JP2003197180A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JP2003197180A
JP2003197180A JP2001396121A JP2001396121A JP2003197180A JP 2003197180 A JP2003197180 A JP 2003197180A JP 2001396121 A JP2001396121 A JP 2001396121A JP 2001396121 A JP2001396121 A JP 2001396121A JP 2003197180 A JP2003197180 A JP 2003197180A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
material layer
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001396121A
Other languages
Japanese (ja)
Other versions
JP3619807B2 (en
Inventor
Naoki Imachi
直希 井町
Ikuro Nakane
育朗 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001396121A priority Critical patent/JP3619807B2/en
Publication of JP2003197180A publication Critical patent/JP2003197180A/en
Application granted granted Critical
Publication of JP3619807B2 publication Critical patent/JP3619807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery with high energy density by increasing the filling amount of a positive active material while the penetration of the electrolyte is ensured. <P>SOLUTION: This nonaqueous electrolyte battery has a positive electrode 5 prepared by forming a positive active material layer on a positive current collector, a negative electrode 6, and a nonaqueous electrolyte containing lithium ions, and the positive active material layer is composed of two active material layer parts comprising active materials having different absolute specific gravities, a first active material part 22 arranged on the positive current collector side is made of spinel lithium manganate having low absolute specific gravity and a second active material layer 23 arranged on the positive electrode surface side is made of lithium cobaltate having high absolute specific gravity. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、正極集電体の表面
に正極活物質層が形成された正極と、負極と、リチウム
イオンを含む非水電解質とを備えた非水電解質電池に関
する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte battery provided with a positive electrode having a positive electrode active material layer formed on the surface of a positive electrode current collector, a negative electrode, and a non-aqueous electrolyte containing lithium ions.

【0002】[0002]

【従来の技術】従来より、非水電解質電池の正極活物質
としては、コバルト酸リチウム、ニッケル酸リチウム、
或いはマンガン酸リチウム等が提案されているが、現在
主流となっている正極材料はコバルト酸リチウムであ
る。これは、上記ニッケル酸リチウムでは、高容量であ
るという利点はあるが、安全性、性能的にコバルト酸リ
チウムに劣るといった問題がある。また、上記マンガン
酸リチウムでは、性能的にはコバルト酸リチウムと同等
であり、且つ、安価で安全性に優れるという利点はある
が、高温でマンガン自体が溶解する等の課題を有する
他、低エネルギー密度であるという課題を有するからで
ある。ここで、マンガン酸リチウムが低エネルギー密度
となるのは、以下の理由による。即ち、正極活物質の充
填密度については、プレス圧、プレス方法、正極合剤の
配合比(炭素導電助剤の割合) もさることながら、正極
活物質自身の物性(真比重) の影響を強く受ける。一般
にコバルト酸リチウムの真比重は5.04g/ccで、
マンガン酸リチウムの真比重は4.29g/ccである
と言われる。したがって、両者は、体積当りの比が1
0:8程度(5.04:4.29)で有り、しかも単位
質量当りの容量比も10:8程度の差が有るので、実質
的には単位体積あたりの容量は10:6(正確には、1
00:64)程度の差が生じるという理由による。
2. Description of the Related Art Conventionally, as positive electrode active materials for non-aqueous electrolyte batteries, lithium cobalt oxide, lithium nickel oxide,
Alternatively, lithium manganate or the like has been proposed, but the positive electrode material currently in the mainstream is lithium cobalt oxide. This is advantageous in that the lithium nickel oxide has a high capacity, but has a problem that it is inferior to lithium cobalt oxide in safety and performance. In addition, the lithium manganate is equivalent in performance to lithium cobalt oxide, and has the advantage of being inexpensive and excellent in safety, but it also has the problem that manganese itself dissolves at high temperatures, and low energy consumption. This is because it has the problem of density. Here, the reason why lithium manganate has a low energy density is as follows. That is, regarding the packing density of the positive electrode active material, the influence of the physical properties (true specific gravity) of the positive electrode active material itself is strongly influenced, as well as the pressing pressure, the pressing method, and the mixing ratio of the positive electrode mixture (the ratio of the carbon conductive additive). receive. Generally, the true specific gravity of lithium cobalt oxide is 5.04 g / cc,
The true specific gravity of lithium manganate is said to be 4.29 g / cc. Therefore, both have a ratio of 1 per volume.
Since it is about 0: 8 (5.04: 4.29), and the capacity ratio per unit mass is also about 10: 8, the capacity per unit volume is practically 10: 6 (exactly Is 1
This is because a difference of about 00:64) occurs.

【0003】したがって、上記ニッケル酸リチウムや上
記マンガン酸リチウムを正極活物質として用いるために
は、それらの諸特性を改善する必要がある。ここで、最
近は、ハイブリット自動車に代表されるように携帯電話
やパソコン等の民生用に限らず二次電池の用途は小型か
ら大型まで多岐にわたるため、産出量が少なくて高価な
コバルトを用いたコバルト酸リチウムよりも、産出量が
多くて安価なマンガンを用いたマンガン酸リチウムに対
する注目は高まってきている。
Therefore, in order to use the above lithium nickel oxide or the above lithium manganate as a positive electrode active material, it is necessary to improve various characteristics thereof. Here, recently, not only for consumer use such as mobile phones and personal computers such as hybrid automobiles but also for secondary batteries ranging from small size to large size, small amount of output and expensive cobalt have been used. Lithium manganate, which uses manganese, which has a higher yield and is cheaper than lithium cobaltate, is gaining attention.

【0004】そこで、マンガン酸リチウムの高温特性を
改善すべく、マンガン酸リチウムに異種元素(置換元
素)を添加等して結晶構造を安定化させる研究が数多く
なされているが、有効な置換元素がクロムなどの有害元
素であったり、異種元素を多く添加する必要性から、エ
ネルギー密度が非常に低下するなど、実用的な改善策は
見つかっていなかった。また、本願出願人は、正極活物
質における高温特性の低下と容量の低下という問題を同
時に解決すべく、特開2000−215884号公報、
及び特開2001−143705号公報に示すように、
コバルト酸リチウムとマンガン酸リチウムとを混合した
複合電極を用いることを提案した。これにより、上記問
題をある程度解消できるものの十分ではなく、特に容量
の低下という点に関しては改良の余地がある。
Therefore, in order to improve the high temperature characteristics of lithium manganate, many studies have been made to stabilize the crystal structure by adding a different element (substitution element) to lithium manganate, but an effective substitution element is No practical improvement measures have been found, such as a reduction in energy density due to the addition of harmful elements such as chromium or the addition of many different elements. In order to solve the problems of deterioration of high temperature characteristics and deterioration of capacity of the positive electrode active material at the same time, the applicant of the present application discloses in Japanese Patent Laid-Open No. 2000-215884.
And as shown in Japanese Patent Laid-Open No. 2001-143705,
It has been proposed to use a composite electrode in which lithium cobalt oxide and lithium manganate are mixed. As a result, the above problem can be solved to some extent, but it is not sufficient, and there is room for improvement, particularly in terms of reduction in capacity.

【0005】ここで、上記正極は、正極集電体に正極活
物質を塗布して電極シートを作製した後、これを圧縮す
ることにより作製されるが、当該圧縮の手法としては、
2つの回転するロールヘッドの隙間に上記電極シートを
流し込み、いわゆる線で圧縮するロールプレス方式と、
板状のプレス装置で上記電極シートの全面を一度に圧縮
する全面プレス方式とがある。前者では、ロール状に巻
かれ上記電極シートを連続的に加工できるので、加工効
率が良いことに加えて、線で圧縮するので、圧縮時に必
要な力が少なくて済むという利点を有するのに対して、
後者では、プレス面積に比例して大きな圧縮力が必要と
なり、且つ、加工効率が低いという欠点を有するため、
前者の圧縮方法が主流となっている。
Here, the positive electrode is manufactured by applying a positive electrode active material to a positive electrode current collector to prepare an electrode sheet and then compressing the electrode sheet. The compression method is as follows.
A roll press system in which the electrode sheet is poured into a gap between two rotating roll heads and is compressed by a so-called line,
There is a full-pressing method in which the whole surface of the electrode sheet is compressed at once with a plate-like pressing device. In the former case, since the electrode sheet can be continuously processed by being wound in a roll shape, the processing efficiency is good, and in addition, since it is compressed by a wire, it has an advantage that a force required for compression is small. hand,
In the latter case, a large compressive force is required in proportion to the pressing area, and the processing efficiency is low.
The former compression method is the mainstream.

【0006】しかしながら、上記ロールプレス方式で
は、図12に示すように、ロールヘッド31・31が矢
符F方向に回転している場合、電極シートの表面では、
プレス方向(図の矢符C方向) のみならず、正極集電体
の反進行方向(図の矢符D方向) にも加重が加わるた
め、プレス方向と正極集電体の反進行方向とのベクトル
の和の方向(図のE方向) に荷重が加わるのに対して、
電極シートの内部では、正極集電体の反進行方向(図の
矢符D方向)の力は表面及びその近傍で用い尽くされる
ため、プレス方向(図の矢符C方向) のみに加重が加わ
る。このため、電極シートの表面では圧縮力が強くなる
一方、電極シートの内部では圧縮力が弱くなるので、電
極の内部(正極集電体に近い側) では充填密度が低くな
るという問題が生じる。即ち、電極全体での充填密度は
目標数値となっているが、実際には電極表面部の圧縮密
度は目標値よりも高く、電極内部は目標圧縮密度よりも
低くなっている。これにより、電解液の含液が最初に起
こる表面層では、圧縮密度が高過ぎて電解液の吸液速度
が急激に低下し、電極隅々まで電解液を浸透させること
ができない。この傾向は、プレス圧が高ければ高いほど
顕著になるため、プレス圧を高くすると電解液の浸透は
より不十分となる。このことから、電池特性を維持する
には、正極活物質の充填量をある程度までに規制する必
要があり、高エネルギー密度化は困難であるという課題
を有していた。特に、マンガン酸リチウムのような真比
重の低い活物質を活物質に用いた場合にはその傾向が顕
著であり、また、上記のようにマンガン酸リチウムとコ
バルト酸リチウムとの混合物を正極活物質として用いる
場合にも同様の課題を有していた。
However, in the roll press system, as shown in FIG. 12, when the roll heads 31 are rotated in the arrow F direction, the surface of the electrode sheet is
Since the load is applied not only in the pressing direction (arrow C direction in the figure) but also in the counter traveling direction of the positive electrode current collector (arrow D direction in the figure), the pressing direction and the counter traveling direction of the positive electrode current collector are While the load is applied in the direction of the vector sum (E direction in the figure),
Inside the electrode sheet, the force in the anti-progression direction of the positive electrode current collector (direction of arrow D in the figure) is exhausted on the surface and in the vicinity thereof, so that the load is applied only in the pressing direction (direction of arrow C in the figure). . For this reason, the compressive force becomes strong on the surface of the electrode sheet, but the compressive force becomes weak inside the electrode sheet, so that there is a problem that the packing density becomes low inside the electrode (on the side close to the positive electrode current collector). That is, although the packing density of the entire electrode is a target value, the compression density of the electrode surface is actually higher than the target value and the inside of the electrode is lower than the target compression density. As a result, in the surface layer in which the electrolytic solution is first impregnated, the compression density is too high, and the absorbing speed of the electrolytic solution is rapidly reduced, so that the electrolytic solution cannot penetrate into every corner of the electrode. This tendency becomes more remarkable as the pressing pressure becomes higher, so that the penetration of the electrolytic solution becomes insufficient when the pressing pressure is increased. From this, in order to maintain the battery characteristics, it is necessary to regulate the filling amount of the positive electrode active material to some extent, and there is a problem that it is difficult to increase the energy density. In particular, this tendency is remarkable when an active material having a low true specific gravity such as lithium manganate is used as the active material, and as described above, a mixture of lithium manganate and lithium cobalt oxide is used as the positive electrode active material. The same problem was encountered when used as.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記従来の
課題を考慮してなされたものであって、電解液の浸透性
を確保しつつ、正極活物質の充填量を増大させることに
より、高エネルギー密度化と電池性能の向上とを図るこ
とができる非水電解質電池の提供を目的としている。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned conventional problems. By increasing the filling amount of the positive electrode active material while ensuring the permeability of the electrolytic solution, It is an object of the present invention to provide a non-aqueous electrolyte battery capable of achieving high energy density and improved battery performance.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の非水電解質電池は、正極集電体の表面に正
極活物質層が形成された正極と、負極と、非水電解質と
を備えた非水電解質電池において、上記正極活物質層
が、各々真比重が異なる活物質から成る複数の活物質層
部分で構成され、且つ、上記正極表面側にある上記活物
質層部分の真比重が、下層にある活物質層部分の真比重
より大きいことを特徴とする。
In order to achieve the above object, a non-aqueous electrolyte battery of the present invention comprises a positive electrode having a positive electrode active material layer formed on the surface of a positive electrode current collector, a negative electrode, and a non-aqueous electrolyte. In the non-aqueous electrolyte battery comprising, the positive electrode active material layer is composed of a plurality of active material layer portions made of active materials each having a different true specific gravity, and the active material layer portion on the positive electrode surface side. The true specific gravity is larger than the true specific gravity of the lower active material layer portion.

【0009】正極を作製した場合の正極活物質のシート
密度と真比重とは、比例的にはリンクしないが、おおよ
その相関がとれる。即ち、真比重が高い活物質ほどシー
ト密度は高くでき、より高い密度でも電解液の吸液性が
良好である。したがって、上記構成の如く、正極表面に
相対的に真比重の高い活物質を用いれば、正極表面は高
圧縮されるが、当該活物質は高圧縮に対して高い吸液性
を示すので、高い充填密度でも電解液の吸液が容易とな
る。一方、正極内部(正極集電体側)に相対的に真比重
の低い活物質を用いれば、正極内部は低圧縮であるの
で、吸液性の問題は生じない。これらのことから、正極
活物質の充填密度を高めつつ、正極内部への電解質の含
浸性を向上させることが可能となる。したがって、電解
液の浸透性を確保しつつ、正極活物質の充填量を増大さ
せることができるので、電池の高エネルギー密度化と電
池性能の向上とを図ることができる。
The sheet density and the true specific gravity of the positive electrode active material when a positive electrode is manufactured are not proportionally linked, but an approximate correlation can be obtained. That is, the higher the true specific gravity of the active material, the higher the sheet density, and the higher the density, the better the electrolyte absorbability. Therefore, when an active material having a relatively high true specific gravity is used on the surface of the positive electrode as in the above structure, the surface of the positive electrode is highly compressed, but the active material exhibits a high liquid absorption property with respect to high compression, and thus is high. Even at the packing density, it becomes easy to absorb the electrolyte solution. On the other hand, when an active material having a relatively low true specific gravity is used inside the positive electrode (on the side of the positive electrode current collector), since the inside of the positive electrode has low compression, the problem of liquid absorption does not occur. From these, it becomes possible to improve the impregnation property of the electrolyte into the positive electrode while increasing the packing density of the positive electrode active material. Therefore, it is possible to increase the filling amount of the positive electrode active material while ensuring the permeability of the electrolytic solution, so that the energy density of the battery can be increased and the battery performance can be improved.

【0010】請求項2記載の発明は、請求項1記載の発
明において、上記正極活物質層が2つの活物質層部分か
ら成り、上記正極活物質層全体の質量に対する上記正極
集電体側に配置された第1活物質層部分の質量の割合が
70質量%未満、上記正極活物質層全体の質量に対する
正極表面側に配置された第2活物質層部分の質量が30
質量%以上となるように規制されることを特徴とする。
According to a second aspect of the present invention, in the first aspect of the invention, the positive electrode active material layer comprises two active material layer portions, and the positive electrode active material layer is arranged on the positive electrode current collector side with respect to the total mass of the positive electrode active material layer. The mass ratio of the formed first active material layer portion is less than 70 mass%, and the mass of the second active material layer portion arranged on the positive electrode surface side with respect to the total mass of the positive electrode active material layer is 30.
It is characterized in that it is regulated so that the content is at least mass%.

【0011】このように規制するのは、正極表面側に配
置された第2活物質層部分の質量の割合が30質量%と
なった場合に、正極表面側の正極活物質に加わる大きな
力が、正極集電体側に配置された第1活物質層部分と第
2活物質層部分との境界近傍にまで及ぶ。したがって、
第2活物質層部分の質量の割合が30質量%未満となる
と、真比重の小さな第1活物質層部分にまで大きな力が
加わるので、好ましくないからである。
The reason for restricting in this way is that when the mass ratio of the second active material layer portion arranged on the positive electrode surface side is 30 mass%, a large force applied to the positive electrode active material on the positive electrode surface side. , Extends to near the boundary between the first active material layer portion and the second active material layer portion arranged on the positive electrode current collector side. Therefore,
This is because if the mass ratio of the second active material layer portion is less than 30 mass%, a large force is applied to the first active material layer portion having a small true specific gravity, which is not preferable.

【0012】請求項3記載の発明は、請求項1又は2記
載の発明において、上記第1活物質層部分の正極活物質
がスピネル型マンガン酸リチウムであり、上記第2活物
質層部分の正極活物質がコバルト酸リチウムである、請
求項1又は2記載の非水電解質電池。このように限定す
るのは、スピネル型マンガン酸リチウムとコバルト酸リ
チウムとは放電カーブの形状や放電作動電圧が略同等で
あるため、コバルト酸リチウムを単独で正極活物質とし
て用いた場合と比べて、正極の放電カーブプロファイル
が略同じとなり、電池として使い易くなるからである。
そして、このような構成とすることにより、産出量が多
くて安価なマンガンを用いたマンガン酸リチウムを正極
活物質として用いることができるので、電池の製造コス
トが低減する。
According to a third aspect of the invention, in the first or second aspect of the invention, the positive electrode active material of the first active material layer portion is spinel type lithium manganate, and the positive electrode of the second active material layer portion is the positive electrode. The nonaqueous electrolyte battery according to claim 1, wherein the active material is lithium cobalt oxide. In this way, because the shape of the discharge curve and the discharge operating voltage of the spinel-type lithium manganate and the lithium cobalt oxide are substantially the same, compared with the case where lithium cobalt oxide is used alone as the positive electrode active material. This is because the discharge curve profile of the positive electrode is substantially the same, which makes it easier to use as a battery.
Further, with such a configuration, lithium manganate using manganese, which has a large amount of production and is inexpensive, can be used as the positive electrode active material, so that the manufacturing cost of the battery is reduced.

【0013】請求項4記載の発明は、請求項3記載の発
明において、上記正極活物質層における正極活物質の充
填密度dが、2.85≦d<3.30g/ccに規制さ
れることを特徴とする。このように規制するのは、前述
の如く、第2活物質層部分の割合が30質量%以上であ
ることが望ましいが、この点における最高充填密度は
2.85g/ccであるので、正極活物質の充填密度の
下限は2.85g/cc以上に規制するのが望ましい一
方、最高充填密度が3.30g/ccの電池は正極活物
質がコバルト酸リチウムのみから成る正極であるので、
マンガン酸リチウムを正極活物質として用いるには、充
填密度の上限は3.30g/cc未満であることが必要
となるからである。
According to a fourth aspect of the invention, in the third aspect of the invention, the packing density d of the positive electrode active material in the positive electrode active material layer is restricted to 2.85 ≦ d <3.30 g / cc. Is characterized by. As described above, it is desirable that the ratio of the second active material layer portion is 30% by mass or more, but the maximum packing density at this point is 2.85 g / cc, so that the positive electrode active material is regulated. The lower limit of the packing density of the substance is preferably regulated to 2.85 g / cc or more, while the battery having the maximum packing density of 3.30 g / cc is the positive electrode whose positive electrode active material is only lithium cobalt oxide.
This is because in order to use lithium manganate as the positive electrode active material, the upper limit of the packing density needs to be less than 3.30 g / cc.

【0014】請求項5記載の発明は、請求項4記載の発
明において、上記非水電解質としてイオン電解質を用い
た場合、正極活物質層における正極活物質の充填密度d
が、3.11≦d<3.30g/ccに規制されること
を特徴とする。非水電解質としてイオン電解質を用いた
場合には、電解質の粘度が低いので、電解質が浸透し易
くなる。したがって、上記の範囲に規制すれば、電解質
の浸透性が妨げられることはない。
According to the invention of claim 5, in the invention of claim 4, when an ionic electrolyte is used as the non-aqueous electrolyte, the packing density d of the cathode active material in the cathode active material layer is d.
Is regulated to 3.11 ≦ d <3.30 g / cc. When an ionic electrolyte is used as the non-aqueous electrolyte, the viscosity of the electrolyte is low, so that the electrolyte easily penetrates. Therefore, if the content is regulated within the above range, the permeability of the electrolyte is not hindered.

【0015】請求項6記載の発明は、請求項4記載の発
明において、上記非水電解質としてポリマー電解質を用
いた場合、正極活物質層における正極活物質の密度d
が、2.85≦d<3.11g/ccに規制されること
を特徴とする。非水電解質としてポリマー電解質を用い
た場合には、電解質の粘度が高いので、電解質が浸透し
難くなる。したがって、上記の範囲に規制しなければ、
電解質の浸透性が妨げられるからである。
According to the invention of claim 6, in the invention of claim 4, when a polymer electrolyte is used as the non-aqueous electrolyte, the density d of the positive electrode active material in the positive electrode active material layer is
Is regulated to 2.85 ≦ d <3.11 g / cc. When a polymer electrolyte is used as the non-aqueous electrolyte, the viscosity of the electrolyte is high, which makes it difficult for the electrolyte to permeate. Therefore, if you do not regulate within the above range,
This is because the permeability of the electrolyte is hindered.

【0016】[0016]

【発明の実施の形態】本発明の実施の形態を、図1〜図
4に基づいて、以下に説明する。図1は本発明に係る非
水電解質電池の正面図、図2は図1のA−A線矢視断面
図、図3は本発明に係る非水電解質電池に用いるアルミ
ラミネート外装体の断面図、図4は本発明に係る非水電
解質電池に用いる電極体の斜視図、図5は本発明に係る
非水電解質電池に用いる正極の構造を示す断面図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS. 1 is a front view of a non-aqueous electrolyte battery according to the present invention, FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, and FIG. 3 is a cross-sectional view of an aluminum laminate exterior body used for the non-aqueous electrolyte battery according to the present invention. FIG. 4 is a perspective view of an electrode body used in the non-aqueous electrolyte battery according to the present invention, and FIG. 5 is a cross-sectional view showing the structure of the positive electrode used in the non-aqueous electrolyte battery according to the present invention.

【0017】図2に示すように、本発明の薄型電池は電
極体1を有しており、この電極体1は収納空間2内に配
置されている。この収納空間2は、図1に示すように、
アルミラミネート外装体3の上下端と中央部とをそれぞ
れ封止部4a・4b・4cで封口することにより形成さ
れる。また、図4に示すように、上記電極体1は、スピ
ネル型のマンガン酸リチウム(LiMn24 であり、
以下、単にマンガン酸リチウムと略す)から成る正極活
物質及びコバルト酸リチウム(LiCoO2 )から成る
正極活物質を主体とする正極5と、天然黒鉛から成る負
極活物質を主体とする負極6と、これら両電極を離間す
るセパレータ(図4においては図示せず)とを偏平渦巻
き状に巻回することにより作製される。
As shown in FIG. 2, the thin battery of the present invention has an electrode body 1, which is arranged in a storage space 2. This storage space 2 is, as shown in FIG.
It is formed by sealing the upper and lower ends and the central portion of the aluminum laminate outer casing 3 with sealing portions 4a, 4b and 4c, respectively. Further, as shown in FIG. 4, the electrode body 1 is a spinel type lithium manganate (LiMn 2 O 4) ,
Hereinafter, a positive electrode 5 mainly composed of a positive electrode active material composed of lithium manganate) and a positive electrode active material composed of lithium cobalt oxide (LiCoO 2 ), a negative electrode 6 composed mainly of a negative electrode active material composed of natural graphite, It is produced by winding a separator (not shown in FIG. 4) separating these two electrodes in a flat spiral shape.

【0018】上記正極の具体的な構造は、図5に示すよ
うに、正極集電体21の両面には正極活物質層24・2
4が形成されており、これら正極活物質層24・24
は、それぞれ2つの活物質層部分22・23から構成さ
れている。上記活物質層部分22・23のうち上記正極
集電体側(正極内部側)に配置された第1活物質層部分
22・22はマンガン酸リチウム(真比重:4.29g
/cc、平均粒径:10μm、タップ密度1.8g/c
c)を主体として構成され、正極表面側に配置された第
2活物質層部分23・23はコバルト酸リチウム(真比
重:5.04g/cc、平均粒径:9.1μm、タップ
密度2.3g/cc)を主体として構成されている。上
記第1活物質層部分におけるマンガン酸リチウムと、上
記第2活物質層部分におけるコバルト酸リチウムとの質
量比は50:50である。
The specific structure of the positive electrode is, as shown in FIG. 5, positive electrode active material layers 24.2 on both sides of the positive electrode current collector 21.
4 are formed, and these positive electrode active material layers 24, 24 are formed.
Are each composed of two active material layer portions 22 and 23. Of the active material layer portions 22 and 23, the first active material layer portions 22 and 22 arranged on the positive electrode current collector side (inside the positive electrode) are made of lithium manganate (true specific gravity: 4.29 g).
/ Cc, average particle size: 10 μm, tap density 1.8 g / c
The second active material layer portions 23, 23 mainly composed of (c) and arranged on the positive electrode surface side are lithium cobalt oxide (true specific gravity: 5.04 g / cc, average particle diameter: 9.1 μm, tap density 2. 3 g / cc) is the main constituent. The mass ratio of lithium manganate in the first active material layer portion to lithium cobalt oxide in the second active material layer portion is 50:50.

【0019】上記セパレータには、エチレンカーボネー
ト(EC)とジエチルカーボネート(DEC)とが質量
比で30:70の割合で混合された混合溶媒に、電解質
塩(リチウム塩)としてのLiPF6 を1M(モル/リ
ットル)の割合で添加した電解液が含浸されている。
In the separator, a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a mass ratio of 30:70 was added with 1 M of LiPF 6 as an electrolyte salt (lithium salt). It is impregnated with the electrolyte solution added at a ratio of (mol / l).

【0020】また、図3に示すように、上記アルミラミ
ネート外装体3の具体的な構造は、アルミニウム層11
(厚み:30μm)の両面に、各々、変性ポリプロピレ
ンから成る接着剤層12・12(厚み:5μm)を介し
てポリプロピレンから成る樹脂層13・13(厚み:3
0μm)が接着される構造である。更に、上記正極5は
アルミニウムから成る正極リード7に、また上記負極6
は銅から成る負極リード8にそれぞれ接続され、電池内
部で生じた化学エネルギーを電気エネルギーとして外部
へ取り出し得るようになっている。
Further, as shown in FIG. 3, the concrete structure of the aluminum laminate exterior body 3 is as follows.
Resin layers 13 and 13 (thickness: 3) made of polypropylene with adhesive layers 12 and 12 (thickness: 5 μm) made of modified polypropylene on both sides of (thickness: 30 μm) respectively.
0 μm) is bonded. Further, the positive electrode 5 is a positive electrode lead 7 made of aluminum, and the negative electrode 6 is
Are connected to negative electrode leads 8 made of copper, respectively, so that chemical energy generated inside the battery can be taken out as electric energy to the outside.

【0021】ここで、上記構造の電池を、以下のように
して作製した。 (正極の作製)先ず、マンガン酸リチウムと、導電剤で
ある炭素及びグラファイトとを92:5の質量比で混合
して第1正極合剤粉末とし、混合装置〔例えば、ホソカ
ワミクロン製メカノフュージョン装置(AM−15
F)〕内に100gを充填する。これを、回転数150
0rpmで10分間作動させて、圧縮、衝撃、せん断作
用を起こさせて混合して第1正極活物質とする。次い
で、この第1正極活物質とフッ素系樹脂結着剤(PVd
F)との質量比が97:3となるように、N−メチルピ
ロリドン(NMP)溶剤中で両者を混合して第1正極合
剤スラリーを調製した。これと並行して、上記マンガン
酸リチウムの代わりにコバルト酸リチウムを用いる他は
上記と同様にして、第2正極合剤スラリーを調製した。
Here, the battery having the above structure was produced as follows. (Production of Positive Electrode) First, lithium manganate and carbon and graphite which are conductive agents are mixed at a mass ratio of 92: 5 to obtain a first positive electrode mixture powder, and a mixing device [eg, Hosokawa Micron mechanofusion device ( AM-15
F)] is filled with 100 g. This is the rotation speed 150
The mixture is operated at 0 rpm for 10 minutes to cause compression, impact and shearing action, and mixed to obtain the first positive electrode active material. Then, the first positive electrode active material and the fluororesin binder (PVd
The first positive electrode mixture slurry was prepared by mixing the two in an N-methylpyrrolidone (NMP) solvent such that the mass ratio with F) was 97: 3. In parallel with this, a second positive electrode mixture slurry was prepared in the same manner as above except that lithium cobalt oxide was used instead of the above lithium manganate.

【0022】しかる後、上記第1正極合剤スラリーをア
ルミニウム箔の両面に塗着、乾燥した後、上記第2正極
合剤スラリーを塗着、乾燥し、更に、ロールプレス方式
で圧延して正極5を作製した。尚、第1正極合剤スラリ
ーと第2正極合剤スラリーとを塗布する際、マンガン酸
リチウムとコバルト酸リチウムとの質量比が50:50
となるように、両スラリーを塗布した。
Thereafter, the first positive electrode material mixture slurry is applied on both sides of an aluminum foil and dried, and then the second positive electrode material mixture slurry is applied, dried, and further rolled by a roll pressing method to produce a positive electrode. 5 was produced. When the first positive electrode mixture slurry and the second positive electrode mixture slurry are applied, the mass ratio of lithium manganate and lithium cobalt oxide is 50:50.
Both slurries were applied so that

【0023】(負極の作製)先ず、黒鉛より成る負極活
物質と、スチレン系結着剤との質量比が98:2となる
ように、N−メチルピロリドン溶剤中で両者を混合し
て、負極合剤スラリーを調製した。次に、この負極合剤
スラリーを銅箔から成る負極芯体の両面の全面にわたっ
て均一に塗布した後、乾燥、圧延して負極6を作製し
た。
(Preparation of Negative Electrode) First, the negative electrode active material made of graphite and the styrene-based binder were mixed in a N-methylpyrrolidone solvent so that the mass ratio was 98: 2, and the negative electrode was mixed. A mixture slurry was prepared. Next, this negative electrode mixture slurry was uniformly applied over both surfaces of a negative electrode core body made of a copper foil, dried and rolled to prepare a negative electrode 6.

【0024】(電極体の作製)上述のようにして作製し
た正極5と負極6とに、それぞれ正極リード7或いは負
極リード8を取り付けた後、両極5・6を、ポリエチレ
ン製のセパレータを介して重ね合わせた。しかる後、巻
き取り機により捲回し、更に、最外周をテープ止めし加
圧することにより偏平渦巻状の電極体1を作製した。
(Production of Electrode Body) After attaching the positive electrode lead 7 or the negative electrode lead 8 to the positive electrode 5 and the negative electrode 6 produced as described above, respectively, the both electrodes 5 and 6 are put through a polyethylene separator. Overlaid. Then, it was wound by a winder, and the outermost periphery was taped and pressed to produce a flat spiral electrode body 1.

【0025】(電池の作製)先ず、シート状のアルミラ
ミネート材を用意した後、このアルミラミネート材にお
ける端部近傍同士を重ね合わせ、更に、重ね合わせ部を
溶着して、封止部4cを形成した。次に、この筒状のア
ルミラミネート材の収納空間2内に電極体1を挿入し
た。この際、筒状のアルミラミネート材の一方の開口部
から両集電タブ7・8が突出するように電極体1を配置
した。次に、この状態で、両集電タブ7・8が突出して
いる開口部のアルミラミネート材を溶着して封止し、封
止部4aを形成した。この際、溶着は高周波誘導溶着装
置を用いて行った。
(Preparation of Battery) First, after preparing a sheet-shaped aluminum laminate material, the vicinity of the end portions of the aluminum laminate material are overlapped with each other, and the overlapped portion is welded to form the sealing portion 4c. did. Next, the electrode body 1 was inserted into the storage space 2 for the cylindrical aluminum laminate material. At this time, the electrode body 1 was arranged such that both current collecting tabs 7 and 8 were projected from one opening of the cylindrical aluminum laminate material. Next, in this state, the aluminum laminate material in the opening from which both the current collecting tabs 7 and 8 protrude was welded and sealed to form the sealing portion 4a. At this time, the welding was performed using a high frequency induction welding apparatus.

【0026】次いで、エチレンカーボネートとジエチル
カーボネートとが容積比で3:7の割合で混合された混
合溶媒に、電解質塩としてのLiPF6 が1Mの割合で
添加された電解液を調製し、この電解液を収納空間2内
に注入した。この後、上記封止部4aとは反対側のアル
ミラミネート材の端部を溶着し、封止部4bを形成する
ことにより非水電解質電池(電池容量:600mAh)
を作製した。
Then, an electrolyte solution was prepared by adding 1M LiPF 6 as an electrolyte salt to a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed in a volume ratio of 3: 7. The liquid was poured into the storage space 2. Thereafter, the end of the aluminum laminate material on the side opposite to the sealing portion 4a is welded to form the sealing portion 4b, thereby forming a non-aqueous electrolyte battery (battery capacity: 600 mAh).
Was produced.

【0027】〔その他の事項〕 (1)正極活物質としては、コバルト酸リチウム及びマ
ンガン酸リチウムを用いたが、これらに限定するもので
はなく、例えば、マンガンの一部が異種元素で置換して
あるマンガン酸リチウム〔Li(Mn2-xX )O4
(但し、MはLi、Mg、Al、Co、Zr、Fe等か
ら選ばれるMn以外の金属元素) 〕であっても良く、ま
た、ニッケル酸リチウム〔LiNiO2 、真比重4.7
8g/cc〕やオリビン型燐酸リチウム〔LiMPO4
(MはFe、Co、Mn、Ni等から選ばれる金属元素
であり、M=Feの場合の真比重は3.60g/c
c)〕等であっても良い。但し、第1活物質層部分にマ
ンガン酸リチウムを用い、第2活物質層部分にニッケル
酸リチウムやオリビン型リチウムを用いた場合には、マ
ンガン酸リチウムとニッケル酸リチウム等との放電カー
ブの形状や放電作動電圧が異なるために、混合した正極
の放電カーブプロファイルが大きく変化してしまって、
電池としては使い難くなってしまう。したがって、第1
活物質層部分にマンガン酸リチウムを用い、第2活物質
層部分にコバルト酸リチウムを用いる組合せが最も望ま
しい。
[Other Matters] (1) Lithium cobalt oxide and lithium manganate were used as the positive electrode active material, but the present invention is not limited to these. For example, manganese is partially replaced with a different element. Lithium manganate [Li (Mn 2-x M x ) O 4
(However, M is a metal element other than Mn selected from Li, Mg, Al, Co, Zr, Fe, etc.)], and lithium nickel oxide [LiNiO 2 , true specific gravity 4.7]
8 g / cc] or olivine-type lithium phosphate [LiMPO 4
(M is a metal element selected from Fe, Co, Mn, Ni, etc., and when M = Fe, the true specific gravity is 3.60 g / c.
c)] or the like. However, when lithium manganate is used for the first active material layer portion and lithium nickelate or olivine-type lithium is used for the second active material layer portion, the shape of the discharge curve of lithium manganate and lithium nickelate, etc. And the discharge operating voltage are different, the discharge curve profile of the mixed positive electrode changes greatly,
It becomes difficult to use as a battery. Therefore, the first
The most desirable combination is lithium manganate for the active material layer portion and lithium cobaltate for the second active material layer portion.

【0028】(2)負極活物質としては、上記黒鉛に限
定するものではなく、グラファイト、コークス、酸化ス
ズ、金属リチウム、珪素、およびそれらの混合物等のリ
チウムイオンを挿入離脱できうるものであれば良い。 (3)正極活物質と導電剤との混合は上記メカノフュー
ジョン法に限定するものではなく、これら材料をスラリ
ー状態で混合しても良く、また他の方法で混合しても良
い。
(2) The negative electrode active material is not limited to the above graphite, and any material capable of inserting and releasing lithium ions such as graphite, coke, tin oxide, metallic lithium, silicon, and a mixture thereof can be used. good. (3) The mixing of the positive electrode active material and the conductive agent is not limited to the mechanofusion method, and these materials may be mixed in a slurry state or may be mixed by another method.

【0029】(4)電池の形状は上記アルミラミネート
を用いた薄型電池に限定するものではなく、外装缶に鉄
やアルミニウム材質を用いた角型や円筒型の電池にも適
用しうることは勿論であり、また、そのサイズについて
も特に制限はない。 (5)電解液としては上記のものに限定されるものでは
なく、リチウム塩としては、例えばLiClO4 、Li
BF4 、LiN(SO2 CF32 、LiN(SO2
252 、LiPF6-X (Cn F2n+1)x 〔但し、1
≦x≦6で、n=1又は2〕等が挙げられ、これらの1
種もしくは2種以上を混合して使用できる。リチウム塩
の濃度は特に限定されないが、電解液1リットル当り
0.2〜1.5モルであることが望ましい。また、電解
液の溶媒としては、プロピレンカーボネート、エチレン
カーボネート、ブチレンカーボネート、ジメチルカーボ
ネート、ジエチルカーボネート、エチルメチルカーボネ
ート、γ一ブチロラクトンなどが挙げられ、これらの1
種もしくは2種以上を混合して使用できる。これらの中
でも、環状カーボネートと非環状(鎖状)カーボネート
とを混合して用いるのが望ましく、特に、環状カーボネ
ートとしてはエチレンカーボネートを、鎖状カーボネー
トとしてはジエチルカーボネートを用いることが望まし
い。
(4) The shape of the battery is not limited to the thin battery using the aluminum laminate described above, and it is needless to say that the battery can be applied to a square or cylindrical battery using an iron or aluminum material for the outer can. In addition, there is no particular limitation on the size. (5) The electrolytic solution is not limited to the above, and examples of the lithium salt include LiClO 4 and Li.
BF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C
2 F 5 ) 2 , LiPF 6-X (Cn F 2n + 1 ) x [however, 1
≦ x ≦ 6, n = 1 or 2] and the like.
One kind or a mixture of two or more kinds can be used. The concentration of the lithium salt is not particularly limited, but is preferably 0.2 to 1.5 mol per liter of the electrolytic solution. Examples of the solvent for the electrolytic solution include propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and γ-butyrolactone.
One kind or a mixture of two or more kinds can be used. Among these, it is desirable to use a mixture of a cyclic carbonate and an acyclic (chain) carbonate, and it is particularly desirable to use ethylene carbonate as the cyclic carbonate and diethyl carbonate as the chain carbonate.

【0030】(6)本発明は、上記液系の電池に限定す
るものではなく、ポリエーテル系固体高分子、ポリカー
ボネート系固体高分子、ポリアクリロニトリル系固体高
分子、又はこれらの2種以上からなる共重合体もしくは
架橋した高分子と、リチウム塩及び電解質を組合せてゲ
ル状にした固体電解質を用いたポリマー電池にも適用し
うることは勿論である。ここで、上記ポリマー電池の作
製の一例を示す。先ず、エチレンカーボネートとジエチ
ルカーボネートとが質量比で3:7の割合で混合された
混合溶媒に、電解質塩としてのLiPF6 が1Mの割合
で添加された電解液を調製し、更に、ポリプロピレング
リコールジアクリレート(分子量:約300)と電解液
とを質量比で1:15となるように混合し、この混合液
に重合開始剤としてのt−ヘキシルパーオキシピバレー
ト5000ppm添加したものを収納空間内に注液(5
ml)した後、50℃で3時間加熱して硬化処理するこ
とにより作製する。尚、ポリプロピレングリコールジア
クリレートと電解液との混合比率は上記の比率に限定す
るものではないが、導電性や液保持性の点を考慮する
と、質量比で1:6〜1:25程度であることが望まし
い。
(6) The present invention is not limited to the above-mentioned liquid type battery, and comprises a polyether solid polymer, a polycarbonate solid polymer, a polyacrylonitrile solid polymer, or two or more of these. Of course, the present invention can be applied to a polymer battery using a solid electrolyte in which a copolymer or a crosslinked polymer is combined with a lithium salt and an electrolyte to form a gel. Here, an example of production of the polymer battery will be described. First, an electrolyte solution was prepared in which LiPF 6 as an electrolyte salt was added at a ratio of 1M to a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a mass ratio of 3: 7. An acrylate (molecular weight: about 300) and an electrolytic solution were mixed at a mass ratio of 1:15, and 5000 ppm of t-hexylperoxypivalate as a polymerization initiator was added to the mixed solution, and the mixture was placed in the storage space. Injection (5
After that, it is produced by heating at 50 ° C. for 3 hours to carry out a curing treatment. The mixing ratio of the polypropylene glycol diacrylate and the electrolytic solution is not limited to the above ratio, but considering the conductivity and the liquid retaining property, the mass ratio is about 1: 6 to 1:25. Is desirable.

【0031】[0031]

【実施例】(第1実施例) 〔実施例1〜4〕マンガン酸リチウムとコバルト酸リチ
ウムとの質量比を、それぞれ、90:10、80:2
0、70:30、60:40とした他は、上記発明の実
施の形態と同様にして正極を作製した。このようにして
作製した正極を、以下、それぞれ本発明正極A1〜A4
と称する。 〔実施例5〕実施例1としては、上記第1の形態と同様
(マンガン酸リチウムとコバルト酸リチウムとの質量比
は50:50)にして作製した正極を用いた。このよう
にして作製した正極を、以下、本発明正極A5と称す
る。
EXAMPLES (First Example) [Examples 1 to 4] The mass ratios of lithium manganate and lithium cobalt oxide were 90:10 and 80: 2, respectively.
A positive electrode was produced in the same manner as in the above-described embodiment of the invention except that the ratio was 0, 70:30, and 60:40. The positive electrodes produced in this manner are hereinafter referred to as positive electrodes A1 to A4 of the present invention, respectively.
Called. [Example 5] As Example 1, a positive electrode prepared in the same manner as in the first embodiment (the mass ratio of lithium manganate and lithium cobalt oxide was 50:50) was used. The positive electrode thus manufactured is hereinafter referred to as a positive electrode A5 of the invention.

【0032】〔実施例6〜9〕マンガン酸リチウムとコ
バルト酸リチウムとの質量比を、それぞれ、40:6
0、30:70、20:80、10:90とした他は、
上記発明の実施の形態と同様にして正極を作製した。こ
のようにして作製した正極を、以下、それぞれ本発明正
極A6〜A9と称する。
[Examples 6 to 9] The mass ratio of lithium manganate and lithium cobalt oxide was 40: 6, respectively.
Other than 0, 30:70, 20:80, 10:90,
A positive electrode was produced in the same manner as in the embodiment of the invention described above. The positive electrodes thus manufactured are hereinafter referred to as present invention positive electrodes A6 to A9, respectively.

【0033】〔比較例1〕第1活物質層部分と第2活物
質層部分とを設けることなく、マンガン酸リチウムのみ
を正極活物質として用いた他は、上記実施例1と同様に
して正極を作製した。このようにして作製した正極を、
以下、比較正極X1と称する。 〔比較例2〕第1活物質層部分と第2活物質層部分とを
設けることなく、マンガン酸リチウムとコバルト酸リチ
ウムとの混合活物質(マンガン酸リチウムとコバルト酸
リチウムとの質量比が90:10)を正極活物質として
用いた他は、上記実施例1と同様にして正極を作製し
た。このようにして作製した正極を、以下、比較正極X
2と称する。
Comparative Example 1 A positive electrode was prepared in the same manner as in Example 1 except that only the lithium manganate was used as the positive electrode active material without providing the first active material layer portion and the second active material layer portion. Was produced. The positive electrode thus manufactured is
Hereinafter, it is referred to as a comparative positive electrode X1. [Comparative Example 2] A mixed active material of lithium manganate and lithium cobalt oxide (the mass ratio of lithium manganate and lithium cobalt oxide was 90%) without providing the first active material layer portion and the second active material layer portion. : 10) was used as the positive electrode active material, and a positive electrode was produced in the same manner as in Example 1 above. Hereinafter, the positive electrode manufactured in this manner will be referred to as comparative positive electrode X.
2.

【0034】〔比較例3〜10〕マンガン酸リチウムと
コバルト酸リチウムとの質量比を、それぞれ、80:2
0、70:30、60:40、50:50、40:6
0、30:70、20:80、10:90とした他は、
上記比較例2と同様にして正極を作製した。このように
して作製した正極を、以下、それぞれ比較正極X3〜X
10と称する。 〔比較例11〕第1活物質層部分と第2活物質層部分と
を設けることなく、コバルト酸リチウムのみを正極活物
質として用いた他は、上記実施例1と同様にして正極を
作製した。このようにして作製した正極を、以下、比較
正極X11と称する。
[Comparative Examples 3 to 10] The mass ratio of lithium manganate to lithium cobalt oxide was 80: 2, respectively.
0, 70:30, 60:40, 50:50, 40: 6
Other than 0, 30:70, 20:80, 10:90,
A positive electrode was produced in the same manner as in Comparative Example 2 above. The positive electrodes produced in this manner are hereinafter referred to as comparative positive electrodes X3 to X, respectively.
It is called 10. [Comparative Example 11] A positive electrode was prepared in the same manner as in Example 1 except that only lithium cobalt oxide was used as the positive electrode active material without providing the first active material layer portion and the second active material layer portion. . The positive electrode thus manufactured is hereinafter referred to as a comparative positive electrode X11.

【0035】〔比較例12〜20〕第1活物質層部分
(正極内部側の活物質層部分)にコバルト酸リチウムを
用い、第2活物質層部分(正極表面側の活物質層部分)
にマンガン酸リチウムを用いた他は、それぞれ上記実施
例1〜実施例9と同様にして正極を作製した。このよう
にして作製した正極を、以下、それぞれ比較正極Y1〜
Y9と称する。ここで、理解の容易のために、上記本発
明正極A1〜A9、比較正極X1〜X11、Y1〜Y9
の極板構成を表1に示す。
Comparative Examples 12 to 20 Lithium cobalt oxide was used for the first active material layer portion (active material layer portion on the inside of the positive electrode), and the second active material layer portion (active material layer portion on the surface of the positive electrode).
Positive electrodes were produced in the same manner as in Examples 1 to 9 except that lithium manganate was used as the cathode. The positive electrodes produced in this manner are hereinafter referred to as comparative positive electrodes Y1 to Y1, respectively.
It is called Y9. Here, for ease of understanding, the above-described positive electrodes A1 to A9 of the present invention, comparative positive electrodes X1 to X11, and Y1 to Y9.
Table 1 shows the structure of the electrode plate.

【0036】[0036]

【表1】 [Table 1]

【0037】〔下記実験1及び実験2の意義〕正極充填
密度に関して重要なことは2点有る。1つ目は、如何に
正極活物質の充填密度を高く出来るかが高エネルギー密
度の達成に必要であり、2つ目は、如何に速やかに電極
内部へ電解液を浸透させることが出来るかで、これは、
電極の隅々まで反応をさせるために必要である(未含液
部分は反応しないので、正極活物質の利用率を高めるた
めに必要となる) 。これらの2つの重要なポイントは、
それぞれが相反する傾向にある。即ち、充填密度が高け
れば高いほど、電極内部への含液性は低下する。逆に、
充填密度が低ければ、含液性は良好であるがエネルギー
密度は低下する。これらのことから、電池の設計には、
両者のバランスを上手くとる事が必要である。そこで、
両者のバランスを調べるべく、下記実験1及び実験2を
行った。
[Meaning of Experiment 1 and Experiment 2 below] There are two important points regarding the positive electrode packing density. The first is how to increase the packing density of the positive electrode active material to achieve a high energy density, and the second is how quickly the electrolyte can penetrate into the electrode. ,this is,
It is necessary to make every corner of the electrode react (since the liquid-free part does not react, it is necessary to increase the utilization rate of the positive electrode active material). These two important points are
Each tends to conflict. That is, the higher the packing density, the lower the liquid content inside the electrode. vice versa,
If the packing density is low, the liquid content is good, but the energy density is low. From these things, in designing the battery,
It is necessary to strike a good balance between the two. Therefore,
The following Experiment 1 and Experiment 2 were conducted to examine the balance between the two.

【0038】〔実験1〕上記本発明正極A1〜A9、比
較正極X1〜X11、Y1〜Y9が下記に示すエージン
グ条件を満たすという条件の下で、最も高くなる充填密
度(最高充填密度)を調べたので、その結果を表2〜表
4及び図6に示す。 ・エージング条件 無風下密閉条件で、上記発明の実施の形態で示した電解
液と同様の電解液(ECとDECとが質量比で30:7
0の割合で混合された混合溶媒に、LiPF6を1Mの
割合で添加した電解液)を、各正極に10μl滴下し、
2分以内に正極の表面から電解液が消失すること。尚、
このような条件とするのは、以下に示す理由による。即
ち、上記条件で試験をして電解液が消失すれば、電池を
作製してもほぼ設計容量通りの容量が得られるという結
果が得られる一方(尚、その後、一定時間電解液中に浸
積させて、極板内部に含まれる電解液量を算出して、電
解液の消失速度が正極内部方向への浸透であるかどうか
を確認することにより、正極表面への拡散でないことの
確認済)、2分以上の時間を要すると、実際に電池を作
製した場合は、電解液の極板内部(細部) への浸透が不
十分となって、不均一な反応となるために高容量化を達
成することができないからである。
[Experiment 1] Under the condition that the positive electrodes A1 to A9 of the present invention and the comparative positive electrodes X1 to X11 and Y1 to Y9 satisfy the following aging conditions, the highest packing density (maximum packing density) is investigated. Therefore, the results are shown in Tables 2 to 4 and FIG. Aging condition Under the closed condition without wind, the same electrolytic solution as the electrolytic solution shown in the embodiment of the present invention (EC and DEC in a mass ratio of 30: 7).
10 μl of an electrolytic solution obtained by adding LiPF 6 at a ratio of 1 M to a mixed solvent mixed at a ratio of 0) was dropped on each positive electrode,
The electrolyte should disappear from the surface of the positive electrode within 2 minutes. still,
The reason for setting such a condition is as follows. That is, when the test is performed under the above conditions and the electrolytic solution disappears, it is possible to obtain the result that the capacity almost equal to the designed capacity can be obtained even when the battery is manufactured (after that, the electrolytic solution is immersed in the electrolytic solution for a certain time. Then, by calculating the amount of electrolyte contained in the electrode plate and confirming whether the disappearance rate of the electrolyte is permeation toward the inside of the positive electrode, it has been confirmed that it is not diffusion to the positive electrode surface). If it takes more than 2 minutes, when the battery is actually manufactured, the electrolyte does not sufficiently penetrate into the inside of the electrode plate (details), resulting in a non-uniform reaction, so that the capacity should be increased. Because it cannot be achieved.

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】表3及び図6に示すように、比較正極X1
〜X11の如く、コバルト酸リチウムとマンガン酸リチ
ウムとを混合した正極活物質を用いた場合には、それぞ
れの活物質の真比重がある程度反映されるため、電解液
の吸液性(エージング工程)が問題のない正極合剤の圧
縮密度とコバルト酸リチウムの割合とは比例的な関係に
ある。即ち、コバルト酸リチウムの割合が増加するに伴
い、最高充填密度は向上する。これに対して、表2及び
図6に示すように、正極表面側に、より充填されても吸
液性の高い正極活物質(コバルト酸リチウム) を塗工し
た本発明正極A1〜A9では、圧縮力の強い表面部分に
はコバルト酸リチウムが存在しているため、高充填され
ても吸液性は比較的高い状態で維持できることが認めら
れる。
As shown in Table 3 and FIG. 6, the comparative positive electrode X1
When using a positive electrode active material in which lithium cobalt oxide and lithium manganate are mixed as in the case of X11 to X11, since the true specific gravities of the respective active materials are reflected to some extent, the liquid absorbing property of the electrolytic solution (aging step) However, there is a proportional relationship between the compression density of the positive electrode material mixture and the proportion of lithium cobalt oxide. That is, the maximum packing density improves as the proportion of lithium cobalt oxide increases. On the other hand, as shown in Table 2 and FIG. 6, in the positive electrodes A1 to A9 of the present invention in which the positive electrode surface side is coated with a positive electrode active material (lithium cobalt oxide) having a high liquid absorbing property even when filled, Since lithium cobalt oxide is present in the surface portion where the compressive force is strong, it is recognized that the liquid absorbency can be maintained in a relatively high state even when the surface is highly filled.

【0043】尚、表4及び図6に示すように、正極表面
側に、高充填で吸液性が低下するマンガン酸リチウムを
塗工した比較正極Y1〜Y9では、圧縮力の強い表面部
分にはマンガン酸リチウムが存在しているため、吸液性
が極端に低下し、電極内部への電解液の浸透性はマンガ
ン酸リチウムを単独で用いた正極と殆ど変わらない結果
となっていることが伺える。
As shown in Table 4 and FIG. 6, in the comparative positive electrodes Y1 to Y9, in which the positive electrode surface side was coated with lithium manganate, which is highly filled and the liquid absorbency is lowered, Since lithium manganate is present, the liquid absorbency is extremely reduced, and the permeability of the electrolytic solution into the electrode is almost the same as that of the positive electrode using lithium manganate alone. I can ask.

【0044】次に、本発明正極A1〜A9について詳細
に検討してみると、図6に示すように、コバルト酸リチ
ウムの割合が30質量%程度となったときに、急激に含
液性が向上している。この理由は、コバルト酸リチウム
の割合が30質量%程度の場合に、圧縮時に正極表面側
の正極活物質に加わる大きな力が、コバルト酸リチウム
とマンガン酸リチウムとの境界近傍にまで及ぶことを意
味していると考えられる。したがって、それよりコバル
ト酸リチウムの割合が少ないと、結局、マンガン酸リチ
ウム表面部にまで大きな力が働き、含液性を低下させて
いるものと推測される。
Next, the positive electrodes A1 to A9 of the present invention will be examined in detail. As shown in FIG. 6, when the proportion of lithium cobalt oxide is about 30% by mass, the liquid content rapidly increases. Has improved. The reason for this is that when the proportion of lithium cobalt oxide is about 30 mass%, a large force applied to the positive electrode active material on the positive electrode surface side during compression extends to the vicinity of the boundary between lithium cobalt oxide and lithium manganate. it seems to do. Therefore, if the proportion of lithium cobalt oxide is smaller than that, it is presumed that, in the end, a large force acts even on the surface of the lithium manganate to reduce the liquid content.

【0045】尚、このことは、アルミニウム芯体上にど
の程度正極スラリーを塗工するかにも影響されるが、通
常、高容量化(市販レベル)を目指した電極設計におい
ては、今回テストした塗布量が最低限必要であると考え
られ、充填密度を確保するためには、正極活物質の全質
量に対するコバルト酸リチウムの質量の割合は30質量
%以上であることが望ましい。また、上記の如く、コバ
ルト酸リチウムの割合が30質量%となった時点が変位
点となっており、この点における最高充填密度は3.1
1g/cc(表2の本発明正極A3参照)なので、最高
充填密度は3.11g/cc以上であることが望ましい
一方、最高充填密度が3.30g/ccの電池は正極活
物質がコバルト酸リチウムのみから成る比較正極X11
であるので、本発明においては、最高充填密度は3.3
0g/cc未満であることが必要となる。
Although this is influenced by the extent to which the positive electrode slurry is applied onto the aluminum core, it is usually tested this time in the electrode design aiming at high capacity (commercial level). It is considered that the coating amount is the minimum required, and in order to secure the packing density, the ratio of the mass of lithium cobalt oxide to the total mass of the positive electrode active material is preferably 30 mass% or more. Further, as described above, the displacement point is the time when the proportion of lithium cobalt oxide reaches 30 mass%, and the maximum packing density at this point is 3.1.
Since it is 1 g / cc (refer to the positive electrode A3 of the present invention in Table 2), it is desirable that the maximum packing density is 3.11 g / cc or more, while in the battery with the maximum packing density of 3.30 g / cc, the positive electrode active material is cobalt acid. Comparative positive electrode X11 consisting only of lithium
Therefore, in the present invention, the maximum packing density is 3.3.
It must be less than 0 g / cc.

【0046】また、ここでは示していないが、コバルト
酸リチウムとマンガン酸リチウムとの混合スラリーであ
ってコバルト酸リチウムの含有量が高い混合スラリーを
正極表面側に塗工する一方、マンガン酸リチウムの含有
量が高い混合スラリーを正極内部側に塗工した場合も、
図6に示すような大きな効果は得られないが、単にコバ
ルト酸リチウムとマンガン酸リチウムと混合しただけの
スラリーを塗工するよりも高い充填密度となることを確
認した。
Although not shown here, a mixed slurry of lithium cobalt oxide and lithium manganate having a high content of lithium cobalt oxide is applied to the surface of the positive electrode, while a mixed slurry of lithium manganate is used. Even when a mixed slurry with a high content is applied to the inside of the positive electrode,
Although a large effect as shown in FIG. 6 is not obtained, it has been confirmed that the packing density is higher than that obtained by coating a slurry prepared by simply mixing lithium cobalt oxide and lithium manganate.

【0047】〔実験2〕上記本発明正極A1〜A9、比
較正極X1〜X11が上記実験1に示すエージング条件
を満たすという条件の下で、最も高くなる充填密度(最
高充填密度)を調べたので、その結果を表5及び表6及
び図7に示す。但し、滴下させる電解液としては、上記
実験1に示した電解液とポリプロピレングリコールジア
クリレート(分子量が300程度のもの)とを質量比で
1:15となるように混合したプレポリマー電解液を用
いた。
[Experiment 2] The highest packing density (maximum packing density) was examined under the condition that the positive electrodes A1 to A9 of the present invention and the comparative positive electrodes X1 to X11 satisfy the aging conditions shown in the first test. The results are shown in Tables 5 and 6 and FIG. However, as the electrolytic solution to be dropped, a prepolymer electrolytic solution obtained by mixing the electrolytic solution shown in the above Experiment 1 and polypropylene glycol diacrylate (having a molecular weight of about 300) in a mass ratio of 1:15 is used. I was there.

【0048】[0048]

【表5】 [Table 5]

【0049】[0049]

【表6】 [Table 6]

【0050】表6及び図7に示すように、比較正極X1
〜X11では、上記実験1と同様に、電解液の吸液性
(エージング工程)が問題のない正極合剤の圧縮密度と
コバルト酸リチウムの割合とは比例的な関係にあり、一
方、本発明正極A1〜A9では、表5及び図7に示すよ
うに、圧縮力の強い表面部分にはコバルト酸リチウムが
存在しているため、高充填されても吸液性は比較的高い
状態で維持できることが認められる。
As shown in Table 6 and FIG. 7, the comparative positive electrode X1
In the case of ~ X11, as in the case of Experiment 1, there is a proportional relationship between the compression density of the positive electrode mixture and the proportion of lithium cobalt oxide, in which the liquid absorbency of the electrolyte solution (aging step) is not a problem. In the positive electrodes A1 to A9, as shown in Table 5 and FIG. 7, since lithium cobalt oxide is present on the surface portion having a strong compressive force, the liquid absorbing property can be maintained in a relatively high state even when highly filled. Is recognized.

【0051】次に、本発明正極A1〜A9について詳細
に検討してみると、図7に示すように、コバルト酸リチ
ウムの混合量が30質量%程度となったときに、急激に
含液性が向上している。この理由は、上記実験1で示し
た理由と同様の理由によるものと考えられる。但し、実
験1の場合と比べて、全体的に、最高充填密度が低下し
ている。これは、本実験で用いたプレポリマー電解液
は、実験1で用いた通常の電解液に比べて粘度が高くな
っているという理由によるものと考えられる。
Next, the positive electrodes A1 to A9 of the present invention will be examined in detail. As shown in FIG. 7, when the mixed amount of lithium cobalt oxide is about 30% by mass, the liquid content rapidly increases. Has improved. It is considered that the reason for this is the same as the reason shown in Experiment 1 above. However, as compared with the case of Experiment 1, the maximum packing density is lowered as a whole. It is considered that this is because the prepolymer electrolyte solution used in this experiment has a higher viscosity than the normal electrolyte solution used in Experiment 1.

【0052】また、上記の如く、コバルト酸リチウムの
割合が30質量%混合された時が変位点となっており、
この点における最高充填密度は2.85g/cc(表5
の本発明正極A3参照)なので、プレポリマー電解液を
用いる場合には、最高充填密度は2.85g/cc以上
であることが望ましい一方、最高充填密度が3.11g
/ccの電池は正極活物質がコバルト酸リチウムのみか
ら成る比較正極X11であるので、本発明においては、
最高充填密度は3.11g/cc未満であることが必要
となる。
As described above, the displacement point is when the proportion of lithium cobalt oxide is 30% by mass.
The highest packing density at this point is 2.85 g / cc (Table 5
Therefore, the maximum packing density is preferably 2.85 g / cc or more, while the maximum packing density is 3.11 g when the prepolymer electrolyte is used.
In the present invention, since the battery of / cc is the comparative positive electrode X11 in which the positive electrode active material is only lithium cobalt oxide,
The highest packing density needs to be less than 3.11 g / cc.

【0053】(第2実施例) 〔実施例1〜5〕実施例1〜5としては、上記実施の形
態で示した方法と同様の方法で電池(非水電解質にイオ
ン電解質を用いた電池)を作製した。尚、各正極におけ
る活物質の充填密度は、それぞれ、3.00g/cc、
3.10g/cc、3.20g/cc、3.30g/c
c、3.40g/ccとなるように規定した。このよう
にして作製した電池の正極活物質は、上記第1実施例の
実施例5で示した本発明正極A5と同じであり、且つ、
非水電解質としてイオン電解質を用いているので、上記
のようにして作製した電池を、以下、それぞれ本発明電
池ai51、本発明電池ai52、本発明電池ai5
3、本発明電池ai54、本発明電池ai55と称す
る。
(Second Example) [Examples 1 to 5] In Examples 1 to 5, a battery (battery using an ionic electrolyte as a non-aqueous electrolyte) was prepared in the same manner as the method described in the above embodiment. Was produced. The packing density of the active material in each positive electrode was 3.00 g / cc,
3.10 g / cc, 3.20 g / cc, 3.30 g / c
c, 3.40 g / cc. The positive electrode active material of the battery thus produced was the same as the positive electrode A5 of the present invention shown in Example 5 of the first example, and
Since the ionic electrolyte is used as the non-aqueous electrolyte, the batteries produced as described above will be referred to as the present invention battery ai51, the present invention battery ai52, and the present invention battery ai5, respectively.
3, the present invention battery ai54, the present invention battery ai55.

【0054】〔実施例6〜10〕実施例6〜10として
は、上記第1実施例の実施例5で示した本発明正極を用
いて、下記に示すように、非水電解質としてポリマー電
解質を用いた電池を作製した。尚、各正極における活物
質の充填密度は、それぞれ、2.80g/cc、2.9
0g/cc、3.00g/cc、3.10g/cc、
3.20g/ccとなるように規定した。
[Examples 6 to 10] In Examples 6 to 10, using the positive electrode of the present invention shown in Example 5 of the first example, a polymer electrolyte was used as a non-aqueous electrolyte as shown below. The battery used was produced. The packing density of the active material in each positive electrode was 2.80 g / cc and 2.9, respectively.
0 g / cc, 3.00 g / cc, 3.10 g / cc,
It was specified to be 3.20 g / cc.

【0055】ポリマー電解質を用いて電池の製造方法
は、ECとDECとが質量比で3:7の割合で混合され
た混合溶媒に、電解質塩としてのLiPF6 が1Mの割
合で添加された電解液を調製し、更に、ポリプロピレン
グリコールジアクリレート(分子量:約300)と上記
電解液とを質量比で1:15となるように混合し、この
混合液に重合開始剤としてのt−ヘキシルパーオキシピ
バレート5000ppm添加したものを収納空間内に注
液(5ml)した後、50℃で3時間加熱して硬化処理
することにより作製した。このようにして作製した電池
の正極活物質は、上記第1実施例の実施例5で示した本
発明正極A5と同じであり、且つ、非水電解質としてポ
リマー電解質を用いているので、上記のようにして作製
した電池を、以下、それぞれ本発明電池ap51、本発
明電池ap52、本発明電池ap53、本発明電池ap
54、本発明電池ap55と称する。
A method for producing a battery using a polymer electrolyte is an electrolytic solution in which LiPF6 as an electrolyte salt is added at a ratio of 1M to a mixed solvent in which EC and DEC are mixed at a mass ratio of 3: 7. Was further prepared, and polypropylene glycol diacrylate (molecular weight: about 300) was mixed with the electrolytic solution in a mass ratio of 1:15, and the mixed solution was mixed with t-hexylperoxypiper as a polymerization initiator. It was prepared by injecting (5 ml) a solution containing 5000 ppm of barrate into the storage space, and then heating at 50 ° C. for 3 hours to perform a curing treatment. The positive electrode active material of the battery thus manufactured was the same as the positive electrode A5 of the present invention shown in Example 5 of the first example, and the polymer electrolyte was used as the non-aqueous electrolyte. The batteries thus produced are referred to below as the present invention battery ap51, the present invention battery ap52, the present invention battery ap53, and the present invention battery ap, respectively.
54, battery of the present invention ap55.

【0056】〔比較例1〜5〕比較例1〜5としては、
上記第1実施例の比較例5で示した方法と同様の方法で
電池(非水電解質にイオン電解質を用いた電池)を作製
した。尚、各正極における活物質の充填密度は、それぞ
れ、2.80g/cc、2.90g/cc、3.00g
/cc、3.10g/cc、3.20g/ccとなるよ
うに規定した。このようにして作製した電池の正極活物
質は、上記第1実施例の比較例5で示した比較正極X5
と同じであり、且つ、非水電解質としてイオン電解質を
用いているので、上記のようにして作製した電池を、以
下、それぞれ比較電池xi51、比較電池xi52、比
較電池xi53、比較電池xi54、比較電池xi55
と称する。
Comparative Examples 1-5 As Comparative Examples 1-5,
A battery (battery using an ionic electrolyte as the non-aqueous electrolyte) was produced by the same method as the method shown in Comparative Example 5 of the first example. The packing density of the active material in each positive electrode was 2.80 g / cc, 2.90 g / cc, 3.00 g, respectively.
/ Cc, 3.10 g / cc, 3.20 g / cc. The positive electrode active material of the battery thus manufactured was the comparative positive electrode X5 shown in Comparative Example 5 of the first embodiment.
Since the same as the above and using an ionic electrolyte as the non-aqueous electrolyte, the batteries produced as described above are referred to as Comparative Battery xi51, Comparative Battery xi52, Comparative Battery xi53, Comparative Battery xi54, and Comparative Battery, respectively. xi55
Called.

【0057】〔比較例6〜10〕比較例6〜10として
は、上記第1実施例の比較例5で示した本発明正極を用
いて、上記実施例6〜10に示す方法と同様にして、非
水電解質としてポリマー電解質を用いた電池を作製し
た。尚、各正極における活物質の充填密度は、それぞ
れ、2.60g/cc、2.70g/cc、2.80g
/cc、2.90g/cc、3.00g/ccとなるよ
うに規定した。このようにして作製した電池の正極活物
質は、上記第1実施例の比較例5で示した比較正極X5
と同じであり、且つ、非水電解質としてポリマー電解質
を用いているので、上記のようにして作製した電池を、
以下、それぞれ比較電池xp51、比較電池xp52、
比較電池xp53、比較電池xp54、比較電池xp5
5と称する。
[Comparative Examples 6 to 10] As Comparative Examples 6 to 10, the positive electrode of the present invention shown in Comparative Example 5 of the first embodiment was used, and the same method as in Examples 6 to 10 was performed. A battery using a polymer electrolyte as a non-aqueous electrolyte was prepared. The packing density of the active material in each positive electrode was 2.60 g / cc, 2.70 g / cc, 2.80 g, respectively.
/ Cc, 2.90 g / cc, 3.00 g / cc. The positive electrode active material of the battery thus manufactured was the comparative positive electrode X5 shown in Comparative Example 5 of the first embodiment.
The same as the above, and since the polymer electrolyte is used as the non-aqueous electrolyte, the battery produced as described above is
Hereinafter, comparative battery xp51, comparative battery xp52,
Comparative battery xp53, Comparative battery xp54, Comparative battery xp5
It is called 5.

【0058】〔実験〕上記本発明電池ai51〜ai5
5、ap51〜ap55及び比較電池xi51〜xi5
5、xp51〜xp55を下記の条件で充放電し、各電
池の初期容量と、電流1Cで放電したときの放電容量に
対する電流3Cで放電したときの放電容量との比率(以
下、3C/1C比と略す)を調べたので、その結果を表
7、表8及び図8〜図11に示す。
[Experiment] The batteries of the present invention ai51 to ai5
5, ap51 to ap55 and comparative batteries xi51 to xi5
5, xp51 to xp55 were charged and discharged under the following conditions, and the ratio of the initial capacity of each battery to the discharge capacity when discharged at a current of 3C to the discharge capacity when discharged at a current of 1C (hereinafter, 3C / 1C ratio Abbreviated) was examined, and the results are shown in Tables 7 and 8 and FIGS.

【0059】〔充放電条件〕 ・充電条件 充電電流1C(600mA)で電池電圧が4.2Vにな
るまで定電流で充電し、4.2Vに到達した後は電流値
が30mA以下になるまで定電圧で充電を行った。この
後、10分間休止した。 ・放電条件 それぞれ、放電電流1C(600mA)、放電電流3C
(1800mA)で電池電圧が2.75Vになるまで定
電流で放電した。
[Charging / Discharging Conditions] -Charging conditions Charging is performed with a constant current at a charging current of 1 C (600 mA) until the battery voltage reaches 4.2 V, and after reaching 4.2 V, the charging current is constant until the current value becomes 30 mA or less. It was charged with voltage. This was followed by a 10 minute rest.・ Discharge conditions: discharge current 1C (600mA), discharge current 3C
At (1800 mA), the battery was discharged at a constant current until the battery voltage reached 2.75V.

【0060】[0060]

【表7】 [Table 7]

【0061】[0061]

【表8】 [Table 8]

【0062】上記表7、表8及び図8〜図11から明ら
かなように、それぞれの電池で、上記第1実施例の実験
1及び実験2における吸液試験の結果から得られた圧縮
適正値(それぞれ、本発明電池ai53、比較電池xi
53、本発明電池ap53、比較電池xp53に相当)
付近までで電池の容量は設計値に最も近く、それを超え
た充填密度では、含液性が低下するために設計値よりも
少ない容量しか得られない。したがって、単位体積当り
のエネルギー密度は適正値で最大となることが解る。ま
た、表7、表8及び図8〜図11に併せて示したよう
に、充填密度が低すぎた場合には、極板抵抗が増加する
ために、特にハイレート特性(3C/1C比)が低下す
る傾向にある。したがって、正極の充填密度が低すぎる
と、エネルギー密度の低下をもたらすだけではなく、ハ
イレート特性の低下も招くため、充填密度は出来る限り
高くすることが望ましい。
As is clear from Tables 7 and 8 and FIGS. 8 to 11, the proper compression values obtained from the results of the liquid absorption test in Experiment 1 and Experiment 2 of the above-mentioned first embodiment for each battery. (Inventive battery ai53 and comparative battery xi, respectively)
53, the present invention battery ap53, the comparative battery xp53)
Up to the vicinity, the capacity of the battery is closest to the design value, and if the packing density exceeds it, the capacity lower than the design value can be obtained because the liquid content decreases. Therefore, it can be seen that the energy density per unit volume is the maximum at an appropriate value. Further, as also shown in Tables 7 and 8 and FIGS. 8 to 11, when the packing density is too low, the electrode plate resistance increases, so that the high rate characteristics (3C / 1C ratio) are particularly high. It tends to decrease. Therefore, if the packing density of the positive electrode is too low, not only the energy density is lowered, but also the high rate characteristics are deteriorated. Therefore, it is desirable that the packing density be as high as possible.

【0063】[0063]

【発明の効果】以上で説明したように本発明によれば、
電解液の浸透性を確保しつつ、正極活物質の充填量を増
大させることにより、高エネルギー密度化を図ることが
でき、且つ、優れた電池性能を有する非水電解質電池を
提供できるといった優れた効果を奏する。
As described above, according to the present invention,
By increasing the filling amount of the positive electrode active material while ensuring the permeability of the electrolytic solution, it is possible to achieve a high energy density and to provide a non-aqueous electrolyte battery having excellent battery performance. Produce an effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非水電解質電池の正面図。FIG. 1 is a front view of a non-aqueous electrolyte battery according to the present invention.

【図2】図1のA−A線矢視断面図。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】本発明に係る非水電解質電池に用いるアルミラ
ミネート外装体の断面図。
FIG. 3 is a cross-sectional view of an aluminum laminate exterior body used in the non-aqueous electrolyte battery according to the present invention.

【図4】本発明に係る非水電解質電池に用いる電極体の
斜視図。
FIG. 4 is a perspective view of an electrode body used in the non-aqueous electrolyte battery according to the present invention.

【図5】本発明に係る非水電解質電池に用いる正極の構
造を示す断面図。
FIG. 5 is a cross-sectional view showing a structure of a positive electrode used in the non-aqueous electrolyte battery according to the present invention.

【図6】コバルト酸リチウムの割合と最高充填密度との
関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the ratio of lithium cobalt oxide and the maximum packing density.

【図7】コバルト酸リチウムの割合と最高充填密度との
関係を示すグラフ。
FIG. 7 is a graph showing the relationship between the ratio of lithium cobalt oxide and the maximum packing density.

【図8】正極充填密度と初期容量及び3C/1C比との
関係を示すグラフ。
FIG. 8 is a graph showing the relationship between positive electrode packing density, initial capacity and 3C / 1C ratio.

【図9】正極充填密度と初期容量及び3C/1C比との
関係を示すグラフ。
FIG. 9 is a graph showing the relationship between positive electrode packing density, initial capacity and 3C / 1C ratio.

【図10】正極充填密度と初期容量及び3C/1C比と
の関係を示すグラフ。
FIG. 10 is a graph showing the relationship between positive electrode packing density, initial capacity, and 3C / 1C ratio.

【図11】正極充填密度と初期容量及び3C/1C比と
の関係を示すグラフ。
FIG. 11 is a graph showing the relationship between the positive electrode packing density, the initial capacity, and the 3C / 1C ratio.

【図12】ロールプレス法により正極を作製する際の説
明図。
FIG. 12 is an explanatory diagram when manufacturing a positive electrode by a roll pressing method.

【符号の説明】[Explanation of symbols]

1:電極体 2:収納空間 3:アルミラミネート外装体 5:正極 6:負極 22:第1活物質層部分 23:第2活物質層部分 24:正極活物資層 1: Electrode body 2: Storage space 3: Aluminum laminated exterior body 5: Positive electrode 6: Negative electrode 22: First active material layer portion 23: Second active material layer portion 24: Positive electrode active material layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ02 AJ03 AK03 AK18 AL02 AL06 AL07 AL11 AL12 AL18 AM03 AM05 AM07 AM16 BJ03 BJ12 BJ14 CJ22 DJ16 DJ17 HJ01 HJ08 HJ12 5H050 AA02 AA08 BA16 BA17 CA07 CA08 CA09 CA29 CB02 CB07 CB08 CB11 CB12 CB29 DA02 FA02 FA05 FA17 FA19 GA22 HA01 HA08 HA12    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5H029 AJ02 AJ03 AK03 AK18 AL02                       AL06 AL07 AL11 AL12 AL18                       AM03 AM05 AM07 AM16 BJ03                       BJ12 BJ14 CJ22 DJ16 DJ17                       HJ01 HJ08 HJ12                 5H050 AA02 AA08 BA16 BA17 CA07                       CA08 CA09 CA29 CB02 CB07                       CB08 CB11 CB12 CB29 DA02                       FA02 FA05 FA17 FA19 GA22                       HA01 HA08 HA12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体の表面に正極活物質層が形成
された正極と、負極と、非水電解質とを備えた非水電解
質電池において、 上記正極活物質層が、各々真比重が異なる活物質から成
る複数の活物質層部分で構成され、且つ、上記正極表面
側にある上記活物質層部分の真比重が、下層にある活物
質層部分の真比重より大きいことを特徴とする非水電解
質電池。
1. A non-aqueous electrolyte battery comprising a positive electrode having a positive electrode active material layer formed on the surface of a positive electrode current collector, a negative electrode, and a non-aqueous electrolyte, wherein each of the positive electrode active material layers has a true specific gravity. It is characterized in that it is composed of a plurality of active material layer portions made of different active materials, and the true specific gravity of the active material layer portion on the positive electrode surface side is larger than the true specific gravity of the lower active material layer portion. Non-aqueous electrolyte battery.
【請求項2】 上記正極活物質層が2つの活物質層部分
から成り、上記正極活物質層全体の質量に対する上記正
極集電体側に配置された第1活物質層部分の質量の割合
が70質量%未満、上記正極活物質層全体の質量に対す
る正極表面側に配置された第2活物質層部分の質量が3
0質量%以上となるように規制される、請求項1記載の
非水電解質電池。
2. The positive electrode active material layer comprises two active material layer portions, and the mass ratio of the first active material layer portion disposed on the positive electrode current collector side to the total mass of the positive electrode active material layer is 70. Less than 3% by mass, and the mass of the second active material layer portion arranged on the positive electrode surface side with respect to the mass of the entire positive electrode active material layer is 3
The non-aqueous electrolyte battery according to claim 1, which is regulated to be 0% by mass or more.
【請求項3】 上記第1活物質層部分の正極活物質がス
ピネル型マンガン酸リチウムであり、上記第2活物質層
部分の正極活物質がコバルト酸リチウムである、請求項
1又は2記載の非水電解質電池。
3. The positive electrode active material of the first active material layer portion is spinel type lithium manganate, and the positive electrode active material of the second active material layer portion is lithium cobalt oxide. Non-aqueous electrolyte battery.
【請求項4】 上記正極活物質層における正極活物質の
充填密度dが、2.85≦d<3.30g/ccに規制
される、請求項3記載の非水電解質電池。
4. The non-aqueous electrolyte battery according to claim 3, wherein the packing density d of the positive electrode active material in the positive electrode active material layer is regulated to 2.85 ≦ d <3.30 g / cc.
【請求項5】 上記非水電解質としてイオン電解質を用
いた場合、正極活物質層における正極活物質の充填密度
dが、3.11≦d<3.30g/ccに規制される、
請求項4記載の非水電解質電池。
5. When an ionic electrolyte is used as the non-aqueous electrolyte, the packing density d of the positive electrode active material in the positive electrode active material layer is restricted to 3.11 ≦ d <3.30 g / cc,
The non-aqueous electrolyte battery according to claim 4.
【請求項6】 上記非水電解質としてポリマー電解質を
用いた場合、正極活物質層における正極活物質の充填密
度dが、2.85≦d<3.11g/ccに規制され
る、請求項4記載の非水電解質電池。
6. The packing density d of the positive electrode active material in the positive electrode active material layer is regulated to 2.85 ≦ d <3.11 g / cc when a polymer electrolyte is used as the non-aqueous electrolyte. The non-aqueous electrolyte battery described.
JP2001396121A 2001-12-27 2001-12-27 Non-aqueous electrolyte battery Expired - Fee Related JP3619807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001396121A JP3619807B2 (en) 2001-12-27 2001-12-27 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001396121A JP3619807B2 (en) 2001-12-27 2001-12-27 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2003197180A true JP2003197180A (en) 2003-07-11
JP3619807B2 JP3619807B2 (en) 2005-02-16

Family

ID=27602310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001396121A Expired - Fee Related JP3619807B2 (en) 2001-12-27 2001-12-27 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3619807B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134770A (en) * 2004-11-08 2006-05-25 Sony Corp Cathode and battery
JP2006318868A (en) * 2005-05-16 2006-11-24 Hitachi Maxell Ltd Lithium secondary battery
JP2007012441A (en) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2007026676A (en) * 2004-07-21 2007-02-01 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2007035589A (en) * 2005-07-29 2007-02-08 Sanyo Electric Co Ltd Manufacturing method of electrode, manufacturing device of electrode used in manufacturing method, and battery manufactured by its manufacturing method
JP2007048744A (en) * 2005-07-14 2007-02-22 Matsushita Electric Ind Co Ltd Positive electrode for lithium secondary battery and lithium secondary battery using it
WO2006071972A3 (en) * 2004-12-28 2007-10-18 Boston Power Inc Lithium-ion secondary battery
EP1953851A1 (en) * 2005-11-10 2008-08-06 Nissan Motor Co., Ltd. Electrode for secondary battery and secondary battery using same
US7656125B2 (en) 2005-07-14 2010-02-02 Boston-Power, Inc. Method and device for controlling a storage voltage of a battery pack
US7811708B2 (en) 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
US8138726B2 (en) 2006-06-28 2012-03-20 Boston-Power, Inc. Electronics with multiple charge rate
US8142934B2 (en) 2005-03-30 2012-03-27 Kyushu University Positive electrode for non-aqueous electrolytic secondary cell and non-aqueous electrolytic secondary cell
US8483886B2 (en) 2009-09-01 2013-07-09 Boston-Power, Inc. Large scale battery systems and method of assembly
JP2013222587A (en) * 2012-04-16 2013-10-28 Toyota Motor Corp Nonaqueous electrolyte secondary battery
US8679670B2 (en) 2007-06-22 2014-03-25 Boston-Power, Inc. CID retention device for Li-ion cell
US8828605B2 (en) 2004-12-28 2014-09-09 Boston-Power, Inc. Lithium-ion secondary battery
CN105247706A (en) * 2013-07-31 2016-01-13 株式会社Lg化学 Electrode comprising different electrode material layers and lithium secondary battery
JP2017195205A (en) * 2017-08-03 2017-10-26 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2018537815A (en) * 2016-07-04 2018-12-20 エルジー・ケム・リミテッド Positive electrode and secondary battery including the positive electrode
WO2020194430A1 (en) * 2019-03-25 2020-10-01 株式会社 東芝 Electrode, battery, and battery pack
WO2021091168A1 (en) * 2019-11-07 2021-05-14 주식회사 엘지화학 Cathode comprising mixture layer having dual layer structure with different lno amounts, and secondary battery comprising same
CN113169323A (en) * 2019-11-07 2021-07-23 株式会社Lg化学 Positive electrode including mixture layer having double-layer structure with different LNO amount and secondary battery including the same

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026676A (en) * 2004-07-21 2007-02-01 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2006134770A (en) * 2004-11-08 2006-05-25 Sony Corp Cathode and battery
WO2006071972A3 (en) * 2004-12-28 2007-10-18 Boston Power Inc Lithium-ion secondary battery
US8828605B2 (en) 2004-12-28 2014-09-09 Boston-Power, Inc. Lithium-ion secondary battery
EP2178137A1 (en) 2004-12-28 2010-04-21 Boston-Power, Inc. Lithium-Ion secondary battery
US7811708B2 (en) 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
US7811707B2 (en) 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
US8142934B2 (en) 2005-03-30 2012-03-27 Kyushu University Positive electrode for non-aqueous electrolytic secondary cell and non-aqueous electrolytic secondary cell
JP2006318868A (en) * 2005-05-16 2006-11-24 Hitachi Maxell Ltd Lithium secondary battery
JP2007012441A (en) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2007048744A (en) * 2005-07-14 2007-02-22 Matsushita Electric Ind Co Ltd Positive electrode for lithium secondary battery and lithium secondary battery using it
US7656125B2 (en) 2005-07-14 2010-02-02 Boston-Power, Inc. Method and device for controlling a storage voltage of a battery pack
US8084998B2 (en) 2005-07-14 2011-12-27 Boston-Power, Inc. Method and device for controlling a storage voltage of a battery pack
JP2007035589A (en) * 2005-07-29 2007-02-08 Sanyo Electric Co Ltd Manufacturing method of electrode, manufacturing device of electrode used in manufacturing method, and battery manufactured by its manufacturing method
EP1953851A4 (en) * 2005-11-10 2012-06-27 Nissan Motor Electrode for secondary battery and secondary battery using same
US20090139787A1 (en) * 2005-11-10 2009-06-04 Nissan Motor Co., Ltd. Secondary Battery Electrode, and Secondary Battery Using the Same
US8778539B2 (en) * 2005-11-10 2014-07-15 Nissan Motor Co., Ltd. Secondary battery electrode, and secondary battery using the same
EP1953851A1 (en) * 2005-11-10 2008-08-06 Nissan Motor Co., Ltd. Electrode for secondary battery and secondary battery using same
US8138726B2 (en) 2006-06-28 2012-03-20 Boston-Power, Inc. Electronics with multiple charge rate
US8679670B2 (en) 2007-06-22 2014-03-25 Boston-Power, Inc. CID retention device for Li-ion cell
US8483886B2 (en) 2009-09-01 2013-07-09 Boston-Power, Inc. Large scale battery systems and method of assembly
JP2013222587A (en) * 2012-04-16 2013-10-28 Toyota Motor Corp Nonaqueous electrolyte secondary battery
US9985287B2 (en) 2013-07-31 2018-05-29 Lg Chem, Ltd. Electrode including different electrode material layers and lithium secondary battery
EP2988352A4 (en) * 2013-07-31 2016-11-30 Lg Chemical Ltd Electrode comprising different electrode material layers and lithium secondary battery
CN105247706A (en) * 2013-07-31 2016-01-13 株式会社Lg化学 Electrode comprising different electrode material layers and lithium secondary battery
JP2018537815A (en) * 2016-07-04 2018-12-20 エルジー・ケム・リミテッド Positive electrode and secondary battery including the positive electrode
US10622625B2 (en) 2016-07-04 2020-04-14 Lg Chem, Ltd. Positive electrode and secondary battery including the same
JP2017195205A (en) * 2017-08-03 2017-10-26 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
WO2020194430A1 (en) * 2019-03-25 2020-10-01 株式会社 東芝 Electrode, battery, and battery pack
JPWO2020194430A1 (en) * 2019-03-25 2021-10-21 株式会社東芝 Electrodes, batteries, and battery packs
JP7106749B2 (en) 2019-03-25 2022-07-26 株式会社東芝 Electrodes, batteries and battery packs
WO2021091168A1 (en) * 2019-11-07 2021-05-14 주식회사 엘지화학 Cathode comprising mixture layer having dual layer structure with different lno amounts, and secondary battery comprising same
CN113169323A (en) * 2019-11-07 2021-07-23 株式会社Lg化学 Positive electrode including mixture layer having double-layer structure with different LNO amount and secondary battery including the same
US20220006083A1 (en) * 2019-11-07 2022-01-06 Lg Chem, Ltd. Cathode comprising mixture layer having dual layer structure with different lno amounts, and secondary battery comprising same
CN113169323B (en) * 2019-11-07 2024-05-07 株式会社Lg新能源 Positive electrode comprising mixture layer having double-layer structure having different LNO amounts, and secondary battery comprising same

Also Published As

Publication number Publication date
JP3619807B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
JP3619807B2 (en) Non-aqueous electrolyte battery
JP6332483B2 (en) Separator and battery
JP5721334B2 (en) Nonaqueous electrolyte secondary battery
JP2005285385A (en) Separator and nonaqueous electrolyte battery using the separator
WO2011052126A1 (en) Electrode, secondary battery, and method for manufacturing secondary batteries
JP2006032246A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2001167743A (en) Secondary battery and electronic device using the same
JP7166265B2 (en) Electrodes, non-aqueous electrolyte batteries and battery packs
JP4014816B2 (en) Lithium polymer secondary battery
JP5412843B2 (en) battery
JP2013201077A (en) Nonaqueous electrolytic secondary battery
JP6609946B2 (en) Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery
JP2011119139A (en) Nonaqueous electrolyte battery
JP2018174110A (en) Current collector and lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP5935732B2 (en) Negative electrode active material, electrode including the same, and lithium ion secondary battery using the electrode
JP2002008655A (en) Negative electrode and non-aqueous electrolyte cell
WO2015046394A1 (en) Negative-electrode active material, negative electrode using same, and lithium-ion secondary battery
JP5459048B2 (en) Nonaqueous electrolyte secondary battery
JP2001110405A (en) Gel high-molecular solid electrolyte battery and method for manufacturing the same
JP4420666B2 (en) Nonaqueous electrolyte secondary battery
JP7017108B2 (en) Active materials, electrodes and lithium-ion secondary batteries
JP2002237330A (en) Nonaqueous secondary battery
JP5165875B2 (en) Non-aqueous electrolyte battery
JP2004273281A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees