JP2003194758A - Method of evaluating bedrock of tunnel - Google Patents

Method of evaluating bedrock of tunnel

Info

Publication number
JP2003194758A
JP2003194758A JP2001400453A JP2001400453A JP2003194758A JP 2003194758 A JP2003194758 A JP 2003194758A JP 2001400453 A JP2001400453 A JP 2001400453A JP 2001400453 A JP2001400453 A JP 2001400453A JP 2003194758 A JP2003194758 A JP 2003194758A
Authority
JP
Japan
Prior art keywords
tunnel
specific resistance
rock
electrodes
evaluating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001400453A
Other languages
Japanese (ja)
Other versions
JP3820985B2 (en
Inventor
Kazuto Namiki
和人 並木
Kenichiro Suzuki
健一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2001400453A priority Critical patent/JP3820985B2/en
Publication of JP2003194758A publication Critical patent/JP2003194758A/en
Application granted granted Critical
Publication of JP3820985B2 publication Critical patent/JP3820985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quantitatively and highly reliably evaluate the properties of the bedrock of a tunnel. <P>SOLUTION: A plurality of rock bolts E are driven into the bedrock of a tunnel A to be evaluated. The bolts E are composed of steel-made bar-like bodies and radially driven into the bedrock from the inside of the tunnel A, so that the bolts E may be arranged roughly on one cross section of the tunnel A and inclined toward the face B of the tunnel A. At the time of evaluating the properties of the bedrock on the face B, a plurality of rock bolts E are selected from among the driven rock bolts E as resistivity measuring electrodes. Of the selected resistivity measuring electrodes, the outside two are used as current electrodes and the inside two are used as voltage electrodes. Then the resistivity ρ of the bedrock is measured by measuring the voltage V across the voltage electrodes while a direct current I is made to flow between the current electrodes. In this case, the resistivity ρ is found as 2πaI/V (wherein, (a) denotes the distance between the voltage electrodes). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、トンネル岩盤の
評価方法に関し、特に、岩盤の電気的特性、すなわち、
比抵抗を測定することにより地山性状を評価する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating a rock mass of a tunnel, and in particular, the electrical characteristics of the rock mass, that is,
The present invention relates to a method for evaluating rock mass properties by measuring specific resistance.

【0002】[0002]

【従来の技術】山岳トンネルの構築現場では、トンネル
施工中において、掘削時の切羽の安全を確保するために
は、地山性状を正確に把握することが、極めて重要であ
る。
2. Description of the Related Art At the construction site of a mountain tunnel, it is extremely important to accurately grasp the nature of the ground in order to ensure the safety of the face during excavation during the tunnel construction.

【0003】この場合、例えば、近時、施工が増加して
いる既設トンネルのリニューアル(修復)施工では、ト
ンネル壁面より弾性波や電磁波などを照射して、吹きつ
けコンクリートの劣化や地山岩盤の劣化を診断する技術
が開発されている。
In this case, for example, in the renewal (restoration) construction of an existing tunnel whose construction is increasing recently, elastic waves or electromagnetic waves are radiated from the wall surface of the tunnel to deteriorate the sprayed concrete and the rock mass. Techniques for diagnosing deterioration have been developed.

【0004】ところで、通常の新設トンネル工事におい
ては、一般的に、岩盤の状況(風化や緩み、湧水など)
は、地山状況を項目ごとに作業員が目視観察し、切羽面
のスケッチ画や写真とともに、複数に分かれた項目毎
に、4ないしは5段階評価を記述する切羽日報を作成
し、これにより把握している。
By the way, in a normal new tunnel construction, the condition of the bedrock (weathering, loosening, spring water, etc.) is generally considered.
For each item, the worker visually observes the ground condition, and together with sketch images and photographs of the face face, prepare a face face daily report that describes a 4 to 5 grade evaluation for each item divided into multiple items is doing.

【0005】しかしながら、このような従来のトンネル
岩盤における地山性状の評価方法には、以下に説明する
課題があった。
However, such a conventional method for evaluating rock mass properties in tunnel rock has the following problems.

【0006】[0006]

【発明が解決しようとする課題】すなわち、切羽日報に
よる地山性状の評価方法では、切羽面の目視観察に基づ
く方法なので、作業員の経験や知識などによって、評価
がバラツキ易くなり、評価の信頼性に欠けるという問題
があった。
That is, since the method for evaluating rock mass characteristics by the daily report of the face is based on the visual observation of the face of the face, the evaluation tends to vary due to the experience and knowledge of the worker, and the reliability of the evaluation is high. There was a problem of lack of sex.

【0007】このような技術的課題の解決方法として、
本発明者らは、特開2000−346953号公報に開
示されているように、切羽面に複数の電極を設置して、
切羽岩盤の比抵抗を測定し、得られた比抵抗値に基づい
て、切羽の性状を評価する方法を提案した。
As a solution to such a technical problem,
As disclosed in Japanese Patent Laid-Open No. 2000-346953, the present inventors install a plurality of electrodes on the face of a face,
We proposed a method of measuring the resistivity of the face rock and evaluating the properties of the face based on the obtained resistivity value.

【0008】このような評価方法よれば、切羽の性状を
岩盤の比抵抗値に基づいて評価するので、定量的で、か
つ、信頼性の高い評価を行うことができる。ところが、
この公報に提案されている評価方法では、切羽面に複数
の電極を設置しなければならず、また、この電極は、測
定の終了とともに、切羽面から撤去する必要もあるの
で、電極の設置および撤去が、トンネル工事の進行に影
響を及ぼす恐れがあった。
According to such an evaluation method, since the properties of the face are evaluated based on the specific resistance value of the bedrock, it is possible to make a quantitative and highly reliable evaluation. However,
In the evaluation method proposed in this publication, it is necessary to install a plurality of electrodes on the face of the face, and this electrode also needs to be removed from the face of the face at the end of the measurement. The removal could have an impact on the progress of the tunnel construction.

【0009】本発明は、このような従来の問題点に鑑み
てなされたものであって、その目的とするところは、電
極の設置および撤去が不要で、トンネル工事に影響を与
えることなく、地山性状を定量的で、かつ、高信頼性の
下で行えるトンネル岩盤の評価方法を提供することにあ
る。
The present invention has been made in view of the above conventional problems, and its purpose is to eliminate the need for installing and removing electrodes, and without affecting tunnel construction. It is to provide a method for evaluating a rock mass that can quantitatively and highly reliably evaluate mountain characteristics.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、トンネル岩盤に打設されるロックボルト
を電極として、前記ロックボルト間の比抵抗を測定し、
得られた比抵抗値に基づいて、前記トンネル岩盤の割れ
目,湧水,岩盤強度など地山性状を評価するようにし
た。
In order to achieve the above object, the present invention is to measure the specific resistance between the rock bolts by using the rock bolts placed in the tunnel rock as electrodes.
Based on the obtained specific resistance value, the ground rock properties such as cracks, spring water, and rock mass strength of the tunnel rock mass were evaluated.

【0011】このように構成したトンネル岩盤の評価方
法によれば、岩盤の比抵抗を測定する際の電極として、
トンネル岩盤に打設されているロックボルトを利用する
ので、比抵抗の測定用電極の設置および撤去が不要にな
り、電極の設置および撤去がトンネル工事の進行に影響
を及ぼさない。
According to the tunnel rock mass evaluation method thus constructed, as an electrode for measuring the specific resistance of the rock mass,
Since the rock bolts placed in the tunnel rock are used, it is not necessary to install and remove the electrodes for measuring the specific resistance, and the installation and removal of the electrodes do not affect the progress of the tunnel construction.

【0012】この場合、トンネル岩盤の割れ目,湧水,
岩盤強度など地山性状の評価は、比抵抗値に基づいて行
われるので、測定者の経験などと無関係に、定量的な評
価が行われ、信頼性の高い評価が得られる。
[0012] In this case, cracks, spring water,
Since rock mass strength and other rock mass characteristics are evaluated based on the specific resistance value, quantitative evaluation can be performed regardless of the experience of the measurer, and highly reliable evaluation can be obtained.

【0013】前記ロックボルトは、トンネル断面のほぼ
同一横断面上にあって、前記トンネルの周方向に沿っ
て、所定の間隔を隔てて、上半および側部に複数打設さ
れ、これらのロックボルトのうち、任意の4本を選択し
て、外側の2本を電流電極とし、この電流電極に挟まれ
た内側の2本を電圧電極として、前記比抵抗値を測定す
ることができる。
The lock bolts are provided on substantially the same cross section of the tunnel cross section, and a plurality of lock bolts are driven in the upper half and side portions at predetermined intervals along the circumferential direction of the tunnel. It is possible to measure the specific resistance value by selecting any four bolts, using two outer electrodes as current electrodes, and two inner electrodes sandwiched between the current electrodes as voltage electrodes.

【0014】前記評価は、比抵抗測定用電極として選択
された前記ロックボルトの打設位置近傍の切羽面の地山
性状とすることができる。
The evaluation can be based on the natural property of the face face near the driving position of the lock bolt selected as the specific resistance measuring electrode.

【0015】前記比抵抗値は、前記ロックボルトから選
択する4本を1組として、前記トンネルの周方向に沿っ
て、順次1本ずつズラせながら求めることができる。
The specific resistance value can be obtained by sequentially shifting one by one along the circumferential direction of the tunnel, with four sets selected from the lock bolts as one set.

【0016】[0016]

【発明の実施の形態】以下、本発明の好適な実施の形態
について、添付図面に基づいて詳細に説明する。図1お
よび図2は、本発明にかかるトンネル岩盤の評価方法の
一実施例を示している。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. 1 and 2 show one embodiment of a method for evaluating a tunnel rock mass according to the present invention.

【0017】図1は、トンネルAの横断面図であり、馬
蹄形状の部分が切羽面Bとなっている。トンネルAの側
方側の掘削面には、金網Cが設置され、その上面に吹き
付けコンクリート層Dが設けられている。
FIG. 1 is a cross-sectional view of the tunnel A, in which a horseshoe-shaped portion is a facet B. A wire mesh C is installed on the excavated surface on the side of the tunnel A, and a sprayed concrete layer D is provided on the upper surface thereof.

【0018】ロックボルトEは、鋼やアルミニウムなど
の金属製の中実ないしは中空棒状体であって、トンネル
Aの内方から外方の地山Fに向けて放射状に複数本が打
設されている。各ロックボルトEの一端は、吹き付けコ
ンクリート層Dの内面側に露出している。
The lock bolt E is a solid or hollow rod-shaped body made of metal such as steel or aluminum. A plurality of rock bolts E are laid radially from the inside of the tunnel A toward the ground F on the outside. There is. One end of each rock bolt E is exposed on the inner surface side of the sprayed concrete layer D.

【0019】また、複数本のロックボルトEは、図2に
示すように、打設位置がトンネル断面のほぼ同一横断面
上に配置されていて、掘削坑壁に直交するように打設さ
れ、かつ、トンネルAの周方向に沿って、ほぼ等間隔
で、合計17本が設けられている。
Further, as shown in FIG. 2, the plurality of rock bolts E are arranged such that the driving positions are on substantially the same cross section of the tunnel cross section, and are driven so as to be orthogonal to the excavation well wall. Moreover, a total of 17 are provided at substantially equal intervals along the circumferential direction of the tunnel A.

【0020】なお、図1に符号Gで示した部分は、吹き
付けコンクリート層Dの内面に形成された覆工コンクリ
ートである。以上のようにトンネルAの構築形態は、従
来のトンネル工法と全く同じであるが、本実施例の場合
には、特に、切羽面Bの岩盤の割れ目,湧水,岩盤強度
などの地山性状を評価する際に、以下に説明する特別な
方法を採用している。
The portion indicated by reference character G in FIG. 1 is the lining concrete formed on the inner surface of the sprayed concrete layer D. As described above, the construction mode of the tunnel A is exactly the same as the conventional tunnel construction method, but in the case of the present embodiment, especially the rock property of the rock face B of the face face, spring, rock strength, and other rock mass properties. The following special methods are used to evaluate

【0021】すなわち、切羽面Bの地山性状を評価する
際には、複数のロックボルトEのうち、複数本が、比抵
抗測定用電極として選択される。本実施例の場合には、
図1に符号1〜11で示した合計11本のロックボルト
Eが選択される。
That is, when evaluating the ground characteristics of the facet B, a plurality of lock bolts E are selected as the specific resistance measuring electrodes. In the case of this embodiment,
A total of 11 lock bolts E shown by reference numerals 1 to 11 in FIG. 1 are selected.

【0022】なお、本実施例の場合には、トンネルAの
上半に配置されているロックボルトEだけを比抵抗測定
用電極として選択しているが、このような選択に限る必
要はなく、側部に配置されているものを選択してもよ
い。
In the case of this embodiment, only the lock bolt E arranged in the upper half of the tunnel A is selected as the electrode for measuring the specific resistance, but the selection is not limited to this. You may choose what is arrange | positioned at the side part.

【0023】また、電極として選択されるロックボルト
Eは、性状を評価しようとする切羽面Bの直近ないしは
その近傍に打設されたものが選択される。
Further, as the lock bolt E selected as the electrode, one which is driven near the face face B whose property is to be evaluated or in the vicinity thereof is selected.

【0024】比抵抗測定用電極が選択されると、外側の
2本、例えば、1と4のロックボルトEを電流電極と
し、この電流電極に挟まれた内側の2本、2と3のロッ
クボルトEを電圧電極として、電流電極間に直流電流I
を流し、その際の電圧電極間の電圧Vを測定することに
より、比抵抗ρを測定する。この場合の比抵抗ρは、電
圧電極間の距離をaとすると、2πaI/Vとして求め
られる。
When the specific resistance measuring electrode is selected, the outer two, for example, the lock bolts E of 1 and 4 are used as current electrodes, and the inner two, 2 and 3 of the locks sandwiched between the current electrodes. The voltage E is used as the voltage electrode, and the direct current I is applied between the current electrodes.
And then the voltage V between the voltage electrodes at that time is measured to measure the specific resistance ρ. The specific resistance ρ in this case is calculated as 2πaI / V, where a is the distance between the voltage electrodes.

【0025】このような比抵抗ρの測定では、次の連続
する5〜8間での4本のロックボルトEを選択して、比
抵抗を測定することもできるし、また、次に、2と5の
ロックボルトEを電流電極とし、3と4のロックボルト
Eを電圧電極として、比抵抗ρを測定しさらに、4本が
1組の電流および電圧電極を、周方向に沿って、順次1
本ずつズラしながら、比抵抗を測定することもできる。
In the measurement of such a specific resistance ρ, it is possible to measure the specific resistance by selecting four lock bolts E between the following 5 to 8 to measure the specific resistance. The rock bolts E and 5 are used as current electrodes, the lock bolts E and 3 and 4 are used as voltage electrodes, and the specific resistance ρ is measured. In addition, four sets of current and voltage electrodes are sequentially arranged along the circumferential direction. 1
It is also possible to measure the specific resistance while shifting each book.

【0026】以上のようにして、複数の比抵抗値が得ら
れると、この比抵抗値に基づいて、トンネル岩盤、すな
わち、切羽面Bの割れ目,湧水,岩盤強度など地山性状
を評価する。
When a plurality of specific resistance values are obtained as described above, the rock mass characteristics such as the fracture of the face B, the spring water, and the rock mass strength are evaluated based on the specific resistance values. .

【0027】このように構成したトンネル岩盤の評価方
法によれば、岩盤の比抵抗を測定する際の電極として、
トンネル岩盤に打設されているロックボルトEを利用す
るので、比抵抗の測定用電極の設置および撤去が不要に
なり、電極の設置および撤去がトンネル工事の進行に影
響を及ぼさない。
According to the tunnel rock mass evaluation method thus constructed, as an electrode for measuring the specific resistance of the rock mass,
Since the rock bolt E placed in the tunnel rock is used, it is not necessary to install or remove the electrode for measuring the specific resistance, and the installation or removal of the electrode does not affect the progress of the tunnel construction.

【0028】この場合、トンネル岩盤の割れ目,湧水,
岩盤強度など地山性状は、比抵抗値に基づいて行われる
ので、測定者の経験などの無関係に、定量的な評価が行
われ、信頼性の高い評価が得られる。
In this case, cracks in the rock mass of the tunnel, spring water,
Since rock mass properties such as rock mass strength are determined based on the specific resistance value, quantitative evaluation is performed regardless of the experience of the measurer, and highly reliable evaluation is obtained.

【0029】本発明者らは、本発明の有効性を確認する
ために、実際のトンネルの施工現場において、上述した
方法で比抵抗ρを測定し、従来の切羽日報による評価方
法との相関を観察した。
In order to confirm the effectiveness of the present invention, the present inventors measured the specific resistance ρ at the actual tunnel construction site by the above-mentioned method, and confirmed the correlation with the conventional evaluation method by the face daily report. I observed.

【0030】比抵抗の測定には、応用地質社製のマック
オーム21(商品名)を用い、電源電圧には、12V,
24Aの鉛蓄電池を用いた。ロックボルトEとの環の接
続には、圧着端子付きのコードを用い、圧着端子をロッ
クボルトEの端部に圧着固定した。
Mac Ohm 21 (trade name) manufactured by Applied Geology Co., Ltd. was used to measure the specific resistance.
A 24 A lead acid battery was used. A cord with a crimp terminal was used to connect the ring to the lock bolt E, and the crimp terminal was crimped and fixed to the end of the lock bolt E.

【0031】実際の測定は、図3〜図7に示すように、
隣接する2断面を1セットして合計1〜10断面におい
て実施した。各断面における比抵抗の測定は、図1に示
すように、ロックボルトEが配置されていたので、上半
部の11本を比抵抗測定用電極として選択し、4本が1
組の電流および電圧電極を、周方向に沿って、順次1本
ずつズラしながら測定し、1断面に対して、合計8箇所
の比抵抗を測定した。
The actual measurement is as shown in FIGS.
Adjacent two cross sections were set as one set, and a total of 1 to 10 cross sections were performed. In the measurement of the specific resistance in each cross section, as shown in FIG. 1, since the lock bolt E was arranged, 11 of the upper half portions were selected as the electrodes for measuring the specific resistance, and 4 of them were 1
The current and voltage electrodes of the group were measured one by one along the circumferential direction while shifting one by one, and the specific resistance was measured at eight locations in total for one cross section.

【0032】図3〜図7に示した図では、電圧電極とし
て選択したロックボルトEの番号で、測定個所を示して
いる。すなわち、図1に示している1〜4を電極として
選択した場合の比抵抗値が、図3〜図7では、2−3と
して表しており、また、周方向に1本ズラせて、2〜5
を電極として選択した場合の比抵抗値が、図3〜図7で
は、3−4となっていて、以下同様に、比抵抗の測定を
行った際に、電圧電極として選択したロックボルトEの
番号で測定個所を特定表示している。
In the drawings shown in FIGS. 3 to 7, the measurement points are indicated by the numbers of the lock bolts E selected as the voltage electrodes. That is, the specific resistance values in the case where 1 to 4 shown in FIG. 1 are selected as the electrodes are represented as 2-3 in FIGS. 3 to 7, and one is displaced in the circumferential direction to 2 ~ 5
3 to 7 show a specific resistance value of 3-4 when the electrode is selected as the electrode. Similarly, when the specific resistance is measured, the specific resistance value of the lock bolt E selected as the voltage electrode is The measurement points are specified and displayed by numbers.

【0033】また、この測定を行ったトンネルの工事に
おいては、以下の表1に示すように、支保工パターンが
C1,C2およびD1の3種類採用されていて、これら
の各パターンで、使用するロックボルトEの長さ(3m
と4m)と、打設間隔(1.5mと1.2m)とが異な
っていたので、比抵抗の計算式もこれに合わせて変更し
た。
Further, in the construction of the tunnel for which this measurement was carried out, as shown in Table 1 below, three types of support work patterns C1, C2 and D1 were adopted and used in each of these patterns. Length of lock bolt E (3m
4m) was different from the driving interval (1.5m and 1.2m), the formula for calculating the specific resistance was also changed accordingly.

【0034】なお、支保工パターンC1は、岩盤の良好
な個所に採用される配置パターンであり、同D1は、岩
盤の脆弱な個所に採用される配置パターンであり、同C
2は、これらの中間に採用される配置パターンである。
The support pattern C1 is an arrangement pattern adopted at a good portion of the bedrock, and the support pattern C1 is an arrangement pattern adopted at a fragile portion of the bedrock.
2 is an arrangement pattern adopted in the middle of these.

【0035】以下に示した表1は、図3〜図7に示した
比抵抗の値を表にして、平均値を求めたものである。
Table 1 shown below is a table in which the values of the specific resistances shown in FIGS.

【0036】[0036]

【表1】 表1に示した比抵抗値の測定結果から明らかなように、
断面毎との比較では、断面7と断面8とが、ともに最大
800Ωmと大きな値を示し、断面3,4では、これと
対称的に50Ωm未満の低い値になっている。計測され
た測定値のうちで、最も低い比抵抗値は、0.2Ωm
で、最大値と3オーダーもの違いあった。なお、500
〜1000Ωmの比抵抗値は、結晶質の中硬岩の値に相
当し、数〜10Ωmは、泥岩の値に相当している。
[Table 1] As is clear from the measurement results of the specific resistance value shown in Table 1,
In comparison with each cross section, both the cross section 7 and the cross section 8 show a large value of 800 Ωm at the maximum, and the cross sections 3 and 4 have a low value of less than 50 Ωm symmetrically. Of the measured values, the lowest specific resistance value is 0.2 Ωm.
So, there was a difference of 3 orders from the maximum value. In addition, 500
A resistivity value of up to 1000 Ωm corresponds to the value of crystalline medium-hard rock, and a value of several to 10 Ωm corresponds to the value of mudstone.

【0037】図8〜図12は、比抵抗を測定した断面の
切羽日報の観察記録である。この観察記録は、図8が、
図3に示した断面1に相当し、図9が断面3というよう
に、それぞれ奇数断面に相当している。
FIG. 8 to FIG. 12 are observation records of the cross-sectional face daily report whose specific resistance was measured. This observation record is shown in Figure 8.
This corresponds to the cross section 1 shown in FIG. 3, and the cross section 3 in FIG. 9 corresponds to odd cross sections.

【0038】ここで、各断面毎との傾向について観察す
ると、図3に示した、断面1,2では、比抵抗値が2
0.3〜53.0Ωmに分布しており、この値は、比較
的安定している。
Observing the tendency of each cross section, the specific resistance value is 2 in the cross sections 1 and 2 shown in FIG.
It is distributed in the range of 0.3 to 53.0 Ωm, and this value is relatively stable.

【0039】これに対して、図8に示した切羽日報の観
察記録では、強度のランクは、2(ハンマーで容易に、
小片または薄く割れる)で比較的良好であるが、湧水の
ランクが4(部分的に噴き出る)であり、この影響が比
抵抗値に現れているものと考えられる。
On the other hand, in the observation record of the cut face daily report shown in FIG. 8, the strength rank is 2 (easy with a hammer,
It is relatively good for small pieces or thinly cracked), but the rank of spring water is 4 (partially ejected), and it is considered that this effect appears in the specific resistance value.

【0040】また、図4に示した、断面3,4では、比
抵抗値が1.0〜48.8Ωmに分布しており、値に
は、大きなバラツキが認められる。
Further, in the cross sections 3 and 4 shown in FIG. 4, the specific resistance values are distributed in the range of 1.0 to 48.8 Ωm, and large variations are recognized in the values.

【0041】これに対して、図9に示した切羽日報の観
察記録では、強度のランクは、3(ハンマーで脆く容易
に割れる)で、湧水のランクが4(部分的に噴き出る)
であり、その上、岩盤性状について、自立困難,全体的
に風化,開口部に油目,破砕帯などの記録があり、こう
した性状が低比抵抗要因となっていると考えられ、値が
バラついているのは、岩盤性状の不均一に原因があると
考えられる。
On the other hand, in the observation record of the faceted daily report shown in FIG. 9, the strength rank is 3 (fragile with a hammer and easily cracks), and the spring rank is 4 (partially ejected).
In addition, there are records of rock properties such as difficulty in self-sustaining, weathering on the whole, oil marks at the opening, crush zones, etc. These properties are considered to be a cause of low resistivity, and the values vary. It is considered that the cause is the unevenness of the rock mass properties.

【0042】また、図5に示した、断面5,6では、特
に、断面6で、5−6と7−8との2区間で、比抵抗値
が100Ωmを超えている。これは、6番のロックボル
トEの定着が不安定であることが原因であると考えられ
る。ただし、コード接続時に、荷重がかかっていないこ
とが確認されたので、地山の安定には影響しない。
Further, in the cross-sections 5 and 6 shown in FIG. 5, in particular, in the cross-section 6, the specific resistance value exceeds 100 Ωm in two sections 5-6 and 7-8. It is considered that this is because the fixation of the No. 6 lock bolt E is unstable. However, since it was confirmed that no load was applied when connecting the cord, it does not affect the stability of the ground.

【0043】これらを除くと、比抵抗値は、0.2〜6
9.2Ωmに分布しており、値には、非常に大きなバラ
ツキが認められる。
Excluding these, the specific resistance value is 0.2 to 6
It is distributed in 9.2 Ωm, and a very large variation is recognized in the value.

【0044】これに対して、図10に示した切羽日報の
観察記録では、断面3,4と同様で、強度のランクは、
3(ハンマーで脆く容易に割れる)で、湧水のランクが
4(部分的に噴き出る)であり、岩盤性状について、自
立困難,全体的に風化,開口部に油目,破砕帯などの記
録がある。
On the other hand, in the observation record of the cut face daily report shown in FIG. 10, the strength ranks are the same as those of the cross sections 3 and 4.
3 (brittle with a hammer and easy to break), 4 ranks of spring water (partially squirting), and rock characteristics such as difficulty in self-sustaining, weathering on the whole, oil marks at openings, crush zones, etc. There is.

【0045】断面3,4よりも比抵抗の値のバラツキが
大きいのは、飽和の程度の違いが大きいことを示すもの
と考えられる。
The larger variation in the value of the specific resistance than in the cross sections 3 and 4 is considered to indicate that the difference in the degree of saturation is large.

【0046】さらに、図6に示した断面7,8では、比
抵抗値が362〜807Ωmに分布しており、この値
は、非常に大きく、比較的安定している。
Further, in the cross-sections 7 and 8 shown in FIG. 6, the specific resistance values are distributed in the range of 362 to 807 Ωm, which is very large and relatively stable.

【0047】これに対して、図11に示した切羽日報の
観察記録では、強度のランクは、1(ハンマーが跳ね返
る)ないし2で、良好で、湧水のランクが2(部分的に
滲み出る)と良好で、切羽の写真にも熱変質を示す白色
の岩石が確認されていない。このような性状が比抵抗値
に正確に反映されているものと考えられる。
On the other hand, in the observation record of the faceted daily report shown in FIG. 11, the strength rank is 1 (hammer bounces) to 2 and is good, and the spring rank is 2 (partially exudes). ) Is good, and white rocks showing thermal alteration have not been confirmed in the photograph of the face. It is considered that such properties are accurately reflected in the specific resistance value.

【0048】また、図7に示した断面9では、比抵抗値
が10.3〜88.8Ωmに分布しており、この値は、
低くしかも安定していない。
In the section 9 shown in FIG. 7, the specific resistance value is distributed in the range of 10.3 to 88.8 Ωm, and this value is
It is low and not stable.

【0049】これに対して、図12に示した切羽日報の
観察記録では、強度のランクは、1(ハンマーが跳ね返
る)で良好であるが、湧水のランクが4(部分的に噴き
出る)であり、切羽の写真にも湧水が確認されている。
比抵抗値は、水の存在により、大きく影響を受けるもの
と考えられる。
On the other hand, in the observation record of the faceted daily report shown in FIG. 12, the strength rank is 1 (hammer bounces), which is good, but the spring rank is 4 (partially ejects). And spring water was also confirmed in the photograph of the cutting face.
The specific resistance value is considered to be greatly affected by the presence of water.

【0050】図13は、岩盤評価点と測定で得られた比
抵抗値との相関を求めたグラフである。比抵抗値は、表
1に示した各断面の全体平均値を用い、岩盤評価点は、
図8に( )内に示した段階に応じて設定した評価点を合
計し、その平均点とした。
FIG. 13 is a graph showing the correlation between the rock mass evaluation point and the specific resistance value obtained by the measurement. For the specific resistance value, the average value of each cross section shown in Table 1 is used, and the rock mass evaluation point is
The evaluation points set according to the stages shown in parentheses in FIG. 8 were totaled and used as the average score.

【0051】相関対象は、岩盤,亀裂,水,総合点の4
項目とし、岩盤は、図8に示した評価項目のA〜D(切
羽の状態,素掘面の状態,岩石強度,風化変質)の評価
点の平均値を採用し、亀裂は、同E〜G(割れ目間隔,
割れ目の形態,割れ目の状態)の評価点の平均値を用
い、水は、H,I(湧水,水による劣化)の評価点の平
均値とした。
Correlation objects are bedrock, cracks, water, and total points.
For the rock mass, the average value of the evaluation points A to D (condition of face, condition of uncut surface, rock strength, weathered alteration) of the evaluation items shown in FIG. G (interval between cracks,
The average value of the evaluation points of the shape of the crack and the state of the crack) was used, and the water was the average value of the evaluation points of H and I (spring water, deterioration due to water).

【0052】総合点は、4項目の岩盤と、3項目の亀裂
と、2項目の水の合計9項目の平均値を用いた。これら
のそれぞれの値を以下の表2に示している。
As the total point, the rock mass of 4 items, the crack of 3 items, and the average value of 9 items in total of 2 items of water were used. The respective values are shown in Table 2 below.

【0053】[0053]

【表2】 図13および表2に示した結果から明らかなように、従
来の切羽日報に記載されている観察記録の評価点に対し
て、ロックボルトEを電極として測定した比抵抗値が、
評価点が低い場合には、大きな比抵抗値となり、評価点
が高くなると、比抵抗値も小さくなり、両者間に良好な
相関関係が存在することがわかる。
[Table 2] As is clear from the results shown in FIG. 13 and Table 2, the specific resistance value measured using the lock bolt E as an electrode is as follows, with respect to the evaluation points of the observation records described in the conventional Kirifuku daily report.
It can be seen that when the evaluation point is low, the specific resistance value is large, and when the evaluation point is high, the specific resistance value is small, and there is a good correlation between them.

【0054】この場合、特に、総合点と比抵抗値との整
合性が最もよく、岩盤および亀裂がこれに次いでいる。
水に関しては、整合性に若干ズレがあるが、全体として
は矛盾がない。以上の結果から、本発明にかかるトンネ
ル岩盤の評価方法では、信頼性の高い評価ができること
が確認された。
In this case, in particular, the consistency between the total point and the specific resistance value is the best, followed by rock and cracks.
Regarding water, there is some discrepancy in consistency, but overall there is no contradiction. From the above results, it was confirmed that the tunnel rock mass evaluation method according to the present invention enables highly reliable evaluation.

【0055】[0055]

【発明の効果】以上、詳細に説明したように、本発明に
かかるトンネル岩盤の評価方法によれば、電極の設置お
よび撤去が不要で、トンネル工事に影響を与えることな
く、地山性状を定量的で、かつ、高信頼性の下で評価す
ることができる。
As described above in detail, according to the method for evaluating a tunnel bedrock according to the present invention, it is not necessary to install or remove electrodes, and the rock mass properties can be quantified without affecting the tunnel construction. And can be evaluated with high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるトンネル岩盤の評価方法が適用
されるトンネル断面の説明図である。
FIG. 1 is an explanatory view of a tunnel cross section to which a tunnel rock evaluation method according to the present invention is applied.

【図2】図1の側方断面図である。FIG. 2 is a side sectional view of FIG.

【図3】実際のトンネル工事の掘削断面で、本発明の作
用効果を確認するために行った比抵抗の測定結果の説明
図である。
FIG. 3 is an explanatory diagram of a result of measurement of specific resistance, which was carried out in order to confirm the operation effect of the present invention in an excavated cross section of an actual tunnel construction.

【図4】図3に示した掘削断面と異なる掘削断面での比
抵抗の測定結果の説明図である。
FIG. 4 is an explanatory diagram of measurement results of specific resistance in an excavation cross section different from the excavation cross section shown in FIG. 3.

【図5】図3に示した掘削断面と異なる掘削断面での比
抵抗の測定結果の説明図である。
5 is an explanatory diagram of a measurement result of specific resistance in an excavation cross section different from the excavation cross section shown in FIG. 3;

【図6】図3に示した掘削断面と異なる掘削断面での比
抵抗の測定結果の説明図である。
6 is an explanatory diagram of a measurement result of a specific resistance in an excavation cross section different from the excavation cross section shown in FIG.

【図7】図3に示した掘削断面と異なる掘削断面での比
抵抗の測定結果の説明図である。
7 is an explanatory diagram of a measurement result of a specific resistance in an excavation cross section different from the excavation cross section shown in FIG.

【図8】図3に示した掘削断面に対応する切羽面の切羽
日誌である。
FIG. 8 is a cutting face diary of a cutting face corresponding to the excavated cross section shown in FIG.

【図9】図4に示した掘削断面に対応する切羽面の切羽
日誌である。
9 is a cutting face diary of a cutting face corresponding to the excavated cross section shown in FIG.

【図10】図5に示した掘削断面に対応する切羽面の切
羽日誌である。
10 is a cutting face diary of a cutting face corresponding to the excavated cross section shown in FIG.

【図11】図6に示した掘削断面に対応する切羽面の切
羽日誌である。
FIG. 11 is a cutting face diary of a cutting face corresponding to the excavated cross section shown in FIG.

【図12】図7に示した掘削断面に対応する切羽面の切
羽日誌である。
FIG. 12 is a cutting face diary of a cutting face corresponding to the excavated cross section shown in FIG. 7.

【図13】岩盤評価点と比抵抗値との関係を示すグラフ
である。
FIG. 13 is a graph showing the relationship between rock mass evaluation points and specific resistance values.

【符号の説明】 A トンネル B 切羽面 C 金網 D 吹き付けコンクリート層 E ロックボルト[Explanation of symbols] A tunnel B face C wire mesh D Sprayed concrete layer E lock bolt

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 トンネル岩盤に打設されるロックボルト
を電極として、 前記ロックボルト間の比抵抗を測定し、 得られた比抵抗値に基づいて、前記トンネル岩盤の割れ
目,湧水,岩盤強度など地山性状を評価することを特徴
とするトンネル岩盤の評価方法。
1. A rock bolt, which is placed on a tunnel rock, is used as an electrode, and the specific resistance between the rock bolts is measured. Based on the obtained specific resistance value, cracks, springs, and rock strength of the tunnel rock are measured. A method for evaluating tunnel bedrock, which is characterized by evaluating the properties of natural ground.
【請求項2】 前記ロックボルトは、トンネル断面のほ
ぼ同一横断面上にあって、前記トンネルの周方向に沿っ
て、所定の間隔を隔てて、上半および側部に複数打設さ
れ、 これらのロックボルトのうち、任意の4本を選択して、
外側の2本を電流電極とし、この電流電極に挟まれた内
側の2本を電圧電極として、前記比抵抗値を測定するこ
とを特徴とする請求項1記載のトンネル岩盤の評価方
法。
2. A plurality of the lock bolts are provided on substantially the same cross section of the tunnel cross section, and a plurality of the lock bolts are driven in the upper half and side portions at predetermined intervals along the circumferential direction of the tunnel. Select any 4 of the lock bolts from
2. The method for evaluating a tunnel rock mass according to claim 1, wherein the outer two are used as current electrodes, and the inner two sandwiched between the current electrodes are used as voltage electrodes to measure the specific resistance value.
【請求項3】 前記評価は、比抵抗測定用電極として選
択された前記ロックボルトの打設位置近傍の切羽面の地
山性状とすることを特徴とする請求項2記載のトンネル
岩盤の評価方法。
3. The method for evaluating a tunnel rock mass according to claim 2, wherein the evaluation is based on a ground property of a face face near a driving position of the lock bolt selected as a specific resistance measuring electrode. .
【請求項4】 前記比抵抗値は、前記ロックボルトから
選択する4本を1組として、前記トンネルの周方向に沿
って、順次1本ずつズラせながら求めることを特徴とす
る請求項1〜3のいずれか1項記載のトンネル岩盤の評
価方法。
4. The specific resistance value is determined by sequentially shifting one by one along the circumferential direction of the tunnel, with four sets selected from the lock bolts as one set. The method for evaluating a tunnel bedrock according to any one of 3 above.
JP2001400453A 2001-12-28 2001-12-28 Evaluation method of tunnel bedrock Expired - Fee Related JP3820985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400453A JP3820985B2 (en) 2001-12-28 2001-12-28 Evaluation method of tunnel bedrock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400453A JP3820985B2 (en) 2001-12-28 2001-12-28 Evaluation method of tunnel bedrock

Publications (2)

Publication Number Publication Date
JP2003194758A true JP2003194758A (en) 2003-07-09
JP3820985B2 JP3820985B2 (en) 2006-09-13

Family

ID=27605025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400453A Expired - Fee Related JP3820985B2 (en) 2001-12-28 2001-12-28 Evaluation method of tunnel bedrock

Country Status (1)

Country Link
JP (1) JP3820985B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124936A (en) * 2004-10-26 2006-05-18 Raito Kogyo Co Ltd Method and apparatus for performing survey on bedrock and the like
JP2013253802A (en) * 2012-06-05 2013-12-19 Taisei Corp Control method for moisture content of fine aggregate
CN106033068A (en) * 2015-03-18 2016-10-19 安徽惠洲地质安全研究院股份有限公司 Rapid anchor rod anchoring quality detection method based on grounding resistance method
CN106289845A (en) * 2016-09-01 2017-01-04 中南大学 A kind of Quantitative study tunnel surrounding comes to nothing and the dynamic test device and method softened
CN108121011A (en) * 2017-12-15 2018-06-05 山东大学 The induced polarization separate type detection cable system and its distribution method of two side-wall pilot tunnel tunneling

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124936A (en) * 2004-10-26 2006-05-18 Raito Kogyo Co Ltd Method and apparatus for performing survey on bedrock and the like
JP2013253802A (en) * 2012-06-05 2013-12-19 Taisei Corp Control method for moisture content of fine aggregate
CN106033068A (en) * 2015-03-18 2016-10-19 安徽惠洲地质安全研究院股份有限公司 Rapid anchor rod anchoring quality detection method based on grounding resistance method
CN106289845A (en) * 2016-09-01 2017-01-04 中南大学 A kind of Quantitative study tunnel surrounding comes to nothing and the dynamic test device and method softened
CN108121011A (en) * 2017-12-15 2018-06-05 山东大学 The induced polarization separate type detection cable system and its distribution method of two side-wall pilot tunnel tunneling
CN108121011B (en) * 2017-12-15 2019-11-15 山东大学 The induced polarization separate type detection cable system and its distribution method of two side-wall pilot tunnel tunneling

Also Published As

Publication number Publication date
JP3820985B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
CN108368684B (en) Bedrock grouting monitoring method using resistivity
JP2003194758A (en) Method of evaluating bedrock of tunnel
Simenhois et al. The extended column test: a field test for fracture initiation and propagation
CN105158301A (en) Polluted soil detection method based on cross-hole resistivity CT method
Mazánová et al. Initiation and growth of short fatigue cracks in austenitic Sanicro 25 steel
CN105136866A (en) Contaminated soil detection method based on high-density resistivity method
Anderson-Whymark Intentional breakage in the British Neolithic: some comments and examples
JP4982391B2 (en) Diagnosis method of steel material buried in soil
KR101592008B1 (en) System applied construction method of grounding a distributionline
Butcher et al. Dynamic probing and its use in clay soils
JP2015067957A (en) Bedrock exploration method and bedrock exploration system as well as drilling data correction device for bedrock exploration
Kuo et al. Calibration of load and resistance factor design: Resistance factors for drilled shaft design
CN205139068U (en) Pollute soil and detect survey line arrangement structure based on high density resistivity method
JP5319618B2 (en) Ground condition prediction method and tunnel excavation method
JP2005083679A (en) Method of reducing blasting vibration and blasting sound
CN108037240A (en) The plant division of one kind analysis clone plant, rhizome or stolon maximum keep alive aging method
Plug et al. Modelling of ice‐wedge networks
CA2508003C (en) Method and apparatus for vertical voltage potential mapping
JP5033648B2 (en) Diagnosis method of steel material buried in soil
Heymann Soil nailing systems as lateral support for surface excavations.
JP4113933B2 (en) Electric discharge crushing method
JP3885038B2 (en) Rock physical property evaluation method and system, program, and recording medium
Halcomb et al. High Strain Dynamic Testing of SPIN FIN™ Piles
Widyatmoko et al. The application of the dissipated energy method for assessing the performance of polymer-modified bituminous mixtures
Cropper Excavations at Jundaru (HN-A9) Rockshelter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees