsequently, the pH of the test solution to which the antibacterial agent was added was 5.9 after standing for 7 days while stirring at room temperature, but the test solution without the antibacterial agent increased to 6.9. The pH was readjusted to 5.9 with acetic acid. The test solution which was left for 7 days after the addition of the antibacterial agent and the 7
After standing for a day, the pH-adjusted test solution was charged into a membrane filtration device,
The change in the amount of filtrate was compared in the same manner as in Example 2. Table 3
As shown in (1), the test solution to which the antibacterial agent was added did not change at 297 ml / min after the passage of 6 hours. On the other hand, the initial filtrate volume of the test solution to which no antibacterial agent was added was 295 ml / min, and the filtrate volume after passing for 6 hours was 283 ml / min, and the ratio was 0.96. In addition,
After a lapse of 6 hours, the pH was 5.9 and remained unchanged. [Table 3] According to the present invention, when the wastewater discharged from the final washing step of the electrodeposition coating is treated with the membrane filtration device, the filtration capacity of the membrane filtration device is stabilized and the amount of acid used for pH adjustment. Can be saved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 C02F 1/50 531U 532 532C 532H 540 540B 560 560E 560Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI theme coat テ ー マ (Reference) C02F 1/50 C02F 1/50 531U 532 532C 532H 540 540B 560 560E 560Z

Claims (1)

【特許請求の範囲】 【請求項1】 カチオン電着塗装工程の最終水洗槽より
排出される廃水を膜濾過装置にかけ、濾液と濃縮液に分
離し、濾液を水洗水として循環使用すると共に濃縮液を
電着本槽に戻し、塗料として回収再使用する方法におい
て、廃水及びまたは濾液に抗菌剤及びまたは殺菌剤を連
続的あるいは間欠的に添加することを特徴とするカチオ
ン電着塗装廃水の処理方法。
Claims 1. A wastewater discharged from a final washing tank in a cationic electrodeposition coating process is applied to a membrane filtration device, separated into a filtrate and a concentrated solution, and the filtrate is circulated as washing water and the concentrated solution is used. A method for treating cation electrodeposition coating wastewater, comprising continuously or intermittently adding an antibacterial agent and / or a bactericide to the wastewater and / or the filtrate in a method of returning to the electrodeposition main tank and collecting and reusing it as a paint. .
JP2002002839A 2002-01-09 2002-01-09 Treatment method for wastewater from cationic electrodeposition coating Pending JP2003200162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002002839A JP2003200162A (en) 2002-01-09 2002-01-09 Treatment method for wastewater from cationic electrodeposition coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002002839A JP2003200162A (en) 2002-01-09 2002-01-09 Treatment method for wastewater from cationic electrodeposition coating

Publications (1)

Publication Number Publication Date
JP2003200162A true JP2003200162A (en) 2003-07-15

Family

ID=27642587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002002839A Pending JP2003200162A (en) 2002-01-09 2002-01-09 Treatment method for wastewater from cationic electrodeposition coating

Country Status (1)

Country Link
JP (1) JP2003200162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101565947B1 (en) 2014-03-28 2015-11-05 주식회사 필텍이엔지 waste water recycling apparatus for electro painting
CN114890573A (en) * 2022-04-25 2022-08-12 维苏威铸造科技(江苏)有限公司 Environment-friendly casting coating cleaning waste recycling process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101565947B1 (en) 2014-03-28 2015-11-05 주식회사 필텍이엔지 waste water recycling apparatus for electro painting
CN114890573A (en) * 2022-04-25 2022-08-12 维苏威铸造科技(江苏)有限公司 Environment-friendly casting coating cleaning waste recycling process

Similar Documents

Publication Publication Date Title
Suthanthararajan et al. Membrane application for recovery and reuse of water from treated tannery wastewater
JP2001070967A (en) Cleaning system for laundry waste water
CN103979729A (en) Desulfurization waste water recycling and zero discharge system and method
CN104507873B (en) The operation method of desalting processing device and desalting processing device
US6080317A (en) Process and apparatus for the purification of waste water
JP2005288442A (en) Method for washing membrane module
CN102603106A (en) Composite system and method for treating industrial wastewater by membrane distillation
CN102060394A (en) Sea water desalinization integrated process
CN204454757U (en) A kind of electroplating rinse water online recycling Zero discharging system
CN105366838A (en) Zero-discharge treatment method for trivalent chromium passivation wastewater
JPH10272495A (en) Treatment of organic waste water containing salts of high concentration
JP2873095B2 (en) Treatment method of waste water in final washing tank in cationic electrodeposition coating
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP2003200162A (en) Treatment method for wastewater from cationic electrodeposition coating
JP6436483B2 (en) Dyeing wastewater treatment method
CN204454775U (en) A kind of trivalent chromium passivation Wastewater zero-discharge treatment system
JP4490565B2 (en) Method for recovering treatment agent components in metal surface treated rinse water
JP2001009452A (en) Treatment equipment for swimming pool water and treatment by the equipment
JP2002085942A (en) Recovery process of liquid chemical component in water used for washing metal surface treatment
RU2048453C1 (en) Method for treatment of sewage water to remove heavy metal ions
JP2003334566A (en) Method and device for treating drain containing fluorine
JP4229361B2 (en) Cleaning wastewater treatment method
CN110117129A (en) A kind of wastewater from aquatic product process processing system and method
CN205367919U (en) Electroplate online recovery system of washings
Galvañ et al. Direct pre-treatment of surface water through submerged hollow fibre ultrafiltration membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Effective date: 20071030

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20071211

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD03 Notification of appointment of power of attorney

Effective date: 20071211

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080117