JP2003199810A - Functional adsorbent and its production method - Google Patents

Functional adsorbent and its production method

Info

Publication number
JP2003199810A
JP2003199810A JP2002284574A JP2002284574A JP2003199810A JP 2003199810 A JP2003199810 A JP 2003199810A JP 2002284574 A JP2002284574 A JP 2002284574A JP 2002284574 A JP2002284574 A JP 2002284574A JP 2003199810 A JP2003199810 A JP 2003199810A
Authority
JP
Japan
Prior art keywords
titania
functional adsorbent
titania particles
light
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002284574A
Other languages
Japanese (ja)
Other versions
JP3837517B2 (en
Inventor
Hiroshi Tougeda
博史 垰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002284574A priority Critical patent/JP3837517B2/en
Publication of JP2003199810A publication Critical patent/JP2003199810A/en
Application granted granted Critical
Publication of JP3837517B2 publication Critical patent/JP3837517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel functional adsorbent and to provide a method for producing the same and an environmental purifying product. <P>SOLUTION: The functional adsorbent comprises coating titania particles partly covered on surfaces of the particles with ceramics inactive to a light and carried to a porous material. The method for manufacturing the functional adsorbent comprises the steps of dispersing the coating titania particles obtained by partly covering on the surfaces of the particles with the ceramics inactive to the light in a solvent, then coating the particles on the porous material and drying the coated material. The environmental purifying product comprises the functional adsorbent comprising the coating titania particles obtained by partly covering the surfaces of the particles with the ceramics inactive to the light and carrying to the porous material. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、物質の吸着と分解
作用を有する新規機能性吸着剤に関するものであり、更
に詳しくは、悪臭や空気中の有害物質を吸着するだけで
なく、これらを光触媒作用により分解・無害化して除去
する作用を有する新しい機能性吸着剤及びその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel functional adsorbent having a substance-adsorbing and decomposing action, and more specifically, it not only adsorbs a foul odor or a harmful substance in the air, but also a photocatalyst for these substances. The present invention relates to a new functional adsorbent having an action of decomposing / detoxifying and removing by action, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、居住空間や作業空間での悪臭や揮
発性有機化学物質、自動車の排気ガスなどの有害物質に
よる汚染が深刻な問題となっている。そして、それらに
よって引き起こされるといわれているシックハウス症候
群や化学物質過敏症が深刻な問題となっている。
2. Description of the Related Art In recent years, there has been a serious problem in the living space and the working space due to bad odors, volatile organic chemicals, and pollutants such as automobile exhaust gas. The sick house syndrome and chemical hypersensitivity, which are said to be caused by them, have become serious problems.

【0003】従来、悪臭防止方法あるいは空気中の有害
物質の除去方法として、酸やアルカリなどの吸収液や吸
着剤などに吸収あるいは吸着させる方法がよく行われて
いるが、これらの方法は、その廃液や使用済みの吸着剤
の処理が問題であり、二次公害を起こす恐れがある。ま
た、芳香剤を使用して悪臭を隠ぺいする方法もあるが、
芳香剤の臭いが食品に移って芳香剤自体の臭いによる被
害が出る恐れがあるなどの欠点を持っている(非特許文
献1参照)。
Conventionally, as a method for preventing a bad odor or a method for removing harmful substances in the air, a method of absorbing or adsorbing to an absorbent such as an acid or an alkali or an adsorbent has been often carried out. Disposal of waste liquid or used adsorbent is a problem and may cause secondary pollution. There is also a method of using a fragrance to mask the bad smell,
It has the drawback that the odor of the fragrance may be transferred to the food and may be damaged by the odor of the fragrance itself (see Non-Patent Document 1).

【0004】チタニアに光を照射すると、強い還元作用
を持つ電子と強い酸化作用を持つ正孔が生成し、接触し
てくる分子種を酸化還元作用により分解する。チタニア
のこのような作用、すなわち、光触媒作用を利用するこ
とによって、水中に溶解している有機溶剤、農薬や界面
活性剤などの環境汚染物質、空気中の有害物質や悪臭な
どの分解・除去を行うことができる。この方法は、チタ
ニアと光を利用するだけで繰り返し使用でき、その反応
生成物は無害な炭酸ガスなどであり、微生物を用いる生
物処理などの方法に比べて、温度、pH、ガス雰囲気、
毒性などの反応条件の制約が少なく、しかも、生物処理
などの方法では処理しにくい有機ハロゲン化合物のよう
なものでも容易に分解・除去できるという長所を持って
いる。
When the titania is irradiated with light, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and the molecular species coming into contact with each other are decomposed by the redox action. By utilizing this kind of action of titania, that is, the photocatalytic action, decomposition and removal of organic solvents dissolved in water, environmental pollutants such as pesticides and surfactants, harmful substances in the air and foul odors etc. It can be carried out. This method can be repeatedly used only by utilizing titania and light, the reaction product is harmless carbon dioxide gas, etc., compared to methods such as biological treatment using microorganisms, temperature, pH, gas atmosphere,
It has the advantage that there are few restrictions on reaction conditions such as toxicity, and that even organic halogen compounds, which are difficult to treat by methods such as biological treatment, can be easily decomposed and removed.

【0005】しかし、これまで行われてきたチタニアか
らなる光触媒物質であるチタニア光触媒による有機物の
分解・除去の研究では、光触媒として、チタニアが粉末
状で用いられていた(非特許文献2〜4参照)。そのた
めに、その取扱いや使用方法が難しく、実用化が困難で
あるという問題があった。そこで、該チタニア光触媒を
担体となる活性炭などにコートし、担持させることが試
みられたが、その強力な光触媒作用によって有害有機物
や環境汚染物質のみならず、担体である該活性炭も分解
してしまうため、繰り返しの使用や長期間の使用が不可
能であった。また、該チタニア光触媒と該活性炭とを混
合したものも開発されているが、その場合には、該チタ
ニア光触媒と該活性炭とが近接していないことから、該
活性炭が吸着した物質を該チタニア光触媒が分解するこ
とができないため、その性能は低いものであった。
However, in the research on decomposition / removal of organic substances by a titania photocatalyst, which is a photocatalytic substance composed of titania, which has been conducted so far, titania was used in powder form as a photocatalyst (see Non-Patent Documents 2 to 4). ). Therefore, there is a problem that it is difficult to handle and use, and it is difficult to put it into practical use. Therefore, it has been attempted to coat the activated carbon as a carrier with the titania photocatalyst and to carry it, but the strong photocatalytic action decomposes not only harmful organic substances and environmental pollutants but also the activated carbon as a carrier. Therefore, repeated use and long-term use were impossible. Also, a mixture of the titania photocatalyst and the activated carbon has been developed. In that case, since the titania photocatalyst and the activated carbon are not in close proximity to each other, the substance adsorbed by the activated carbon is treated as the titania photocatalyst. Was not able to be decomposed, so its performance was low.

【0006】[0006]

【非特許文献1】西田耕之助、平凡社「大百科事典」1
巻、p136(1984)
[Non-patent document 1] Konosuke Nishida, Heibonsha "Large Encyclopedia" 1
Volume, p136 (1984)

【非特許文献2】A. L. Pruden and D. F. Ollis, Jour
nal of Catalysis, Vol.82, 404 (1983)
[Non-Patent Document 2] AL Pruden and DF Ollis, Jour
nal of Catalysis, Vol.82, 404 (1983)

【非特許文献3】H. Hidaka, H. Jou, K. Nohara, J. Z
hao, Chemosphere, Vol.25, 1589 (1992)
[Non-Patent Document 3] H. Hidaka, H. Jou, K. Nohara, J. Z
hao, Chemosphere, Vol.25, 1589 (1992)

【非特許文献4】久永輝明、原田賢二、田中啓一、工業
用水、第379号、12(1990)
[Non-Patent Document 4] Teruaki Kuninaga, Kenji Harada, Keiichi Tanaka, Industrial Water, No. 379, 12 (1990).

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の点に
鑑みて、新たに開発されたものであって、担体の多孔質
材料を分解せず、繰り返しの使用ができる、高耐久性
で、かつ悪臭や空気中の有害物質を吸着するだけでな
く、これらを分解・無害化して除去し、環境の浄化を効
果的、かつ経済的に、安全に行うことができる優れた特
性を有する新規機能性吸着剤及びその製造方法を提供す
ることを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention has been newly developed in view of the above points, and it has a high durability and can be used repeatedly without decomposing the porous material of the carrier. In addition to adsorbing foul odors and harmful substances in the air, they can be decomposed / detoxified and removed to effectively and economically purify the environment. It is an object of the present invention to provide a functional adsorbent and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段からなる。 (1)チタニア粒子の表面を、光に不活性なセラミック
スで部分的に被覆してなる被覆チタニア粒子を、多孔質
材料に担持したことを特徴とする機能性吸着剤。 (2)光に不活性なセラミックスが、アルミナ、シリ
カ、ジルコニア、チタン酸ジルコニウム、マグネシア、
カルシア、リン酸カルシウム、リン酸チタン、酸化鉄、
フェライト、石膏、及び非晶質のチタニアの内から選ば
れた少なくとも一種のセラミックスであることを特徴と
する前記(1)記載の機能性吸着剤。 (3)チタニア粒子が、白金、ロジウム、ルテニウム、
パラジウム、銀、銅、鉄、及び亜鉛の内から選ばれた少
なくとも一種の金属を、該チタニア粒子の表面に担持し
てなるチタニア粒子であることを特徴とする前記(1)
記載の機能性吸着剤。 (4)多孔質材料が、活性炭、発泡プラスチックス、ガ
ラス繊維成形体、合成繊維成形体、FRP成形体、プラ
スチックス−無機複合成形体、繊維成形体、活性アルミ
ナ、ゼオライト、ガラス多孔体、金属多孔体、セラミッ
クス多孔体、粘土成形体、及び無機層状化合物成形体の
内から選ばれた少なくとも一種であることを特徴とする
前記(1)記載の機能性吸着剤。 (5)チタニア粒子の結晶形が、アナターゼ又はブルッ
カイトであることを特徴とする前記(1)又は(3)記
載の機能性吸着剤。 (6)チタニア粒子の表面を、光に不活性なセラミック
スで部分的に被覆してなる被覆チタニア粒子を、溶媒に
分散した後、多孔質材料に被覆し、乾燥することを特徴
とする機能性吸着剤の製造方法。 (7)光に不活性なセラミックスが、アルミナ、シリ
カ、ジルコニア、チタン酸ジルコニウム、マグネシア、
カルシア、リン酸カルシウム、リン酸チタン、酸化鉄、
フェライト、石膏、及び非晶質のチタニアの内から選ば
れた少なくとも一種のセラミックスであることを特徴と
する前記(6)記載の機能性吸着剤の製造方法。 (8)チタニア粒子が、白金、ロジウム、ルテニウム、
パラジウム、銀、銅、鉄、及び亜鉛の内から選ばれた少
なくとも一種の金属を該チタニア粒子表面に担持したも
のであることを特徴とする前記(6)記載の機能性吸着
剤の製造方法。 (9)多孔質材料が、活性炭、発泡プラスチックス、繊
維成形体、活性アルミナ、ゼオライト、ガラス多孔体、
金属多孔体、セラミックス多孔体、粘土成形体、及び無
機層状化合物成形体の内から選ばれた少なくとも一種で
あることを特徴とする前記(6)記載の機能性吸着剤の
製造方法。 (10)チタニア粒子の結晶形が、アナターゼ又はブル
ッカイトであることを特徴とする前記(6)又は(8)
記載の機能性吸着剤の製造方法。 (11)チタニア粒子の表面を、光に不活性なセラミッ
クスで部分的に被覆してなる被覆チタニア粒子を、多孔
質材料に担持せしめた機能性吸着剤を含有することを特
徴とする環境浄化製品。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) A functional adsorbent characterized in that coated titania particles obtained by partially coating the surface of titania particles with light-inert ceramics are carried on a porous material. (2) Light-inert ceramics include alumina, silica, zirconia, zirconium titanate, magnesia,
Calcia, calcium phosphate, titanium phosphate, iron oxide,
The functional adsorbent according to (1) above, which is at least one kind of ceramics selected from ferrite, gypsum, and amorphous titania. (3) The titania particles are platinum, rhodium, ruthenium,
(1) The titania particles in which at least one metal selected from palladium, silver, copper, iron, and zinc is carried on the surface of the titania particles.
The functional adsorbent described. (4) The porous material is activated carbon, foamed plastics, glass fiber molded body, synthetic fiber molded body, FRP molded body, plastics-inorganic composite molded body, fiber molded body, activated alumina, zeolite, glass porous body, metal The functional adsorbent according to (1) above, which is at least one selected from a porous body, a ceramic porous body, a clay molded body, and an inorganic layered compound molded body. (5) The functional adsorbent according to (1) or (3) above, wherein the crystal form of the titania particles is anatase or brookite. (6) Functionality characterized in that the coated titania particles obtained by partially coating the surface of the titania particles with a ceramic inert to light are dispersed in a solvent, then coated on a porous material, and dried. Method for producing adsorbent. (7) Light-inert ceramics include alumina, silica, zirconia, zirconium titanate, magnesia,
Calcia, calcium phosphate, titanium phosphate, iron oxide,
The method for producing a functional adsorbent according to (6) above, which is at least one ceramic selected from ferrite, gypsum, and amorphous titania. (8) The titania particles are platinum, rhodium, ruthenium,
The method for producing a functional adsorbent according to (6) above, wherein at least one metal selected from palladium, silver, copper, iron and zinc is supported on the surface of the titania particles. (9) The porous material is activated carbon, foamed plastics, fiber molding, activated alumina, zeolite, glass porous body,
The method for producing a functional adsorbent according to (6) above, which is at least one selected from a porous metal body, a porous ceramic body, a clay molded body, and an inorganic layered compound molded body. (10) The crystalline form of titania particles is anatase or brookite, (6) or (8)
A method for producing the described functional adsorbent. (11) An environmental purification product comprising a functional adsorbent in which coated titania particles obtained by partially covering the surface of titania particles with a ceramic inert to light are supported on a porous material. .

【0009】[0009]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明において、チタニア粒子としては、チ
タンと酸素とが化学量論比のチタニアだけでなく、該チ
タンと酸素とが不定比のチタニア、酸素欠陥型のチタニ
ア、部分的に酸素を窒化したチタニア、金属イオンをド
ープしたチタニアなどが好適に用いられる。チタニアの
結晶形は、光触媒として高性能である点でアナターゼや
ブルッカイトであることが好ましく、ルチル又は非晶質
(アモルファス)のものは、光触媒としての活性が低い
ため、好ましくない。また、チタニアの表面に、白金、
ロジウム、ルテニウム、パラジウム、銀、銅、亜鉛など
の金属が担持されたものは好適であり、それによって、
化学物質の酸化還元分解速度が更に大きくなり、光触媒
作用も大きくなる利点がある。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail. In the present invention, as the titania particles, not only titania having a stoichiometric ratio of titanium and oxygen, titania having a nonstoichiometric ratio of titanium and oxygen, titania of oxygen deficiency type, titania in which oxygen is partially nitrided, Titania or the like doped with metal ions is preferably used. The crystal form of titania is preferably anatase or brookite in terms of high performance as a photocatalyst, and rutile or amorphous one is not preferable because of low activity as a photocatalyst. In addition, platinum on the surface of titania,
Those loaded with metals such as rhodium, ruthenium, palladium, silver, copper and zinc are preferred, whereby
There are advantages that the redox decomposition rate of the chemical substance is further increased and the photocatalytic action is also increased.

【0010】本発明で用いられる光に不活性なセラミッ
クスとしては、アルミナ、シリカ、ジルコニア、チタン
酸ジルコニウム、マグネシア、カルシア、リン酸カルシ
ウム、リン酸チタン、酸化鉄、フェライト、石膏、非晶
質のチタニアなどが好適なものとして例示されるが、こ
れらと同効のものであれば同様に使用することができ
る。本発明において、光に不活性なセラミックスとは、
活性が低く実質的に光触媒として不活性のものをも含む
ものとして定義される。
Examples of the light-inert ceramics used in the present invention include alumina, silica, zirconia, zirconium titanate, magnesia, calcia, calcium phosphate, titanium phosphate, iron oxide, ferrite, gypsum, and amorphous titania. Are exemplified as preferable ones, but those having the same effect as these can be used similarly. In the present invention, the ceramics inert to light are
It is defined to include those having low activity and being substantially inactive as a photocatalyst.

【0011】本発明で用いられる多孔質材料としては、
活性炭、発泡プラスチックス、ガラス繊維成形体、合成
繊維成形体、FRP成形体、プラスチックス−無機複合
成形体、繊維成形体、活性アルミナ、ゼオライト、ガラ
ス多孔体、金属多孔体、セラミックス多孔体、粘土成形
体、無機層状化合物成形体などが好適なものとして例示
されるが、これらと同効のものであれば同様に使用する
ことができる。該ガラス多孔体、金属多孔体、セラミッ
クス多孔体、粘土成形体、無機層状化合物成形体など
は、有機バインダーを用いて成形したものでもよい。
The porous material used in the present invention includes:
Activated carbon, foamed plastics, glass fiber moldings, synthetic fiber moldings, FRP moldings, plastics-inorganic composite moldings, fiber moldings, activated alumina, zeolite, glass porous bodies, metal porous bodies, ceramic porous bodies, clay Molded products, inorganic layered compound molded products and the like are exemplified as suitable ones, but similar compounds can be used as long as they have the same effect. The glass porous body, metal porous body, ceramics porous body, clay molded body, inorganic layered compound molded body and the like may be molded using an organic binder.

【0012】本発明の機能性吸着剤は、チタニア粒子の
表面を、光に不活性なセラミックスで部分的に被覆して
なる被覆チタニア粒子を、溶媒に分散した後、それを多
孔質材料に浸漬せしめる方法、多孔質材料に該被覆チタ
ニア粒子を吹き付ける方法などにより、それを多孔質材
料にコートし、乾燥することによって製造される。ここ
で、部分的に被覆してとは、チタニア粒子表面を光に不
活性なセラミックスによって島状に被覆したり、チタニ
ア粒子表面を穴のあいた光に不活性なセラミックス膜に
よって完全に覆ったりしたもので、チタニアが光に不活
性なセラミックス膜によって完全に覆われているのでは
なく、部分的に露出した状態となっていることを意味し
ている。
In the functional adsorbent of the present invention, the coated titania particles obtained by partially coating the surface of the titania particles with a ceramic inert to light are dispersed in a solvent and then immersed in a porous material. It is produced by coating the porous material with a coating method and a method of spraying the coated titania particles onto the porous material and then drying. Here, “partially covered” means that the surface of the titania particles is covered with islands of light-inert ceramics, or the surface of the titania particles is completely covered with a ceramic film of holes that is inert to light. This means that the titania is not completely covered by the ceramic film that is inactive to light, but is partially exposed.

【0013】こうして得られた本発明の機能性吸着剤
は、多孔質材料に被覆チタニア粒子が担持されており、
例えば、チタニア粒子の表面が光に不活性なセラミック
スによって島状に被覆されたり、チタニア粒子の表面が
穴のあいた光触媒として不活性なセラミックス膜によっ
て覆われたりして、部分的に被覆されており、担体と物
質が隔離されてチタニアが部分的に露出した状態となっ
ている。そのため、蛍光灯、白熱灯、ブラックライト、
UVランプ、水銀灯、キセノンランプ、ハロゲンラン
プ、メタルハライドランプなどからの人工光、又は太陽
光を上記チタニアに照射すると、チタニアに生成した電
子と正孔の酸化還元作用によって、担体である多孔質材
料に吸着された悪臭やNOxなどの空気中の有害物質あ
るいは水中に溶解している有機溶剤や農薬などの環境を
汚染している有機化合物は、迅速に、かつ連続的に分解
・除去され、また、抗菌・抗かびも同様に分解・除去さ
れる。また、多孔質材料として活性炭を使用した場合、
鮮やかな青色に呈色した機能性吸着剤が得られ、吸着
性、光触媒活性及び装飾性に優れた機能性吸着剤として
利用できる。本発明は、この青色の活性炭からなる機能
性吸着剤を包含する。本発明の環境浄化製品として、繊
維製品、プラスチックス製品、紙製品、陶磁器製品、ガ
ラス製品、コンクリート製品、革製品、塗料、インク、
木・竹製品、造花、人工観葉植物、インテリア製品、ア
クセサリー、電気製品、シート類、バッグ類などが挙げ
られる。
The functional adsorbent of the present invention thus obtained has a porous material carrying coated titania particles,
For example, the surface of the titania particles is covered with light-inert ceramics in an island shape, or the surface of the titania particles is covered with a ceramic film that is inactive as a photocatalyst with holes and is partially covered. , The carrier and the substance are separated, and the titania is partially exposed. Therefore, fluorescent lights, incandescent lights, black lights,
When artificial light from a UV lamp, mercury lamp, xenon lamp, halogen lamp, metal halide lamp, or sunlight is applied to the above titania, the redox effect of electrons and holes generated in the titania causes the porous material to become a carrier. Adsorbed offensive odors, harmful substances in the air such as NOx, or organic compounds that dissolve in water such as organic solvents and pesticides that pollute the environment are rapidly and continuously decomposed and removed. Antibacterial and antifungal are similarly decomposed and removed. When activated carbon is used as the porous material,
A functional adsorbent having a bright blue color can be obtained and can be used as a functional adsorbent excellent in adsorptivity, photocatalytic activity and decorativeness. The present invention includes a functional adsorbent composed of this blue activated carbon. The environmental purification products of the present invention include textile products, plastic products, paper products, ceramic products, glass products, concrete products, leather products, paints, inks,
Wood / bamboo products, artificial flowers, artificial foliage plants, interior products, accessories, electrical products, sheets, bags, etc.

【0014】通常の吸着剤の場合、物質を吸着して飽和
してしまうと、それ以上物質を吸着できなくなるが、本
発明による機能性吸着剤は、光を照射するだけで、吸着
した物質を分解するため、繰り返し使用でき、低コスト
・省エネルギー的で、かつメンテナンスフリーで長期間
使用できる利点を有する。そして、上記吸着剤は、アル
ミナ、シリカ、ジルコニア、チタン酸ジルコニウム、マ
グネシア、カルシア、リン酸カルシウム、リン酸チタ
ン、酸化鉄、フェライト、石膏、非晶質(アモルファ
ス)のチタニアなどの光に不活性なセラミックスの吸着
作用によって環境を汚染している有機化合物を効率良く
吸着することができる。更に、チタニア粒子の表面に、
白金あるいはロジウム、ルテニウム、パラジウム、銀、
銅、鉄、亜鉛などの金属を担持したものを用いた場合に
は、その触媒作用により、有機化合物の分解・除去効果
や抗菌・抗かび効果などの環境浄化効果が一層増大す
る。更に、多孔質材料が有機物の場合でも、該有機物と
接触している部分が光に不活性なセラミックスであるた
め、多孔質材料の分解が生じにくく、長期間その効果を
持続させることができる、という利点がある。
In the case of an ordinary adsorbent, when a substance is adsorbed and saturated, it becomes impossible to adsorb the substance any more. However, the functional adsorbent according to the present invention removes the adsorbed substance only by irradiating light. Since it is disassembled, it can be used repeatedly, has the advantages of low cost, energy saving, and maintenance-free use for a long period of time. The adsorbent is a light-inert ceramic such as alumina, silica, zirconia, zirconium titanate, magnesia, calcia, calcium phosphate, titanium phosphate, iron oxide, ferrite, gypsum, or amorphous titania. The organic compound that pollutes the environment can be efficiently adsorbed by the adsorption action of. Furthermore, on the surface of the titania particles,
Platinum or rhodium, ruthenium, palladium, silver,
When a material carrying a metal such as copper, iron or zinc is used, the catalytic action further enhances the environmental purification effects such as the decomposition / removal effect of organic compounds and the antibacterial / antifungal effect. Furthermore, even when the porous material is an organic material, since the portion in contact with the organic material is a ceramic that is inactive to light, decomposition of the porous material does not easily occur, and the effect can be maintained for a long period of time. There is an advantage.

【0015】[0015]

【実施例】次に、実施例に基づいて本発明を具体的に説
明するが、本発明は以下の実施例によって何ら限定され
るものではない。 実施例1 テトラエトキシシラン0.02molを、200mlの
無水エタノールで希釈し、撹拌しながら水0.2mol
と分子量10万のポリエチレングリコール0.4gを添
加し、更に、硝酸0.004molを添加して、透明な
ゾル液を調製した。これに、粒径約1μmのアナターゼ
型チタニア粒子20gを加え、超音波により分散させ、
噴霧乾燥した後、500℃で焼成した。得られた粒子の
表面を分析電子顕微鏡で観察したところ、その表面は約
100nmの大きさの細孔の存在するシリカで覆われて
いた。得られた被覆チタニア粒子を水に分散した後、粒
状活性炭を添加し、よく撹拌した後、乾燥した。こうし
て得た機能性吸着剤について、その脱臭効果を以下のよ
うにして調べた。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples. Example 1 0.02 mol of tetraethoxysilane was diluted with 200 ml of absolute ethanol, and 0.2 mol of water was added while stirring.
Then, 0.4 g of polyethylene glycol having a molecular weight of 100,000 was added, and further 0.004 mol of nitric acid was added to prepare a transparent sol solution. To this, 20 g of anatase type titania particles having a particle size of about 1 μm was added and dispersed by ultrasonic waves,
After spray drying, it was baked at 500 ° C. When the surface of the obtained particles was observed with an analytical electron microscope, the surface was covered with silica having pores with a size of about 100 nm. The obtained coated titania particles were dispersed in water, granular activated carbon was added, and the mixture was thoroughly stirred and dried. The deodorizing effect of the functional adsorbent thus obtained was investigated as follows.

【0016】すなわち、内容積36リットルの密閉容器
に、上記機能性吸着剤5gを入れ、悪臭物質として、ア
セトアルデヒドを注射器で導入して飽和吸着させた後、
密閉容器の中に含まれるアセトアルデヒドの濃度を10
0ppmにし、1mW/cm2 の強度のブラックライト
の光を照射した。20時間後、密閉容器の中に含まれる
アセトアルデヒドの濃度をガスクロマトグラフで調べた
ところ、アセトアルデヒドの濃度は10ppmに減少し
ていた。この値は、表面がシリカで覆われていないアナ
ターゼ型チタニア粒子をそのまま使用して作製した吸着
剤の場合と同等の脱臭効果を示すものであった。また、
耐久性を調べるために、カーボンアークランプを用いて
促進劣化試験を行った結果、光に不活性なセラミックス
を被覆しないチタニア粒子をそのまま使用して作製した
吸着剤では、吸着剤がしだいに粉々になっていったのに
対し、本実施例の機能性吸着剤を使用した場合には、ほ
とんど変化が見られず、性能の低下も見られなかった。
That is, 5 g of the above functional adsorbent was placed in a closed container having an internal volume of 36 liters, and acetaldehyde as a malodorous substance was introduced by a syringe to saturate the adsorbent.
Adjust the concentration of acetaldehyde contained in the closed container to 10
It was adjusted to 0 ppm and irradiated with black light having an intensity of 1 mW / cm 2 . After 20 hours, when the concentration of acetaldehyde contained in the closed container was examined by gas chromatography, the concentration of acetaldehyde was reduced to 10 ppm. This value showed a deodorizing effect equivalent to that of the adsorbent produced by using the anatase type titania particles whose surface was not covered with silica as it was. Also,
As a result of conducting an accelerated deterioration test using a carbon arc lamp to examine the durability, it was found that the adsorbent produced by using the titania particles that did not coat the ceramics that are inactive to light as it was, gradually shattered the adsorbent. On the other hand, when the functional adsorbent of the present example was used, almost no change was observed and no deterioration in performance was observed.

【0017】実施例2 アルミニウムトリイソプロポキシド0.12molを、
200mlのイソプロパノールで希釈し、撹拌しなが
ら、トリエタノールアミン0.12molと水1mol
を添加し、更に、分子量1000のポリエチレングリコ
ール2.5gを添加して、透明なゾル液を調製した。こ
れに、粒径約40nmのアナターゼ型70%、ルチル型
30%のチタニア粒子5gを加え、超音波により分散さ
せ、噴霧乾燥した後、450℃で焼成した。得られた粒
子の表面を分析電子顕微鏡で観察したところ、その表面
は約10nmの大きさの細孔の存在するアルミナで覆わ
れていた。得られた被覆チタニア粒子を、水に分散した
後、ポリエステル製繊維成形体に染み込ませ、乾燥し
た。こうして得た機能性吸着剤について、その脱臭効果
を以下のようにして調べた。
Example 2 0.12 mol of aluminum triisopropoxide,
Dilute with 200 ml isopropanol and, with stirring, 0.12 mol triethanolamine and 1 mol water.
Was further added, and further 2.5 g of polyethylene glycol having a molecular weight of 1000 was added to prepare a transparent sol liquid. To this, 5 g of anatase type 70% and rutile type 30% titania particles having a particle diameter of about 40 nm were added, dispersed by ultrasonic waves, spray-dried, and then baked at 450 ° C. When the surface of the obtained particles was observed by an analytical electron microscope, the surface was covered with alumina having pores with a size of about 10 nm. The obtained coated titania particles were dispersed in water, then impregnated in a polyester fiber molding and dried. The deodorizing effect of the functional adsorbent thus obtained was investigated as follows.

【0018】すなわち、内容積36リットルの密閉容器
に、上記機能性吸着剤5gを入れ、悪臭物質としてイソ
吉草酸を注射器で導入して飽和吸着させた後、密閉容器
の中に含まれるイソ吉草酸の濃度を50ppmにし、1
mW/cm2 の強度のブラックライトの光を照射した。
20時間後、密閉容器の中に含まれるイソ吉草酸の濃度
をガスクロマトグラフで調べたところ、イソ吉草酸の濃
度は5ppmに減少し、表面がアルミナで覆われていな
いチタニア粒子をそのまま使用して作製した吸着剤の場
合と同等の脱臭効果が得られた。また、耐久性を調べる
ために、カーボンアークランプを用いて促進劣化試験を
行った結果、光に不活性なセラミックスを被覆しないチ
タニア粒子をそのまま使用して作製した吸着剤では、吸
着剤がしだいに粉々になっていったのに対し、本実施例
の機能性吸着剤を使用した場合には、ほとんど変化が見
られず、性能の低下も見られなかった。
That is, 5 g of the above-mentioned functional adsorbent was placed in a closed container having an internal volume of 36 liters, and isovaleric acid was introduced as a malodorous substance with a syringe to saturate the adsorbent. Increase the concentration of herbate to 50ppm, 1
It was irradiated with a black light having an intensity of mW / cm 2 .
After 20 hours, when the concentration of isovaleric acid contained in the closed container was examined by gas chromatography, the concentration of isovaleric acid was reduced to 5 ppm, and the titania particles whose surface was not covered with alumina were used as they were. A deodorizing effect equivalent to that of the produced adsorbent was obtained. In addition, as a result of conducting an accelerated deterioration test using a carbon arc lamp in order to investigate the durability, as a result of using an adsorbent prepared by directly using titania particles that do not coat the ceramics which are inert to light, the adsorbent gradually increases. Whereas when the functional adsorbent of the present example was used, almost no change was observed and no deterioration in performance was observed, although it was broken into pieces.

【0019】実施例3 ジルコニウムテトラn−ブトキシド0.2molを、5
00mlの無水エタノールで希釈し、撹拌しながら、ジ
エチレングリコール0.4molと水0.4molを添
加し、更に、分子量13000のポリエチレングリコー
ル0.4gを添加して、透明なゾル液を調製した。これ
に、白金を担持した粒径約800nmのアナターゼ型チ
タニア粒子5gを加え、超音波により分散させ、噴霧乾
燥した後、500℃で焼成した。得られた粒子を水に分
散した後、ポリエチレンテレフタレート製繊維成形体に
染み込ませ、乾燥した。得られた被覆チタニア粒子につ
いて、分析電子顕微鏡観察を行った結果、その表面は約
50nmの大きさの細孔の存在するジルコニア膜で覆わ
れていた。得られた被覆チタニア粒子を、水に分散した
後、発泡プラスチックスを添加し、よく撹拌した後、乾
燥した。こうして得た機能性吸着剤について、その脱臭
効果を以下のようにして調べた。
EXAMPLE 3 0.2 mol of zirconium tetra-n-butoxide was added to 5 mol.
It was diluted with 00 ml of absolute ethanol, 0.4 mol of diethylene glycol and 0.4 mol of water were added with stirring, and 0.4 g of polyethylene glycol having a molecular weight of 13,000 was further added to prepare a transparent sol liquid. To this, 5 g of anatase-type titania particles having a particle size of about 800 nm supporting platinum were added, dispersed by ultrasonic waves, spray-dried, and then baked at 500 ° C. The obtained particles were dispersed in water, impregnated in a polyethylene terephthalate fiber molding, and dried. The obtained coated titania particles were observed by an analytical electron microscope, and as a result, the surface was covered with a zirconia film having pores with a size of about 50 nm. The coated titania particles obtained were dispersed in water, foamed plastics were added, and the mixture was thoroughly stirred and dried. The deodorizing effect of the functional adsorbent thus obtained was investigated as follows.

【0020】すなわち、内容積36リットルの密閉容器
に、上記機能性吸着剤5gを入れ、悪臭物質として酢酸
を注射器で導入して飽和吸着させた後、密閉容器の中に
含まれる酢酸の濃度を25ppmにし、1mW/cm2
の強度のブラックライトの光を照射した。20時間後、
密閉容器の中に含まれるアセトアルデヒドの濃度をガス
クロマトグラフで調べたところ、アセトアルデヒドの濃
度は2.5ppmに減少し、表面がジルコニアで覆われ
ていないアナターゼ型チタニア粒子をそのまま使用して
作製した吸着剤の場合と同等の脱臭効果が得られた。ま
た、耐久性を調べるために、カーボンアークランプを用
いて促進劣化試験を行った結果、光に不活性なセラミッ
クスを被覆しないアナターゼ型酸化チタンをそのまま使
用して作製した吸着剤では、吸着剤がしだいに粉々にな
っていったのに対し、上記機能性吸着剤を使用した場合
には、ほとんど変化が見られず、性能の低下も見られな
かった。
That is, 5 g of the above-mentioned functional adsorbent was placed in a closed container having an internal volume of 36 liters, and acetic acid as a malodorous substance was introduced by a syringe to saturate the adsorbent. 25 ppm, 1 mW / cm 2
It was irradiated with a black light of high intensity. 20 hours later,
When the concentration of acetaldehyde contained in the closed container was examined by gas chromatography, the concentration of acetaldehyde was reduced to 2.5 ppm, and the adsorbent produced by using the anatase-type titania particles whose surface was not covered with zirconia as it was. The same deodorizing effect as in the case of was obtained. In addition, as a result of conducting an accelerated deterioration test using a carbon arc lamp in order to investigate the durability, the adsorbent produced using the anatase type titanium oxide that does not coat the ceramics inert to light as it is Although it gradually shattered, when the above-mentioned functional adsorbent was used, almost no change was observed and no deterioration in performance was observed.

【0021】実施例4 チタンテトライソプロポキシド0.1molを、200
mlの無水エタノールで希釈し、撹拌しながら、ジエタ
ノールアミン0.1molと水0.1molを添加し、
更に、分子量2万のポリエチレングリコール5gを添加
して透明なゾル液を調製した。これに、粒径約500n
mのアナターゼ型チタニア粒子5gを加え、超音波によ
り分散させ、噴霧乾燥した後、350℃で焼成した。得
られた粒子の表面を分析電子顕微鏡で観察したところ、
その表面は約120nmの大きさの細孔の存在する非晶
質のチタニアで覆われていた。得られた被覆チタニア粒
子を水に分散した後、粘土成形体に吹き付け、乾燥し
た。こうして得た機能性吸着剤について、その脱臭効果
を以下のようにして調べた。
Example 4 0.1 mol of titanium tetraisopropoxide was added to 200
It is diluted with ml of absolute ethanol, 0.1 mol of diethanolamine and 0.1 mol of water are added with stirring,
Furthermore, 5 g of polyethylene glycol having a molecular weight of 20,000 was added to prepare a transparent sol solution. The particle size is about 500n
5 g of m anatase-type titania particles were added, dispersed by ultrasonic waves, spray-dried, and then baked at 350 ° C. When the surface of the obtained particles was observed with an analytical electron microscope,
The surface was covered with amorphous titania having pores with a size of about 120 nm. The obtained coated titania particles were dispersed in water, sprayed on a clay molded body and dried. The deodorizing effect of the functional adsorbent thus obtained was investigated as follows.

【0022】すなわち、内容積36リットルの密閉容器
に、上記機能性吸着剤5gを入れ、悪臭物質としてメチ
ルメルカプタンを注射器で導入して飽和吸着させた後、
密閉容器の中に含まれるメチルメルカプタンの濃度を2
5ppmにし、1mW/cm2 の強度のブラックライト
の光を照射した。20時間後、密閉容器の中に含まれる
メチルメルカプタンの濃度をガスクロマトグラフで調べ
たところ、メチルメルカプタンの濃度は2.5ppmに
減少し、表面が非晶質のチタニアで覆われていないアナ
ターゼ型チタニア粒子をそのまま使用して作製した吸着
剤の場合と同等の脱臭効果が得られた。また、耐久性を
調べるために、カーボンアークランプを用いて促進劣化
試験を行った結果、光に不活性なセラミックスを被覆し
ないアナターゼ型酸化チタンをそのまま使用して作製し
た吸着剤では、吸着剤がしだいに粉々になっていったの
に対し、上記機能性吸着剤を使用した場合には、ほとん
ど変化が見られず、性能の低下も見られなかった。
That is, 5 g of the above functional adsorbent was placed in a closed container having an internal volume of 36 liters, and methyl mercaptan as a malodorous substance was introduced by a syringe to saturate adsorption.
Set the concentration of methyl mercaptan contained in the closed container to 2
It was made 5 ppm and irradiated with a black light having an intensity of 1 mW / cm 2 . After 20 hours, when the concentration of methyl mercaptan contained in the closed container was examined by gas chromatography, the concentration of methyl mercaptan was reduced to 2.5 ppm, and the anatase-type titania surface was not covered with amorphous titania. A deodorizing effect equivalent to that of the adsorbent prepared by using the particles as they were was obtained. In addition, as a result of conducting an accelerated deterioration test using a carbon arc lamp in order to investigate the durability, the adsorbent produced using the anatase type titanium oxide that does not coat the ceramics inert to light as it is Although it gradually shattered, when the above-mentioned functional adsorbent was used, almost no change was observed and no deterioration in performance was observed.

【0023】実施例5 チタンテトライソプロポキシド0.1molとジルコニ
ウムテトラn−ブトキシド0.1molを、500ml
のイソプロパノールに加え、撹拌しながら、ジイソプロ
パノールアミン0.4molと水0.4molを添加
し、更に、分子量3000のポリエチレングリコール4
gを添加して、透明なゾル液を調製した。これに、粒径
約700nmの銀担持のアナターゼ型チタニア粒子5g
を加え、超音波により分散させ、噴霧乾燥した後、50
0℃で焼成した。得られた粒子について、分析電子顕微
鏡観察を行った結果、その表面は約30nmの大きさの
細孔の存在するチタン酸ジルコニウムで覆われていた。
得られた被覆チタニア粒子を水に分散した後、無機層状
化合物成形体に吹き付け、乾燥した。こうして得た機能
性吸着剤について、その脱臭効果を以下のようにして調
べた。
Example 5 500 ml of 0.1 mol of titanium tetraisopropoxide and 0.1 mol of zirconium tetra-n-butoxide were added.
Of isopropanol, 0.4 mol of diisopropanolamine and 0.4 mol of water were added with stirring, and polyethylene glycol 4 having a molecular weight of 3000 was added.
g was added to prepare a transparent sol liquid. To this, 5 g of anatase type titania particles supporting silver with a particle size of about 700 nm
, Ultrasonically disperse, spray-dry, then 50
Baked at 0 ° C. As a result of observing the obtained particles by an analytical electron microscope, the surface was covered with zirconium titanate having pores with a size of about 30 nm.
The obtained coated titania particles were dispersed in water, sprayed onto an inorganic layered compound molded product, and dried. The deodorizing effect of the functional adsorbent thus obtained was investigated as follows.

【0024】すなわち、内容積36リットルの密閉容器
に、上記機能性吸着剤5gを入れ、悪臭物質として硫化
水素を注射器で導入して飽和吸着させた後、密閉容器の
中に含まれる硫化水素の濃度を60ppmにし、1mW
/cm2 の強度のブラックライトの光を照射した。20
時間後、密閉容器の中に含まれるアセトアルデヒドの濃
度をガスクロマトグラフで調べたところ、硫化水素の濃
度は5ppmに減少しており、表面がチタン酸ジルコニ
ウムで覆われていないアナターゼ型チタニア粒子をその
まま使用して作製した吸着剤の場合と同等の脱臭効果が
得られた。また、耐久性を調べるために、カーボンアー
クランプを用いて促進劣化試験を行った結果、光に不活
性なセラミックスを被覆しないアナターゼ型酸化チタン
をそのまま使用して作製した吸着剤では、吸着剤がしだ
いに粉々になっていったのに対し、上記機能性吸着剤を
使用した場合には、ほとんど変化が見られず、性能の低
下も見られなかった。
That is, 5 g of the above-mentioned functional adsorbent was placed in a closed container having an internal volume of 36 liters, hydrogen sulfide as a malodorous substance was introduced by a syringe to saturate the adsorbent, and then the hydrogen sulfide contained in the closed container was removed. Adjust the concentration to 60ppm, 1mW
It was irradiated with light of black light having an intensity of / cm 2 . 20
After a lapse of time, when the concentration of acetaldehyde contained in the closed container was examined by gas chromatography, the concentration of hydrogen sulfide was reduced to 5 ppm, and the anatase-type titania particles whose surface was not covered with zirconium titanate were used as they were. The deodorizing effect equivalent to that of the adsorbent prepared in this way was obtained. In addition, as a result of conducting an accelerated deterioration test using a carbon arc lamp in order to investigate the durability, the adsorbent produced using the anatase type titanium oxide that does not coat the ceramics inert to light as it is Although it gradually shattered, when the above-mentioned functional adsorbent was used, almost no change was observed and no deterioration in performance was observed.

【0025】実施例6 マグネシウムエトキシド0.15molを、250ml
の無水エタノールに加え、撹拌しながら、N−エチルジ
エタノールアミン0.2molと水0.6molを添加
し、更に、分子量1500のポリエチレングリコール
1.6gを添加して、透明なゾル液を調製した。これ
に、粒径約500nmのアナターゼ型チタニア粒子5g
を加え、超音波により分散させ、噴霧乾燥した後、45
0℃で焼成した。得られた粒子について、分析電子顕微
鏡観察を行った結果、その表面は約20nmの大きさの
細孔の存在するマグネシアで覆われていた。得られた被
覆チタニア粒子を水に分散した後、ガラス多孔体にコー
トし、乾燥した。こうして得た機能性吸着剤について、
その脱臭効果を以下のようにして調べた。
Example 6 250 ml of 0.15 mol of magnesium ethoxide
N-ethyldiethanolamine (0.2 mol) and water (0.6 mol) were added to the above anhydrous ethanol with stirring, and further, 1.6 g of polyethylene glycol having a molecular weight of 1500 was added to prepare a transparent sol solution. To this, 5 g of anatase type titania particles with a particle size of about 500 nm
, Ultrasonically disperse, spray-dry, then 45
Baked at 0 ° C. As a result of observing the obtained particles by an analytical electron microscope, the surface was covered with magnesia having pores with a size of about 20 nm. The obtained coated titania particles were dispersed in water, coated on a porous glass body, and dried. Regarding the functional adsorbent thus obtained,
The deodorizing effect was investigated as follows.

【0026】すなわち、内容積36リットルの密閉容器
に、上記機能性吸着剤5gを入れ、有害物質としてNO
xを注射器で導入して飽和吸着させた後、密閉容器の中
に含まれるNOxの濃度を10ppmにし、1mW/c
2 の強度のブラックライトの光を照射した。20時間
後、密閉容器の中に含まれるNOxの濃度をガスクロマ
トグラフで調べたところ、NOxの濃度は0.5ppm
に減少し、表面がマグネシアで覆われていないアナター
ゼ型チタニア粒子をそのまま使用して作製した吸着剤の
場合と同等の脱臭効果が得られた。また、耐久性を調べ
るために、カーボンアークランプを用いて促進劣化試験
を行った結果、光に不活性なセラミックスを被覆しない
アナターゼ型酸化チタンをそのまま使用して作製した吸
着剤では、吸着剤がしだいに粉々になっていったのに対
し、上記機能性吸着剤を使用した場合には、ほとんど変
化が見られず、性能の低下も見られなかった。
That is, 5 g of the above-mentioned functional adsorbent was placed in a closed container having an internal volume of 36 liters, and NO was used as a harmful substance.
x was introduced with a syringe and saturated adsorption was performed, and then the concentration of NOx contained in the closed container was adjusted to 10 ppm and 1 mW / c.
It was irradiated with a black light having an intensity of m 2 . After 20 hours, when the concentration of NOx contained in the closed container was examined by gas chromatography, the concentration of NOx was 0.5 ppm.
The deodorizing effect was similar to that of the adsorbent prepared by directly using the anatase-type titania particles whose surface was not covered with magnesia. In addition, as a result of conducting an accelerated deterioration test using a carbon arc lamp in order to investigate the durability, the adsorbent produced using the anatase type titanium oxide that does not coat the ceramics inert to light as it is Although it gradually shattered, when the above-mentioned functional adsorbent was used, almost no change was observed and no deterioration in performance was observed.

【0027】実施例7 カルシウムメトキシド0.2molを、500mlのメ
タノールで希釈し、撹拌しながら、モノエタノールアミ
ン0.4molと水0.4molを添加し、更に、分子
量30万のポリエチレンオキサイド0.2gを添加し
て、透明なゾル液を調製した。これに、粒径約1.2μ
mのルテニウム担持のアナターゼ型チタニア粒子5gを
加え、超音波により分散させ、噴霧乾燥した後、600
℃で焼成した。得られた粒子について、分析電子顕微鏡
観察を行った結果、その表面は約200nmの大きさの
細孔の存在するカルシアで覆われていた。得られた被覆
チタニア粒子を水に分散した後、金属多孔体を浸漬し、
乾燥した。こうして得た機能性吸着剤について、その脱
臭効果を以下のようにして調べた。
Example 7 Calcium methoxide (0.2 mol) was diluted with 500 ml of methanol, 0.4 mol of monoethanolamine and 0.4 mol of water were added with stirring, and polyethylene oxide (0.50) having a molecular weight of 300,000 was added. A transparent sol solution was prepared by adding 2 g. The particle size is about 1.2μ
m ruthenium-supporting anatase-type titania particles (5 g) were added, dispersed by ultrasonic waves, and spray-dried.
Baked at ° C. As a result of observing the obtained particles with an analytical electron microscope, the surface was covered with calcia having pores with a size of about 200 nm. After dispersing the obtained coated titania particles in water, soak the metal porous body,
Dried. The deodorizing effect of the functional adsorbent thus obtained was investigated as follows.

【0028】すなわち、内容積36リットルの密閉容器
に、上記機能性吸着剤5gを入れ、有害物質としてSO
xを注射器で導入して飽和吸着させた後、密閉容器の中
に含まれるSOxの濃度を15ppmにし、1mW/c
2 の強度のブラックライトの光を照射した。20時間
後、密閉容器の中に含まれるSOxの濃度をガスクロマ
トグラフで調べたところ、SOxの濃度は0.7ppm
に減少し、表面がカルシアで覆われていないアナターゼ
型チタニア粒子をそのまま使用して作製した吸着剤の場
合と同等の脱臭効果が得られた。また、耐久性を調べる
ために、カーボンアークランプを用いて促進劣化試験を
行った結果、光に不活性なセラミックスを被覆しないア
ナターゼ型酸化チタンをそのまま使用して作製した吸着
剤では、吸着剤がしだいに粉々になっていったのに対
し、上記機能性吸着剤を使用した場合には、ほとんど変
化が見られず、性能の低下も見られなかった。
That is, 5 g of the above functional adsorbent was placed in a closed container having an internal volume of 36 liters, and SO was used as a harmful substance.
x was introduced with a syringe and saturated adsorption was performed, and then the concentration of SOx contained in the closed container was adjusted to 15 ppm and 1 mW / c.
It was irradiated with a black light having an intensity of m 2 . After 20 hours, when the concentration of SOx contained in the closed container was examined by gas chromatography, the concentration of SOx was 0.7 ppm.
The deodorizing effect was similar to that of the adsorbent prepared by directly using the anatase-type titania particles whose surface was not covered with calcia. In addition, as a result of conducting an accelerated deterioration test using a carbon arc lamp in order to investigate the durability, the adsorbent produced using the anatase type titanium oxide that does not coat the ceramics inert to light as it is Although it gradually shattered, when the above-mentioned functional adsorbent was used, almost no change was observed and no deterioration in performance was observed.

【0029】実施例8 疑似体液(Na+ 147mM、K+ 5mM、Ca2+2.
5mM、Mg2+1.5mM、Cl- 147mM、HCO
3 - 4.2mM、HPO4 2-1.0mM、SO4 2-0.
5mMから構成される)500mlに、粒径約20nm
のブルッカイト型チタニア粒子5gを加え、超音波によ
り分散させ、80℃で放置し、チタニア粒子の表面に水
酸アパタイトを島状に担持した複合粒子を得た。この粒
子を水に分散した後、活性炭を浸漬し、乾燥し、青色に
呈色した活性炭を得た。得られた機能性吸着剤の脱臭効
果を以下のようにして調べた。
Example 8 Simulated body fluid (Na + 147 mM, K + 5 mM, Ca 2+ 2.
5mM, Mg 2+ 1.5mM, Cl - 147mM, HCO
3 - 4.2mM, HPO 4 2- 1.0mM , SO4 2-0.
Particle size of about 20 nm in 500 ml)
Of the brookite-type titania particles were added, dispersed by ultrasonic waves, and allowed to stand at 80 ° C. to obtain composite particles in which hydroxyapatite was supported on the surface of the titania particles in an island shape. After the particles were dispersed in water, activated carbon was dipped and dried to obtain activated carbon colored in blue. The deodorizing effect of the obtained functional adsorbent was examined as follows.

【0030】すなわち、内容積36リットルの密閉容器
に、上記機能性吸着剤5gを入れ、有害物質としてSO
xを注射器で導入して飽和吸着させた後、密閉容器の中
に含まれるアンモニアの濃度を120ppmにし、1m
W/cm2 の強度のブラックライトの光を照射した。2
0時間後、密閉容器の中に含まれるアンモニアの濃度を
ガスクロマトグラフで調べたところ、アンモニアの濃度
は2ppmに減少し、表面が水酸アパタイトで覆われて
いないブルッカイト型チタニア粒子をそのまま使用して
作製した吸着剤の場合と同等の脱臭効果が得られた。ま
た、耐久性を調べるために、カーボンアークランプを用
いて促進劣化試験を行った結果、光に不活性なセラミッ
クスを被覆しないブルッカイト型酸化チタンをそのまま
使用して作製した吸着剤では、吸着剤がしだいに粉々に
なっていったのに対し、上記機能性吸着剤を使用した場
合には、ほとんど変化が見られず、性能の低下も見られ
なかった。フェライト、リン酸チタン、酸化鉄、石膏な
どをチタニア粒子の表面に島状に担持した複合粒子を活
性炭に担持した青色を呈する機能性吸着剤についても同
様の効果が得られた。
That is, 5 g of the above functional adsorbent was placed in a closed container having an internal volume of 36 liters, and SO was used as a harmful substance.
x was introduced with a syringe to saturate the adsorption, and then the concentration of ammonia contained in the closed container was adjusted to 120 ppm to 1 m.
It was irradiated with light of black light having an intensity of W / cm 2 . Two
After 0 hours, when the concentration of ammonia contained in the closed container was examined by gas chromatography, the concentration of ammonia decreased to 2 ppm, and the brookite-type titania particles whose surface was not covered with hydroxyapatite were used as they were. A deodorizing effect equivalent to that of the produced adsorbent was obtained. In addition, as a result of conducting an accelerated deterioration test using a carbon arc lamp in order to investigate the durability, the adsorbent produced using the brookite-type titanium oxide that does not coat the ceramics inert to light is Although it gradually shattered, when the above-mentioned functional adsorbent was used, almost no change was observed and no deterioration in performance was observed. Similar effects were obtained also with a functional adsorbent exhibiting a blue color in which activated carbon was loaded with composite particles in which ferrite, titanium phosphate, iron oxide, gypsum, etc. were supported on the surface of titania particles in an island shape.

【0031】[0031]

【発明の効果】以上詳述したように、本発明は、悪臭や
空気中の有害物質を吸着するだけでなく、これらを分解
・無害化して除去し、環境の浄化を効果的かつ経済的に
安全に行うことができ、しかも、耐久性の面からも優れ
た特性を有する新規機能性吸着剤及びその製造方法に係
るものであり、本発明に用いられるチタニアは、塗料や
化粧品、歯磨き粉などにも使用され、食品添加物として
も認められており、安価で耐候性や耐久性に優れ、無毒
かつ安全など、数多くの利点を持っている。本発明の機
能性吸着剤は、多孔質材料にチタニア粒子が担持されて
おり、そのチタニア粒子の表面が光触媒として不活性な
セラミックスによって島状に被覆されたり、チタニア粒
子の表面が穴のあいた光触媒として不活性なセラミック
ス膜によって覆われたりして、部分的に被覆されてお
り、チタニアが部分的に露出した状態となっている。そ
のため、蛍光灯、白熱灯、ブラックライト、UVラン
プ、水銀灯、キセノンランプ、ハロゲンランプ、メタル
ハライドランプなどからの人工光や太陽光がチタニアに
照射され、それによって、チタニアに生成した電子と正
孔の酸化還元作用によって、基材の多孔質材料によって
吸着された悪臭やタバコの煙、NOx、SOxなどの空
気中の有害物質あるいは水中に溶解している有機溶剤や
農薬などの環境を汚染している有機化合物を分解するほ
か、MRSAなどによる院内感染の防止、汚れの防止な
どの居住環境の浄化を効率良く行うことができる。
As described in detail above, the present invention not only absorbs bad odors and harmful substances in the air, but also decomposes and detoxifies them to remove the environment effectively and economically. The present invention relates to a novel functional adsorbent that can be safely performed, and has excellent properties in terms of durability, and a method for producing the same, and the titania used in the present invention can be used in paints, cosmetics, toothpaste, etc. It is also used as a food additive and is recognized as a food additive. It has many advantages such as low cost, excellent weather resistance and durability, nontoxicity and safety. The functional adsorbent of the present invention, the titania particles are supported on the porous material, the surface of the titania particles is coated in an island shape by the ceramics inert as the photocatalyst, or the surface of the titania particles is a photocatalyst with holes. Is partially covered by being covered with an inactive ceramics film, and the titania is partially exposed. Therefore, artificial light or sunlight from a fluorescent lamp, an incandescent lamp, a black light, a UV lamp, a mercury lamp, a xenon lamp, a halogen lamp, a metal halide lamp, etc. is irradiated on the titania, whereby the electrons and holes generated in the titania are emitted. Oxidizing and reducing effects pollute the environment such as malodors adsorbed by the porous material of the base material, tobacco smoke, harmful substances in the air such as NOx and SOx, or organic solvents and pesticides dissolved in water. In addition to decomposing organic compounds, it is possible to efficiently purify the living environment by preventing hospital infections due to MRSA and preventing stains.

【0032】そして、アルミナ、シリカ、ジルコニア、
チタン酸ジルコニウム、マグネシア、カルシア、リン酸
カルシウム、リン酸チタン、酸化鉄、フェライト、石
膏、非晶質のチタニアなどの光触媒として不活性なセラ
ミックスの吸着作用によって環境を汚染している有機化
合物を効率良く吸着することができ、その上、チタニア
粒子として、その表面に白金あるいはロジウム、ルテニ
ウム、パラジウム、銀、銅、鉄、亜鉛の金属を担持した
ものを用いた場合には、その触媒作用により有機化合物
の分解・除去効果や抗菌・抗かび効果などの環境浄化効
果が一層増大する。しかも、活性炭などの基材の多孔質
材料と接触している部分が光触媒として不活性なセラミ
ックスであるため、基材の分解が生じにくく、長期間そ
の効果を持続させることができる。本発明の機能性吸着
剤は、自動車の車内や居間や台所、トイレなどの脱臭、
廃水処理、プールや貯水の浄化だけでなく、菌やカビの
繁殖防止、食品の腐敗防止を効果的に行うことができる
など、幅広い用途に適用でき、しかも、化学薬品やオゾ
ンのような有毒な物質を使用せず、電灯の光や自然光な
どの光を照射するだけでよいため、低コスト・省エネル
ギー的、かつ安全に、メンテナンスフリーで長期間使用
することができる。また、多孔質材料として活性炭を使
用した場合には、青色に呈色した活性炭製品が得られ、
顕著な装飾効果を発揮する。
Alumina, silica, zirconia,
Efficiently adsorbs organic compounds polluting the environment by the adsorption action of ceramics that are inert as photocatalysts such as zirconium titanate, magnesia, calcia, calcium phosphate, titanium phosphate, iron oxide, ferrite, gypsum, and amorphous titania. In addition, as the titania particles, when platinum or rhodium, ruthenium, palladium, silver, copper, iron, or zinc metal is supported on the surface of the titania particles, it is possible to use an organic compound due to its catalytic action. The environmental purification effects such as decomposition / removal effects and antibacterial / antifungal effects are further increased. Moreover, since the portion of the base material such as activated carbon that is in contact with the porous material is a ceramic that is inactive as a photocatalyst, the base material is unlikely to be decomposed and the effect can be maintained for a long time. The functional adsorbent of the present invention is for deodorizing the interior of a car, the living room, the kitchen, the toilet, etc.
It can be applied to a wide range of applications such as wastewater treatment, purification of pool and stored water, effective prevention of fungus and mold growth, and food spoilage, and it is toxic to chemicals and ozone. Since it is sufficient to irradiate light such as electric light or natural light without using any substance, it can be used at low cost, energy saving, safely, and maintenance-free for a long time. Also, when activated carbon is used as the porous material, an activated carbon product colored in blue is obtained,
It has a remarkable decorative effect.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 20/08 B01J 20/10 A 20/10 C 20/12 A 20/12 C 20/18 A 20/18 E 20/26 A 20/26 J 20/30 20/30 20/34 A 20/34 Z 35/02 J 35/02 B01D 53/36 J H Fターム(参考) 4C080 AA05 BB02 CC01 HH05 JJ03 KK08 LL10 MM02 MM03 MM05 MM06 MM07 MM34 NN02 NN03 NN04 NN05 NN06 4D048 AA01 AA02 AA03 AA06 AA08 AA17 AA19 AA22 BA07X BA41X BB01 BB17 EA01 EA04 4G066 AA02B AA05B AA20B AA22D AA61B AA63B AA71B AC23B BA05 BA16 BA22 BA36 BA38 CA02 CA04 CA23 CA24 CA28 CA29 CA52 CA56 DA02 DA08 FA03 FA12 FA21 GA18 4G069 AA08 AA11 BA01C BA02C BA04A BA04B BA04C BA05C BA06C BA13C BA48A BB04C BB06C BB10C BB14C BC09C BC50C BC51C BC66C BD02C BD07C BD08C CA10 CA11 CA12 CA13 CA17 DA05 EA02X EA02Y EC22X EC22Y EC28 EE01 FA01 FA03 FB80 FC04─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 20/08 B01J 20/10 A 20/10 C 20/12 A 20/12 C 20/18 A 20 / 18 E 20/26 A 20/26 J 20/30 20/30 20/34 A 20/34 Z 35/02 J 35/02 B01D 53/36 J H F Term (reference) 4C080 AA05 BB02 CC01 HH05 JJ03 KK08 LL10 MM02 MM03 MM05 MM06 MM07 MM34 NN02 NN03 NN04 NN05 NN06 4D048 AA01 AA02 AA03 AA06 AA08 AA17 AA19 AA19 A52 CA22 CA25 CA22 CA22 CA23 CA23 CA23 CA22 CA23 CA22 CA23 CA23 A02 BA23 CA23 A02 BA23 CA23 A23 AA23 AA23 AA23 AA23 AA23 AA23 AA23 AA23 AA23 AA2 A2 A2 A2 A2 A2 A4 A2 A4 A2 A4 A6 A2 A4 A2 A2 A4 A5 A4 A2 A4 A5 A4 A5 A6 A6 A6 A3 A4 FA03 FA12 FA21 GA18 4G069 AA08 AA11 BA01C BA02C BA04A BA04B BA04C BA05C BA06C BA13C BA48A BB04C BB06C BB10C BB14C BC09C BC50C BC51C BC66C BD02C BD07C02 CA02 CA22 CA22 CA22 CA22 CA02 CA22 CA02 DA02 EA02 EA02 EA02 B80 FC04

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 チタニア粒子の表面を、光に不活性なセ
ラミックスで部分的に被覆してなる被覆チタニア粒子
を、多孔質材料に担持したことを特徴とする機能性吸着
剤。
1. A functional adsorbent characterized in that a porous material carries coated titania particles obtained by partially coating the surfaces of the titania particles with a light-inert ceramic.
【請求項2】 光に不活性なセラミックスが、アルミ
ナ、シリカ、ジルコニア、チタン酸ジルコニウム、マグ
ネシア、カルシア、リン酸カルシウム、リン酸チタン、
酸化鉄、フェライト、石膏、及び非晶質のチタニアの内
から選ばれた少なくとも一種のセラミックスであること
を特徴とする請求項1記載の機能性吸着剤。
2. The light-inert ceramics are alumina, silica, zirconia, zirconium titanate, magnesia, calcia, calcium phosphate, titanium phosphate,
The functional adsorbent according to claim 1, which is at least one ceramic selected from iron oxide, ferrite, gypsum, and amorphous titania.
【請求項3】 チタニア粒子が、白金、ロジウム、ルテ
ニウム、パラジウム、銀、銅、鉄、及び亜鉛の内から選
ばれた少なくとも一種の金属を、該チタニア粒子の表面
に担持してなるチタニア粒子であることを特徴とする請
求項1記載の機能性吸着剤。
3. A titania particle in which the titania particle has at least one metal selected from platinum, rhodium, ruthenium, palladium, silver, copper, iron, and zinc carried on the surface of the titania particle. The functional adsorbent according to claim 1, which is present.
【請求項4】 多孔質材料が、活性炭、発泡プラスチッ
クス、ガラス繊維成形体、合成繊維成形体、FRP成形
体、プラスチックス−無機複合成形体、繊維成形体、活
性アルミナ、ゼオライト、ガラス多孔体、金属多孔体、
セラミックス多孔体、粘土成形体、及び無機層状化合物
成形体の内から選ばれた少なくとも一種であることを特
徴とする請求項1記載の機能性吸着剤。
4. The porous material is activated carbon, foamed plastics, glass fiber molded body, synthetic fiber molded body, FRP molded body, plastics-inorganic composite molded body, fiber molded body, activated alumina, zeolite, glass porous body. , Porous metal,
The functional adsorbent according to claim 1, which is at least one selected from a ceramics porous body, a clay molded body, and an inorganic layered compound molded body.
【請求項5】 チタニア粒子の結晶形が、アナターゼ又
はブルッカイトであることを特徴とする請求項1又は3
記載の機能性吸着剤。
5. The crystal form of the titania particles is anatase or brookite.
The functional adsorbent described.
【請求項6】 チタニア粒子の表面を、光に不活性なセ
ラミックスで部分的に被覆してなる被覆チタニア粒子
を、溶媒に分散した後、多孔質材料に被覆し、乾燥する
ことを特徴とする機能性吸着剤の製造方法。
6. The coated titania particles obtained by partially coating the surface of the titania particles with a light-inert ceramics are dispersed in a solvent, and then coated on a porous material and dried. A method for producing a functional adsorbent.
【請求項7】 光に不活性なセラミックスが、アルミ
ナ、シリカ、ジルコニア、チタン酸ジルコニウム、マグ
ネシア、カルシア、リン酸カルシウム、リン酸チタン、
酸化鉄、フェライト、石膏、及び非晶質のチタニアの内
から選ばれた少なくとも一種のセラミックスであること
を特徴とする請求項6記載の機能性吸着剤の製造方法。
7. The light-inert ceramics are alumina, silica, zirconia, zirconium titanate, magnesia, calcia, calcium phosphate, titanium phosphate,
7. The method for producing a functional adsorbent according to claim 6, which is at least one ceramic selected from iron oxide, ferrite, gypsum, and amorphous titania.
【請求項8】 チタニア粒子が、白金、ロジウム、ルテ
ニウム、パラジウム、銀、銅、鉄、及び亜鉛の内から選
ばれた少なくとも一種の金属を該チタニア粒子表面に担
持したものであることを特徴とする請求項6記載の機能
性吸着剤の製造方法。
8. The titania particles have at least one metal selected from platinum, rhodium, ruthenium, palladium, silver, copper, iron and zinc carried on the surface of the titania particles. The method for producing a functional adsorbent according to claim 6.
【請求項9】 多孔質材料が、活性炭、発泡プラスチッ
クス、繊維成形体、活性アルミナ、ゼオライト、ガラス
多孔体、金属多孔体、セラミックス多孔体、粘土成形
体、及び無機層状化合物成形体の内から選ばれた少なく
とも一種であることを特徴とする請求項6記載の機能性
吸着剤の製造方法。
9. The porous material is selected from activated carbon, foamed plastics, fiber moldings, activated alumina, zeolite, glass porous bodies, metal porous bodies, ceramics porous bodies, clay molded bodies, and inorganic layered compound molded bodies. 7. The method for producing a functional adsorbent according to claim 6, which is at least one selected.
【請求項10】 チタニア粒子の結晶形が、アナターゼ
又はブルッカイトであることを特徴とする請求項6又は
8記載の機能性吸着剤の製造方法。
10. The method for producing a functional adsorbent according to claim 6 or 8, wherein the crystal form of the titania particles is anatase or brookite.
【請求項11】 チタニア粒子の表面を、光に不活性な
セラミックスで部分的に被覆してなる被覆チタニア粒子
を、多孔質材料に担持せしめた機能性吸着剤を含有する
ことを特徴とする環境浄化製品。
11. An environment characterized by containing a functional adsorbent comprising a porous material carrying coated titania particles obtained by partially coating the surface of titania particles with a light-inert ceramics. Purification products.
JP2002284574A 2001-09-27 2002-09-27 Functional adsorbent and method for producing the same Expired - Lifetime JP3837517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284574A JP3837517B2 (en) 2001-09-27 2002-09-27 Functional adsorbent and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001295488 2001-09-27
JP2001-295488 2001-09-27
JP2002284574A JP3837517B2 (en) 2001-09-27 2002-09-27 Functional adsorbent and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003199810A true JP2003199810A (en) 2003-07-15
JP3837517B2 JP3837517B2 (en) 2006-10-25

Family

ID=27666270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284574A Expired - Lifetime JP3837517B2 (en) 2001-09-27 2002-09-27 Functional adsorbent and method for producing the same

Country Status (1)

Country Link
JP (1) JP3837517B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169160A (en) * 2003-12-05 2005-06-30 Ishihara Sangyo Kaisha Ltd Liquid photocatalyst composition and photocatalytic body formed by using the same
JP2014161786A (en) * 2013-02-25 2014-09-08 Nissan Motor Co Ltd Catalyst particle and method for producing the same
JP2018144004A (en) * 2017-03-08 2018-09-20 旭化成株式会社 Inorganic compound for photocatalyst, photocatalyst composition, photocatalyst coating film and photocatalyst coating product
KR101919600B1 (en) 2017-06-16 2018-11-19 주식회사 신성이엔알 An adsorbent for treating air pollutants and A preparing method for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169160A (en) * 2003-12-05 2005-06-30 Ishihara Sangyo Kaisha Ltd Liquid photocatalyst composition and photocatalytic body formed by using the same
JP4522082B2 (en) * 2003-12-05 2010-08-11 石原産業株式会社 Photocatalyst liquid composition and photocatalyst formed using the same
JP2014161786A (en) * 2013-02-25 2014-09-08 Nissan Motor Co Ltd Catalyst particle and method for producing the same
JP2018144004A (en) * 2017-03-08 2018-09-20 旭化成株式会社 Inorganic compound for photocatalyst, photocatalyst composition, photocatalyst coating film and photocatalyst coating product
KR101919600B1 (en) 2017-06-16 2018-11-19 주식회사 신성이엔알 An adsorbent for treating air pollutants and A preparing method for the same

Also Published As

Publication number Publication date
JP3837517B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
JP2775399B2 (en) Porous photocatalyst and method for producing the same
JP2636158B2 (en) Titanium oxide porous thin film photocatalyst and method for producing the same
US6632771B1 (en) Silica gel carrying titanium oxide photocatalyst
KR100723956B1 (en) Functional adsorbent and environment purification product
KR100385301B1 (en) Novel titania photocatalyst and its manufacturing method
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
JP2600103B2 (en) Photocatalytic filter and method for producing the same
JP2832342B2 (en) Photocatalyst particles and method for producing the same
JP2945926B2 (en) Photocatalyst particles and method for producing the same
IL121877A (en) Photocatalysts for the degradation of organic pollutants
JPH11290692A (en) Photocatalyst, its manufacture, and photocatalyst-containing molding and its manufacture
JP3484470B2 (en) Film material with photocatalytic function
JP4621859B2 (en) Method for producing porous photocatalyst
JPH11169727A (en) Photocatalyst body and application thereof
JP2003199810A (en) Functional adsorbent and its production method
JP3292872B2 (en) Photocatalytic silica gel and method for producing the same
CN1290573A (en) Light catalyst for purifying air
JPWO2008072747A1 (en) Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same
JP5610329B2 (en) Titanium oxide volatile organic compound decomposition material coated with silicate
JP3118558B2 (en) Water treatment catalyst and water treatment method
JP2003144937A (en) Silica gel molded body carried with titanium oxide photocatalyst and manufacturing method therefor
JP4182210B2 (en) Process for producing titanium oxide composite coated with silicate
KR20030084174A (en) Direct adhesion method of photocatalyst on substrate
JP2002282704A (en) Titanium oxide-carrying photocatalytic silica gel and its manufacturing method
JP3864223B2 (en) Manufacturing method of environmental materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

R150 Certificate of patent or registration of utility model

Ref document number: 3837517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term