JP2003200046A - Catalyst for waste gas treatment and method for treating waste gas - Google Patents

Catalyst for waste gas treatment and method for treating waste gas

Info

Publication number
JP2003200046A
JP2003200046A JP2001400820A JP2001400820A JP2003200046A JP 2003200046 A JP2003200046 A JP 2003200046A JP 2001400820 A JP2001400820 A JP 2001400820A JP 2001400820 A JP2001400820 A JP 2001400820A JP 2003200046 A JP2003200046 A JP 2003200046A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
exhaust gas
titanium
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001400820A
Other languages
Japanese (ja)
Other versions
JP4002437B2 (en
Inventor
Ryoji Kuma
涼慈 熊
Nobuyuki Masaki
信之 正木
Noboru Sugishima
昇 杉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2001400820A priority Critical patent/JP4002437B2/en
Publication of JP2003200046A publication Critical patent/JP2003200046A/en
Application granted granted Critical
Publication of JP4002437B2 publication Critical patent/JP4002437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a catalyst for waste gas treatment excellent in nitrogen oxides removing performance, in removing performance of organic halogen compounds such as dioxins in the waste gas and in durability, and to provide a method for treating the waste gas by using the same. <P>SOLUTION: The catalyst for the waste gas treatment contains titanium, molybdenum and vanadium oxides and is characterized by having a peak at 2θ=27.3° in an X-ray diffraction pattern and containing molybdenum oxide particles with ≥1 μm and ≤20 μm particle diameters. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス処理用触
媒、および排ガスの処理方法に関する。特に、排ガス中
の窒素酸化物(NOx)を除去するための脱硝触媒、及
び排ガス中のダイオキシン類などの毒性有機ハロゲン化
合物を除去するための有機ハロゲン化合物の除去用触媒
として優れた排ガス処理用触媒、および、それを用いた
排ガスの処理方法に関する。
TECHNICAL FIELD The present invention relates to an exhaust gas treatment catalyst and an exhaust gas treatment method. Particularly, a catalyst for exhaust gas treatment excellent as a denitration catalyst for removing nitrogen oxides (NOx) in exhaust gas and a catalyst for removing organic halogen compounds for removing toxic organic halogen compounds such as dioxins in exhaust gas. And a method for treating exhaust gas using the same.

【0002】[0002]

【従来の技術】現在実用化されている排ガス中の窒素酸
化物除去方法としては、アンモニアまたは尿素などの還
元剤を用いて排ガス中の窒素酸化物を脱硝触媒上で接触
還元し、無害な窒素と水とに分解する選択的触媒還元い
わゆるSCR法が一般的である。そして近年、酸性雨に
代表されるように窒素酸化物による環境汚染が世界的に
深刻化するに伴い、脱硝技術の高効率化が要求されてい
る。このような状況下、チタンとバナジウムの酸化物お
よびモリブデン、タングステンなどの酸化物からなる脱
硝触媒(特公昭53−28148号公報)や、チタンお
よびケイ素からなる二元系酸化物と、バナジウム、タン
グステン、モリブデンなどの金属酸化物とからなる脱硝
触媒(特公昭57−30532号公報)が実用化され、
現在、広く用いられている。
2. Description of the Related Art As a method for removing nitrogen oxides from exhaust gas, which is currently in practical use, harmless nitrogen is obtained by catalytically reducing nitrogen oxides in exhaust gas using a reducing agent such as ammonia or urea on a denitration catalyst. The so-called SCR method, which is a selective catalytic reduction that decomposes into water and water, is common. In recent years, as environmental pollution caused by nitrogen oxides, as represented by acid rain, has become serious worldwide, it is required to improve the efficiency of denitration technology. Under such circumstances, a denitration catalyst composed of oxides of titanium and vanadium and oxides of molybdenum and tungsten (Japanese Patent Publication No. 53-28148), binary oxides composed of titanium and silicon, vanadium and tungsten. , A denitration catalyst comprising a metal oxide such as molybdenum (Japanese Patent Publication No. 57-30532) has been put into practical use.
Currently widely used.

【0003】また、産業廃棄物や都市廃棄物を処理する
焼却施設から発生する排ガス中にはダイオキシン類、P
CB、クロロフェノールなどの極微量の毒性有機ハロゲ
ン化合物が含まれており、特にダイオキシン類は微量で
あってもきわめて有毒であり、人体に重大な影響を及ぼ
すため、その除去技術が早急に求められている。触媒分
解法は最も有効な技術のひとつであり、一般的にチタ
ン、バナジウム、タングステン、モリブデンなどの酸化
物を含有する触媒が用いられている。これまでに用いら
れてきた種々の排ガス処理用触媒の中で、比較的性能が
高いものとしてチタン酸化物やバナジウム酸化物を含有
する触媒が挙げられ、最近では、これらの酸化物にモリ
ブデン酸化物やタングステン酸化物を高分散させて複合
酸化物とした触媒が報告されている(特開2001−2
86729号公報や特開2001−286733号公報
など)。このようにモリブデン酸化物やタングステン酸
化物を高分散させて複合酸化物の形態とすることによ
り、従来からの問題であった排ガス中のSO2によるチ
タン酸化物やバナジウム酸化物の被毒劣化が抑制される
とともに、チタン酸化物やバナジウム酸化物の本来有す
る触媒活性の低下も抑えることができる旨が報告されて
いる。
Dioxins and P are contained in the exhaust gas generated from incineration facilities for treating industrial waste and municipal waste.
It contains a very small amount of toxic organic halogen compounds such as CB and chlorophenol. Especially, even dioxins in a very small amount are extremely toxic and seriously affect the human body. ing. The catalytic decomposition method is one of the most effective techniques, and generally, a catalyst containing an oxide such as titanium, vanadium, tungsten, or molybdenum is used. Among the various exhaust gas treatment catalysts that have been used so far, catalysts containing titanium oxides and vanadium oxides are mentioned as having relatively high performance. Recently, molybdenum oxides have been added to these oxides. A catalyst in which tungsten oxide or tungsten oxide is highly dispersed to form a composite oxide has been reported (Japanese Patent Laid-Open No. 2001-2).
86729 and JP 2001-286733 A). By thus highly dispersing molybdenum oxide or tungsten oxide in the form of a composite oxide, the poisoning deterioration of titanium oxide and vanadium oxide due to SO 2 in exhaust gas, which has been a problem in the past, is a problem. It has been reported that, while being suppressed, it is also possible to suppress the decrease in the catalytic activity originally possessed by titanium oxide and vanadium oxide.

【0004】しかしながら、これらの触媒であっても、
排ガス条件によっては充分な性能を発揮できず、さらな
る触媒性能、特に、窒素酸化物の除去性能、排ガス中の
ダイオキシン類等の有機ハロゲン化合物の除去性能、お
よび耐久性の向上が望まれている。
However, even with these catalysts,
Depending on exhaust gas conditions, sufficient performance cannot be exhibited, and further catalytic performance, in particular, removal performance of nitrogen oxides, removal performance of organic halogen compounds such as dioxins in exhaust gas, and improvement of durability are desired.

【0005】[0005]

【発明が解決しようとする課題】したがって、本発明の
課題は、窒素酸化物の除去性能、排ガス中のダイオキシ
ン類等の有機ハロゲン化合物の除去性能、および耐久性
に優れた排ガス処理用触媒、および、それを用いた排ガ
ス処理方法を提供することにある。
Therefore, an object of the present invention is to provide a catalyst for exhaust gas treatment, which is excellent in nitrogen oxide removal performance, organic halogen compound removal performance such as dioxins in exhaust gas, and durability. , It is to provide an exhaust gas treatment method using the same.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記課題を
解決するべく鋭意検討を行った。その結果、チタン、モ
リブデン、および、バナジウムの酸化物を含有する触媒
中の、X線回折パターンに着目し、特定のピークを示す
触媒が上記課題を解決できることを見出した。また、チ
タン、モリブデン、および、バナジウムの酸化物を含有
する触媒中の、モリブデン酸化物の粒子径に着目し、一
定の粒子径範囲のモリブデン酸化物粒子を含有するよう
に触媒を調製することによって、上記課題を解決できる
ことを見出した。
Means for Solving the Problems The inventors of the present invention have made extensive studies to solve the above problems. As a result, focusing on the X-ray diffraction pattern in the catalyst containing oxides of titanium, molybdenum, and vanadium, it was found that a catalyst showing a specific peak can solve the above problems. Further, by paying attention to the particle size of molybdenum oxide in the catalyst containing oxides of titanium, molybdenum, and vanadium, the catalyst is prepared so as to contain molybdenum oxide particles in a certain particle size range. , It has been found that the above problems can be solved.

【0007】すなわち、本発明にかかる排ガス処理用触
媒は、チタン、モリブデン、および、バナジウムの酸化
物を含有する触媒であって、X線回折パターンにおいて
2θ=27.3°にピークを有することを特徴とする。
また、本発明にかかる別の排ガス処理用触媒は、チタ
ン、モリブデン、および、バナジウムの酸化物を含有す
る触媒であって、粒子径が1μm以上20μm以下であ
るモリブデン酸化物粒子を含有することを特徴とする。
さらに、本発明にかかる排ガス処理方法は、本発明の触
媒を用いて窒素酸化物を含む排ガスを処理することを特
徴とする。
That is, the exhaust gas treating catalyst according to the present invention is a catalyst containing oxides of titanium, molybdenum and vanadium, and has a peak at 2θ = 27.3 ° in the X-ray diffraction pattern. Characterize.
Another exhaust gas treatment catalyst according to the present invention is a catalyst containing oxides of titanium, molybdenum, and vanadium, and contains molybdenum oxide particles having a particle diameter of 1 μm or more and 20 μm or less. Characterize.
Furthermore, the exhaust gas treatment method according to the present invention is characterized by treating exhaust gas containing nitrogen oxides using the catalyst of the present invention.

【0008】また、本発明にかかる排ガス処理方法は、
本発明の触媒を用いて有機ハロゲン化合物を含む排ガス
を処理することを特徴とする。
The exhaust gas treatment method according to the present invention is
An exhaust gas containing an organic halogen compound is treated using the catalyst of the present invention.

【0009】[0009]

【発明の実施の形態】本発明の排ガス処理用触媒は、触
媒成分の主成分としてチタンの酸化物を含有する。チタ
ンの酸化物としては、一般のチタン酸化物(酸化チタン
(TiO2)など)でもよいし、チタン−ケイ素複合酸
化物(以下、Ti−Si複合酸化物と称する)でもよ
い。またこれらを併用してもよい。上記チタン酸化物の
供給原料としては、酸化チタン(TiO2)のほか、焼
成してチタン酸化物を生成するものであれば、無機およ
び有機のいずれの化合物も使用することができる。例え
ば、四塩化チタン、硫酸チタンなどの無機チタン化合物
またはシュウ酸チタン、テトライソプロピルチタネート
などの有機チタン化合物を用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The exhaust gas treating catalyst of the present invention contains titanium oxide as the main component of the catalyst component. The titanium oxide may be a general titanium oxide (titanium oxide (TiO 2 ) or the like) or a titanium-silicon composite oxide (hereinafter referred to as Ti—Si composite oxide). Moreover, you may use these together. As the titanium oxide feed material, in addition to titanium oxide (TiO 2 ), any inorganic or organic compound can be used as long as it is capable of firing to produce titanium oxide. For example, an inorganic titanium compound such as titanium tetrachloride or titanium sulfate or an organic titanium compound such as titanium oxalate or tetraisopropyl titanate can be used.

【0010】上記Ti−Si複合酸化物の調製に用いる
チタン源としては、上記の無機および有機のいずれの化
合物も使用することができ、またケイ素源としては、コ
ロイド状シリカ、水ガラス、微粒子ケイ素、四塩化ケイ
素などの無機ケイ素化合物およびテトラエチルシリケー
トなどの有機ケイ素化合物から適宜選択して使用するこ
とができる。上記Ti−Si複合酸化物は、例えば、以
下の手順(a)〜(d)によって調製することができ
る。 (a)シリカゾルとアンモニア水を混合し、硫酸チタン
の硫酸水溶液を添加して沈澱を生じさせ、得られた沈澱
物を洗浄・乾燥し、次いで300〜700℃で焼成す
る。 (b)硫酸チタン水溶液にケイ酸ナトリウム水溶液を添
加し、反応して沈殿を生じさせ、得られた沈殿物を洗浄
・乾燥し、次いで300〜700℃で焼成する。 (c)四塩化チタンの水−アルコール溶液にエチルシリ
ケート(テトラエトキシシラン)を添加し、次いで加水
分解することにより沈殿を生じさせ、得られた沈殿物を
洗浄・乾燥し、次いで300〜700℃で焼成する。 (d)酸化塩化チタン(オキシ三塩化チタン)とエチル
シリケートとの水−アルコール溶液に、アンモニアを加
えて沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、
次いで300〜700℃で焼成する。
As the titanium source used for the preparation of the above Ti-Si composite oxide, any of the above-mentioned inorganic and organic compounds can be used, and as the silicon source, colloidal silica, water glass, fine particle silicon. , An inorganic silicon compound such as silicon tetrachloride and an organic silicon compound such as tetraethyl silicate can be appropriately selected and used. The Ti-Si composite oxide can be prepared, for example, by the following procedures (a) to (d). (A) Silica sol and ammonia water are mixed, a sulfuric acid aqueous solution of titanium sulfate is added to cause precipitation, the obtained precipitate is washed and dried, and then calcined at 300 to 700 ° C. (B) An aqueous solution of sodium silicate is added to an aqueous solution of titanium sulfate to cause a reaction to generate a precipitate, the obtained precipitate is washed and dried, and then calcined at 300 to 700 ° C. (C) Ethyl silicate (tetraethoxysilane) was added to a water-alcohol solution of titanium tetrachloride and then hydrolyzed to generate a precipitate, which was washed and dried, and then 300 to 700 ° C. Bake at. (D) Ammonia is added to a water-alcohol solution of titanium oxide chloride (titanium oxytrichloride) and ethyl silicate to cause precipitation, and the resulting precipitate is washed and dried,
Then, it is baked at 300 to 700 ° C.

【0011】上記の方法のうち、(a)の方法が特に好
ましく、さらに具体的には、ケイ素源とアンモニア水を
モル比が所定量になるように取り、チタン源として酸性
の水溶液またはゾル状態(1〜100g/リットル(チ
タン源はTiO2で換算)の濃度の酸性の水溶液または
ゾル状態)で、10〜100℃に保ちながら、滴下し、
pH2〜10で10分間から3時間保持してチタンおよ
びケイ素の共沈物を生成し、この沈殿物をろ過し、十分
に洗浄後、80〜140℃で10分間から3時間乾燥
し、300〜700℃で1〜10時間焼成することによ
り、目的とするTi−Si複合酸化物を得ることができ
る。
Among the above methods, the method (a) is particularly preferable, and more specifically, a silicon source and ammonia water are taken in a predetermined molar ratio to prepare an acidic aqueous solution or sol state as a titanium source. (1 to 100 g / liter (the titanium source is converted to TiO 2 ) in an acidic aqueous solution or sol state), while maintaining the temperature at 10 to 100 ° C.,
A coprecipitate of titanium and silicon is formed by maintaining the pH of 2 to 10 for 10 minutes to 3 hours, the precipitate is filtered, thoroughly washed, and then dried at 80 to 140 ° C. for 10 minutes to 3 hours, and 300 to By firing at 700 ° C. for 1 to 10 hours, the target Ti—Si composite oxide can be obtained.

【0012】本発明の排ガス処理用触媒は、バナジウム
酸化物を副成分として含有する。バナジウム酸化物の含
有量は、前記主成分のチタンの酸化物(チタン酸化物、
Ti−Si複合酸化物、あるいは、チタン酸化物とTi
−Si複合酸化物の合計)に対して好ましくは0.1〜
25重量%、より好ましくは1〜15重量%である。バ
ナジウム酸化物の含有量が0.1重量%より少ないと添
加効果が十分得られず、他方、25重量%を超えてもそ
れほど大きな活性の向上は認められず、場合によっては
活性が低下することもあるので、好ましくない。本発明
の排ガス処理用触媒は、モリブデン酸化物を副成分とし
て含有する。モリブデン酸化物の含有量は、前記主成分
のチタンの酸化物(チタン酸化物、Ti−Si複合酸化
物、あるいは、チタン酸化物とTi−Si複合酸化物の
合計)に対して好ましくは0.1〜25重量%、より好
ましくは0.1〜20重量%、さらに好ましくは0.5
〜15重量%、特に好ましくは1〜15重量%である。
モリブデン酸化物の含有量が0.1重量%より少ないと
添加効果が十分得られず、他方、25重量%を超えても
それほど大きな活性の向上は認められず、場合によって
は活性が低下することもあるので、好ましくない。
The exhaust gas treating catalyst of the present invention contains vanadium oxide as an auxiliary component. The content of vanadium oxide is the oxide of titanium (titanium oxide,
Ti-Si composite oxide, or titanium oxide and Ti
-Si complex oxide total) is preferably 0.1 to
It is 25% by weight, more preferably 1 to 15% by weight. If the vanadium oxide content is less than 0.1% by weight, the effect of addition is not sufficiently obtained, while if it exceeds 25% by weight, the activity is not significantly improved, and in some cases, the activity decreases. It is also not preferable because it is also present. The exhaust gas treatment catalyst of the present invention contains molybdenum oxide as an auxiliary component. The content of molybdenum oxide is preferably 0. 0 with respect to the titanium oxide as the main component (titanium oxide, Ti-Si composite oxide, or the total of titanium oxide and Ti-Si composite oxide). 1 to 25% by weight, more preferably 0.1 to 20% by weight, still more preferably 0.5.
-15% by weight, particularly preferably 1-15% by weight.
When the content of molybdenum oxide is less than 0.1% by weight, the effect of addition is not sufficiently obtained. On the other hand, when it exceeds 25% by weight, the activity is not significantly improved, and in some cases, the activity decreases. It is also not preferable because it is also present.

【0013】バナジウム酸化物やモリブデン酸化物の供
給原料としては、各々の酸化物自体のほかに、焼成によ
ってこれらの酸化物を生成するものであれば、無機およ
び有機のいずれの化合物も用いることができる。例え
ば、各々の金属を含む水酸化物、アンモニウム塩、シュ
ウ酸塩、ハロゲン化物、硫酸塩、硝酸塩などを用いるこ
とができる。本発明にかかる排ガス処理用触媒は、チタ
ン、モリブデン、および、バナジウムの酸化物を含有す
る触媒であって、X線回折パターンにおいて2θ=2
7.3°にピークを有することを特徴とする。
As the feed material for vanadium oxide and molybdenum oxide, in addition to the respective oxides themselves, both inorganic and organic compounds can be used as long as they produce these oxides by firing. it can. For example, hydroxides, ammonium salts, oxalates, halides, sulfates, nitrates containing each metal can be used. The exhaust gas treatment catalyst according to the present invention is a catalyst containing oxides of titanium, molybdenum, and vanadium, and 2θ = 2 in the X-ray diffraction pattern.
It is characterized by having a peak at 7.3 °.

【0014】X線回折パターンにおける2θ=27.3
°のピークとは、モリブデン酸化物の与えるピーク群の
一つであり、モリブデン酸化物の結晶のX線回折パター
ンを測定すると、2θ=27.3°にピークの一つが現
れる。X線回折パターンにおいて2θ=27.3°にピ
ークを有さない場合は、モリブデン酸化物がチタンの酸
化物中に高分散している状態を表している。さらに、2
θ=27.3°のピーク強度が、アナターゼ型チタンの
ピークの一つである2θ=25.3°のピーク強度の1
%に満たない場合には、モリブデン酸化物がチタンの酸
化物中に十分に高分散していると判断できる。
2θ = 27.3 in X-ray diffraction pattern
The peak of ° is one of a group of peaks given by molybdenum oxide, and when the X-ray diffraction pattern of the molybdenum oxide crystal is measured, one of the peaks appears at 2θ = 27.3 °. When there is no peak at 2θ = 27.3 ° in the X-ray diffraction pattern, the molybdenum oxide is highly dispersed in the titanium oxide. Furthermore, 2
The peak intensity at θ = 27.3 ° is 1 of the peak intensity at 2θ = 25.3 °, which is one of the peaks of anatase type titanium.
When it is less than%, it can be judged that the molybdenum oxide is sufficiently dispersed in the titanium oxide.

【0015】先に述べたように、モリブデン酸化物など
を高分散させて複合酸化物の形態とすることにより、従
来からの問題であった排ガス中のSO2によるチタンの
酸化物やバナジウム酸化物の被毒劣化を抑制できるとと
もに、チタンの酸化物やバナジウム酸化物の本来有する
触媒活性の低下も抑えることができ、このようにモリブ
デン酸化物などが高分散状態にあることの確認として上
記のような手法を行うことが、特開2001−2867
29号公報や特開2001−286733号公報などに
開示されている。本発明者は、従来において高分散状態
での使用が性能向上に寄与すると考えられているモリブ
デン酸化物について、従来の考えとは異なる、適度に凝
集した結晶性モリブデン酸化物の状態での使用を検討し
た。その結果、窒素酸化物の除去性能、排ガス中のダイ
オキシン類等の有機ハロゲン化合物の除去性能、および
耐久性に優れることを見出した。そして、X線回折パタ
ーンにおいて2θ=27.3°にピークを有する場合
に、チタンの酸化物中でモリブデン酸化物が適度に凝集
した結晶性の状態で存在している状況であることが判っ
た。
As described above, by highly dispersing molybdenum oxide or the like in the form of a composite oxide, titanium oxide or vanadium oxide due to SO 2 in exhaust gas, which has been a problem in the past, has been a problem. It is possible to suppress the poisoning deterioration of titanium oxide and also suppress the reduction of the catalytic activity originally possessed by titanium oxide and vanadium oxide. As described above, it is confirmed that molybdenum oxide is highly dispersed. It is disclosed in Japanese Patent Laid-Open No. 2001-2867
No. 29, JP 2001-286733 A, and the like. The inventor of the present invention, regarding molybdenum oxide, which is conventionally considered to be used in a highly dispersed state to contribute to performance improvement, is different from the conventional idea in that it is used in a state of moderately aggregated crystalline molybdenum oxide. investigated. As a result, they have found that they are excellent in the removal performance of nitrogen oxides, the removal performance of organic halogen compounds such as dioxins in exhaust gas, and the durability. Then, when the X-ray diffraction pattern has a peak at 2θ = 27.3 °, it was found that the molybdenum oxide was present in the crystalline state in which the molybdenum oxide was appropriately aggregated in the titanium oxide. .

【0016】さらに、モリブデン酸化物が、より適度に
凝集した結晶性の状態で存在するためには、2θ=2
7.3°のピーク強度が、アナターゼ型チタンのピーク
の一つである2θ=25.3°のピーク強度の1%以上
50%以下であることが好ましい。2θ=27.3°の
ピーク強度が、アナターゼ型チタンのピークの一つであ
る2θ=25.3°のピーク強度の1%に満たない場合
には、モリブデン酸化物の結晶性が不十分であるため、
本発明の効果が発揮できないおそれがある。また、2θ
=27.3°のピーク強度が、アナターゼ型チタンのピ
ークの一つである2θ=25.3°のピーク強度の50
%よりも大きいと、モリブデンが極度に凝集した状態で
あり、結晶性モリブデン粒子の比表面積が低下するた
め、発明の効果が発揮できず、好ましくない。
Further, in order for molybdenum oxide to exist in a more appropriately aggregated crystalline state, 2θ = 2
The peak intensity at 7.3 ° is preferably 1% or more and 50% or less of the peak intensity at 2θ = 25.3 °, which is one of the peaks of anatase titanium. When the peak intensity at 2θ = 27.3 ° is less than 1% of the peak intensity at 2θ = 25.3 °, which is one of the anatase-type titanium peaks, the crystallinity of molybdenum oxide is insufficient. Because there is
The effect of the present invention may not be exhibited. Also, 2θ
= 27.3 ° is 50% of the peak intensity of 2θ = 25.3 °, which is one of the peaks of anatase titanium.
When it is more than%, the molybdenum is extremely agglomerated and the specific surface area of the crystalline molybdenum particles is reduced, so that the effect of the invention cannot be exhibited, which is not preferable.

【0017】本発明の排ガス処理用触媒においては、上
述のように、チタンの酸化物中でモリブデン酸化物が適
度に凝集した結晶性の状態で存在していることが重要で
あり、この状況を別の面、すなわち、モリブデン酸化物
の粒子径に着目し、一定の粒子径範囲のモリブデン酸化
物粒子を含有する状態として捉え、以下の発明をも完成
した。すなわち、本発明の排ガス処理用触媒は、チタ
ン、モリブデン、および、バナジウムの酸化物を含有す
る触媒であって、粒子径が1μm以上20μm以下であ
るモリブデン酸化物粒子を含有することを特徴とする。
前記粒子径は、好ましくは1μm以上18μm以下、よ
り好ましくは1μm以上15μm以下である。
In the exhaust gas treatment catalyst of the present invention, as described above, it is important that the molybdenum oxide is present in the crystalline state in which the molybdenum oxide is appropriately aggregated in the titanium oxide. Focusing on another aspect, that is, the particle diameter of molybdenum oxide, the present invention has been completed as the state of containing molybdenum oxide particles having a certain particle diameter range. That is, the exhaust gas treatment catalyst of the present invention is a catalyst containing oxides of titanium, molybdenum, and vanadium, and is characterized by containing molybdenum oxide particles having a particle diameter of 1 μm or more and 20 μm or less. .
The particle diameter is preferably 1 μm or more and 18 μm or less, more preferably 1 μm or more and 15 μm or less.

【0018】さらに、モリブデン酸化物がより適度に凝
集した状態で存在するためには、粒子径が1μm以上2
0μm以下であるモリブデン酸化物粒子の割合が1%以
上30%以下であることが好ましく、1%以上25%以
下であることがより好ましい。上記のような粒子の状態
を分析する方法としては、特に限定されないが、例え
ば、EPMAやSEM−EDSなどが挙げられる。以
下、EPMA分析を例として説明する。触媒表面のEP
MA分析とは、分析対象触媒中の触媒組成成分の状態を
見るための分析であり、通常一般に行うEPMA分析と
同様の分析方法で行う。EPMA分析によって触媒の状
態を分析する場合には、例えば、任意の触媒表面を少量
切り出したものを測定試料とし、この測定試料における
特定部分について測定を行う方法や、触媒が小さい場合
にはそのまま測定試料とする方法などが挙げられるが、
特に限定されない。本発明にかかる排ガス処理用触媒
は、例えば、この触媒表面の測定面積を380μm2
した場合のEPMA分析で規定できる。もちろん、この
測定面積は条件によって適宜調整すればよい。
Further, in order for the molybdenum oxide to exist in a more appropriately agglomerated state, the particle diameter is 1 μm or more 2
The proportion of molybdenum oxide particles having a particle diameter of 0 μm or less is preferably 1% or more and 30% or less, and more preferably 1% or more and 25% or less. The method of analyzing the state of particles as described above is not particularly limited, but examples thereof include EPMA and SEM-EDS. The EPMA analysis will be described below as an example. EP on catalyst surface
The MA analysis is an analysis for observing the state of the catalyst composition component in the catalyst to be analyzed, and is performed by the same analysis method as the EPMA analysis generally performed. When analyzing the state of the catalyst by EPMA analysis, for example, a method in which a small amount of an arbitrary catalyst surface is cut out is used as a measurement sample, and a specific portion of this measurement sample is measured, or when the catalyst is small, the measurement is performed as it is. Examples include the method of using as a sample,
There is no particular limitation. The exhaust gas treating catalyst according to the present invention can be specified by EPMA analysis when the measured surface area of the catalyst is 380 μm 2 . Of course, this measurement area may be appropriately adjusted depending on the conditions.

【0019】上記モリブデン粒子径およびその割合は、
EPMAチャートから実測した数平均より算出した。上
記範囲を満たさない場合、本発明の効果が十分に達成で
きないので好ましくない。一般に、触媒表面の任意の一
部分において観察される状態は触媒全体の状態をそのま
ま反映していると扱うことができ、例えば、触媒表面を
測定面積380μm2でEPMA分析した場合に、粒子
径が1μm以上20μm以下であるモリブデン酸化物の
前記測定面積中における割合が1%以上30%以下であ
る場合には、触媒全体においても同様の状態であると推
測することができる。なお、任意の数箇所の測定結果を
平均してもよい。したがって、本発明の排ガス処理用触
媒において、例えば、触媒表面を測定面積380μm2
でEPMA分析した場合に、粒子径が1μm以上20μ
m以下であるモリブデン酸化物粒子が観察されること
や、粒子径が1μm以上20μm以下であるモリブデン
酸化物の前記測定面積中における割合が1%以上30%
以下であることは、当該触媒全体にわたる状態を意味し
ている。
The above molybdenum particle size and its ratio are
It was calculated from the number average measured from the EPMA chart. If the above range is not satisfied, the effect of the present invention cannot be sufficiently achieved, which is not preferable. Generally, the state observed on any part of the catalyst surface can be regarded as directly reflecting the state of the entire catalyst. For example, when the catalyst surface is subjected to EPMA analysis with a measurement area of 380 μm 2 , the particle diameter is 1 μm. When the proportion of molybdenum oxide having a thickness of 20 μm or less in the measured area is 1% or more and 30% or less, it can be inferred that the entire catalyst is in the same state. In addition, you may average the measurement result of arbitrary several places. Therefore, in the exhaust gas treating catalyst of the present invention, for example, the measurement surface of the catalyst surface is 380 μm 2
In EPMA analysis, the particle size is 1μm or more and 20μ
The molybdenum oxide particles having a particle size of m or less are observed, and the proportion of the molybdenum oxide having a particle diameter of 1 μm or more and 20 μm or less in the measurement area is from 1% to 30%
The following means the state over the entire catalyst.

【0020】なお、本発明における粒子径とは、球状粒
子の場合は直径を意味するが、一定の直径を持たない場
合(球状でない場合)には最長の径のことを意味する。
本発明の触媒の形状については特に制限はなく、板状、
波板状、網状、ハニカム状、円柱状、円筒状などのうち
から選んだ所望の形状で用いてもよく、またアルミナ、
シリカ、コーディライト、チタニア、ステンレス金属な
どよりなる板状、波板状、網状、ハニカム状、円柱状、
円筒状などのうちから選んだ所望の形状の担体に担持し
て使用してもよい。本発明の触媒は、任意の方法で調製
することができる。以下にその一例を示すが、本発明の
触媒の調製方法はこれらに限定されない。
The particle diameter in the present invention means the diameter in the case of spherical particles, but means the longest diameter when it does not have a constant diameter (when it is not spherical).
The shape of the catalyst of the present invention is not particularly limited, and a plate shape,
It may be used in a desired shape selected from a corrugated plate shape, a net shape, a honeycomb shape, a columnar shape, a cylindrical shape, etc., and alumina,
Plates, corrugated plates, nets, honeycombs, columns made of silica, cordierite, titania, stainless metal, etc.
It may be used by being carried on a carrier having a desired shape selected from a cylindrical shape and the like. The catalyst of the present invention can be prepared by any method. One example thereof will be shown below, but the method for preparing the catalyst of the present invention is not limited thereto.

【0021】本発明の触媒の調製方法としては、たとえ
ば、主成分であるチタンの酸化物の粉体に、バナジウム
酸化物およびモリブデン酸化物の粉体、塩類、またはそ
の溶液を、任意の順序で添加して調製する方法を挙げる
ことができる。また、バナジウム酸化物およびモリブデ
ン酸化物の粉体、塩類、またはその溶液を予め混合した
後に、主成分であるチタンの酸化物の粉体に添加する方
法でもよく、主成分であるチタンの酸化物の成型体に、
バナジウム酸化物およびモリブデン酸化物の塩類の溶液
またはその両方の混合物を含浸担持させる方法でもよ
い。本発明の触媒の別の調製方法としては、たとえば、
主成分であるチタンの酸化物とバナジウム酸化物の混合
物に、モリブデン酸化物を担持させる方法や、主成分で
あるチタンの酸化物とモリブデン酸化物の混合物に、バ
ナジウム酸化物を担持させる方法を挙げることができ
る。
As the method for preparing the catalyst of the present invention, for example, powder of titanium oxide as a main component, powder of vanadium oxide and molybdenum oxide, salts, or a solution thereof may be used in any order. The method of adding and preparing can be mentioned. Alternatively, a method may be used in which powders of vanadium oxide and molybdenum oxide, salts, or a solution thereof are mixed in advance and then added to the powder of titanium oxide which is the main component. In the molded body of
A method of impregnating and supporting a solution of salts of vanadium oxide and molybdenum oxide or a mixture of both of them may be used. As another method for preparing the catalyst of the present invention, for example,
A method of supporting molybdenum oxide on a mixture of titanium oxide and vanadium oxide as the main component, and a method of supporting vanadium oxide on a mixture of titanium oxide and molybdenum oxide as the main component be able to.

【0022】チタン酸化物とTi−Si複合酸化物とを
混合する場合は、従来公知の混合方法にしたがえばよ
く、例えば、ニーダーなどの混合機に、チタン酸化物粉
末とTi−Si複合酸化物粉末とを投入して、撹拌・混
合することができる。本発明の排ガス処理用触媒は、各
種排ガスの処理に用いられる。排ガスの組成については
特に制限はないが、本発明の触媒は、ボイラ、焼却炉、
ガスタービン、ディーゼルエンジンおよび各種工業プロ
セスから排出される窒素酸化物の分解活性に優れるた
め、これら窒素酸化物を含む排ガス処理に好適に用いら
れる。本発明の触媒を用いて脱硝を行うには、本発明の
触媒をアンモニアや尿素などの還元剤の存在下、排ガス
と接触させ、排ガス中の窒素酸化物を還元除去する。こ
の際の条件については、特に制限がなく、この種の反応
に一般的に用いられている条件で実施することができ
る。具体的には、排ガスの種類、性状、要求される窒素
酸化物の分解率などを考慮して適宜決定すればよい。
When the titanium oxide and the Ti-Si composite oxide are mixed, a conventionally known mixing method may be used. For example, a titanium oxide powder and the Ti-Si composite oxide are mixed in a mixer such as a kneader. It is possible to add the product powder and stir and mix. The exhaust gas treating catalyst of the present invention is used for treating various exhaust gases. There is no particular limitation on the composition of the exhaust gas, the catalyst of the present invention, boiler, incinerator,
Since it is excellent in the decomposition activity of nitrogen oxides discharged from gas turbines, diesel engines and various industrial processes, it is suitably used for treating exhaust gas containing these nitrogen oxides. In order to carry out denitration using the catalyst of the present invention, the catalyst of the present invention is brought into contact with exhaust gas in the presence of a reducing agent such as ammonia or urea to reduce and remove nitrogen oxides in the exhaust gas. The conditions at this time are not particularly limited, and the conditions generally used for this type of reaction can be used. Specifically, it may be appropriately determined in consideration of the type and properties of exhaust gas, the required decomposition rate of nitrogen oxides, and the like.

【0023】なお、本発明の触媒を用いて脱硝を行う場
合の排ガスの空間速度は、通常、100〜100000
Hr-1(STP)であり、好ましくは200〜5000
0Hr-1(STP)である。100Hr-1未満では、処
理装置が大きくなりすぎるため非効率となり、一方10
0000Hr-1を超えると分解効率が低下する。また、
その際の温度は、100〜500℃であることが好まし
く、より好ましくは150〜400℃である。また、本
発明の触媒は、産業廃棄物や都市廃棄物を処理する焼却
施設から発生する、有機ハロゲン化合物を含有する排ガ
スの処理にも好適に用いられる。
When performing denitration using the catalyst of the present invention, the space velocity of exhaust gas is usually 100 to 100,000.
Hr -1 (STP), preferably 200 to 5000
It is 0 Hr -1 (STP). If it is less than 100 Hr -1 , the processing equipment becomes too large, resulting in inefficiency.
If it exceeds 0000 Hr -1 , the decomposition efficiency decreases. Also,
The temperature at that time is preferably 100 to 500 ° C, and more preferably 150 to 400 ° C. The catalyst of the present invention is also suitably used for treating exhaust gas containing an organic halogen compound, which is generated from an incineration facility for treating industrial waste or municipal waste.

【0024】本発明の触媒を用いて有機ハロゲン化合物
の処理を行うには、本発明の触媒を、排ガスと接触さ
せ、排ガス中の有機ハロゲン化合物を分解除去する。こ
の際の条件については、特に制限がなく、この種の反応
に一般的に用いられている条件で実施することができ
る。具体的には、排ガスの種類、性状、要求される有機
ハロゲン化合物の分解率などを考慮して適宜決定すれば
よい。アンモニアや尿素などの還元剤を添加することに
より、同時に脱硝することもできる。なお、本発明の触
媒を用いて有機ハロゲン化合物の処理を行う場合の排ガ
スの空間速度は、通常、100〜100000Hr
-1(STP)であり、好ましくは200〜50000H
-1(STP)である。100Hr-1未満では、処理装
置が大きくなりすぎるため非効率となり、一方1000
00Hr-1を超えると分解効率が低下する。また、その
際の温度は、130〜500℃であることが好ましく、
より好ましくは150〜400℃である。
In order to treat the organohalogen compound with the catalyst of the present invention, the catalyst of the present invention is brought into contact with exhaust gas to decompose and remove the organohalogen compound in the exhaust gas. The conditions at this time are not particularly limited, and the conditions generally used for this type of reaction can be used. Specifically, it may be appropriately determined in consideration of the type and properties of the exhaust gas, the required decomposition rate of the organic halogen compound, and the like. It is also possible to denitrate at the same time by adding a reducing agent such as ammonia or urea. The space velocity of the exhaust gas when treating the organic halogen compound using the catalyst of the present invention is usually 100 to 100,000 Hr.
-1 (STP), preferably 200 to 50000H
r −1 (STP). If it is less than 100 Hr -1 , the processing equipment becomes too large, resulting in inefficiency.
If it exceeds 00 Hr -1 , the decomposition efficiency decreases. The temperature at that time is preferably 130 to 500 ° C.,
More preferably, it is 150 to 400 ° C.

【0025】[0025]

【実施例】以下に実施例と比較例によりさらに詳細に本
発明を説明するが、本発明は下記実施例に限定されるも
のではない。 (XRD測定)X線回折パターン測定、すなわちXRD
測定は、X線回折装置(リガクRU−300)を用いて
測定した。 (EPMA分析)EPMA分析は、(株)島津製作所E
PMA−1610を用いて、加重電圧15kV、試料電
流50nAの条件で、MoLαのX線像を倍率4000
倍で測定した。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. (XRD measurement) X-ray diffraction pattern measurement, that is, XRD
The measurement was performed using an X-ray diffractometer (Rigaku RU-300). (EPMA analysis) The EPMA analysis is based on Shimadzu E Co., Ltd.
An X-ray image of MoLα was magnified at a magnification of 4000 using PMA-1610 under the conditions of a weighted voltage of 15 kV and a sample current of 50 nA.
Measured in double.

【0026】(実施例1)市販の酸化チタン粉体(DT
−51(商品名)、ミレニアム社製)20Kgに、メタ
バナジン酸アンモニウム1.47Kg、シュウ酸1.8
Kg、モノエタノールアミン0.4Kgを水5リットル
に溶解させた溶液、および、三酸化モリブデン粉体1.
59Kgを加え、成形助材とともに混合し、ニーダーで
混練りした後、押出成形機でハニカム状に成形した。得
られた成形物を60℃で乾燥後、空気雰囲気下、530
℃で5時間焼成して目的の触媒(1)を得た。この時の
組成は、酸化物換算重量比で、TiO2: MoO3:V2
5=88:7: 5であった。
Example 1 Commercially available titanium oxide powder (DT
-51 (trade name), manufactured by Millennium Co., Ltd.) 20 kg, ammonium metavanadate 1.47 kg, oxalic acid 1.8
Kg, a solution of 0.4 kg of monoethanolamine dissolved in 5 liters of water, and molybdenum trioxide powder 1.
After adding 59 kg, the mixture was mixed with a molding aid, kneaded with a kneader, and then molded into a honeycomb shape by an extrusion molding machine. The obtained molded product was dried at 60 ° C. and then 530 in an air atmosphere.
The target catalyst (1) was obtained by calcination for 5 hours. The composition at this time was TiO 2 : MoO 3 : V 2 in terms of oxide conversion weight ratio.
O 5 = 88: 7: 5.

【0027】触媒(1)についてX線回折装置で分析し
たところ、図1およびその拡大した図2に示すように、
2θ=27.3°にピークが観測された。また、2θ=
27.3°のピーク強度は、アナターゼ型チタンのピー
クの一つである2θ=25.3°のピーク強度の2%で
あった。さらに、触媒(1)の触媒表面を測定面積38
0μm2でEPMA分析したところ、粒子径が1μm以
上20μm以下であるモリブデン酸化物の前記測定面積
中における割合は19%であった。触媒(1)のEPM
A分析により撮影した電子線写真を図7に示す。図7中
の白い部分がモリブデン酸化物を表している。
When the catalyst (1) was analyzed by an X-ray diffractometer, as shown in FIG. 1 and its enlarged view,
A peak was observed at 2θ = 27.3 °. Also, 2θ =
The peak intensity at 27.3 ° was 2% of the peak intensity at 2θ = 25.3 °, which is one of the anatase-type titanium peaks. Furthermore, the measurement area of the catalyst surface of the catalyst (1) is 38
When analyzed by EPMA at 0 μm 2 , the proportion of molybdenum oxide having a particle diameter of 1 μm or more and 20 μm or less in the above-mentioned measurement area was 19%. EPM of catalyst (1)
An electron beam photograph taken by the A analysis is shown in FIG. The white part in FIG. 7 represents molybdenum oxide.

【0028】(実施例2) <Ti−Si複合酸化物粉体の調製>Ti−Si複合酸
化物粉体を次のように調製した。シリカゾル(スノーテ
ックス−30、日産化学社製、SiO2換算で30wt
%含有)10Kgと工業用アンモニア水(25wt%N
3含有)104Kgと水73リットルを混合し、均一
溶液を調製した。この溶液に硫酸チタニルの硫酸溶液
(テイカ社製、TiO2として70g/リットル、H2
4として287g/リットル含有)243リットル
を、攪拌しながら徐々に滴下した。得られたスラリーを
約20時間静置したのち、濾過水洗し、続いて150℃
で1時間乾燥させた。さらに、空気雰囲気下、550℃
で5時間焼成し、さらにハンマーミルを用いて粉砕し、
粉体を得た。このようにして調製したTi−Si複合酸
化物粉体の組成は、TiO2:SiO2=85:15(酸
化物重量比)であった。
(Example 2) <Preparation of Ti-Si composite oxide powder> Ti-Si composite oxide powder was prepared as follows. Silica sol (Snowtex -30, manufactured by Nissan Chemical Industries, Ltd., 30wt in terms of SiO 2
% Content) and industrial ammonia water (25 wt% N)
A uniform solution was prepared by mixing 104 kg of (containing H 3 ) and 73 liters of water. A sulfuric acid solution of titanyl sulfate (manufactured by Teika, 70 g / liter as TiO 2 , H 2 S
243 liters (containing 287 g / liter as O 4 ) were gradually added dropwise with stirring. The obtained slurry is allowed to stand for about 20 hours, then filtered and washed with water, and subsequently at 150 ° C.
And dried for 1 hour. Furthermore, in an air atmosphere, 550 ° C
Bake for 5 hours, then crush with a hammer mill,
A powder was obtained. The composition of the Ti—Si composite oxide powder thus prepared was TiO 2 : SiO 2 = 85: 15 (oxide weight ratio).

【0029】<バナジウム酸化物およびモリブデン酸化
物の添加>上記で調製したTi−Si複合酸化物粉体2
0Kgに、メタバナジン酸アンモニウム1.43Kg、
シュウ酸1.7Kg、モノエタノールアミン0.4Kg
を水5リットルに溶解させた溶液、および、三酸化モリ
ブデン粉体1.11Kgを加え、成形助剤とともに混合
し、ニーダーで混練りした後、押出成形機でハニカム状
に成形した。得られた成形物を60℃で乾燥後、空気雰
囲気下、530℃で5時間焼成して目的の触媒(2)を
得た。この時の組成は、酸化物換算重量比で、Ti−S
i複合酸化物:MoO3:V25=90:5:5であっ
た。
<Addition of vanadium oxide and molybdenum oxide> Ti-Si composite oxide powder 2 prepared above
0 kg, ammonium metavanadate 1.43 kg,
Oxalic acid 1.7 kg, monoethanolamine 0.4 kg
Was dissolved in 5 liters of water, and 1.11 kg of molybdenum trioxide powder was added, mixed with a molding aid, kneaded with a kneader, and then molded into a honeycomb shape by an extrusion molding machine. The obtained molded product was dried at 60 ° C. and then calcined at 530 ° C. for 5 hours in an air atmosphere to obtain the target catalyst (2). The composition at this time was Ti-S in terms of oxide-based weight ratio.
i complex oxide: MoO 3 : V 2 O 5 = 90: 5: 5.

【0030】触媒(2)についてX線回折装置で分析し
たところ、図3に示すように、2θ=27.3°にピー
クが観測された。また、2θ=27.3°のピーク強度
は、アナターゼ型チタンのピークの一つである2θ=2
5.3°のピーク強度の16%であった。さらに、触媒
(2)の触媒表面を測定面積380μm2でEPMA分
析したところ、粒子径が1μm以上20μm以下である
モリブデン酸化物の前記測定面積中における割合は10
%であった。触媒(2)のEPMA分析により撮影した
電子線写真を図8に示す。図8中の白い部分がモリブデ
ン酸化物を表している。
When the catalyst (2) was analyzed by an X-ray diffractometer, a peak was observed at 2θ = 27.3 ° as shown in FIG. Further, the peak intensity at 2θ = 27.3 ° is one of the peaks of anatase type titanium, 2θ = 2.
It was 16% of the peak intensity at 5.3 °. Further, when the catalyst surface of the catalyst (2) was analyzed by EPMA with a measurement area of 380 μm 2 , the ratio of molybdenum oxide having a particle size of 1 μm or more and 20 μm or less in the measurement area was 10 μm.
%Met. An electron beam photograph taken by EPMA analysis of the catalyst (2) is shown in FIG. The white part in FIG. 8 represents molybdenum oxide.

【0031】(実施例3)実施例2で調製したTi−S
i複合酸化物粉体20Kgに、メタバナジン酸アンモニ
ウム1.43Kg、シュウ酸1.7Kg、モノエタノー
ルアミン0.4Kgを水5リットルに溶解させた溶液
と、パラモリブデン酸アンモニウム1.36Kgおよび
モノエタノールアミン0.54Kgを水3リットルに溶
解させた溶液とを加え、成形助剤とともに混合し、ニー
ダーで混練りした後、押出成形機でハニカム状に成形し
た。得られた成形物を60℃で乾燥後、空気雰囲気下、
530℃で5時間焼成して目的の触媒(3)を得た。こ
の時の組成は、酸化物換算重量比で、Ti−Si複合酸
化物:MoO3:V25=90:5:5であった。
(Example 3) Ti-S prepared in Example 2
A solution of 1.43 kg of ammonium metavanadate, 1.7 kg of oxalic acid and 0.4 kg of monoethanolamine dissolved in 5 liters of water, to 20 kg of i-composite oxide powder, 1.36 kg of ammonium paramolybdate and monoethanolamine A solution prepared by dissolving 0.54 Kg in 3 liters of water was added, mixed with a molding aid, kneaded with a kneader, and then molded into a honeycomb shape by an extruder. After drying the obtained molded product at 60 ° C., in an air atmosphere,
The target catalyst (3) was obtained by calcining at 530 ° C. for 5 hours. The composition at this time, in terms of oxide weight ratio, Ti-Si composite oxide: MoO 3: V 2 O 5 = 90: 5: was 5.

【0032】触媒(3)についてX線回折装置で分析し
たところ、図4に示すように、2θ=27.3°にピー
クが観測された。また、2θ=27.3°のピーク強度
は、アナターゼ型チタンのピークの一つである2θ=2
5.3°のピーク強度の23%であった。さらに、触媒
(3)の触媒表面を測定面積380μm2でEPMA分
析したところ、粒子径が1μm以上20μm以下である
モリブデン酸化物の前記測定面積中における割合は6%
であった。触媒(3)のEPMA分析により撮影した電
子線写真を図9に示す。図9中の白い部分がモリブデン
酸化物を表している。
When the catalyst (3) was analyzed by an X-ray diffractometer, a peak was observed at 2θ = 27.3 ° as shown in FIG. Further, the peak intensity at 2θ = 27.3 ° is one of the peaks of anatase type titanium, 2θ = 2.
It was 23% of the peak intensity at 5.3 °. Furthermore, when the catalyst surface of the catalyst (3) was subjected to EPMA analysis with a measurement area of 380 μm 2 , the proportion of molybdenum oxide having a particle diameter of 1 μm or more and 20 μm or less in the measurement area was 6%.
Met. An electron beam photograph taken by EPMA analysis of the catalyst (3) is shown in FIG. The white part in FIG. 9 represents molybdenum oxide.

【0033】(比較例1)市販の酸化チタン粉体(DT
−51(商品名)、ミレニアム社製)20Kgに、メタ
バナジン酸アンモニウム1.43Kg、シュウ酸1.7
Kg、モノエタノールアミン0.4Kgを水5リットル
に溶解させた溶液と、パラモリブデン酸アンモニウム
1.36Kgおよびモノエタノールアミン0.54Kg
を水3リットルに溶解させた溶液とを加え、成形助剤と
ともに混合し、ニーダーで混練りした後、押出成形機で
ハニカム状に成形した。得られた成形物を60℃で乾燥
後、空気雰囲気下、350℃で5時間焼成して目的の触
媒(4)を得た。この時の組成は、酸化物換算重量比
で、TiO2:MoO3:V25=90:5:5であっ
た。
Comparative Example 1 Commercially available titanium oxide powder (DT
-51 (trade name), manufactured by Millennium Co., Ltd.) 20 kg, ammonium metavanadate 1.43 kg, oxalic acid 1.7
Kg, a solution of 0.4 kg of monoethanolamine dissolved in 5 liters of water, 1.36 kg of ammonium paramolybdate and 0.54 kg of monoethanolamine
Was mixed with 3 liters of water, mixed with a molding aid, kneaded with a kneader, and then molded into a honeycomb shape by an extruder. The obtained molded product was dried at 60 ° C and then calcined at 350 ° C for 5 hours in an air atmosphere to obtain the target catalyst (4). The composition at this time was TiO 2 : MoO 3 : V 2 O 5 = 90: 5: 5 in terms of oxide conversion weight ratio.

【0034】触媒(4)についてX線回折装置で分析し
たところ、図5に示すように、2θ=27.3°にピー
クは観測されなかった。さらに、触媒(4)の触媒表面
を測定面積380μm2でEPMA分析したところ、粒
子径が1μm以上20μm以下であるモリブデン酸化物
の前記測定面積中における割合は0%であった。触媒
(4)のEPMA分析により撮影した電子線写真を図1
0に示す。図10中の白い部分がモリブデン酸化物を表
している。 (比較例2)実施例2で調製したTi−Si複合酸化物
粉体20Kgに、メタバナジン酸アンモニウム1.40
Kg、シュウ酸1.7Kg、モノエタノールアミン0.
4Kgを水5リットルに溶解させた溶液と、パラモリブ
デン酸アンモニウム0.8Kgおよびモノエタノールア
ミン0.32Kgを水3リットルに溶解させた溶液とを
加え、成形助剤とともに混合し、ニーダーで混練りした
後、押出成形機でハニカム状に成形した。得られた成形
物を60℃で乾燥後、空気雰囲気下、350℃で5時間
焼成して目的の触媒(5)を得た。この時の組成は、酸
化物換算重量比で、Ti−Si複合酸化物:MoO3
25=92:3:5であった。
When the catalyst (4) was analyzed by an X-ray diffractometer, as shown in FIG. 5, no peak was observed at 2θ = 27.3 °. Furthermore, when the catalyst surface of the catalyst (4) was subjected to EPMA analysis with a measurement area of 380 μm 2 , the proportion of molybdenum oxide having a particle size of 1 μm or more and 20 μm or less in the measurement area was 0%. An electron beam photograph taken by EPMA analysis of the catalyst (4) is shown in FIG.
It shows in 0. The white part in FIG. 10 represents molybdenum oxide. (Comparative Example 2) Ammonium metavanadate 1.40 was added to 20 kg of the Ti-Si composite oxide powder prepared in Example 2.
Kg, oxalic acid 1.7 Kg, monoethanolamine 0.
A solution prepared by dissolving 4 kg in 5 liters of water and a solution prepared by dissolving 0.8 kg of ammonium paramolybdate and 0.32 kg of monoethanolamine in 3 liters of water were added, mixed with a molding aid, and kneaded with a kneader. After that, it was formed into a honeycomb shape by an extruder. The obtained molded product was dried at 60 ° C. and then calcined in an air atmosphere at 350 ° C. for 5 hours to obtain the target catalyst (5). The composition at this time, in terms of oxide weight ratio, Ti-Si composite oxide: MoO 3:
V 2 O 5 = 92: 3: 5.

【0035】触媒(5)についてX線回折装置で分析し
たところ、図6に示すように、2θ=27.3°にピー
クは観測されなかった。さらに、触媒(5)の触媒表面
を測定面積380μm2でEPMA分析したところ、粒
子径が1μm以上20μm以下であるモリブデン酸化物
の前記測定面積中における割合は0%であった。触媒
(5)のEPMA分析により撮影した電子線写真を図1
1に示す。図11中の白い部分がモリブデン酸化物を表
している。 (脱硝性能試験およびダイオキシン類分解試験)実施例
1〜3および比較例1、2で得られた触媒(1)〜
(5)を用いて下記の条件で脱硝性能試験およびダイオ
キシン類分解試験を行った。
When the catalyst (5) was analyzed by an X-ray diffractometer, no peak was observed at 2θ = 27.3 ° as shown in FIG. Further, when the catalyst surface of the catalyst (5) was subjected to EPMA analysis with a measurement area of 380 μm 2 , the proportion of molybdenum oxide having a particle diameter of 1 μm or more and 20 μm or less in the measurement area was 0%. An electron beam photograph taken by EPMA analysis of the catalyst (5) is shown in FIG.
Shown in 1. The white part in FIG. 11 represents molybdenum oxide. (Denitration performance test and dioxins decomposition test) Catalysts (1) to Examples 1 to 3 and Comparative Examples 1 and 2
Using (5), a denitration performance test and a dioxin decomposition test were conducted under the following conditions.

【0036】脱硝率およびダイオキシン類分解率は下記
の式に従って求めた。 脱硝率(%)=[(反応器入口NOx濃度)−(反応器
出口NOx濃度)]÷(反応器入口NOx濃度)×10
0 ダイオキシン類分解率(%)=[(反応器入口ダイオキ
シン類濃度)−(反応器出口ダイオキシン類濃度)]÷
(反応器入口ダイオキシン類濃度)×100 <脱硝反応ガス組成> NOx:100ppm SO2:20ppm NH3:100ppm O2:10% H2O:15% N2:バランス ガス温度:240℃ 空間速度:19000Hr-1 <ダイオキシン類分解反応ガス組成> ダイオキシン類濃度:約1ng O2:15% H2O:12% SO2:20ppm 煤塵:100mg/Nm32:バランス ガス温度:200℃ 空間速度:2500Hr-1 脱硝性能試験の結果を表1に、ダイオキシン類分解試験
の結果を表2に示した。
The denitration rate and the decomposition rate of dioxins were determined according to the following formulas. Denitration rate (%) = [(reactor inlet NOx concentration)-(reactor outlet NOx concentration)] / (reactor inlet NOx concentration) x 10
0 Decomposition rate of dioxin (%) = [(reactor inlet dioxin concentration)-(reactor outlet dioxin concentration)] ÷
(Reactor inlet dioxin concentration) × 100 <Denitration reaction gas composition> NOx: 100 ppm SO 2 : 20 ppm NH 3 : 100 ppm O 2 : 10% H 2 O: 15% N 2 : Balance gas temperature: 240 ° C. Space velocity: 19000Hr -1 <Dioxin decomposition reaction gas composition> Dioxin concentration: Approximately 1 ng O 2 : 15% H 2 O: 12% SO 2 : 20 ppm Dust: 100 mg / Nm 3 N 2 : Balance gas temperature: 200 ° C Space velocity: The results of the 2500 Hr -1 denitration performance test are shown in Table 1, and the results of the dioxins decomposition test are shown in Table 2.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】本発明によると、窒素酸化物の除去性
能、排ガス中のダイオキシン類等の有機ハロゲン化合物
の除去性能、および耐久性に優れた排ガス処理用触媒を
提供することができる。そのため、脱硝触媒として用い
た場合には、脱硝性能が向上する。また、有機ハロゲン
化合物の除去用触媒として用いた場合には、排ガス中の
ダイオキシン類等の有機ハロゲン化合物を効率良く除去
することができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to provide a catalyst for exhaust gas treatment which is excellent in the removal performance of nitrogen oxides, the removal performance of organic halogen compounds such as dioxins in exhaust gas, and the durability. Therefore, when used as a denitration catalyst, the denitration performance is improved. When used as a catalyst for removing organic halogen compounds, organic halogen compounds such as dioxins in exhaust gas can be efficiently removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で調製した触媒(1)のX線回折パ
ターン図
FIG. 1 is an X-ray diffraction pattern diagram of the catalyst (1) prepared in Example 1.

【図2】 実施例1で調製した触媒(1)のX線回折パ
ターンの拡大図
FIG. 2 is an enlarged view of an X-ray diffraction pattern of the catalyst (1) prepared in Example 1.

【図3】 実施例2で調製した触媒(2)のX線回折パ
ターン図
FIG. 3 is an X-ray diffraction pattern diagram of the catalyst (2) prepared in Example 2.

【図4】 実施例3で調製した触媒(3)のX線回折パ
ターン図
FIG. 4 is an X-ray diffraction pattern diagram of the catalyst (3) prepared in Example 3.

【図5】 比較例1で調製した触媒(4)のX線回折パ
ターン図
FIG. 5 is an X-ray diffraction pattern diagram of the catalyst (4) prepared in Comparative Example 1.

【図6】 比較例2で調製した触媒(5)のX線回折パ
ターン図
FIG. 6 is an X-ray diffraction pattern diagram of the catalyst (5) prepared in Comparative Example 2.

【図7】 実施例1で調製した触媒(1)のEPMA分
析による電子線写真
FIG. 7 is an electron micrograph of the catalyst (1) prepared in Example 1 by EPMA analysis.

【図8】 実施例2で調製した触媒(2)のEPMA分
析による電子線写真
FIG. 8 is an electron micrograph of the catalyst (2) prepared in Example 2 by EPMA analysis.

【図9】 実施例3で調製した触媒(3)のEPMA分
析による電子線写真
9 is an electron micrograph of the catalyst (3) prepared in Example 3 by EPMA analysis.

【図10】 比較例1で調製した触媒(4)のEPMA
分析による電子線写真
FIG. 10: EPMA of catalyst (4) prepared in Comparative Example 1
Electron radiograph by analysis

【図11】 比較例2で調製した触媒(5)のEPMA
分析による電子線写真
11: EPMA of catalyst (5) prepared in Comparative Example 2 FIG.
Electron radiograph by analysis

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉島 昇 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 Fターム(参考) 4D048 AA06 AA11 AB01 AB03 AB07 AC03 AC04 BA06X BA07X BA23X BA26X BA41X BA42X BB17 4G069 AA02 AA08 BA04A BA04B BB04A BB04B BB06A BB06B BC50A BC50B BC54A BC54B BC59A BC59B BD05A BD05B CA02 CA08 CA10 CA13 CA19 DA06 EA19 EB18X EC22X EC22Y EC25 EC27 FA01 FB09 FB30 FB67 4G072 AA37 GG03 HH18 JJ30 MM21 MM22 MM23 MM36 UU15    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Noboru Sugishima             Hyogo prefecture Himeji city             1 Within Nippon Shokubai Co., Ltd. F-term (reference) 4D048 AA06 AA11 AB01 AB03 AB07                       AC03 AC04 BA06X BA07X                       BA23X BA26X BA41X BA42X                       BB17                 4G069 AA02 AA08 BA04A BA04B                       BB04A BB04B BB06A BB06B                       BC50A BC50B BC54A BC54B                       BC59A BC59B BD05A BD05B                       CA02 CA08 CA10 CA13 CA19                       DA06 EA19 EB18X EC22X                       EC22Y EC25 EC27 FA01                       FB09 FB30 FB67                 4G072 AA37 GG03 HH18 JJ30 MM21                       MM22 MM23 MM36 UU15

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】チタン、モリブデン、および、バナジウム
の酸化物を含有する触媒であって、 X線回折パターンにおいて2θ=27.3°にピークを
有することを特徴とする、排ガス処理用触媒。
1. A catalyst for treating exhaust gas, which is a catalyst containing oxides of titanium, molybdenum, and vanadium, which has a peak at 2θ = 27.3 ° in an X-ray diffraction pattern.
【請求項2】前記2θ=27.3°のピーク強度が、ア
ナターゼ型チタンのピークの一つである2θ=25.3
°のピーク強度の1%以上50%以下である、請求項1
に記載の排ガス処理用触媒。
2. The peak intensity at 2θ = 27.3 ° is one of the peaks of anatase type titanium, 2θ = 25.3.
It is 1% or more and 50% or less of the peak intensity of °.
The exhaust gas treatment catalyst according to [4].
【請求項3】チタン、モリブデン、および、バナジウム
の酸化物を含有する触媒であって、 粒子径が1μm以上20μm以下であるモリブデン酸化
物粒子を含有することを特徴とする、排ガス処理用触
媒。
3. A catalyst for exhaust gas treatment, comprising a catalyst containing oxides of titanium, molybdenum and vanadium, characterized by containing molybdenum oxide particles having a particle size of 1 μm or more and 20 μm or less.
【請求項4】請求項1から3までのいずれかに記載の触
媒を用いて窒素酸化物を含む排ガスを処理する、排ガス
処理方法。
4. A method for treating exhaust gas, which comprises treating the exhaust gas containing nitrogen oxides with the catalyst according to any one of claims 1 to 3.
【請求項5】請求項1から3までのいずれかに記載の触
媒を用いて有機ハロゲン化合物を含む排ガスを処理す
る、排ガス処理方法。
5. A method for treating exhaust gas, which comprises treating an exhaust gas containing an organic halogen compound using the catalyst according to any one of claims 1 to 3.
JP2001400820A 2001-12-28 2001-12-28 Exhaust gas treatment catalyst and exhaust gas treatment method Expired - Fee Related JP4002437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400820A JP4002437B2 (en) 2001-12-28 2001-12-28 Exhaust gas treatment catalyst and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400820A JP4002437B2 (en) 2001-12-28 2001-12-28 Exhaust gas treatment catalyst and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2003200046A true JP2003200046A (en) 2003-07-15
JP4002437B2 JP4002437B2 (en) 2007-10-31

Family

ID=27639954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400820A Expired - Fee Related JP4002437B2 (en) 2001-12-28 2001-12-28 Exhaust gas treatment catalyst and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP4002437B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501515A (en) * 2004-06-09 2008-01-24 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing multi-metal oxide material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501515A (en) * 2004-06-09 2008-01-24 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing multi-metal oxide material

Also Published As

Publication number Publication date
JP4002437B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP3648125B2 (en) Catalyst for removing organic halogen compound and method for removing organic halogen compound
JPWO2006132097A1 (en) Titanium oxide, exhaust gas treatment catalyst, and exhaust gas purification method
JP4113090B2 (en) Exhaust gas treatment method
JP4098703B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
EP1138379B1 (en) A titanium, molybdenum and vanadium containing catalyst for purification of exhaust gases, preparation and use thereof
JP2006320803A (en) Catalyst and method for treating exhaust gas
JP2001286734A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JP4002437B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JP3860734B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3893014B2 (en) Exhaust gas treatment catalyst, its production method and exhaust gas treatment method
JP3739659B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method, and exhaust gas treatment catalyst manufacturing method
JP3785310B2 (en) Organohalogen compound decomposition catalyst, production method thereof, and use
JP2006116537A (en) Method for treating waste gas
JP3868246B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3920612B2 (en) Exhaust gas treatment method
JP4283092B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2004081995A (en) Denitration catalyst and denitration method using the same
JP3893020B2 (en) Catalyst for removing organohalogen compounds and method for treating exhaust gas using the same
JP2001187320A (en) Waste gas treating method
JP2002102696A (en) Denitration catalyst and processing method for exhaust gas using this
JP5038006B2 (en) Exhaust gas treatment catalyst, method for producing the catalyst, and method for treating organic halogen compounds in exhaust gas using the catalyst
JP2001113169A (en) Exhaust gas treating catalyst and method for treating exhaust gas
JP2004097914A (en) Catalyst for removal of organic halogen compound and method for removing organic halogen compound
JP2001187318A (en) Waste gas treating method and catalyst carrying ceramic filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees