JP2003199719A - Hemomanometer - Google Patents

Hemomanometer

Info

Publication number
JP2003199719A
JP2003199719A JP2002000856A JP2002000856A JP2003199719A JP 2003199719 A JP2003199719 A JP 2003199719A JP 2002000856 A JP2002000856 A JP 2002000856A JP 2002000856 A JP2002000856 A JP 2002000856A JP 2003199719 A JP2003199719 A JP 2003199719A
Authority
JP
Japan
Prior art keywords
pulse wave
blood pressure
photoelectric
sensor
waveform data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002000856A
Other languages
Japanese (ja)
Other versions
JP3727592B2 (en
Inventor
Shinji Kondo
針次 近藤
Toru Takemoto
亨 竹本
Toshihiro Honda
俊宏 本田
Noriaki Sakakibara
則彰 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K and S KK
Kyoho Machine Works Ltd
Original Assignee
K and S KK
Kyoho Machine Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K and S KK, Kyoho Machine Works Ltd filed Critical K and S KK
Priority to JP2002000856A priority Critical patent/JP3727592B2/en
Priority to EP02027552A priority patent/EP1317902B1/en
Priority to US10/314,245 priority patent/US6953435B2/en
Priority to DE60207183T priority patent/DE60207183T2/en
Publication of JP2003199719A publication Critical patent/JP2003199719A/en
Application granted granted Critical
Publication of JP3727592B2 publication Critical patent/JP3727592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hemomanometer capable of continuously measuring the blood pressure. <P>SOLUTION: The highest blood pressure Po1 and the lowest blood pressure Po2 are calculated from the pressure pulse wave by a cuff 2 and a cuff pressure sensor 24, and a reference blood pressure area V0 is also calculated. Near infrared light is irradiated by a photoelectric sensor 7 and the quantity of the reflected light from a blood vessel is detected as the photoelectric volume pulse wave, and light of a wavelength shorter than blue light is irradiated by a body movement sensor 8 to detect the body movement of a subject. By subtracting the output waveform of the body movement sensor 8 from the output waveform of the photoelectric sensor 7, that is the photoelectric volume pulse wave, the body movement component is removed from the photoelectric pulse wave. After that, a data processing device 20 determines whether the cycle of the photoelectric volume pulse wave is within a permissible range or not, and the waveform data of an abnormal cycle part are replaced with a previously calculated standard waveform model. In this way, the blood pressure is calculated based on the pressure pulse wave and the photoelectric pulse wave from which the component leading to an error is removed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、血圧測定装置に関
する。
TECHNICAL FIELD The present invention relates to a blood pressure measuring device.

【0002】[0002]

【従来の技術】従来より知られるデジタル式の血圧測定
の手段は、オシロメトリックス法と呼ばれる圧脈波振動
法によるものが一般的である。これはカフ(腕帯)に空
気を送りこんで動脈を圧迫した後、徐々に減圧する過程
で血圧を測定する方法であって、心臓の拍動に同期した
血管壁の振動をカフに内蔵されたゴム袋の圧力変動(圧
脈波)としてとらえるものである。
2. Description of the Related Art Conventionally known digital blood pressure measuring means is generally based on a pressure pulse wave oscillation method called an oscillometric method. This is a method of measuring blood pressure in the process of gradually depressurizing the artery after sending air to the cuff (arm girdle) to compress the artery, and the vibration of the blood vessel wall synchronized with the heart beat was built into the cuff. It is captured as the pressure fluctuation (pressure pulse wave) of the rubber bag.

【0003】[0003]

【発明が解決しようとする課題】ところで、血圧は周囲
の環境や体内の状況によっても変動しているため数度の
断続的な測定より連続測定が出来ることが望まれるが、
上記した従来のデジタル血圧計では係る要請に応えるこ
とが出来ない。本発明は上記のような事情に基づいて完
成されたものであって、血圧の連続測定をなしうる血圧
測定装置を提供することを目的とする。
By the way, since blood pressure varies depending on the surrounding environment and internal conditions, it is desirable that continuous measurement be possible rather than intermittent measurement of several degrees.
The above-mentioned conventional digital sphygmomanometer cannot meet such a request. The present invention was completed in view of the above circumstances, and an object thereof is to provide a blood pressure measurement device capable of continuously measuring blood pressure.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めの手段として、請求項1の発明は、被験者の血管を圧
迫するためのカフと、このカフによって圧迫された部分
から圧脈波を検出するカフ圧センサと、前記被験者の血
管へ所定波長の光を照射しこの照射光による透過光ある
いは反射光の光量を光電容積脈波として連続して検出す
る光電センサと、前記圧脈波と前記光電容積脈波とに基
づいて血圧算出アルゴリズムから血圧値を連続して算出
する演算手段と、この血圧値の推移を表示する表示手段
とからなる血圧測定装置であって、前記演算手段は前記
光電容積脈波の波形データが通常取りうる許容範囲内で
あるか、否かの判定を行い、前記波形データの一部が許
容範囲外にあるときには、前記光電容積脈波の波形デー
タのうち許容範囲外にある波形データ部分を過去に採取
した許容範囲内にある波形データに置き換える置換処理
を行う構成としたところに特徴を有する。
As a means for achieving the above object, the invention of claim 1 provides a cuff for compressing a blood vessel of a subject and a pressure pulse wave from a portion compressed by the cuff. A cuff pressure sensor for detecting, a photoelectric sensor for irradiating the blood vessel of the subject with light of a predetermined wavelength and continuously detecting the amount of transmitted light or reflected light by this irradiation light as a photoelectric volume pulse wave, and the pressure pulse wave. A blood pressure measuring device comprising a calculation means for continuously calculating a blood pressure value from a blood pressure calculation algorithm based on the photoelectric volume pulse wave, and a display means for displaying a transition of the blood pressure value, wherein the calculation means is the Whether or not the waveform data of the photoelectric plethysmogram is within an allowable range that can be normally taken is determined, and when a part of the waveform data is out of the allowable range, the waveform data of the photoelectric plethysmogram is allowed. range Having said waveform data part was configured to perform a replacement process of replacing the waveform data is within the allowable range taken in the past on the.

【0005】請求項2の発明は、請求項1に記載のもの
において、前記演算手段は前記波形データとして前記光
電容積脈波の周期を検出するとともに、前記許容範囲と
して光電容積脈波における周期が通常取りうる範囲を予
め定めておき、この許容範囲と前記光電容積脈波の周期
とに基づいて前記判定が行われるよう構成されていると
ころに特徴を有する。
According to a second aspect of the present invention, in the first aspect, the calculating means detects the period of the photoelectric volume pulse wave as the waveform data, and the period in the photoelectric volume pulse wave is the allowable range. It is characterized in that a range that can usually be taken is set in advance and the determination is performed based on this allowable range and the period of the photoelectric volume pulse wave.

【0006】請求項3の発明は、請求項1又は請求項2
に記載のものにおいて、前記演算手段は過去に採取され
た波形データを蓄積するとともに、そこから前記許容範
囲内にある波形データとして標準波形モデルを算出する
ところに特徴を有する。
The invention of claim 3 relates to claim 1 or claim 2.
In the above-mentioned one, the arithmetic means is characterized in that the waveform data collected in the past is accumulated and a standard waveform model is calculated from the accumulated waveform data as waveform data within the allowable range.

【0007】請求項4の発明は、請求項1ないし請求項
3のいずれか1項に記載のものにおいて、前記光電セン
サより短い波長の光を照射して前記被験者の皮膚表面で
の反射光量の変化を連続して検出する体動センサを備え
るとともに、前記演算手段は前記光電容積脈波の出力波
形から前記体動センサの出力波形を減じる修正処理を行
うよう構成してあるところに特徴を有する。
According to a fourth aspect of the present invention, in any one of the first to third aspects, a light having a wavelength shorter than that of the photoelectric sensor is irradiated to determine the amount of reflected light on the skin surface of the subject. A feature is that it is provided with a body movement sensor that continuously detects changes, and the arithmetic means is configured to perform a correction process of subtracting the output waveform of the body movement sensor from the output waveform of the photoelectric volume pulse wave. .

【0008】請求項5の発明は、請求項1ないし請求項
4のいずれか1項に記載のものにおいて、前記演算手段
は前記光電容積脈波及び前記圧脈波に基づいて血流量、
心拍出量、動脈血酸素飽和度を連続して算出するよう構
成されているところに特徴を有する。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the calculating means is a blood flow amount based on the photoelectric volume pulse and the pressure pulse wave.
It is characterized in that the cardiac output and the arterial oxygen saturation are continuously calculated.

【0009】[0009]

【発明の作用及び効果】<請求項1の発明>請求項1の
発明によれば、カフによって血管が圧迫された後減圧さ
れる過程で、カフ圧センサからは血管内の圧力変動が圧
脈波(絶対値)として検出される。この間に、光電セン
サから皮膚に対して所定波長の光が照射されると、血中
ヘモグロビンはある波長帯の光に強い吸収スペクトルを
持っているため、透過光あるいは反射光の光量が血管の
容量変動に伴って変化するヘモグロビン量に応じて変化
し、その経時的な変化の様子が光電容積脈波(相対値)
として検出される。その後、演算手段が相対値である光
電容積脈波と絶対値である圧脈波とに基づいて血圧算出
アルゴリズムから血圧値を算出し、その推移を表示す
る。このように、被験者に対し予めカフ圧センサによっ
て圧脈波を算出しておけば連続して計測される光電容積
脈波を絶対値化することができ、カフによる再加圧を行
うことなく連続して血圧を測定することが出来る。
<Invention of Claim 1><Invention of Claim 1> According to the invention of Claim 1, in the process of depressurization after the blood vessel is compressed by the cuff, the pressure fluctuation in the blood vessel is detected by the cuff pressure sensor. It is detected as a wave (absolute value). During this period, when the photoelectric sensor irradiates the skin with light of a predetermined wavelength, blood hemoglobin has a strong absorption spectrum for light in a certain wavelength band, so the amount of transmitted light or reflected light is determined by the volume of blood vessels. It changes according to the amount of hemoglobin that changes with the change, and the state of the change over time is the photoelectric volume pulse wave (relative value)
Detected as. After that, the calculation means calculates the blood pressure value from the blood pressure calculation algorithm based on the photoelectric volume pulse wave which is the relative value and the pressure pulse wave which is the absolute value, and displays the transition thereof. In this way, if the pressure pulse wave is calculated in advance by the cuff pressure sensor for the subject, the photoelectric volume pulse wave that is continuously measured can be converted into an absolute value, and continuous re-pressurization is not performed by the cuff. Then you can measure your blood pressure.

【0010】また、演算手段は光電容積脈波の波形デー
タが許容範囲内にあるか、否かの判定を行い、光電容積
脈波における異常データ部分、すなわち、許容範囲外に
ある波形データ部分(例えば、被験者の大きな体動に起
因して起こる測定不良、心臓に対する測定高さの変位に
起因する測定誤差によって生じる)を過去に採取した許
容範囲内にある波形データに置き換える。従って、光電
容積脈波のうち異常なデータ分を排斥することが出来、
データの採取後に血圧値のデータ解析(例えば、血圧値
の平均値を算出する場合等)を行う場合に、信頼性の高
い血圧診断を行うことが出来る。
Further, the calculating means determines whether or not the waveform data of the photoelectric volumetric pulse wave is within the allowable range, and the abnormal data portion in the photoelectric volumetric pulse wave, that is, the waveform data portion outside the allowable range ( For example, a measurement error caused by a large body movement of the subject, or a measurement error caused by a displacement of the measurement height with respect to the heart) is replaced with waveform data within the allowable range collected in the past. Therefore, it is possible to exclude abnormal data in the photoelectric volume pulse wave,
When data analysis of blood pressure values (for example, when calculating the average value of blood pressure values) is performed after data collection, highly reliable blood pressure diagnosis can be performed.

【0011】<請求項2の発明>請求項2の発明によれ
ば、光電容積脈波の判定は光電容積脈波の周期に基づい
てなされる。 <請求項3の発明>請求項3の発明によれば、演算手段
が置換処理を行う際には、光電容積脈波の波形データの
うち許容範囲外にある波形データ部分は標準波形モデル
に置き換えられる。
<Invention of Claim 2> According to the invention of Claim 2, the determination of the photoelectric volumetric pulse wave is made based on the period of the photoelectric volumetric pulse wave. <Invention of Claim 3> According to the invention of Claim 3, when the calculation means performs the replacement process, the waveform data portion outside the allowable range of the waveform data of the photoelectric volumetric pulse wave is replaced with the standard waveform model. To be

【0012】<請求項4の発明>請求項4の発明によれ
ば、体動センサによって被験者の皮膚で反射した反射光
を連続して検出することで被験者の体動を検出すること
が出来る。更に、演算手段は光電容積脈波の波形から体
動センサの出力波形を減じる修正処理を行うため被験者
の体動による誤差分を排斥することができ正確な血圧値
を得ることが出来る。
<Invention of Claim 4> According to the invention of Claim 4, the body motion of the subject can be detected by continuously detecting the reflected light reflected by the skin of the subject by the body motion sensor. Further, since the calculating means performs the correction process of subtracting the output waveform of the body movement sensor from the waveform of the photoelectric volume pulse wave, the error amount due to the body movement of the subject can be excluded and an accurate blood pressure value can be obtained.

【0013】<請求項5の発明>請求項5の発明によれ
ば、演算手段は光電容積脈波及び圧脈波に基づいて公知
のアルゴリズムから血流量、心拍出量、動脈血酸素飽和
度を連続して算出することが出来る。
<Invention of Claim 5> According to the invention of Claim 5, the arithmetic means calculates the blood flow rate, cardiac output, and arterial oxygen saturation level from a known algorithm based on the photoplethysmogram and pressure pulse wave. It can be calculated continuously.

【0014】[0014]

【発明の実施の形態】本発明に係る血圧測定装置1の一
実施形態を図1ないし図8によって説明する。図1にお
いて、2は例えば手首に装着可能なカフであり(上腕部
に装着してもよい)、内部にゴム袋が内蔵されている。
このゴム袋にはチューブが接続されていてエアー供給用
のポンプ6と接続されている。また、チューブの途中に
は開閉弁3が介在されていて、その開閉動作によってカ
フ2内のゴム袋に対するエアーの供給と排気を行うこと
が出来るようにしてある。さらに、カフ2内にはゴム袋
内の空気変動を検出するためのカフ圧センサ4が組み込
まれ、後述するデータ処理装置(本発明の演算手段に相
当する)20と接続されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a blood pressure measuring device 1 according to the present invention will be described with reference to FIGS. In FIG. 1, reference numeral 2 denotes, for example, a cuff that can be worn on the wrist (may be worn on the upper arm), and has a rubber bag built therein.
A tube is connected to this rubber bag and is connected to a pump 6 for supplying air. Further, an on-off valve 3 is interposed in the middle of the tube so that air can be supplied to and exhausted from the rubber bag inside the cuff 2 by the opening / closing operation. Further, a cuff pressure sensor 4 for detecting air fluctuations in the rubber bag is incorporated in the cuff 2, and is connected to a data processing device (corresponding to a computing means of the present invention) 20 described later.

【0015】また、カフ2に並んで装着される部分とし
て、光電センサ7、体動センサ8が設けられている(光
電センサ7、体動センサ8はカフ2内に組み込んでもよ
い)。光電センサ7は、この実施形態においては、近赤
外光波長(例えば640mm)をもった光を皮膚に向け
て照射可能な発光赤色LED(投光器)とその反射光を
受光するフォトトランジスタ(受光器)とからなってい
る。赤外光は皮膚深部にある撓骨動脈に至ることがで
き、フォトトランジスタの出力は血管の容量に伴う吸光
度の変化が血流量の相対変化として検出される。
A photoelectric sensor 7 and a body movement sensor 8 are provided as parts to be mounted side by side on the cuff 2 (the photoelectric sensor 7 and the body movement sensor 8 may be incorporated in the cuff 2). In this embodiment, the photoelectric sensor 7 includes a light emitting red LED (light projector) capable of irradiating the skin with light having a near infrared light wavelength (for example, 640 mm) and a phototransistor (light receiver) for receiving the reflected light. ) And. Infrared light can reach the radial artery deep in the skin, and the output of the phototransistor is detected as a relative change in blood flow due to a change in absorbance with the volume of the blood vessel.

【0016】体動センサ8としては、この実施形態にお
いては、青外光波長(例えば420mm)をもった光を
皮膚へ向けて照射可能な発光青色LED(投光器)とそ
の反射光を受光するフォトトランジスタ(受光器)とか
らなっている。青外光は皮膚表面で反射し、フォトトラ
ンジスタの出力は被験者の測定中の微少な体動として検
出される。
As the body movement sensor 8, in this embodiment, a light emitting blue LED (light projector) capable of irradiating the skin with light having an external blue wavelength (for example, 420 mm) and a photo receiving the reflected light thereof. It consists of a transistor (light receiver). The blue light is reflected on the skin surface, and the output of the phototransistor is detected as a slight movement of the subject during the measurement.

【0017】図2は本実施形態における血圧測定装置1
の電気的構成を示すブロック図であり、上記したカフ2
内のカフ圧センサ4は増幅器11を介してローパスフィ
ルタ9、ハイパスフィルタ10に接続され、それぞれ所
定周波数成分がカットされた状態でデータ処理装置20
へ入力されるようになっている。また、光電センサ7も
増幅器14を介してローパスフィルタ15及びハイパス
フィルタ16に接続され、さらにデータ処理装置20へ
入力される。
FIG. 2 is a blood pressure measuring device 1 according to this embodiment.
FIG. 2 is a block diagram showing an electrical configuration of the cuff 2 described above.
The cuff pressure sensor 4 in the inside is connected to a low-pass filter 9 and a high-pass filter 10 via an amplifier 11, and a data processing device 20 in a state where predetermined frequency components are cut off respectively.
It is designed to be input to. The photoelectric sensor 7 is also connected to the low-pass filter 15 and the high-pass filter 16 via the amplifier 14, and is further input to the data processing device 20.

【0018】なお、光電センサ7に接続されたローパス
フィルタ15ではノイズとなる低周波成分を除去するた
めにこの実施形態では30HZ以下の成分をカットし、
また、同じくハイパスフィルタ16では所定の高周波成
分(150HZ以上)をカットすることが出来るような
設定となっている。さらに、体動センサ8は増幅器18
を介してアクティブフィルタ19(バンドパスフィル
タ)に接続され、所定周波数帯域以外の成分をカットし
てデータ処理装置20へ入力するようになっている。
In the low-pass filter 15 connected to the photoelectric sensor 7, in order to remove low-frequency components that become noise, components of 30 HZ or less are cut in this embodiment,
Similarly, the high-pass filter 16 is set so as to be able to cut a predetermined high frequency component (150 HZ or more). Further, the body motion sensor 8 is an amplifier 18
It is connected to the active filter 19 (band pass filter) via the, and cuts components other than the predetermined frequency band and inputs them to the data processing device 20.

【0019】次にデータ処理装置20について説明す
る。カフ圧センサ4からデータ処理装置20内に入力さ
れた信号はマルチプレクサ22を介在させ演算処理を行
うCPU21に接続される。光電センサ7からの入力信
号は次に説明する脈波再生回路24を介してマルチプレ
クサ22、CPU21に接続され、体動センサ8からの
入力信号は脈波再生回路24、マルチプレクサ22を介
してCPU21に至るよう接続されている。また、CP
U21にはメモリ23が接続されるとともに、演算処理
した出力を表示するためのモニタ(本発明の表示手段に
相当する)30が接続されている。
Next, the data processing device 20 will be described. A signal input from the cuff pressure sensor 4 into the data processing device 20 is connected to a CPU 21 which performs an arithmetic process via a multiplexer 22. The input signal from the photoelectric sensor 7 is connected to the multiplexer 22 and the CPU 21 via the pulse wave reproduction circuit 24 described below, and the input signal from the body motion sensor 8 is transmitted to the CPU 21 via the pulse wave reproduction circuit 24 and the multiplexer 22. It is connected to everywhere. Also, CP
A memory 23 is connected to U21, and a monitor (corresponding to the display means of the present invention) 30 for displaying the output of the arithmetic processing is connected.

【0020】脈波再生回路24は、それぞれフィルタ1
4、15、16を通じた後の光電センサ7の出力波形か
ら体動センサ8の出力波形を減じることで、光電センサ
7の出力から体動分(特に被験者の微少な動き)を取り
除いた波形を生成する役割を果たすものである。この脈
波再生回路24による処理が本発明の修正処理に相当す
る。
The pulse wave regeneration circuit 24 includes filters 1
By subtracting the output waveform of the body movement sensor 8 from the output waveform of the photoelectric sensor 7 after passing through 4, 15, and 16, the waveform obtained by removing the body movement (particularly minute movement of the subject) from the output of the photoelectric sensor 7 is obtained. It plays a role of generating. The processing by the pulse wave reproduction circuit 24 corresponds to the correction processing of the present invention.

【0021】次に各センサ4、7、8からの入力に基づ
きデータ処理装置20が血圧値を算出する。その演算処
理について図3に示すフローチャートを参照して説明す
る。まず、測定に際してデータ処理装置20をキャリブ
レーションするための処理手順がなされる(図3におけ
るa〜gの工程)。すなわち、カフ圧、圧脈波の入力が
あると、これに基づいて所定の基準時において基準とな
る最高・最低の両血圧値及び脈拍数の各絶対値が測定さ
れる(a、bの工程)。なお、最高・最低の血圧値は公
知のオシロメトリックス法によって算出される。続い
て、基準時における血圧面積(基準血圧面積)Aoの算
出がなされる(cの工程)。基準血圧面積Aoは時間を
横軸に血圧を縦軸にとって、1心拍の周期To内におけ
る最高・最低の両血圧値Po1、Po2によって定まる
平面図形の面積によって決定される。具体的には、図5
に示すように、基準血圧面積Aoは、横の辺が1心拍時
間To、縦の辺が最低血圧Po2によって形成される長
方形の領域(下部領域面積Aop2)と、底辺が1心拍
時間To、高さが最高血圧Po1と最低血圧Po2の差
となって表される三角形の領域(上部領域面積Aop
1)との和から求められる。
Next, the data processor 20 calculates the blood pressure value based on the inputs from the sensors 4, 7, and 8. The calculation process will be described with reference to the flowchart shown in FIG. First, a processing procedure for calibrating the data processing device 20 is performed during measurement (steps a to g in FIG. 3). That is, when the cuff pressure and the pressure pulse wave are input, the maximum and minimum both blood pressure values and absolute values of the pulse rate, which serve as the reference at the predetermined reference time, are measured based on the inputs (steps a and b). ). The highest and lowest blood pressure values are calculated by the known oscillometric method. Subsequently, the blood pressure area (reference blood pressure area) Ao at the reference time is calculated (step c). The reference blood pressure area Ao is determined by the area of a plane figure determined by both the highest and lowest blood pressure values Po1 and Po2 in one heartbeat cycle To with the time as the horizontal axis and the blood pressure as the vertical axis. Specifically, FIG.
As shown in, the reference blood pressure area Ao has a rectangular region (lower region area Aop2) formed by the horizontal side for one heartbeat time To and the vertical side for the minimum blood pressure Po2, and the bottom side for one heartbeat time To, high. Is the difference between the systolic blood pressure Po1 and the diastolic blood pressure Po2 (the upper area area Aop
It is calculated from the sum of 1) and.

【0022】一方、前記圧脈波の測定時期と同時期、す
なわち、基準時に測定された光電センサ7の出力、すな
わち、光電容積脈波(以下、光電脈波という)の入力に
対しては脈波再生回路24によって体動処理がなされる
とともに(d、eの工程)、脈波面積(基準脈波面積)
Voが求められる(fの工程)。具体的には、図6に示
すような1心拍時間To内の血流量変化の積分値として
基準脈波面積Voが求められる。次に基準脈波面積Vo
と基準血圧面積Aoとの面積比(Ao/Vo)を算出す
る。こうして得られた面積比(Ao/Vo)がキャリブ
レーション値となり、この値に基づいて、各センサ7、
8に対しては自動的に光量の調整がなされるとともに、
その出力に対しても自動ゲイン調整がなされる(gの工
程)。これによって、各センサ7、8の出力が自動的に
レベル調整される。
On the other hand, when the pressure pulse wave is measured at the same time, that is, the output of the photoelectric sensor 7 measured at the reference time, that is, the photoelectric volume pulse (hereinafter referred to as photoelectric pulse wave) is input, Body movement processing is performed by the wave regeneration circuit 24 (steps d and e), and the pulse wave area (reference pulse wave area)
Vo is required (step f). Specifically, the reference pulse wave area Vo is obtained as an integrated value of changes in blood flow within one heartbeat time To as shown in FIG. Next, the reference pulse wave area Vo
The area ratio (Ao / Vo) between the reference blood pressure area Ao and the reference blood pressure area Ao is calculated. The area ratio (Ao / Vo) thus obtained becomes the calibration value, and based on this value, each sensor 7,
For 8 the light intensity is automatically adjusted,
The automatic gain adjustment is also performed on the output (step g). As a result, the level of the output of each sensor 7, 8 is automatically adjusted.

【0023】上記のような、ゲイン調整を行ったもと
で、血圧値の測定がなされる。この場合においても、光
電脈波以外の体動等のノイズ成分を除去するための処理
が施される。すなわち、前述したように、光電センサ7
の出力、すなわち光電脈波に対してローパス・ハイパス
の両フィルタ15、16によって所定周波数域の周波成
分が除去され、同時に体動センサ8の出力に対してもア
クティブフィルタ19によって所定周波数以外の成分が
除去される。その上で脈波再生回路24によって光電脈
波の波形から体動波形が減じられる(hの工程)こと
で、光電脈波から被験者の微少な体動による測定誤差分
を除去する。
The blood pressure value is measured under the above-described gain adjustment. Even in this case, processing for removing noise components such as body movements other than the photoelectric pulse wave is performed. That is, as described above, the photoelectric sensor 7
Of the photopulse wave, that is, the low-pass and high-pass filters 15 and 16 remove the frequency components in the predetermined frequency range, and at the same time, the active filter 19 also removes the components other than the predetermined frequency from the output of the body motion sensor 8. Are removed. Then, the pulse wave regeneration circuit 24 subtracts the body movement waveform from the waveform of the photoelectric pulse wave (step h), thereby removing the measurement error amount due to the minute body movement of the subject from the photoelectric pulse wave.

【0024】そして、上記のようにしてフィルタ処理等
がなされた光電脈波から得られる1心拍毎の補正脈波面
積Vtに前記した面積比(Ao/Vo)が乗ぜられて血
圧面積Atが算出される(iの工程)。続いて、データ
処理装置20により光電脈波の判定、すなわち、光電脈
波の周期が許容範囲内であるか否かを判定している(j
の工程)。許容範囲とは光電容積脈波の周期が通常取り
うる範囲(例えば、0.75〜1.5sec)であっ
て、光電脈波の測定中、被験者に大きな体動があった場
合等では光電脈波の波形が乱れその周期が許容範囲外に
なる。そして、光電脈波の周期が許容範囲内にあるとき
には第一血圧算出工程(kの工程)に進み、許容範囲外
にあるときには光電脈波の置換処理を行う工程(n工
程)に進む。
Then, the blood pressure area At is calculated by multiplying the above-mentioned area ratio (Ao / Vo) by the corrected pulse wave area Vt for each heartbeat obtained from the photoelectric pulse wave that has been filtered as described above. (Step i). Subsequently, the data processing device 20 determines the photoelectric pulse wave, that is, whether the period of the photoelectric pulse wave is within the allowable range (j
Process). The allowable range is a range (for example, 0.75 to 1.5 sec) in which the period of the photoelectric plethysmogram can normally take, and when the subject has a large body movement during the measurement of the photoelectric plethysmogram, the photoelectric pulse is measured. The waveform of the wave is disturbed and its period is out of the allowable range. Then, when the period of the photoelectric pulse wave is within the allowable range, the process proceeds to the first blood pressure calculation step (step k), and when it is outside the allowable range, the step of performing the photoelectric pulse wave replacement process (step n) is performed.

【0025】まず、第1血圧値算出工程に進んだ場合に
ついて説明し、その後置換処理を行う工程に進んだ場合
を説明する。第1血圧算出工程では、前記血圧面積At
に基づき、血圧算出アルゴリズムから血圧値が連続的に
求められる。具体的には、まず、bの工程で最高血圧P
o1、最低血圧Po2、心拍時間Toが算出され、これ
らからcの工程では基準血圧面積Ao、上部領域面積A
op1、下部領域面積Aop2が以下の(1)〜(3)
式に従って算出されている。 Aop1=(Po1−Po2)/2×To・・・・・・・・(1) Aop2=Po2×To・・・・・・・・・・・・・・・・(2) Ao=Aop1+Aop2・・・・・・・・・・・・・・・(3) ここで、Aop1:Aop2=K・・・・・・・・・・・・(4) とする。
First, the case where the process has proceeded to the first blood pressure value calculation step will be described, and the case where the process has proceeded to the replacement process will be described. In the first blood pressure calculation step, the blood pressure area At
Based on, the blood pressure value is continuously obtained from the blood pressure calculation algorithm. Specifically, first, in the step b, the systolic blood pressure P
o1, the diastolic blood pressure Po2, and the heartbeat time To are calculated, and from these, in the step c, the reference blood pressure area Ao and the upper region area A are calculated.
op1 and lower region area Aop2 are as follows (1) to (3)
It is calculated according to the formula. Aop1 = (Po1-Po2) / 2 * To ... (1) Aop2 = Po2 * To ... (2) Ao = Aop1 + Aop2. (3) Here, Aop1: Aop2 = K ... (4).

【0026】次にiの工程で算出された血圧面積Atに
おける血圧値の最大値をPt1、最小値をPt2、心拍
時間をTtとすると、血圧面積At、上部領域面積At
p1、下部領域面積Atp2は以下の(5)〜(7)式
によって表すことが出来る。 Atp1=(Pt1−Pt2)/2×Tt・・・・・・・・(5) Atp2=Pt2×Tt・・・・・・・・・・・・・・・・(6) At=Atp1+Atp2・・・・・・・・・・・・・・・(7) ここで、血圧面積Atの上部領域面積Atp1と下部領
域面積Atp2との比率が、基準血圧面積Aoの上部領
域面積Aop1と下部領域面積Aop2との比率Kと等
しいと仮定すると次の(8)式が得られる。 Atp1:Atp2=K・・・・・・・・・・・・・・・・(8) (7)式、(8)式より、 Atp1=K/(1+K)×At・・・・・・・・・・・・(9) Atp2=1/(1+K)×At・・・・・・・・・・・・(10) が得られ、更に、(10)式を(6)式に代入すると、 Pt2=At/((1+K)×Tt)・・・・・・・・・・(11) が得られ、更に、(5)式、(9)式、(11)式より、 Pt1=(2K+1)×At/((1+K)×Tt)・・・(12) が算出され、これにて1心拍当たりの血圧値の最大値P
t1、最小値Pt2が得られる。
Next, assuming that the maximum blood pressure value in the blood pressure area At calculated in step i is Pt1, the minimum value is Pt2, and the heartbeat time is Tt, the blood pressure area At and the upper region area At are obtained.
p1 and the lower region area Atp2 can be expressed by the following equations (5) to (7). Atp1 = (Pt1-Pt2) / 2 * Tt ... (5) Atp2 = Pt2 * Tt (6) At = Atp1 + Atp2. (7) Here, the ratio of the upper region area Atp1 and the lower region area Atp2 of the blood pressure area At is such that the upper region area Aop1 and the lower region area of the reference blood pressure area Ao. Assuming that the ratio K to the area Aop2 is equal, the following expression (8) is obtained. Atp1: Atp2 = K (8) From the expressions (7) and (8), Atp1 = K / (1 + K) × At. ····································································································································· (10) Then, Pt2 = At / ((1 + K) × Tt) (11) is obtained. Further, from the equations (5), (9), and (11), Pt1 = (2K + 1) × At / ((1 + K) × Tt) (12) is calculated, and the maximum blood pressure value P per heartbeat P
t1 and the minimum value Pt2 are obtained.

【0027】その後、データ処理装置20は算出された
血圧値を血圧基準値と照合しチェックする(lの工
程)。この血圧基準値は正常な測定で得られる血圧値の
幅(例えば、50〜140mmHg)であって、算出さ
れた血圧値がこの血圧基準値内にあるときには「測定が
正しく行われた」と判断し血圧値の推移をモニタ30に
表示し(mの工程)、血圧基準値外の時には「測定に誤
りがあった」と判断して最高血圧・最低血圧を算出する
工程に戻って再び血圧値を算出するようになっている。
Then, the data processing device 20 checks the calculated blood pressure value by collating it with the blood pressure reference value (step l). This blood pressure reference value is a range of blood pressure values obtained by normal measurement (for example, 50 to 140 mmHg), and when the calculated blood pressure value is within this blood pressure reference value, it is determined that “the measurement has been correctly performed”. Then, the transition of the blood pressure value is displayed on the monitor 30 (step m), and when the blood pressure is out of the reference value, the process returns to the step of determining the “measurement error” and calculating the systolic blood pressure / diastolic blood pressure again. Is calculated.

【0028】一方、光電脈波の置換処理工程に進んだ場
合の処理に先だって、メモリ23が過去に採取された光
電脈波の波形データを蓄積するとともに、この蓄積され
たデータから波高値、周期等の平均値を算出し光電脈波
の標準波形モデルを算出している。そして、置換処理工
程では、図7に示すように、測定された光電脈波の異常
波形部分、すなわち、許容範囲外にある波形データ部分
の始まりから最終時点までの波形データを前記標準波形
データに置き換える(図7(b)のハッチング部)とと
もに、許容範囲外にある波形データ部分の血圧面積At
を過去の光電脈波の血圧面積の平均値Azに置き換える
置換処理を行う。その後、第2血圧値算出工程で血圧値
の算出がなされる(o工程)。すなわち、許容範囲内に
ある波形データ部分については第1血圧工程と同様に血
圧面積Atに基づき血圧値が算出され、許容範囲外にあ
る波形データ部分については置換された血圧面積の平均
値Azに基づき血圧値が算出されるようになっている。
その後、前記したl工程に進み血圧値のチェックがなさ
れる。尚、この血圧の測定に伴って、データ処理装置2
0は光電脈波より脈拍Eを経時的に検出している。
On the other hand, prior to the processing in the case of proceeding to the photoelectric pulse wave replacement processing step, the memory 23 accumulates the waveform data of the photoelectric pulse wave collected in the past, and the peak value and the cycle are calculated from the accumulated data. A standard waveform model of the photoelectric pulse wave is calculated by calculating the average value of the above. Then, in the replacement process step, as shown in FIG. 7, the abnormal waveform portion of the measured photoelectric pulse wave, that is, the waveform data from the beginning to the final time point of the waveform data portion outside the allowable range is converted into the standard waveform data. Along with replacement (hatched portion in FIG. 7B), the blood pressure area At of the waveform data portion outside the allowable range
Is replaced with the average value Az of the blood pressure areas of the past photoelectric pulse waves. Then, the blood pressure value is calculated in the second blood pressure value calculation step (step o). That is, for the waveform data portion within the allowable range, the blood pressure value is calculated based on the blood pressure area At as in the first blood pressure step, and for the waveform data portion outside the allowable range, the average value Az of the replaced blood pressure area is calculated. The blood pressure value is calculated based on this.
After that, the process goes to the above-mentioned step 1 to check the blood pressure value. Incidentally, the data processing device 2 is accompanied by the measurement of the blood pressure.
0 indicates that the pulse E is detected from the photoelectric pulse wave over time.

【0029】本実施形態の血圧測定装置1は上記した血
圧値の算出の他に動脈血酸素飽和度(血中酸素飽和量)
SaO2を算出するようになっており、以下その算出手
順について図8のフローチャートを参照して説明する。
まず、前述したように、カフ圧センサ4及び光電センサ
7、体動センサ8により圧脈波、光電脈波を検出し、こ
れらに基づきデータ処理装置20が血圧値を算出する。
その後、血圧値から血管内の圧力変動ΔPが公知のアル
ゴリズムから算出されるとともに、(1)式に従って血
流速度の平均値Dが算出される。 D=1/2×(1/(4×h))×(ΔP/ΔL)×R2・・・・(13) h・・・粘性(本実施形態では、h=0.04とする) ΔL・・心臓から測定部までの管長(本実施形態では、
L=20cmとする) R・・・血管径(本実施形態では、R=0.15cmと
する)
The blood pressure measuring device 1 of the present embodiment has the arterial blood oxygen saturation (blood oxygen saturation) in addition to the above-described blood pressure value calculation.
SaO2 is calculated, and the calculation procedure will be described below with reference to the flowchart of FIG.
First, as described above, the cuff pressure sensor 4, the photoelectric sensor 7, and the body motion sensor 8 detect the pressure pulse wave and the photoelectric pulse wave, and the data processing device 20 calculates the blood pressure value based on these.
Then, the pressure variation ΔP in the blood vessel is calculated from the blood pressure value by a known algorithm, and the average value D of the blood flow velocity is calculated according to the equation (1). D = 1/2 × (1 / (4 × h)) × (ΔP / ΔL) × R 2 ... (13) h ... Viscosity (in this embodiment, h = 0.04) ΔL ... Tube length from heart to measurement unit (in the present embodiment,
L = 20 cm) R ... blood vessel diameter (in the present embodiment, R = 0.15 cm)

【0030】続いて、(14)〜(16)式に従って、
データ処理装置20が血流量Q、心拍出量Co、心係数
Cxを算出する。 Q=π×R2×D・・・・・・・・・・・・・(14) Co=E×Q・・・・・・・・・・・・・・・・・・(15) Cx=Co/S・・・・・・・・・・・・・・・・・(16) E・・・脈拍 S・・・・体表面積(本実施形態では、S=3.4L/
min/m2とする)
Then, according to the equations (14) to (16),
The data processing device 20 calculates the blood flow Q, the cardiac output Co, and the heart coefficient Cx. Q = π × R 2 × D ... (14) Co = E × Q ... (15) Cx = Co / S (16) E ... Pulse S ... Body surface area (S = 3.4 L / in this embodiment)
min / m 2 )

【0031】更に、データ処理装置20は光電脈波に基
づいて公知のアルゴリズムから動脈血酸素含量CaO2
及び混合静脈血酸素飽和含量CvO2を算出するととも
に、(5)式に従って、動脈血酸素飽和度SaO2を算
出する。 SaO2=(CaO2−CvO2)×Cx・・・・・(17) そして、動脈血酸素飽和度SaO2の推移がモニタ30
に表示される。
Further, the data processor 20 uses the known algorithm based on the photoplethysmogram to detect the arterial oxygen content CaO2.
And the mixed venous oxygen saturation content CvO2 is calculated, and the arterial oxygen saturation SaO2 is calculated according to the equation (5). SaO2 = (CaO2-CvO2) * Cx (17) Then, the change in the arterial oxygen saturation SaO2 is monitored 30.
Is displayed in.

【0032】次に本実施形態の作用、効果を具体的に説
明する。被験者の血圧値を連続して測定する手順につい
て説明する。まず、被験者に対し血圧測定装置1をセッ
トする。具体的には、カフ2を被験者の手首部分に装着
し、データ処理装置20の電源を投入する。続いてポン
プ6を駆動させてカフ2のゴム袋へエアーを供給する。
圧脈波が検出されなくなるまでカフ2へのエア−供給が
継続される。圧脈波が出現しなくなった時点で、カフ2
へのエアーの供給を停止し、開閉弁3を開いて減圧を開
始する。これによって、CPU21内では前記したオシ
ロメトリックス法にしたがって、最高・最低の両血圧P
o1、Po2及び脈拍の測定がなされる(a、bの工
程)。
Next, the operation and effect of this embodiment will be specifically described. A procedure for continuously measuring the blood pressure value of the subject will be described. First, the blood pressure measurement device 1 is set on the subject. Specifically, the cuff 2 is attached to the wrist part of the subject, and the power of the data processing device 20 is turned on. Then, the pump 6 is driven to supply air to the rubber bag of the cuff 2.
The air supply to the cuff 2 is continued until the pressure pulse wave is no longer detected. When the pressure pulse wave stops appearing, cuff 2
The supply of air to the chamber is stopped, the on-off valve 3 is opened, and decompression is started. As a result, the maximum and minimum blood pressures P in the CPU 21 are calculated according to the oscillometric method described above.
Measurement of o1, Po2 and pulse is performed (steps a and b).

【0033】一方で、光電センサ7、体動センサ8から
それぞれ波長の異なる光がそれぞれ皮膚に向けて照射さ
れる。光電センサ7からは近赤外光が照射され皮膚深部
に至り、撓骨動脈で反射された反射光が受光器であるフ
ォトトランジスタにて受光される。体動センサ8からは
青外光が皮膚表面に照射され、その反射光が受光器であ
るフォトトランジスタにて受光される(dの工程)。そ
して、これらはそれぞれ上記したフィルタ処理がなされ
る。その後、データ処理装置20では光電センサ7の出
力に基づいて基準脈波面積Voが求められる(e、fの
工程)。次に基準脈波面積Voと基準血圧面積Aoとか
ら面積比(Ao/Vo)が算出され、この面積比(Ao
/Vo)に基づいて自動ゲイン調整及び自動光量調整と
いったキャリブレーション処理がなされ、その結果、光
電センサ7の出力レベルが調整される(gの工程)。
On the other hand, the photoelectric sensor 7 and the body movement sensor 8 irradiate the skin with light having different wavelengths. Near-infrared light is emitted from the photoelectric sensor 7 to reach the deep part of the skin, and the reflected light reflected by the radial artery is received by a phototransistor which is a light receiver. The body movement sensor 8 irradiates the surface of the skin with blue light, and the reflected light is received by a phototransistor, which is a light receiver (step d). Then, each of these is subjected to the above-described filter processing. After that, the data processing device 20 obtains the reference pulse wave area Vo based on the output of the photoelectric sensor 7 (steps e and f). Next, the area ratio (Ao / Vo) is calculated from the reference pulse wave area Vo and the reference blood pressure area Ao, and the area ratio (Ao / Vo) is calculated.
/ Vo), a calibration process such as automatic gain adjustment and automatic light amount adjustment is performed, and as a result, the output level of the photoelectric sensor 7 is adjusted (step g).

【0034】かくして、血圧測定装置1のキャリブレー
ション処理に続いて、実際の測定段階となる。光電セン
サ7の出力データはローパス・ハイパスの両フィルタ1
5、16を通じてこれらによるノイズ除去処理、更に
は、体動センサ8が被験者の微少な体動の変化を検出し
これらの体動成分を減じる修正処理を経ることで、純粋
な脈波成分のみが連続して取り出される(hの工程)。
このように、光電脈波の波形から誤差分を排斥すること
ができるため、正確な光電脈波が得られる。続いて、体
動処理がなされた光電脈波に基づいてデータ処理装置2
0が1心拍毎の補正脈波面積Vtを算出し、更に補正脈
波面積Vtに前記した面積比(Ao/Vo)が乗ぜられ
血圧面積Atが算出される(iの工程)。
Thus, following the calibration process of the blood pressure measurement device 1, the actual measurement stage is reached. The output data of the photoelectric sensor 7 is low-pass / high-pass filter 1
Only the pure pulse wave component is obtained through the noise removal processing by these through 5 and 16, and further, the body movement sensor 8 detects the minute change in the body movement of the subject and the correction processing for reducing these body movement components. It is continuously taken out (step h).
In this way, since the error component can be excluded from the waveform of the photoelectric pulse wave, an accurate photoelectric pulse wave can be obtained. Then, based on the photoelectric pulse wave subjected to the body movement processing, the data processing device 2
0 calculates the corrected pulse wave area Vt for each heartbeat, and further, the corrected pulse wave area Vt is multiplied by the above area ratio (Ao / Vo) to calculate the blood pressure area At (step i).

【0035】更に、本実施形態では、上記体動センサ8
では検出することが出来ない大きな体動による誤差等を
排斥するために、光電脈波の判定(jの工程)が行われ
る。すなわち、データ処理装置20は光電脈波の周期が
許容範囲内であるか、否かの判定を行い、光電脈波の周
期が許容範囲内にあるときには第1血圧工程に進み血圧
算出アルゴリズムに従って血圧値を算出し(kの工
程)、許容範囲外にあるときには異常波形部分を標準波
形データに置き換えるとともに(nの工程)、異常波形
部分の血圧面積Atを血圧面積の平均値Azに置き換
え、第2血圧工程にて血圧算出アルゴリズムに従って血
圧値を算出する(oの工程)。その後、血圧値のチェッ
クを経て、血圧値の推移がモニタ30に表示される
(l、mの工程)。
Further, in this embodiment, the body movement sensor 8 is
In order to exclude an error or the like due to a large body movement that cannot be detected by, the determination of the photoelectric pulse wave (step j) is performed. That is, the data processing device 20 determines whether or not the period of the photoelectric pulse wave is within the allowable range. When the period of the photoelectric pulse wave is within the allowable range, the process proceeds to the first blood pressure step and the blood pressure is calculated according to the blood pressure calculation algorithm. A value is calculated (step k), and when it is out of the allowable range, the abnormal waveform portion is replaced with standard waveform data (step n), and the blood pressure area At of the abnormal waveform portion is replaced with the average value Az of the blood pressure area. The blood pressure value is calculated in accordance with the blood pressure calculation algorithm in the 2 blood pressure step (step o). After that, after the blood pressure value is checked, the transition of the blood pressure value is displayed on the monitor 30 (steps 1 and m).

【0036】このように本実施形態によれば、被験者に
対し予めカフ圧センサ4によって圧脈波を算出しておけ
ば連続して計測される光電容積脈波を絶対値化すること
ができ、カフ2による再加圧を行うことなく連続して血
圧を測定することが出来る。また、光電脈波から脈波再
生回路によって微少な体動に誤差分を除去するととも
に、光電脈波の判定及び置換処理によって体動センサ8
では検出できない大きな体動による誤差分等を排斥する
ことが出来る。従って、血圧値の採取後に血圧値のデー
タ解析(例えば、血圧値の平均値を算出する場合等)を
行う場合に、信頼性の高い血圧診断を行うことが出来
る。
As described above, according to this embodiment, if the pressure pulse wave is calculated in advance for the subject by the cuff pressure sensor 4, the photoelectric volume pulse wave continuously measured can be made into an absolute value, Blood pressure can be continuously measured without re-pressurization by the cuff 2. Further, the pulse wave regenerating circuit removes an error component from the photoelectric pulse wave into a minute body movement, and the body movement sensor 8 is determined by the photoelectric pulse wave determination and replacement processing.
It is possible to eliminate errors due to large body movements that cannot be detected with. Therefore, when data analysis of blood pressure values (for example, when calculating the average value of blood pressure values) is performed after the blood pressure values are collected, highly reliable blood pressure diagnosis can be performed.

【0037】尚、本実施形態では手首を測定部位として
光電脈波、圧脈波を測定しているが、被験者の腕の角度
によって心臓からの高さが異なるため測定誤差が生じる
虞がある。このような場合の対策として被験者の腕の角
度を検出可能な角度センサーを取付けるとともに、この
センサーからの出力に基づいてデータ処理装置20が角
度補償を行うことが出来る。更に、光電センサ7から被
験者の腕に照射される赤外光の入射角を意図的に変えて
やれば光電脈波の入射角に対する血管の断面積が変化す
る。そのためこの入射角の変化に伴う光電脈波の変化よ
り血管断面積、ひいては血管径Rを測定することが出来
る。
In this embodiment, the photoplethysmogram and the pressure pulse wave are measured with the wrist as the measurement site, but the height from the heart varies depending on the angle of the subject's arm, which may cause a measurement error. As a countermeasure against such a case, an angle sensor that can detect the angle of the subject's arm can be attached, and the data processing device 20 can perform angle compensation based on the output from this sensor. Furthermore, if the incident angle of the infrared light emitted from the photoelectric sensor 7 to the subject's arm is intentionally changed, the cross-sectional area of the blood vessel changes with respect to the incident angle of the photoelectric pulse wave. Therefore, the cross-sectional area of the blood vessel, and thus the blood vessel diameter R, can be measured from the change in the photoelectric pulse wave associated with the change in the incident angle.

【0038】<他の実施形態>本発明は上記記述及び図
面によって説明した実施形態に限定されるものではな
く、例えば次のような実施形態も本発明の技術的範囲に
含まれ、さらに、下記以外にも要旨を逸脱しない範囲内
で種々変更して実施することができる。
<Other Embodiments> The present invention is not limited to the embodiments described above and illustrated in the drawings. For example, the following embodiments are also included in the technical scope of the present invention. In addition to the above, various modifications can be made without departing from the scope of the invention.

【0039】(1)本実施形態では光電脈波の波形デー
タのうち許容範囲外にある波形データ部分を過去の光電
脈波の平均波形である標準波形に置き換えたが、被験者
自身のデータが保存されている場合には被験者自身のデ
ータに置き換えることが好ましい。
(1) In the present embodiment, the waveform data portion outside the allowable range of the photoelectric pulse wave waveform data is replaced with the standard waveform which is the average waveform of the past photoelectric pulse wave. If so, it is preferable to replace it with the subject's own data.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る血圧測定装置の概要
FIG. 1 is a schematic diagram of a blood pressure measurement device according to an embodiment of the present invention.

【図2】血圧測定装置のブロック図FIG. 2 is a block diagram of a blood pressure measurement device.

【図3】血圧値の算出手順を示すフローチャートFIG. 3 is a flowchart showing a procedure for calculating a blood pressure value.

【図4】カフ圧と圧脈波とを示す波形図FIG. 4 is a waveform diagram showing a cuff pressure and a pressure pulse wave.

【図5】血圧面積図[Figure 5] Blood pressure area diagram

【図6】脈波面積図[Figure 6] Pulse wave area diagram

【図7】(a)光電脈波の置換処理前の推移を示すグラ
フ (b)光電脈波の置換処理後の推移を示すグラフ
FIG. 7 (a) is a graph showing the transition of the photoelectric pulse wave before the replacement process, and (b) is a graph showing the transition of the photoelectric pulse wave after the replacement process.

【図8】動脈血酸素飽和度の算出手順を示すフローチャ
ート
FIG. 8 is a flowchart showing a procedure for calculating arterial oxygen saturation.

【符号の説明】[Explanation of symbols]

1…血圧測定装置 2…カフ 4…カフ圧センサ 7…光電センサ 8…体動センサ 20…データ処理装置(演算手段) 30…モニタ(表示手段) 1. Blood pressure measuring device 2 ... Cuff 4 ... Cuff pressure sensor 7 ... Photoelectric sensor 8 ... Body motion sensor 20 ... Data processing device (calculation means) 30 ... Monitor (display means)

フロントページの続き (72)発明者 竹本 亨 愛知県豊田市トヨタ町6番地 株式会社協 豊製作所内 (72)発明者 本田 俊宏 愛知県豊田市トヨタ町6番地 株式会社協 豊製作所内 (72)発明者 榊原 則彰 愛知県刈谷市井ケ谷町中前田93番地3 株 式会社ケーアンドエス内 Fターム(参考) 4C017 AA08 AA11 AC01 AC26 BC11 BD01 FF15 4C038 KK01 KL07 KM01 KX01 Continued front page    (72) Inventor Toru Takemoto             6 Toyota Town, Toyota City, Aichi Prefecture Kyo Co., Ltd.             Yutaka Factory (72) Inventor Toshihiro Honda             6 Toyota Town, Toyota City, Aichi Prefecture Kyo Co., Ltd.             Yutaka Factory (72) Inventor Noriaki Sakakibara             93 shares, Nakamaeda, Inagaya-cho, Kariya city, Aichi prefecture             Ceremony company K & S F-term (reference) 4C017 AA08 AA11 AC01 AC26 BC11                       BD01 FF15                 4C038 KK01 KL07 KM01 KX01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被験者の血管を圧迫するためのカフと、 このカフによって圧迫された部分から圧脈波を検出する
カフ圧センサと、 前記被験者の血管へ所定波長の光を照射しこの照射光に
よる透過光あるいは反射光の光量を光電容積脈波として
連続して検出する光電センサと、 前記圧脈波と前記光電容積脈波とに基づいて血圧算出ア
ルゴリズムから血圧値を連続して算出する演算手段と、 この血圧値の推移を表示する表示手段とからなる血圧測
定装置であって、 前記演算手段は前記光電容積脈波の波形データが通常取
りうる許容範囲内であるか、否かの判定を行い、前記波
形データの一部が許容範囲外にあるときには、 前記光電容積脈波の波形データのうち許容範囲外にある
波形データ部分を過去に採取した許容範囲内にある波形
データに置き換える置換処理を行うよう構成してあるこ
とを特徴とする血圧測定装置。
1. A cuff for compressing a blood vessel of a subject, a cuff pressure sensor for detecting a pressure pulse wave from a portion compressed by the cuff, and a light of a predetermined wavelength is radiated to the blood vessel of the subject. A photoelectric sensor that continuously detects the amount of transmitted light or reflected light as a photoelectric plethysmogram, and a calculation that continuously calculates a blood pressure value from a blood pressure calculation algorithm based on the pressure plethysmogram and the photoelectric plethysmogram. A blood pressure measuring device comprising means and display means for displaying the transition of the blood pressure value, wherein the calculating means determines whether or not the waveform data of the photoelectric volumetric pulse wave is within a generally allowable range. When a part of the waveform data is outside the allowable range, the waveform data part outside the allowable range of the waveform data of the photoelectric volumetric pulse wave is placed in the waveform data within the allowable range collected in the past. A blood pressure measurement device characterized in that it is configured to perform a replacement process.
【請求項2】 前記演算手段は前記波形データとして前
記光電容積脈波の周期を検出するとともに、前記許容範
囲として光電容積脈波における周期が通常取りうる範囲
を予め定めておき、この許容範囲と前記光電容積脈波の
周期とに基づいて前記判定が行われるよう構成されてい
るところを特徴とする請求項1記載の血圧測定装置。
2. The calculating means detects the period of the photoelectric volume pulse wave as the waveform data, and predetermines a range in which the period of the photoelectric volume pulse wave can be normally set as the allowable range. The blood pressure measurement device according to claim 1, wherein the determination is performed based on the period of the photoelectric volume pulse wave.
【請求項3】 前記演算手段は過去に採取された波形デ
ータを蓄積するとともに、そこから前記許容範囲内にあ
る波形データとして標準波形モデルを算出することを特
徴とする請求項1又は請求項2に記載の血圧測定装置。
3. The calculation means stores the waveform data collected in the past and calculates a standard waveform model as waveform data within the allowable range from the accumulated waveform data. The blood pressure measurement device according to.
【請求項4】 前記光電センサより短い波長の光を照射
して前記被験者の皮膚表面での反射光量の変化を連続し
て検出する体動センサを備えるとともに、 前記演算手段は前記光電容積脈波の出力波形から前記体
動センサの出力波形を減じる修正処理を行うよう構成し
てあることを特徴とする請求項1ないし請求項3のいず
れか1項に記載の血圧測定装置。
4. A body motion sensor for irradiating light having a wavelength shorter than that of the photoelectric sensor to continuously detect a change in the amount of reflected light on the skin surface of the subject, and the arithmetic means is the photoelectric volume pulse wave. The blood pressure measurement device according to claim 1, wherein the blood pressure measurement device is configured to perform a correction process of subtracting the output waveform of the body motion sensor from the output waveform of.
【請求項5】 前記演算手段は前記光電容積脈波及び前
記圧脈波に基づいて血流量、心拍出量、動脈血酸素飽和
度を連続して算出するよう構成されていることを特徴と
する請求項1ないし請求項4のいずれか1項に記載の血
圧測定装置。
5. The calculating means is configured to continuously calculate a blood flow rate, a cardiac output, and an arterial oxygen saturation level based on the photoelectric volume pulse wave and the pressure pulse wave. The blood pressure measurement device according to any one of claims 1 to 4.
JP2002000856A 2001-12-10 2002-01-07 Blood pressure measurement device Expired - Fee Related JP3727592B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002000856A JP3727592B2 (en) 2002-01-07 2002-01-07 Blood pressure measurement device
EP02027552A EP1317902B1 (en) 2001-12-10 2002-12-09 Biological data observation apparatus
US10/314,245 US6953435B2 (en) 2001-12-10 2002-12-09 Biological data observation apparatus
DE60207183T DE60207183T2 (en) 2001-12-10 2002-12-09 Device for monitoring biological data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002000856A JP3727592B2 (en) 2002-01-07 2002-01-07 Blood pressure measurement device

Publications (2)

Publication Number Publication Date
JP2003199719A true JP2003199719A (en) 2003-07-15
JP3727592B2 JP3727592B2 (en) 2005-12-14

Family

ID=27641130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002000856A Expired - Fee Related JP3727592B2 (en) 2001-12-10 2002-01-07 Blood pressure measurement device

Country Status (1)

Country Link
JP (1) JP3727592B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052385A (en) * 2003-08-05 2005-03-03 Seiko Epson Corp Biological information measuring device
JP2006102151A (en) * 2004-10-05 2006-04-20 Terumo Corp Blood pressure measuring device, blood pressure measuring method, control program and computer-readable storage medium
JP2011092236A (en) * 2009-10-27 2011-05-12 Seiko Epson Corp Pulse detector and pulse detection method
JP2011104124A (en) * 2009-11-17 2011-06-02 Seiko Epson Corp Pulse measuring apparatus
JP2011234876A (en) * 2010-05-10 2011-11-24 K & S:Kk Blood pressure measuring instrument
JP2012081166A (en) * 2010-10-14 2012-04-26 Seiko Epson Corp System for predicting blood glucose level
JP2012152493A (en) * 2011-01-28 2012-08-16 Seiko Epson Corp Pulse wave signal measuring device and program
JP2013517908A (en) * 2010-01-29 2013-05-20 エドワーズ ライフサイエンシーズ コーポレイション Eliminating the effects of irregular cardiac cycles in determining cardiovascular parameters
JP2013202076A (en) * 2012-03-27 2013-10-07 Seiko Epson Corp Pulsation detection device, electronic equipment and program
JP2014502187A (en) * 2010-11-17 2014-01-30 コーニンクレッカ フィリップス エヌ ヴェ System and method for converting an input signal to an output signal
JP2014505533A (en) * 2010-12-29 2014-03-06 ベイシス サイエンス インコーポレイテッド Integrated biometric sensing and display device
JP2014061179A (en) * 2012-09-21 2014-04-10 Fukuda Denshi Co Ltd Biological information processing device
US8727999B2 (en) 2006-04-17 2014-05-20 Samsung Electronics Co., Ltd. Pulse measurement device, method and medium controlling sensor according to exercise activity level
JP2017018569A (en) * 2015-07-07 2017-01-26 三星電子株式会社Samsung Electronics Co.,Ltd. Apparatus and method for measuring biosignal
JPWO2015049963A1 (en) * 2013-10-03 2017-03-09 コニカミノルタ株式会社 Biological information measuring apparatus and method
JP2017519548A (en) * 2014-05-28 2017-07-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Motion artifact reduction using multi-channel PPG signals
JP6176693B1 (en) * 2016-11-07 2017-08-09 株式会社ケーアンドエス Blood pressure measurement device
KR101901398B1 (en) * 2016-11-03 2018-09-28 재단법인 아산사회복지재단 Method of estimating Cardiac Output and apparatus for estimating Cardiac Output
JP2020526260A (en) * 2017-06-30 2020-08-31 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated Systems and methods for noise filtering and analysis of venous waveform signals
US11147461B2 (en) 2015-09-18 2021-10-19 Omron Healthcare Co., Ltd. Blood pressure analyzing apparatus, blood pressure measuring apparatus, and blood pressure analyzing method
CN113812977A (en) * 2021-08-13 2021-12-21 安徽理工大学 Ultrasonic sphygmomanometer
US11382567B2 (en) 2016-11-30 2022-07-12 Lidco Group Plc Haemodynamic monitor with improved filtering
US11400192B2 (en) 2008-02-14 2022-08-02 Baxter International Inc. Peritoneal dialysis system including a water treatment device
CN116269450A (en) * 2023-03-21 2023-06-23 苏州海臻医疗器械有限公司 Patient limb rehabilitation state evaluation system and method based on electromyographic signals
US11950890B2 (en) 2016-12-15 2024-04-09 Baxter International Inc. System and method for monitoring and determining patient parameters from sensed venous waveform

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098380B2 (en) * 2007-03-14 2012-12-12 セイコーエプソン株式会社 Pulse measuring device and control method thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052385A (en) * 2003-08-05 2005-03-03 Seiko Epson Corp Biological information measuring device
JP2006102151A (en) * 2004-10-05 2006-04-20 Terumo Corp Blood pressure measuring device, blood pressure measuring method, control program and computer-readable storage medium
JP4563766B2 (en) * 2004-10-05 2010-10-13 テルモ株式会社 Blood pressure measurement device, blood pressure measurement method, control program, and computer-readable storage medium
US8727999B2 (en) 2006-04-17 2014-05-20 Samsung Electronics Co., Ltd. Pulse measurement device, method and medium controlling sensor according to exercise activity level
US11400192B2 (en) 2008-02-14 2022-08-02 Baxter International Inc. Peritoneal dialysis system including a water treatment device
JP2011092236A (en) * 2009-10-27 2011-05-12 Seiko Epson Corp Pulse detector and pulse detection method
JP2011104124A (en) * 2009-11-17 2011-06-02 Seiko Epson Corp Pulse measuring apparatus
JP2013517908A (en) * 2010-01-29 2013-05-20 エドワーズ ライフサイエンシーズ コーポレイション Eliminating the effects of irregular cardiac cycles in determining cardiovascular parameters
JP2011234876A (en) * 2010-05-10 2011-11-24 K & S:Kk Blood pressure measuring instrument
JP2012081166A (en) * 2010-10-14 2012-04-26 Seiko Epson Corp System for predicting blood glucose level
JP2014502187A (en) * 2010-11-17 2014-01-30 コーニンクレッカ フィリップス エヌ ヴェ System and method for converting an input signal to an output signal
JP2014505533A (en) * 2010-12-29 2014-03-06 ベイシス サイエンス インコーポレイテッド Integrated biometric sensing and display device
JP2012152493A (en) * 2011-01-28 2012-08-16 Seiko Epson Corp Pulse wave signal measuring device and program
JP2013202076A (en) * 2012-03-27 2013-10-07 Seiko Epson Corp Pulsation detection device, electronic equipment and program
JP2014061179A (en) * 2012-09-21 2014-04-10 Fukuda Denshi Co Ltd Biological information processing device
JPWO2015049963A1 (en) * 2013-10-03 2017-03-09 コニカミノルタ株式会社 Biological information measuring apparatus and method
JP2017519548A (en) * 2014-05-28 2017-07-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Motion artifact reduction using multi-channel PPG signals
JP2017018569A (en) * 2015-07-07 2017-01-26 三星電子株式会社Samsung Electronics Co.,Ltd. Apparatus and method for measuring biosignal
US11147461B2 (en) 2015-09-18 2021-10-19 Omron Healthcare Co., Ltd. Blood pressure analyzing apparatus, blood pressure measuring apparatus, and blood pressure analyzing method
KR101901398B1 (en) * 2016-11-03 2018-09-28 재단법인 아산사회복지재단 Method of estimating Cardiac Output and apparatus for estimating Cardiac Output
JP2018075077A (en) * 2016-11-07 2018-05-17 株式会社ケーアンドエス Blood pressure measuring device
JP6176693B1 (en) * 2016-11-07 2017-08-09 株式会社ケーアンドエス Blood pressure measurement device
US11382567B2 (en) 2016-11-30 2022-07-12 Lidco Group Plc Haemodynamic monitor with improved filtering
US11950890B2 (en) 2016-12-15 2024-04-09 Baxter International Inc. System and method for monitoring and determining patient parameters from sensed venous waveform
JP2020526260A (en) * 2017-06-30 2020-08-31 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated Systems and methods for noise filtering and analysis of venous waveform signals
CN113812977A (en) * 2021-08-13 2021-12-21 安徽理工大学 Ultrasonic sphygmomanometer
CN113812977B (en) * 2021-08-13 2023-08-25 安徽理工大学 Ultrasonic sphygmomanometer
CN116269450A (en) * 2023-03-21 2023-06-23 苏州海臻医疗器械有限公司 Patient limb rehabilitation state evaluation system and method based on electromyographic signals
CN116269450B (en) * 2023-03-21 2023-12-19 苏州海臻医疗器械有限公司 Patient limb rehabilitation state evaluation system and method based on electromyographic signals

Also Published As

Publication number Publication date
JP3727592B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
JP2003199719A (en) Hemomanometer
JP3774396B2 (en) Oscillometric automatic blood pressure measuring device
JP4040913B2 (en) Noninvasive arteriovenous oxygen saturation measuring device
US6796946B2 (en) Arteriostenosis inspecting apparatus and ankle-blood-pressure measuring apparatus
JP3208066B2 (en) Blood pressure monitoring device
US20090312652A1 (en) Electronic manometer for appropriately adjusting internal pressure of cuff and method for controlling the same
US6582374B2 (en) Automatic blood-pressure measuring apparatus
EP1212979A2 (en) Pulse wave measuring apparatus and pulse wave measuring method
US6748262B2 (en) Heartbeat synchronous information acquiring apparatus
US6602198B2 (en) Automatic blood-pressure measuring apparatus
US20100324428A1 (en) Method and device for the non-invasive measurement of dynamic cardiopulmonary interaction parameters
JP2012505679A (en) System and apparatus for non-invasive measurement of blood pressure
US6969355B2 (en) Arteriostenosis diagnosing apparatus
US6743179B2 (en) Arteriostenosis inspecting apparatus
JP4107813B2 (en) Blood pressure measuring device
JP2006212095A (en) Photoelectric sensor and blood pressure measuring apparatus
US7097621B2 (en) Filter for use with pulse-wave sensor and pulse wave analyzing apparatus
AU2569700A (en) Method and device for continuous analysis of cardiovascular activity of a subject
EP1356764A2 (en) Living subject monitoring apparatus
JP3921775B2 (en) Blood pressure monitoring device
JPH0663024A (en) Instrument for simultaneous and continuous bloodless measurement of blood pressure and degree of oxygen saturation in blood
JP2011234876A (en) Blood pressure measuring instrument
JP2001145606A (en) Filter for pulse wave sensor
JP5002084B2 (en) Blood pressure monitoring device
JPH08107887A (en) Blood pressure monitoring apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050928

R150 Certificate of patent or registration of utility model

Ref document number: 3727592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees